prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import warnings import math as m import numpy as nu from scipy import integrate from galpy.potential.Potential import _evaluateRforces, _evaluatezforces,\ evaluatePotentials, evaluateDensities, _check_c from galpy.util import galpyWarning import galpy.util.bovy_plot as plot import galpy.util.bovy_symplecticode as symplecticode from .FullOrbit import _integrateFullOrbit from .integrateFullOrbit import _ext_loaded as ext_loaded from galpy.util.bovy_conversion import physical_conversion from galpy.util.leung_dop853 import dop853 from .OrbitTop import OrbitTop class RZOrbit(OrbitTop): """Class that holds and integrates orbits in axisymetric potentials in the (R,z) plane""" def __init__(self,vxvv=[1.,0.,0.9,0.,0.1],vo=220.,ro=8.0,zo=0.025, solarmotion=nu.array([-10.1,4.0,6.7])): """ NAME: __init__ PURPOSE: intialize an RZ-orbit INPUT: vxvv - initial condition [R,vR,vT,z,vz] vo - circular velocity at ro (km/s) ro - distance from vantage point to GC (kpc) zo - offset toward the NGP of the Sun wrt the plane (kpc) solarmotion - value in [-U,V,W] (km/s) OUTPUT: (none) HISTORY: 2010-07-10 - Written - Bovy (NYU) 2014-06-11 - Added conversion kwargs to physical coordinates - Bovy (IAS) """ OrbitTop.__init__(self,vxvv=vxvv, ro=ro,zo=zo,vo=vo,solarmotion=solarmotion) return None def integrate(self,t,pot,method='symplec4_c',dt=None): """ NAME: integrate PURPOSE: integrate the orbit INPUT: t - list of times at which to output (0 has to be in this!) pot - potential instance or list of instances method= 'odeint' for scipy's odeint 'leapfrog' for a simple leapfrog implementation 'leapfrog_c' for a simple leapfrog implementation in C 'rk4_c' for a 4th-order Runge-Kutta integrator in C 'rk6_c' for a 6-th order Runge-Kutta integrator in C 'dopr54_c' for a Dormand-Prince integrator in C (generally the fastest) dt= (None) if set, force the integrator to use this basic stepsize; must be an integer divisor of output stepsize OUTPUT: (none) (get the actual orbit using getOrbit() HISTORY: 2010-07-10 """ if hasattr(self,'_orbInterp'): delattr(self,'_orbInterp') if hasattr(self,'rs'): delattr(self,'rs') self.t= nu.array(t) self._pot= pot self.orbit= _integrateRZOrbit(self.vxvv,pot,t,method,dt) @physical_conversion('energy') def E(self,*args,**kwargs): """ NAME: E PURPOSE: calculate the energy INPUT: t - (optional) time at which to get the radius pot= RZPotential instance or list thereof OUTPUT: energy HISTORY: 2010-09-15 - Written - Bovy (NYU) """ if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") if 'pot' in kwargs and kwargs['pot'] is None: kwargs.pop('pot') else: pot= kwargs.pop('pot') if len(args) > 0: t= args[0] else: t= 0. #Get orbit thiso= self(*args,**kwargs) onet= (len(thiso.shape) == 1) if onet: return evaluatePotentials(pot,thiso[0],thiso[3], t=t,use_physical=False)\ +thiso[1]**2./2.\ +thiso[2]**2./2.\ +thiso[4]**2./2. else: return nu.array([evaluatePotentials(pot,thiso[0,ii],thiso[3,ii], t=t[ii],use_physical=False)\ +thiso[1,ii]**2./2.\ +thiso[2,ii]**2./2.\ +thiso[4,ii]**2./2. for ii in range(len(t))]) @physical_conversion('energy') def ER(self,*args,**kwargs): """ NAME: ER PURPOSE: calculate the radial energy INPUT: t - (optional) time at which to get the energy pot= potential instance or list of such instances OUTPUT: radial energy HISTORY: 2013-11-30 - Written - Bovy (IAS) """ if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") if 'pot' in kwargs and kwargs['pot'] is None: kwargs.pop('pot') else: pot= kwargs.pop('pot') if len(args) > 0: t= args[0] else: t= 0. #Get orbit thiso= self(*args,**kwargs) onet= (len(thiso.shape) == 1) if onet: return evaluatePotentials(pot,thiso[0],0., t=t,use_physical=False)\ +thiso[1]**2./2.\ +thiso[2]**2./2. else: return nu.array([evaluatePotentials(pot,thiso[0,ii],0., t=t[ii],use_physical=False)\ +thiso[1,ii]**2./2.\ +thiso[2,ii]**2./2. for ii in range(len(t))]) @physical_conversion('energy') def Ez(self,*args,**kwargs): """ NAME: Ez PURPOSE: calculate the vertical energy INPUT: t - (optional) time at which to get the energy pot= potential instance or list of such instances OUTPUT: vertical energy HISTORY: 2013-11-30 - Written - Bovy (IAS) """ if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") if 'pot' in kwargs and kwargs['pot'] is None: kwargs.pop('pot') else: pot= kwargs.pop('pot') if len(args) > 0: t= args[0] else: t= 0. #Get orbit thiso= self(*args,**kwargs) onet= (len(thiso.shape) == 1) if onet: return evaluatePotentials(pot,thiso[0],thiso[3], t=t,use_physical=False)\ -evaluatePotentials(pot,thiso[0],0., t=t, use_physical=False)\ +thiso[4]**2./2. else: return nu.array([evaluatePotentials(pot,thiso[0,ii],thiso[3,ii], t=t[ii],use_physical=False)\ -evaluatePotentials(pot,thiso[0,ii],0., t=t[ii],use_physical=False)\ +thiso[4,ii]**2./2. for ii in range(len(t))]) @physical_conversion('energy') def Jacobi(self,*args,**kwargs): """ NAME: Jacobi PURPOSE: calculate the Jacobi integral of the motion INPUT: t - (optional) time at which to get the radius OmegaP= pattern speed of rotating frame (scalar) pot= potential instance or list of such instances OUTPUT: Jacobi integral HISTORY: 2011-04-18 - Written - Bovy (NYU) """ if not 'OmegaP' in kwargs or kwargs['OmegaP'] is None: OmegaP= 1. if not 'pot' in kwargs or kwargs['pot'] is None: try: pot= self._pot except AttributeError: raise AttributeError("Integrate orbit or specify pot=") else: pot= kwargs['pot'] if isinstance(pot,list): for p in pot: if hasattr(p,'OmegaP'): OmegaP= p.OmegaP() break else: if hasattr(pot,'OmegaP'): OmegaP= pot.OmegaP() kwargs.pop('OmegaP',None) else: OmegaP= kwargs.pop('OmegaP') #Make sure you are not using physical coordinates old_physical= kwargs.get('use_physical',None) kwargs['use_physical']= False thiso= self(*args,**kwargs) out= self.E(*args,**kwargs)-OmegaP*thiso[0]*thiso[2] if not old_physical is None: kwargs['use_physical']= old_physical else: kwargs.pop('use_physical') return out def e(self,analytic=False,pot=None,**kwargs): """ NAME: e PURPOSE: calculate the eccentricity INPUT: analytic - compute this analytically pot - potential to use for analytical calculation OUTPUT: eccentricity HISTORY: 2010-09-15 - Written - Bovy (NYU) """ if analytic: self._setupaA(pot=pot,**kwargs) return float(self._aA.EccZmaxRperiRap(self)[0]) if not hasattr(self,'orbit'): raise AttributeError("Integrate the orbit first or use analytic=True for approximate eccentricity") if not hasattr(self,'rs'): self.rs= nu.sqrt(self.orbit[:,0]**2.+self.orbit[:,3]**2.) return (nu.amax(self.rs)-nu.amin(self.rs))/(nu.amax(self.rs)+nu.amin(self.rs)) @physical_conversion('position') def rap(self,analytic=False,pot=None,**kwargs): """ NAME: rap PURPOSE: return the apocenter radius INPUT: analytic - compute this analytically pot - potential to use for analytical calculation OUTPUT: R_ap HISTORY: 2010-09-20 - Written - Bovy (NYU) """ if analytic: self._setupaA(pot=pot,**kwargs) return float(self._aA.EccZmaxRperiRap(self)[3]) if not hasattr(self,'orbit'): raise AttributeError("Integrate the orbit first or use analytic=True for approximate rap") if not hasattr(self,'rs'): self.rs= nu.sqrt(self.orbit[:,0]**2.+self.orbit[:,3]**2.) return nu.amax(self.rs) @physical_conversion('position') def rperi(self,analytic=False,pot=None,**kwargs): """ NAME: rperi PURPOSE: return the pericenter radius INPUT: analytic - compute this analytically pot - potential to use for analytical calculation OUTPUT: R_peri HISTORY: 2010-09-20 - Written - Bovy (NYU) """ if analytic: self._setupaA(pot=pot,**kwargs) return float(self._aA.EccZmaxRperiRap(self)[2]) if not hasattr(self,'orbit'): raise AttributeError("Integrate the orbit first or use analytic=True for approximate rperi") if not hasattr(self,'rs'): self.rs=
nu.sqrt(self.orbit[:,0]**2.+self.orbit[:,3]**2.)
numpy.sqrt
# standard libraries import collections import copy import functools import math import numbers import operator import typing # third party libraries import numpy import numpy.fft import scipy import scipy.fftpack import scipy.ndimage import scipy.ndimage.filters import scipy.ndimage.fourier import scipy.signal # local libraries from nion.data import Calibration from nion.data import DataAndMetadata from nion.data import Image from nion.data import ImageRegistration from nion.data import TemplateMatching from nion.utils import Geometry DataRangeType = typing.Tuple[float, float] NormIntervalType = typing.Tuple[float, float] NormChannelType = float NormRectangleType = typing.Tuple[typing.Tuple[float, float], typing.Tuple[float, float]] NormPointType = typing.Tuple[float, float] NormSizeType = typing.Tuple[float, float] NormVectorType = typing.Tuple[NormPointType, NormPointType] def column(data_and_metadata: DataAndMetadata.DataAndMetadata, start: int, stop: int) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = start if start is not None else 0 stop_0 = stop if stop is not None else data_shape(data_and_metadata)[0] start_1 = start if start is not None else 0 stop_1 = stop if stop is not None else data_shape(data_and_metadata)[1] return numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True)[0] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def row(data_and_metadata: DataAndMetadata.DataAndMetadata, start: int, stop: int) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = start if start is not None else 0 stop_0 = stop if stop is not None else data_shape(data_and_metadata)[0] start_1 = start if start is not None else 0 stop_1 = stop if stop is not None else data_shape(data_and_metadata)[1] return numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True)[1] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def radius(data_and_metadata: DataAndMetadata.DataAndMetadata, normalize: bool=True) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): start_0 = -1 if normalize else -data_shape(data_and_metadata)[0] * 0.5 stop_0 = -start_0 start_1 = -1 if normalize else -data_shape(data_and_metadata)[1] * 0.5 stop_1 = -start_1 icol, irow = numpy.meshgrid(numpy.linspace(start_1, stop_1, data_shape(data_and_metadata)[1]), numpy.linspace(start_0, stop_0, data_shape(data_and_metadata)[0]), sparse=True) return numpy.sqrt(icol * icol + irow * irow) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def full(shape: DataAndMetadata.ShapeType, fill_value, dtype: numpy.dtype = None) -> DataAndMetadata.DataAndMetadata: """Generate a constant valued image with the given shape. full(4, shape(4, 5)) full(0, data_shape(b)) """ dtype = dtype if dtype else numpy.dtype(numpy.float64) return DataAndMetadata.new_data_and_metadata(numpy.full(shape, DataAndMetadata.extract_data(fill_value), dtype)) def arange(start: int, stop: int=None, step: int=None) -> DataAndMetadata.DataAndMetadata: if stop is None: start = 0 stop = start if step is None: step = 1 return DataAndMetadata.new_data_and_metadata(numpy.linspace(int(start), int(stop), int(step))) def linspace(start: float, stop: float, num: int, endpoint: bool=True) -> DataAndMetadata.DataAndMetadata: return DataAndMetadata.new_data_and_metadata(numpy.linspace(start, stop, num, endpoint)) def logspace(start: float, stop: float, num: int, endpoint: bool=True, base: float=10.0) -> DataAndMetadata.DataAndMetadata: return DataAndMetadata.new_data_and_metadata(numpy.logspace(start, stop, num, endpoint, base)) def apply_dist(data_and_metadata: DataAndMetadata.DataAndMetadata, mean: float, stddev: float, dist, fn) -> DataAndMetadata.DataAndMetadata: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) return DataAndMetadata.new_data_and_metadata(getattr(dist(loc=mean, scale=stddev), fn)(data_and_metadata.data)) def take_item(data, key): return data[key] def data_shape(data_and_metadata: DataAndMetadata.DataAndMetadata) -> DataAndMetadata.ShapeType: return data_and_metadata.data_shape def astype(data: numpy.ndarray, dtype: numpy.dtype) -> numpy.ndarray: return data.astype(dtype) dtype_map: typing.Mapping[typing.Any, str] = {int: "int", float: "float", complex: "complex", numpy.int16: "int16", numpy.int32: "int32", numpy.int64: "int64", numpy.uint8: "uint8", numpy.uint16: "uint16", numpy.uint32: "uint32", numpy.uint64: "uint64", numpy.float32: "float32", numpy.float64: "float64", numpy.complex64: "complex64", numpy.complex128: "complex128"} dtype_inverse_map = {dtype_map[k]: k for k in dtype_map} def str_to_dtype(str: str) -> numpy.dtype: return dtype_inverse_map.get(str, float) def dtype_to_str(dtype: numpy.dtype) -> str: return dtype_map.get(dtype, "float") def function_fft(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None # scaling: numpy.sqrt(numpy.mean(numpy.absolute(data_copy)**2)) == numpy.sqrt(numpy.mean(numpy.absolute(data_copy_fft)**2)) # see https://gist.github.com/endolith/1257010 if Image.is_data_1d(data): scaling = 1.0 / numpy.sqrt(data_shape[0]) return scipy.fftpack.fftshift(numpy.multiply(scipy.fftpack.fft(data), scaling)) elif Image.is_data_2d(data): if Image.is_data_rgb_type(data): if Image.is_data_rgb(data): data_copy = numpy.sum(data[..., :] * (0.2126, 0.7152, 0.0722), 2) else: data_copy = numpy.sum(data[..., :] * (0.2126, 0.7152, 0.0722, 0.0), 2) else: data_copy = data.copy() # let other threads use data while we're processing scaling = 1.0 / numpy.sqrt(data_shape[1] * data_shape[0]) # note: the numpy.fft.fft2 is faster than scipy.fftpack.fft2, probably either because # our conda distribution compiles numpy for multiprocessing, the numpy version releases # the GIL, or both. return scipy.fftpack.fftshift(numpy.multiply(numpy.fft.fft2(data_copy), scaling)) else: raise NotImplementedError() src_dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or src_dimensional_calibrations is None: return None assert len(src_dimensional_calibrations) == len( Image.dimensional_shape_from_shape_and_dtype(data_shape, data_dtype)) dimensional_calibrations = [Calibration.Calibration((-0.5 - 0.5 * data_shape_n) / (dimensional_calibration.scale * data_shape_n), 1.0 / (dimensional_calibration.scale * data_shape_n), "1/" + dimensional_calibration.units) for dimensional_calibration, data_shape_n in zip(src_dimensional_calibrations, data_shape)] return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=dimensional_calibrations) def function_ifft(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None # scaling: numpy.sqrt(numpy.mean(numpy.absolute(data_copy)**2)) == numpy.sqrt(numpy.mean(numpy.absolute(data_copy_fft)**2)) # see https://gist.github.com/endolith/1257010 if Image.is_data_1d(data): scaling = numpy.sqrt(data_shape[0]) return scipy.fftpack.ifft(scipy.fftpack.ifftshift(data) * scaling) elif Image.is_data_2d(data): data_copy = data.copy() # let other threads use data while we're processing scaling = numpy.sqrt(data_shape[1] * data_shape[0]) return scipy.fftpack.ifft2(scipy.fftpack.ifftshift(data_copy) * scaling) else: raise NotImplementedError() src_dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or src_dimensional_calibrations is None: return None assert len(src_dimensional_calibrations) == len( Image.dimensional_shape_from_shape_and_dtype(data_shape, data_dtype)) def remove_one_slash(s): if s.startswith("1/"): return s[2:] else: return "1/" + s dimensional_calibrations = [Calibration.Calibration(0.0, 1.0 / (dimensional_calibration.scale * data_shape_n), remove_one_slash(dimensional_calibration.units)) for dimensional_calibration, data_shape_n in zip(src_dimensional_calibrations, data_shape)] return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=dimensional_calibrations) def function_autocorrelate(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if data is None or not Image.is_data_valid(data): return None if Image.is_data_2d(data): data_copy = data.copy() # let other threads use data while we're processing data_std = data_copy.std(dtype=numpy.float64) if data_std != 0.0: data_norm = (data_copy - data_copy.mean(dtype=numpy.float64)) / data_std else: data_norm = data_copy scaling = 1.0 / (data_norm.shape[0] * data_norm.shape[1]) data_norm = numpy.fft.rfft2(data_norm) return numpy.fft.fftshift(numpy.fft.irfft2(data_norm * numpy.conj(data_norm))) * scaling # this gives different results. why? because for some reason scipy pads out to 1023 and does calculation. # see https://github.com/scipy/scipy/blob/master/scipy/signal/signaltools.py # return scipy.signal.fftconvolve(data_copy, numpy.conj(data_copy), mode='same') return None if data_and_metadata is None: return None return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_crosscorrelate(*args) -> typing.Optional[DataAndMetadata.DataAndMetadata]: if len(args) != 2: return None data_and_metadata1, data_and_metadata2 = args[0], args[1] data_and_metadata1 = DataAndMetadata.promote_ndarray(data_and_metadata1) data_and_metadata2 = DataAndMetadata.promote_ndarray(data_and_metadata2) shape = DataAndMetadata.determine_shape(data_and_metadata1, data_and_metadata2) data_and_metadata1 = DataAndMetadata.promote_constant(data_and_metadata1, shape) data_and_metadata2 = DataAndMetadata.promote_constant(data_and_metadata2, shape) def calculate_data(): data1 = data_and_metadata1.data data2 = data_and_metadata2.data if data1 is None or data2 is None: return None if Image.is_data_2d(data1) and Image.is_data_2d(data2): data_std1 = data1.std(dtype=numpy.float64) if data_std1 != 0.0: norm1 = (data1 - data1.mean(dtype=numpy.float64)) / data_std1 else: norm1 = data1 data_std2 = data2.std(dtype=numpy.float64) if data_std2 != 0.0: norm2 = (data2 - data2.mean(dtype=numpy.float64)) / data_std2 else: norm2 = data2 scaling = 1.0 / (norm1.shape[0] * norm1.shape[1]) return numpy.fft.fftshift(numpy.fft.irfft2(numpy.fft.rfft2(norm1) * numpy.conj(numpy.fft.rfft2(norm2)))) * scaling # this gives different results. why? because for some reason scipy pads out to 1023 and does calculation. # see https://github.com/scipy/scipy/blob/master/scipy/signal/signaltools.py # return scipy.signal.fftconvolve(data1.copy(), numpy.conj(data2.copy()), mode='same') return None if data_and_metadata1 is None or data_and_metadata2 is None: return None return DataAndMetadata.new_data_and_metadata(calculate_data(), dimensional_calibrations=data_and_metadata1.dimensional_calibrations) def function_register(xdata1: DataAndMetadata.DataAndMetadata, xdata2: DataAndMetadata.DataAndMetadata, upsample_factor: int, subtract_means: bool, bounds: typing.Union[NormRectangleType, NormIntervalType]=None) -> typing.Tuple[float, ...]: # FUTURE: use scikit.image register_translation xdata1 = DataAndMetadata.promote_ndarray(xdata1) xdata2 = DataAndMetadata.promote_ndarray(xdata2) # data shape and descriptors should match assert xdata1.data_shape == xdata2.data_shape assert xdata1.data_descriptor == xdata2.data_descriptor # get the raw data data1 = xdata1.data data2 = xdata2.data if data1 is None: return tuple() if data2 is None: return tuple() # take the slice if there is one if bounds is not None: d_rank = xdata1.datum_dimension_count shape = data1.shape bounds_pixels = numpy.rint(numpy.array(bounds) * numpy.array(shape)).astype(numpy.int_) bounds_slice: typing.Optional[typing.Union[slice, typing.Tuple[slice, ...]]] if d_rank == 1: bounds_slice = slice(max(0, bounds_pixels[0]), min(shape[0], bounds_pixels[1])) elif d_rank == 2: bounds_slice = (slice(max(0, bounds_pixels[0][0]), min(shape[0], bounds_pixels[0][0]+bounds_pixels[1][0])), slice(max(0, bounds_pixels[0][1]), min(shape[1], bounds_pixels[0][1]+bounds_pixels[1][1]))) else: bounds_slice = None data1 = data1[bounds_slice] data2 = data2[bounds_slice] # subtract the means if desired if subtract_means: data1 = data1 - numpy.average(data1) data2 = data2 - numpy.average(data2) assert data1 is not None assert data2 is not None # adjust the dimensions so 1D data is always nx1 add_before = 0 while len(data1.shape) > 1 and data1.shape[0] == 1: data1 = numpy.squeeze(data1, axis=0) data2 = numpy.squeeze(data2, axis=0) add_before += 1 add_after = 0 while len(data1.shape) > 1 and data1.shape[-1] == 1: data1 = numpy.squeeze(data1, axis=-1) data2 = numpy.squeeze(data2, axis=-1) add_after += 1 do_squeeze = False if len(data1.shape) == 1: data1 = data1[..., numpy.newaxis] data2 = data2[..., numpy.newaxis] do_squeeze = True # carry out the registration result = ImageRegistration.dftregistration(data1, data2, upsample_factor)#[0:d_rank] # adjust results to match input data if do_squeeze: result = result[0:-1] for _ in range(add_before): result = (numpy.zeros_like(result[0]), ) + result for _ in range(add_after): result = result + (numpy.zeros_like(result[0]), ) return result def function_match_template(image_xdata: DataAndMetadata.DataAndMetadata, template_xdata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """ Calculates the normalized cross-correlation for a template with an image. The returned xdata will have the same shape as `image_xdata`. Inputs can be 1D or 2D and the template must be smaller than or the same size as the image. """ image_xdata = DataAndMetadata.promote_ndarray(image_xdata) template_xdata = DataAndMetadata.promote_ndarray(template_xdata) assert image_xdata.is_data_2d or image_xdata.is_data_1d assert template_xdata.is_data_2d or template_xdata.is_data_1d assert image_xdata.data_descriptor == template_xdata.data_descriptor # The template needs to be the smaller of the two if they have different shape assert numpy.less_equal(template_xdata.data_shape, image_xdata.data_shape).all() image = image_xdata.data template = template_xdata.data assert image is not None assert template is not None squeeze = False if image_xdata.is_data_1d: image = image[..., numpy.newaxis] template = template[..., numpy.newaxis] assert image is not None assert template is not None squeeze = True ccorr = TemplateMatching.match_template(image, template) if squeeze: ccorr = numpy.squeeze(ccorr) return DataAndMetadata.new_data_and_metadata(ccorr, dimensional_calibrations=image_xdata.dimensional_calibrations) def function_register_template(image_xdata: DataAndMetadata.DataAndMetadata, template_xdata: DataAndMetadata.DataAndMetadata) -> typing.Tuple[float, typing.Tuple[float, ...]]: """ Calculates and returns the position of a template on an image. The returned values are the intensity if the normalized cross-correlation peak (between -1 and 1) and the sub-pixel position of the template on the image. The sub-pixel position is calculated by fitting a parabola to the tip of the cross-correlation peak. Inputs can be 1D or 2D and the template must be smaller than or the same size as the image. """ image_xdata = DataAndMetadata.promote_ndarray(image_xdata) template_xdata = DataAndMetadata.promote_ndarray(template_xdata) ccorr_xdata = function_match_template(image_xdata, template_xdata) if ccorr_xdata: error, ccoeff, max_pos = TemplateMatching.find_ccorr_max(ccorr_xdata.data) if not error: return ccoeff, tuple(max_pos[i] - image_xdata.data_shape[i] * 0.5 for i in range(len(image_xdata.data_shape))) return 0.0, (0.0, ) * len(image_xdata.data_shape) def function_shift(src: DataAndMetadata.DataAndMetadata, shift: typing.Tuple[float, ...], *, order: int = 1) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if src: src_data = src._data_ex shifted = scipy.ndimage.shift(src_data, shift, order=order, cval=numpy.mean(src_data)) return DataAndMetadata.new_data_and_metadata(numpy.squeeze(shifted)) return None def function_fourier_shift(src: DataAndMetadata.DataAndMetadata, shift: typing.Tuple[float, ...]) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) src_data = numpy.fft.fftn(src.data) do_squeeze = False if len(src_data.shape) == 1: src_data = src_data[..., numpy.newaxis] shift = tuple(shift) + (1,) do_squeeze = True # NOTE: fourier_shift assumes non-fft-shifted data. shifted = numpy.fft.ifftn(scipy.ndimage.fourier_shift(src_data, shift)).real shifted = numpy.squeeze(shifted) if do_squeeze else shifted return DataAndMetadata.new_data_and_metadata(shifted) def function_align(src: DataAndMetadata.DataAndMetadata, target: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Aligns target to src and returns align target, using Fourier space.""" src = DataAndMetadata.promote_ndarray(src) target = DataAndMetadata.promote_ndarray(target) return function_shift(target, function_register(src, target, upsample_factor, True, bounds=bounds)) def function_fourier_align(src: DataAndMetadata.DataAndMetadata, target: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Aligns target to src and returns align target, using Fourier space.""" src = DataAndMetadata.promote_ndarray(src) target = DataAndMetadata.promote_ndarray(target) return function_fourier_shift(target, function_register(src, target, upsample_factor, True, bounds=bounds)) def function_sequence_register_translation(src: DataAndMetadata.DataAndMetadata, upsample_factor: int, subtract_means: bool, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: # measures shift relative to last position in sequence # only works on sequences src = DataAndMetadata.promote_ndarray(src) assert src.is_sequence d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = tuple(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) result = numpy.empty(s_shape + (d_rank, )) previous_data = None src_data = src._data_ex for i in range(c): ii = numpy.unravel_index(i, s_shape) + (Ellipsis, ) if previous_data is None: previous_data = src_data[ii] result[0, ...] = 0 else: current_data = src_data[ii] result[ii] = function_register(previous_data, current_data, upsample_factor, subtract_means, bounds=bounds) previous_data = current_data intensity_calibration = src.dimensional_calibrations[1] # not the sequence dimension return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, data_descriptor=DataAndMetadata.DataDescriptor(True, 0, 1)) def function_sequence_measure_relative_translation(src: DataAndMetadata.DataAndMetadata, ref: DataAndMetadata.DataAndMetadata, upsample_factor: int, subtract_means: bool, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: # measures shift at each point in sequence/collection relative to reference src = DataAndMetadata.promote_ndarray(src) d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = tuple(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) result = numpy.empty(s_shape + (d_rank, )) src_data = src._data_ex for i in range(c): ii = numpy.unravel_index(i, s_shape) current_data = src_data[ii] result[ii] = function_register(ref, current_data, upsample_factor, subtract_means, bounds=bounds) intensity_calibration = src.dimensional_calibrations[1] # not the sequence dimension return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, data_descriptor=DataAndMetadata.DataDescriptor(src.is_sequence, src.collection_dimension_count, 1)) def function_squeeze_measurement(src: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: # squeezes a measurement of a sequence or collection so that it can be sensibly displayed src = DataAndMetadata.promote_ndarray(src) data = src._data_ex descriptor = src.data_descriptor calibrations = list(src.dimensional_calibrations) if descriptor.is_sequence and data.shape[0] == 1: data = numpy.squeeze(data, axis=0) descriptor = DataAndMetadata.DataDescriptor(False, descriptor.collection_dimension_count, descriptor.datum_dimension_count) calibrations.pop(0) for index in reversed(descriptor.collection_dimension_indexes): if data.shape[index] == 1: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(descriptor.is_sequence, descriptor.collection_dimension_count - 1, descriptor.datum_dimension_count) calibrations.pop(index) for index in reversed(descriptor.datum_dimension_indexes): if data.shape[index] == 1: if descriptor.datum_dimension_count > 1: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(descriptor.is_sequence, descriptor.collection_dimension_count, descriptor.datum_dimension_count - 1) calibrations.pop(index) elif descriptor.collection_dimension_count > 0: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(descriptor.is_sequence, 0, descriptor.collection_dimension_count) calibrations.pop(index) elif descriptor.is_sequence: data = numpy.squeeze(data, axis=index) descriptor = DataAndMetadata.DataDescriptor(False, 0, 1) calibrations.pop(index) intensity_calibration = src.intensity_calibration intensity_calibration.offset = 0.0 return DataAndMetadata.new_data_and_metadata(data, intensity_calibration=intensity_calibration, dimensional_calibrations=calibrations, data_descriptor=descriptor) def function_sequence_align(src: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = list(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) ref = src[numpy.unravel_index(0, s_shape) + (Ellipsis, )] translations = function_sequence_measure_relative_translation(src, ref, upsample_factor, True, bounds=bounds) if not translations: return None result_data = numpy.copy(src.data) for i in range(1, c): ii = numpy.unravel_index(i, s_shape) + (Ellipsis, ) current_xdata = DataAndMetadata.new_data_and_metadata(numpy.copy(result_data[ii])) translation = translations._data_ex[numpy.unravel_index(i, s_shape)] shift_xdata = function_shift(current_xdata, tuple(translation)) if shift_xdata: result_data[ii] = shift_xdata.data return DataAndMetadata.new_data_and_metadata(result_data, intensity_calibration=src.intensity_calibration, dimensional_calibrations=src.dimensional_calibrations, data_descriptor=src.data_descriptor) def function_sequence_fourier_align(src: DataAndMetadata.DataAndMetadata, upsample_factor: int, bounds: typing.Union[NormRectangleType, NormIntervalType] = None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) d_rank = src.datum_dimension_count if len(src.data_shape) <= d_rank: return None if d_rank < 1 or d_rank > 2: return None src_shape = list(src.data_shape) s_shape = src_shape[0:-d_rank] c = int(numpy.product(s_shape)) ref = src[numpy.unravel_index(0, s_shape) + (Ellipsis, )] translations = function_sequence_measure_relative_translation(src, ref, upsample_factor, True, bounds=bounds) if not translations: return None result_data = numpy.copy(src.data) for i in range(1, c): ii = numpy.unravel_index(i, s_shape) + (Ellipsis, ) current_xdata = DataAndMetadata.new_data_and_metadata(numpy.copy(result_data[ii])) translation = translations._data_ex[numpy.unravel_index(i, s_shape)] shift_xdata = function_fourier_shift(current_xdata, tuple(translation)) if shift_xdata: result_data[ii] = shift_xdata.data return DataAndMetadata.new_data_and_metadata(result_data, intensity_calibration=src.intensity_calibration, dimensional_calibrations=src.dimensional_calibrations, data_descriptor=src.data_descriptor) def function_sequence_integrate(src: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None dim = src.data_shape[1:] if len(dim) < 1: return None result = numpy.sum(src._data_ex, axis=0) intensity_calibration = src.intensity_calibration dimensional_calibrations = src.dimensional_calibrations[1:] data_descriptor = DataAndMetadata.DataDescriptor(False, src.data_descriptor.collection_dimension_count, src.data_descriptor.datum_dimension_count) return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_sequence_trim(src: DataAndMetadata.DataAndMetadata, trim_start: int, trim_end: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None c = src.sequence_dimension_shape[0] dim = src.data_shape[1:] if len(dim) < 1: return None cs = max(0, int(trim_start)) ce = min(c, max(cs + 1, int(trim_end))) return src[cs:ce] def function_sequence_insert(src1: DataAndMetadata.DataAndMetadata, src2: DataAndMetadata.DataAndMetadata, position: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src1 = DataAndMetadata.promote_ndarray(src1) src2 = DataAndMetadata.promote_ndarray(src2) if not src1.is_sequence or not src2.is_sequence: return None if src1.data_shape[1:] != src2.data_shape[1:]: return None c = src1.sequence_dimension_shape[0] dim = src1.data_shape[1:] if len(dim) < 1 or len(dim) > 2: return None channel = max(0, min(c, int(position))) result = numpy.vstack([src1._data_ex[:channel], src2._data_ex, src1._data_ex[channel:]]) intensity_calibration = src1.intensity_calibration dimensional_calibrations = src1.dimensional_calibrations data_descriptor = src1.data_descriptor return DataAndMetadata.new_data_and_metadata(result, intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_sequence_concatenate(src1: DataAndMetadata.DataAndMetadata, src2: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src1 = DataAndMetadata.promote_ndarray(src1) src2 = DataAndMetadata.promote_ndarray(src2) return function_sequence_insert(src1, src2, src1.data_shape[0]) def function_sequence_join(data_and_metadata_list: typing.Sequence[DataAndMetadata.DataAndMetadata]) -> typing.Optional[DataAndMetadata.DataAndMetadata]: if not data_and_metadata_list: return None data_and_metadata_list = [DataAndMetadata.promote_ndarray(data_and_metadata) for data_and_metadata in data_and_metadata_list] def ensure_sequence(xdata): if xdata.is_sequence: return xdata sequence_data = numpy.reshape(xdata.data, (1,) + xdata.data.shape) dimensional_calibrations = [Calibration.Calibration()] + xdata.dimensional_calibrations data_descriptor = DataAndMetadata.DataDescriptor(True, xdata.collection_dimension_count, xdata.datum_dimension_count) return DataAndMetadata.new_data_and_metadata(sequence_data, dimensional_calibrations=dimensional_calibrations, intensity_calibration=xdata.intensity_calibration, data_descriptor=data_descriptor) sequence_xdata_list = [ensure_sequence(xdata) for xdata in data_and_metadata_list] xdata_0 = sequence_xdata_list[0] non_sequence_shape_0 = xdata_0.data_shape[1:] for xdata in sequence_xdata_list[1:]: if xdata.data_shape[1:] != non_sequence_shape_0: return None return function_concatenate(sequence_xdata_list) def function_sequence_extract(src: DataAndMetadata.DataAndMetadata, position: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None c = src.sequence_dimension_shape[0] dim = src.data_shape[1:] if len(dim) < 1: return None channel = max(0, min(c, int(position))) return src[channel] def function_sequence_split(src: DataAndMetadata.DataAndMetadata) -> typing.Optional[typing.List[DataAndMetadata.DataAndMetadata]]: src = DataAndMetadata.promote_ndarray(src) if not src.is_sequence: return None dim = src.data_shape[1:] if len(dim) < 1: return None dimensional_calibrations = copy.deepcopy(src.dimensional_calibrations[1:]) data_descriptor = DataAndMetadata.DataDescriptor(False, src.collection_dimension_count, src.datum_dimension_count) return [ DataAndMetadata.new_data_and_metadata(data, dimensional_calibrations=copy.deepcopy(dimensional_calibrations), intensity_calibration=copy.deepcopy(src.intensity_calibration), data_descriptor=copy.copy(data_descriptor)) for data in src._data_ex] def function_make_elliptical_mask(data_shape: DataAndMetadata.ShapeType, center: NormPointType, size: NormSizeType, rotation: float) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_size = Geometry.IntSize.make(data_shape) data_rect = Geometry.FloatRect(origin=Geometry.FloatPoint(), size=Geometry.FloatSize.make(data_size)) center_point = Geometry.map_point(Geometry.FloatPoint.make(center), Geometry.FloatRect.unit_rect(), data_rect) size_size = Geometry.map_size(Geometry.FloatSize.make(size), Geometry.FloatRect.unit_rect(), data_rect) mask = numpy.zeros((data_size.height, data_size.width)) bounds = Geometry.FloatRect.from_center_and_size(center_point, size_size) if bounds.height <= 0 or bounds.width <= 0: return DataAndMetadata.new_data_and_metadata(mask) a, b = bounds.center.y, bounds.center.x y, x = numpy.ogrid[-a:data_size.height - a, -b:data_size.width - b] if rotation: angle_sin = math.sin(rotation) angle_cos = math.cos(rotation) mask_eq = ((x * angle_cos - y * angle_sin) ** 2) / ((bounds.width / 2) * (bounds.width / 2)) + ((y * angle_cos + x * angle_sin) ** 2) / ((bounds.height / 2) * (bounds.height / 2)) <= 1 else: mask_eq = x * x / ((bounds.width / 2) * (bounds.width / 2)) + y * y / ((bounds.height / 2) * (bounds.height / 2)) <= 1 mask[mask_eq] = 1 return DataAndMetadata.new_data_and_metadata(mask) def function_fourier_mask(data_and_metadata: DataAndMetadata.DataAndMetadata, mask_data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) mask_data_and_metadata = DataAndMetadata.promote_ndarray(mask_data_and_metadata) shape = DataAndMetadata.determine_shape(data_and_metadata, mask_data_and_metadata) data_and_metadata = DataAndMetadata.promote_constant(data_and_metadata, shape) mask_data_and_metadata = DataAndMetadata.promote_constant(mask_data_and_metadata, shape) def calculate_data(): data = data_and_metadata.data mask_data = mask_data_and_metadata.data if data is None or mask_data is None: return None if Image.is_data_2d(data) and Image.is_data_2d(mask_data): try: y_half = data.shape[0] // 2 y_half_p1 = y_half + 1 y_half_m1 = y_half - 1 y_low = 0 if data.shape[0] % 2 == 0 else None x_half = data.shape[1] // 2 x_half_p1 = x_half + 1 x_half_m1 = x_half - 1 x_low = 0 if data.shape[1] % 2 == 0 else None fourier_mask_data = numpy.empty_like(mask_data) fourier_mask_data[y_half_p1:, x_half_p1:] = mask_data[y_half_p1:, x_half_p1:] fourier_mask_data[y_half_p1:, x_half_m1:x_low:-1] = mask_data[y_half_p1:, x_half_m1:x_low:-1] fourier_mask_data[y_half_m1:y_low:-1, x_half_m1:x_low:-1] = mask_data[y_half_p1:, x_half_p1:] fourier_mask_data[y_half_m1:y_low:-1, x_half_p1:] = mask_data[y_half_p1:, x_half_m1:x_low:-1] fourier_mask_data[0, :] = mask_data[0, :] fourier_mask_data[:, 0] = mask_data[:, 0] fourier_mask_data[y_half, :] = mask_data[y_half, :] fourier_mask_data[:, x_half] = mask_data[:, x_half] return data * fourier_mask_data except Exception as e: print(e) raise return None return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_sobel(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.sobel(data[..., 0]) rgb[..., 1] = scipy.ndimage.sobel(data[..., 1]) rgb[..., 2] = scipy.ndimage.sobel(data[..., 2]) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.sobel(data[..., 0]) rgba[..., 1] = scipy.ndimage.sobel(data[..., 1]) rgba[..., 2] = scipy.ndimage.sobel(data[..., 2]) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.sobel(data) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_laplace(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.laplace(data[..., 0]) rgb[..., 1] = scipy.ndimage.laplace(data[..., 1]) rgb[..., 2] = scipy.ndimage.laplace(data[..., 2]) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.laplace(data[..., 0]) rgba[..., 1] = scipy.ndimage.laplace(data[..., 1]) rgba[..., 2] = scipy.ndimage.laplace(data[..., 2]) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.laplace(data) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_gaussian_blur(data_and_metadata: DataAndMetadata.DataAndMetadata, sigma: float) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) sigma = float(sigma) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None return scipy.ndimage.gaussian_filter(data, sigma=sigma) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_median_filter(data_and_metadata: DataAndMetadata.DataAndMetadata, size: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) size = max(min(int(size), 999), 1) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.median_filter(data[..., 0], size=size) rgb[..., 1] = scipy.ndimage.median_filter(data[..., 1], size=size) rgb[..., 2] = scipy.ndimage.median_filter(data[..., 2], size=size) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.median_filter(data[..., 0], size=size) rgba[..., 1] = scipy.ndimage.median_filter(data[..., 1], size=size) rgba[..., 2] = scipy.ndimage.median_filter(data[..., 2], size=size) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.median_filter(data, size=size) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_uniform_filter(data_and_metadata: DataAndMetadata.DataAndMetadata, size: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) size = max(min(int(size), 999), 1) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb = numpy.empty(data.shape[:-1] + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.uniform_filter(data[..., 0], size=size) rgb[..., 1] = scipy.ndimage.uniform_filter(data[..., 1], size=size) rgb[..., 2] = scipy.ndimage.uniform_filter(data[..., 2], size=size) return rgb elif Image.is_shape_and_dtype_rgba(data.shape, data.dtype): rgba = numpy.empty(data.shape[:-1] + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.uniform_filter(data[..., 0], size=size) rgba[..., 1] = scipy.ndimage.uniform_filter(data[..., 1], size=size) rgba[..., 2] = scipy.ndimage.uniform_filter(data[..., 2], size=size) rgba[..., 3] = data[..., 3] return rgba else: return scipy.ndimage.uniform_filter(data, size=size) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_transpose_flip(data_and_metadata: DataAndMetadata.DataAndMetadata, transpose: bool=False, flip_v: bool=False, flip_h: bool=False) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data data_id = id(data) if not Image.is_data_valid(data): return None if transpose: if Image.is_shape_and_dtype_rgb_type(data.shape, data.dtype): data = numpy.transpose(data, [1, 0, 2]) elif len(data_and_metadata.data_shape) == 2: data = numpy.transpose(data, [1, 0]) if flip_h and len(data_and_metadata.data_shape) == 2: data = numpy.fliplr(data) if flip_v and len(data_and_metadata.data_shape) == 2: data = numpy.flipud(data) if id(data) == data_id: # ensure real data, not a view data = data.copy() return data data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype if not Image.is_shape_and_dtype_valid(data_shape, data_dtype): return None if transpose: dimensional_calibrations = list(reversed(data_and_metadata.dimensional_calibrations)) else: dimensional_calibrations = list(data_and_metadata.dimensional_calibrations) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_invert(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb_type(data.shape, data.dtype): if Image.is_data_rgba(data): inverted = 255 - data[:] inverted[...,3] = data[...,3] return inverted else: return 255 - data[:] else: return -data[:] data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype if not Image.is_shape_and_dtype_valid(data_shape, data_dtype): return None dimensional_calibrations = data_and_metadata.dimensional_calibrations return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_crop(data_and_metadata: DataAndMetadata.DataAndMetadata, bounds: NormRectangleType) -> typing.Optional[DataAndMetadata.DataAndMetadata]: bounds_rect = Geometry.FloatRect.make(bounds) data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = Geometry.IntSize.make(data_and_metadata.data_shape) data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations data = data_and_metadata._data_ex if not Image.is_shape_and_dtype_valid(list(data_shape), data_dtype) or dimensional_calibrations is None: return None if not Image.is_data_valid(data): return None oheight = int(data_shape.height * bounds_rect.height) owidth = int(data_shape.width * bounds_rect.width) top = int(data_shape.height * bounds_rect.top) left = int(data_shape.width * bounds_rect.left) height = int(data_shape.height * bounds_rect.height) width = int(data_shape.width * bounds_rect.width) dtop = 0 dleft = 0 dheight = height dwidth = width if top < 0: dheight += top dtop -= top height += top top = 0 if top + height > data_shape.height: dheight -= (top + height - data_shape.height) height = data_shape.height - top if left < 0: dwidth += left dleft -= left width += left left = 0 if left + width > data_shape.width: dwidth -= (left + width- data_shape.width) width = data_shape.width - left data_dtype = data.dtype assert data_dtype is not None if data_and_metadata.is_data_rgb: new_data = numpy.zeros((oheight, owidth, 3), dtype=data_dtype) if height > 0 and width > 0: new_data[dtop:dtop + dheight, dleft:dleft + dwidth] = data[top:top + height, left:left + width] elif data_and_metadata.is_data_rgba: new_data = numpy.zeros((oheight, owidth, 4), dtype=data_dtype) if height > 0 and width > 0: new_data[dtop:dtop + dheight, dleft:dleft + dwidth] = data[top:top + height, left:left + width] else: new_data = numpy.zeros((oheight, owidth), dtype=data_dtype) if height > 0 and width > 0: new_data[dtop:dtop + dheight, dleft:dleft + dwidth] = data[top:top + height, left:left + width] cropped_dimensional_calibrations = list() for index, dimensional_calibration in enumerate(dimensional_calibrations): cropped_calibration = Calibration.Calibration( dimensional_calibration.offset + data_shape[index] * bounds_rect.origin[index] * dimensional_calibration.scale, dimensional_calibration.scale, dimensional_calibration.units) cropped_dimensional_calibrations.append(cropped_calibration) return DataAndMetadata.new_data_and_metadata(new_data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=cropped_dimensional_calibrations) def function_crop_rotated(data_and_metadata: DataAndMetadata.DataAndMetadata, bounds: NormRectangleType, angle: float) -> typing.Optional[DataAndMetadata.DataAndMetadata]: bounds_rect = Geometry.FloatRect.make(bounds) data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = Geometry.IntSize.make(data_and_metadata.data_shape) data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations data = data_and_metadata._data_ex if not Image.is_shape_and_dtype_valid(list(data_shape), data_dtype) or dimensional_calibrations is None: return None if not Image.is_data_valid(data): return None top = round(data_shape.height * bounds_rect.top) left = round(data_shape.width * bounds_rect.left) height = round(data_shape.height * bounds_rect.height) width = round(data_shape.width * bounds_rect.width) x, y = numpy.meshgrid(numpy.arange(-(width // 2), width - width // 2), numpy.arange(-(height // 2), height - height // 2)) angle_sin = math.sin(angle) angle_cos = math.cos(angle) coords = [top + height // 2 + (y * angle_cos - x * angle_sin), left + width // 2 + (x * angle_cos + y * angle_sin)] if data_and_metadata.is_data_rgb: new_data = numpy.zeros(coords[0].shape + (3,), numpy.uint8) new_data[..., 0] = scipy.ndimage.interpolation.map_coordinates(data[..., 0], coords) new_data[..., 1] = scipy.ndimage.interpolation.map_coordinates(data[..., 1], coords) new_data[..., 2] = scipy.ndimage.interpolation.map_coordinates(data[..., 2], coords) elif data_and_metadata.is_data_rgba: new_data = numpy.zeros(coords[0].shape + (4,), numpy.uint8) new_data[..., 0] = scipy.ndimage.interpolation.map_coordinates(data[..., 0], coords) new_data[..., 1] = scipy.ndimage.interpolation.map_coordinates(data[..., 1], coords) new_data[..., 2] = scipy.ndimage.interpolation.map_coordinates(data[..., 2], coords) new_data[..., 3] = scipy.ndimage.interpolation.map_coordinates(data[..., 3], coords) else: new_data = scipy.ndimage.interpolation.map_coordinates(data, coords) cropped_dimensional_calibrations = list() for index, dimensional_calibration in enumerate(dimensional_calibrations): cropped_calibration = Calibration.Calibration( dimensional_calibration.offset + data_shape[index] * bounds_rect[0][index] * dimensional_calibration.scale, dimensional_calibration.scale, dimensional_calibration.units) cropped_dimensional_calibrations.append(cropped_calibration) return DataAndMetadata.new_data_and_metadata(new_data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=cropped_dimensional_calibrations) def function_crop_interval(data_and_metadata: DataAndMetadata.DataAndMetadata, interval: NormIntervalType) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None data_shape = data_and_metadata.data_shape interval_int = int(data_shape[0] * interval[0]), int(data_shape[0] * interval[1]) return data[interval_int[0]:interval_int[1]].copy() dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None interval_int = int(data_shape[0] * interval[0]), int(data_shape[0] * interval[1]) cropped_dimensional_calibrations = list() dimensional_calibration = dimensional_calibrations[0] cropped_calibration = Calibration.Calibration( dimensional_calibration.offset + data_shape[0] * interval_int[0] * dimensional_calibration.scale, dimensional_calibration.scale, dimensional_calibration.units) cropped_dimensional_calibrations.append(cropped_calibration) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=cropped_dimensional_calibrations) def function_slice_sum(data_and_metadata: DataAndMetadata.DataAndMetadata, slice_center: int, slice_width: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) signal_index = -1 slice_center = int(slice_center) slice_width = int(slice_width) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None shape = data.shape slice_start = int(slice_center - slice_width * 0.5 + 0.5) slice_start = max(slice_start, 0) slice_end = slice_start + slice_width slice_end = min(shape[signal_index], slice_end) return numpy.sum(data[..., slice_start:slice_end], signal_index) dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None dimensional_calibrations = dimensional_calibrations[0:signal_index] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_pick(data_and_metadata: DataAndMetadata.DataAndMetadata, position: DataAndMetadata.PositionType) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data collection_dimensions = data_and_metadata.dimensional_shape[data_and_metadata.collection_dimension_slice] datum_dimensions = data_and_metadata.dimensional_shape[data_and_metadata.datum_dimension_slice] assert len(collection_dimensions) == len(position) position_i = list() for collection_dimension, pos in zip(collection_dimensions, position): pos_i = int(pos * collection_dimension) if not (0 <= pos_i < collection_dimension): return numpy.zeros(datum_dimensions, dtype=data.dtype) position_i.append(pos_i) if data_and_metadata.is_sequence: return data[(slice(None),) + tuple(position_i + [...])].copy() return data[tuple(position_i + [...])].copy() dimensional_calibrations = data_and_metadata.dimensional_calibrations data_descriptor = DataAndMetadata.DataDescriptor(data_and_metadata.is_sequence, 0, data_and_metadata.datum_dimension_count) if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None if len(position) != data_and_metadata.collection_dimension_count: return None if data_and_metadata.datum_dimension_count == 0: return None if data_and_metadata.is_sequence: dimensional_calibrations = [dimensional_calibrations[0]] + list(dimensional_calibrations[data_and_metadata.datum_dimension_slice]) else: dimensional_calibrations = list(dimensional_calibrations[data_and_metadata.datum_dimension_slice]) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_concatenate(data_and_metadata_list: typing.Sequence[DataAndMetadata.DataAndMetadata], axis: int=0) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Concatenate multiple data_and_metadatas. concatenate((a, b, c), 1) Function is called by passing a tuple of the list of source items, which matches the form of the numpy function of the same name. Keeps intensity calibration of first source item. Keeps data descriptor of first source item. Keeps dimensional calibration in axis dimension. """ if len(data_and_metadata_list) < 1: return None data_and_metadata_list = [DataAndMetadata.promote_ndarray(data_and_metadata) for data_and_metadata in data_and_metadata_list] partial_shape = data_and_metadata_list[0].data_shape def calculate_data(): if any([data_and_metadata.data is None for data_and_metadata in data_and_metadata_list]): return None if all([data_and_metadata.data_shape[1:] == partial_shape[1:] for data_and_metadata in data_and_metadata_list]): data_list = list(data_and_metadata.data for data_and_metadata in data_and_metadata_list) return numpy.concatenate(data_list, axis) return None if any([data_and_metadata.data is None for data_and_metadata in data_and_metadata_list]): return None if any([data_and_metadata.data_shape != partial_shape[1:] is None for data_and_metadata in data_and_metadata_list]): return None dimensional_calibrations: typing.List[Calibration.Calibration] = [typing.cast(Calibration.Calibration, None)] * len(data_and_metadata_list[0].dimensional_calibrations) for data_and_metadata in data_and_metadata_list: for index, calibration in enumerate(data_and_metadata.dimensional_calibrations): if dimensional_calibrations[index] is None: dimensional_calibrations[index] = calibration elif dimensional_calibrations[index] != calibration: dimensional_calibrations[index] = Calibration.Calibration() intensity_calibration = data_and_metadata_list[0].intensity_calibration data_descriptor = data_and_metadata_list[0].data_descriptor return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_hstack(data_and_metadata_list: typing.Sequence[DataAndMetadata.DataAndMetadata]) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Stack multiple data_and_metadatas along axis 1. hstack((a, b, c)) Function is called by passing a tuple of the list of source items, which matches the form of the numpy function of the same name. Keeps intensity calibration of first source item. Keeps dimensional calibration in axis dimension. """ if len(data_and_metadata_list) < 1: return None data_and_metadata_list = [DataAndMetadata.promote_ndarray(data_and_metadata) for data_and_metadata in data_and_metadata_list] partial_shape = data_and_metadata_list[0].data_shape if len(partial_shape) >= 2: return function_concatenate(data_and_metadata_list, 1) else: return function_concatenate(data_and_metadata_list, 0) def function_vstack(data_and_metadata_list: typing.Sequence[DataAndMetadata.DataAndMetadata]) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Stack multiple data_and_metadatas along axis 0. hstack((a, b, c)) Function is called by passing a tuple of the list of source items, which matches the form of the numpy function of the same name. Keeps intensity calibration of first source item. Keeps dimensional calibration in axis dimension. """ if len(data_and_metadata_list) < 1: return None data_and_metadata_list = [DataAndMetadata.promote_ndarray(data_and_metadata) for data_and_metadata in data_and_metadata_list] partial_shape = data_and_metadata_list[0].data_shape if len(partial_shape) >= 2: return function_concatenate(data_and_metadata_list, 0) def calculate_data(): if any([data_and_metadata.data is None for data_and_metadata in data_and_metadata_list]): return None if all([data_and_metadata.data_shape[0] == partial_shape[0] for data_and_metadata in data_and_metadata_list]): data_list = list(data_and_metadata.data for data_and_metadata in data_and_metadata_list) return numpy.vstack(data_list) return None if any([data_and_metadata.data is None for data_and_metadata in data_and_metadata_list]): return None if any([data_and_metadata.data_shape[0] != partial_shape[0] is None for data_and_metadata in data_and_metadata_list]): return None dimensional_calibrations = list() dimensional_calibrations.append(Calibration.Calibration()) dimensional_calibrations.append(data_and_metadata_list[0].dimensional_calibrations[0]) intensity_calibration = data_and_metadata_list[0].intensity_calibration data_descriptor = data_and_metadata_list[0].data_descriptor data_descriptor = DataAndMetadata.DataDescriptor(data_descriptor.is_sequence, data_descriptor.collection_dimension_count + 1, data_descriptor.datum_dimension_count) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_moveaxis(data_and_metadata: DataAndMetadata.DataAndMetadata, src_axis: int, dst_axis: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data = numpy.moveaxis(data_and_metadata._data_ex, src_axis, dst_axis) dimensional_calibrations = list(copy.deepcopy(data_and_metadata.dimensional_calibrations)) dimensional_calibrations.insert(dst_axis, dimensional_calibrations.pop(src_axis)) return DataAndMetadata.new_data_and_metadata(data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_sum(data_and_metadata: DataAndMetadata.DataAndMetadata, axis: typing.Optional[typing.Union[int, typing.Sequence[int]]] = None, keepdims: bool = False) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb_type(data.shape, data.dtype): if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb_image = numpy.empty(data.shape[1:], numpy.uint8) rgb_image[:,0] = numpy.average(data[...,0], axis) rgb_image[:,1] = numpy.average(data[...,1], axis) rgb_image[:,2] = numpy.average(data[...,2], axis) return rgb_image else: rgba_image = numpy.empty(data.shape[1:], numpy.uint8) rgba_image[:,0] = numpy.average(data[...,0], axis) rgba_image[:,1] = numpy.average(data[...,1], axis) rgba_image[:,2] = numpy.average(data[...,2], axis) rgba_image[:,3] = numpy.average(data[...,3], axis) return rgba_image else: return numpy.sum(data, axis, keepdims=keepdims) dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None new_dimensional_calibrations = list() if not keepdims or Image.is_shape_and_dtype_rgb_type(data_shape, data_dtype): assert axis is not None axes = numpy.atleast_1d(axis) for i in range(len(axes)): if axes[i] < 0: axes[i] += len(dimensional_calibrations) for i in range(len(dimensional_calibrations)): if not i in axes: new_dimensional_calibrations.append(dimensional_calibrations[i]) dimensional_calibrations = new_dimensional_calibrations return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_mean(data_and_metadata: DataAndMetadata.DataAndMetadata, axis: typing.Optional[typing.Union[int, typing.Sequence[int]]] = None, keepdims: bool = False) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if Image.is_shape_and_dtype_rgb_type(data.shape, data.dtype): if Image.is_shape_and_dtype_rgb(data.shape, data.dtype): rgb_image = numpy.empty(data.shape[1:], numpy.uint8) rgb_image[:,0] = numpy.average(data[...,0], axis) rgb_image[:,1] = numpy.average(data[...,1], axis) rgb_image[:,2] = numpy.average(data[...,2], axis) return rgb_image else: rgba_image = numpy.empty(data.shape[1:], numpy.uint8) rgba_image[:,0] = numpy.average(data[...,0], axis) rgba_image[:,1] = numpy.average(data[...,1], axis) rgba_image[:,2] = numpy.average(data[...,2], axis) rgba_image[:,3] = numpy.average(data[...,3], axis) return rgba_image else: return numpy.mean(data, axis, keepdims=keepdims) dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None new_dimensional_calibrations = list() if not keepdims or Image.is_shape_and_dtype_rgb_type(data_shape, data_dtype): assert axis is not None axes = numpy.atleast_1d(axis) for i in range(len(axes)): if axes[i] < 0: axes[i] += len(dimensional_calibrations) for i in range(len(dimensional_calibrations)): if not i in axes: new_dimensional_calibrations.append(dimensional_calibrations[i]) dimensional_calibrations = new_dimensional_calibrations return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations) def function_sum_region(data_and_metadata: DataAndMetadata.DataAndMetadata, mask_data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) mask_data_and_metadata = DataAndMetadata.promote_ndarray(mask_data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None if data_and_metadata.is_sequence: assert len(data_and_metadata.dimensional_shape) == 4 else: assert len(data_and_metadata.dimensional_shape) == 3 assert len(mask_data_and_metadata.dimensional_shape) == 2 data = data_and_metadata._data_ex mask_data = mask_data_and_metadata._data_ex.astype(bool) start_index = 1 if data_and_metadata.is_sequence else 0 result_data = numpy.sum(data, axis=tuple(range(start_index, len(data_and_metadata.dimensional_shape) - 1)), where=mask_data[..., numpy.newaxis]) data_descriptor = DataAndMetadata.DataDescriptor(data_and_metadata.is_sequence, 0, data_and_metadata.datum_dimension_count) if data_and_metadata.is_sequence: dimensional_calibrations = [dimensional_calibrations[0]] + list(dimensional_calibrations[data_and_metadata.datum_dimension_slice]) else: dimensional_calibrations = list(dimensional_calibrations[data_and_metadata.datum_dimension_slice]) return DataAndMetadata.new_data_and_metadata(result_data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_average_region(data_and_metadata: DataAndMetadata.DataAndMetadata, mask_data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) mask_data_and_metadata = DataAndMetadata.promote_ndarray(mask_data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None if data_and_metadata.is_sequence: assert len(data_and_metadata.dimensional_shape) == 4 else: assert len(data_and_metadata.dimensional_shape) == 3 assert len(mask_data_and_metadata.dimensional_shape) == 2 data = data_and_metadata._data_ex mask_data = mask_data_and_metadata._data_ex.astype(bool) assert data is not None mask_sum = max(1, numpy.sum(mask_data)) start_index = 1 if data_and_metadata.is_sequence else 0 result_data = numpy.sum(data, axis=tuple(range(start_index, len(data_and_metadata.dimensional_shape) - 1)), where=mask_data[..., numpy.newaxis]) / mask_sum data_descriptor = DataAndMetadata.DataDescriptor(data_and_metadata.is_sequence, 0, data_and_metadata.datum_dimension_count) if data_and_metadata.is_sequence: dimensional_calibrations = [dimensional_calibrations[0]] + list(dimensional_calibrations[data_and_metadata.datum_dimension_slice]) else: dimensional_calibrations = list(dimensional_calibrations[data_and_metadata.datum_dimension_slice]) return DataAndMetadata.new_data_and_metadata(result_data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=dimensional_calibrations, data_descriptor=data_descriptor) def function_reshape(data_and_metadata: DataAndMetadata.DataAndMetadata, shape: DataAndMetadata.ShapeType) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Reshape a data and metadata to shape. reshape(a, shape(4, 5)) reshape(a, data_shape(b)) Handles special cases when going to one extra dimension and when going to one fewer dimension -- namely to keep the calibrations intact. When increasing dimension, a -1 can be passed for the new dimension and this function will calculate the missing value. """ data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None return numpy.reshape(data, shape) dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None total_old_pixels = 1 for dimension in data_shape: total_old_pixels *= dimension total_new_pixels = 1 for dimension in shape: total_new_pixels *= dimension if dimension > 0 else 1 new_dimensional_calibrations = list() if len(data_shape) + 1 == len(shape) and -1 in shape: # special case going to one more dimension index = 0 for dimension in shape: if dimension == -1: new_dimensional_calibrations.append(Calibration.Calibration()) else: new_dimensional_calibrations.append(dimensional_calibrations[index]) index += 1 elif len(data_shape) - 1 == len(shape) and 1 in data_shape: # special case going to one fewer dimension for dimension, dimensional_calibration in zip(data_shape, dimensional_calibrations): if dimension == 1: continue else: new_dimensional_calibrations.append(dimensional_calibration) else: for _ in range(len(shape)): new_dimensional_calibrations.append(Calibration.Calibration()) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=new_dimensional_calibrations) def function_squeeze(data_and_metadata: DataAndMetadata.DataAndMetadata) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Remove dimensions with lengths of one.""" data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape dimensional_calibrations = data_and_metadata.dimensional_calibrations is_sequence = data_and_metadata.is_sequence collection_dimension_count = data_and_metadata.collection_dimension_count datum_dimension_count = data_and_metadata.datum_dimension_count new_dimensional_calibrations = list() dimensional_index = 0 # fix the data descriptor and the dimensions indexes = list() if is_sequence: if data_shape[dimensional_index] <= 1: is_sequence = False indexes.append(dimensional_index) else: new_dimensional_calibrations.append(dimensional_calibrations[dimensional_index]) dimensional_index += 1 for collection_dimension_index in range(collection_dimension_count): if data_shape[dimensional_index] <= 1: collection_dimension_count -= 1 indexes.append(dimensional_index) else: new_dimensional_calibrations.append(dimensional_calibrations[dimensional_index]) dimensional_index += 1 for datum_dimension_index in range(datum_dimension_count): if data_shape[dimensional_index] <= 1 and datum_dimension_count > 1: datum_dimension_count -= 1 indexes.append(dimensional_index) else: new_dimensional_calibrations.append(dimensional_calibrations[dimensional_index]) dimensional_index += 1 data_descriptor = DataAndMetadata.DataDescriptor(is_sequence, collection_dimension_count, datum_dimension_count) data = data_and_metadata._data_ex if not Image.is_data_valid(data): return None data = numpy.squeeze(data, axis=tuple(indexes)) return DataAndMetadata.new_data_and_metadata(data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=new_dimensional_calibrations, data_descriptor=data_descriptor) def function_redimension(data_and_metadata: DataAndMetadata.DataAndMetadata, data_descriptor: DataAndMetadata.DataDescriptor) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) if data_and_metadata.data_descriptor.expected_dimension_count != data_descriptor.expected_dimension_count: return None data = data_and_metadata.data if not Image.is_data_valid(data): return None return DataAndMetadata.new_data_and_metadata(data, intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations, data_descriptor=data_descriptor) def function_resize(data_and_metadata: DataAndMetadata.DataAndMetadata, shape: DataAndMetadata.ShapeType, mode: str=None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Resize a data and metadata to shape, padding if larger, cropping if smaller. resize(a, shape(4, 5)) resize(a, data_shape(b)) Shape must have same number of dimensions as original. """ data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None c = numpy.mean(data) data_shape = data_and_metadata.data_shape slices = list() for data_size, new_size in zip(data_shape, shape): if new_size <= data_size: left = data_size // 2 - new_size // 2 slices.append(slice(left, left + new_size)) else: slices.append(slice(None)) data = data[tuple(slices)] data_shape = data_and_metadata.data_shape pads = list() for data_size, new_size in zip(data_shape, shape): if new_size > data_size: left = new_size // 2 - data_size // 2 pads.append((left, new_size - left - data_size)) else: pads.append((0, 0)) return numpy.pad(data, pads, 'constant', constant_values=c) dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None resized_dimensional_calibrations = list() for index, dimensional_calibration in enumerate(dimensional_calibrations): offset = data_shape[index] // 2 - shape[index] // 2 cropped_calibration = Calibration.Calibration( dimensional_calibration.offset + offset * dimensional_calibration.scale, dimensional_calibration.scale, dimensional_calibration.units) resized_dimensional_calibrations.append(cropped_calibration) return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=resized_dimensional_calibrations) def function_rescale(data_and_metadata: DataAndMetadata.DataAndMetadata, data_range: DataRangeType=None, in_range: DataRangeType=None) -> typing.Optional[DataAndMetadata.DataAndMetadata]: """Rescale data and update intensity calibration. rescale(a, (0.0, 1.0)) """ data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) data_range = data_range if data_range is not None else (0.0, 1.0) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None data_ptp = numpy.ptp(data) if in_range is None else in_range[1] - in_range[0] data_ptp_i = 1.0 / data_ptp if data_ptp != 0.0 else 1.0 data_min = numpy.amin(data) if in_range is None else in_range[0] data_span = data_range[1] - data_range[0] if data_span == 1.0 and data_range[0] == 0.0: return (data - data_min) * data_ptp_i else: m = data_span * data_ptp_i return (data - data_min) * m + data_range[0] data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype if not Image.is_shape_and_dtype_valid(data_shape, data_dtype): return None intensity_calibration = Calibration.Calibration() return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations) def function_rebin_2d(data_and_metadata: DataAndMetadata.DataAndMetadata, shape: DataAndMetadata.ShapeType) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) height = int(shape[0]) width = int(shape[1]) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None if not Image.is_shape_and_dtype_2d(data_shape, data_dtype): return None height = min(height, data_shape[0]) width = min(width, data_shape[1]) def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if not Image.is_data_2d(data): return None if data.shape[0] == height and data.shape[1] == width: return data.copy() shape = height, data.shape[0] // height, width, data.shape[1] // width return data.reshape(shape).mean(-1).mean(1) dimensions = height, width rebinned_dimensional_calibrations = [Calibration.Calibration(dimensional_calibrations[i].offset, dimensional_calibrations[i].scale * data_shape[i] / dimensions[i], dimensional_calibrations[i].units) for i in range(len(dimensional_calibrations))] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=rebinned_dimensional_calibrations) def function_resample_2d(data_and_metadata: DataAndMetadata.DataAndMetadata, shape: DataAndMetadata.ShapeType) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) height = int(shape[0]) width = int(shape[1]) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype def calculate_data(): data = data_and_metadata.data if not Image.is_data_valid(data): return None if not Image.is_data_2d(data): return None if data.shape[0] == height and data.shape[1] == width: return data.copy() return Image.scaled(data, (height, width)) dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None if not Image.is_shape_and_dtype_2d(data_shape, data_dtype): return None dimensions = height, width resampled_dimensional_calibrations = [Calibration.Calibration(dimensional_calibrations[i].offset, dimensional_calibrations[i].scale * data_shape[i] / dimensions[i], dimensional_calibrations[i].units) for i in range(len(dimensional_calibrations))] return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=data_and_metadata.intensity_calibration, dimensional_calibrations=resampled_dimensional_calibrations) def function_warp(data_and_metadata: DataAndMetadata.DataAndMetadata, coordinates: typing.Sequence[DataAndMetadata.DataAndMetadata], order: int=1) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) coords = numpy.moveaxis(numpy.dstack([coordinate.data for coordinate in coordinates]), -1, 0) data = data_and_metadata._data_ex if data_and_metadata.is_data_rgb: rgb = numpy.zeros(tuple(data_and_metadata.dimensional_shape) + (3,), numpy.uint8) rgb[..., 0] = scipy.ndimage.interpolation.map_coordinates(data[..., 0], coords, order=order) rgb[..., 1] = scipy.ndimage.interpolation.map_coordinates(data[..., 1], coords, order=order) rgb[..., 2] = scipy.ndimage.interpolation.map_coordinates(data[..., 2], coords, order=order) return DataAndMetadata.new_data_and_metadata(rgb, dimensional_calibrations=data_and_metadata.dimensional_calibrations, intensity_calibration=data_and_metadata.intensity_calibration) elif data_and_metadata.is_data_rgba: rgba = numpy.zeros(tuple(data_and_metadata.dimensional_shape) + (4,), numpy.uint8) rgba[..., 0] = scipy.ndimage.interpolation.map_coordinates(data[..., 0], coords, order=order) rgba[..., 1] = scipy.ndimage.interpolation.map_coordinates(data[..., 1], coords, order=order) rgba[..., 2] = scipy.ndimage.interpolation.map_coordinates(data[..., 2], coords, order=order) rgba[..., 3] = scipy.ndimage.interpolation.map_coordinates(data[..., 3], coords, order=order) return DataAndMetadata.new_data_and_metadata(rgba, dimensional_calibrations=data_and_metadata.dimensional_calibrations, intensity_calibration=data_and_metadata.intensity_calibration) else: return DataAndMetadata.new_data_and_metadata(scipy.ndimage.interpolation.map_coordinates(data, coords, order=order), dimensional_calibrations=data_and_metadata.dimensional_calibrations, intensity_calibration=data_and_metadata.intensity_calibration) def calculate_coordinates_for_affine_transform(data_and_metadata: DataAndMetadata.DataAndMetadata, transformation_matrix: numpy.ndarray) -> typing.Sequence[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) if data_and_metadata.is_data_rgb_type: assert len(data_and_metadata.data_shape) == 3 coords_shape = data_and_metadata.data_shape[:-1] else: assert len(data_and_metadata.data_shape) == 2 coords_shape = data_and_metadata.data_shape assert transformation_matrix.ndim == 2 assert transformation_matrix.shape[0] == transformation_matrix.shape[1] assert transformation_matrix.shape[0] in {len(coords_shape), len(coords_shape) + 1} half_shape = (coords_shape[0] * 0.5, coords_shape[1] * 0.5) coords = numpy.mgrid[0:coords_shape[0], 0:coords_shape[1]].astype(float) coords[0] -= half_shape[0] - 0.5 coords[1] -= half_shape[1] - 0.5 if transformation_matrix.shape[0] == len(coords_shape) + 1: coords = numpy.concatenate([numpy.ones((1,) + coords.shape[1:]), coords]) coords = coords[::-1, ...] transformed = numpy.einsum('ij,ikm', transformation_matrix, coords) transformed = transformed[::-1, ...] if transformation_matrix.shape[0] == len(coords_shape) + 1: transformed = transformed[1:, ...] transformed[0] += half_shape[0] - 0.5 transformed[1] += half_shape[1] - 0.5 transformed = [DataAndMetadata.new_data_and_metadata(transformed[0]), DataAndMetadata.new_data_and_metadata(transformed[1])] return transformed def function_affine_transform(data_and_metadata: DataAndMetadata.DataAndMetadata, transformation_matrix: numpy.ndarray, order: int=1) -> typing.Optional[DataAndMetadata.DataAndMetadata]: coordinates = calculate_coordinates_for_affine_transform(data_and_metadata, transformation_matrix) return function_warp(data_and_metadata, coordinates, order=order) def function_histogram(data_and_metadata: DataAndMetadata.DataAndMetadata, bins: int) -> typing.Optional[DataAndMetadata.DataAndMetadata]: data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata) bins = int(bins) data_shape = data_and_metadata.data_shape data_dtype = data_and_metadata.data_dtype dimensional_calibrations = data_and_metadata.dimensional_calibrations if not Image.is_shape_and_dtype_valid(data_shape, data_dtype) or dimensional_calibrations is None: return None data = data_and_metadata.data if not Image.is_data_valid(data): return None histogram_data =
numpy.histogram(data, bins=bins)
numpy.histogram
import matplotlib import code_stats as cs import copy import datetime import matplotlib.pyplot as plt import numpy as np import os import pandas from code_stats import GithubStats, TravisStats import pandas.plotting pandas.plotting.register_matplotlib_converters() # repos = { # "prisms-center/phaseField": "PRISMS-PF", # "prisms-center/plasticity": "Plasticity", # "prisms-center/CASMcode": "CASM", # "prisms-center/pbs": "PRISMS pbs", # "prisms-center/prisms_jobs": "PRISMS Jobs", # "prisms-center/IntegrationTools": "IntegrationTools", # "dftfeDevelopers/dftfe": "DFT-FE"} area_plot_fmt = [ #("prisms-center/IntegrationTools", "IntegrationTools", 'red'), ("prisms-center/prisms_jobs", "PRISMS Jobs", 'orange'), ("prisms-center/CASMcode", "CASM", 'yellow'), ("prisms-center/phaseField", "PRISMS-PF", 'green'), ("prisms-center/plasticity", "Plasticity", 'blue'), ("dftfeDevelopers/dftfe", "DFT-FE", 'purple') ] legend_values = [val[1] for val in area_plot_fmt] legend_values.reverse() reference_weeks = [ datetime.date.fromisoformat(x) for x in [ '2020-08-28', # before '2020-09-04', '2020-09-11', '2020-09-18', '2020-09-25', '2020-10-02', '2020-10-09', '2020-10-16', '2021-05-28', #after '2021-06-04', '2021-06-11', '2021-06-18', '2021-06-25', '2021-07-02', '2021-07-09', '2021-07-16'] ] replacement_weeks_first = datetime.date.fromisoformat('2020-10-23') replacement_weeks_last = datetime.date.fromisoformat('2021-05-21') def sql_iter(curs, fetchsize=1000): """ Iterate over the results of a SELECT statement """ while True: records = curs.fetchmany(fetchsize) if not records: break else: for r in records: yield r def get_first_day(db): return db.conn.execute("SELECT day FROM stats ORDER BY day").fetchone()['day'] def get_last_day(db): return db.conn.execute("SELECT day FROM stats ORDER BY day DESC").fetchone()['day'] def get_weekly_dates(db, day_index=4): date = cs.fromordinal(get_first_day(db)) while date.weekday() != day_index: date += datetime.timedelta(days=1) dates = [date] last_date = cs.fromordinal(get_last_day(db)) while True: date += datetime.timedelta(weeks=1) dates.append(date) if date > last_date: break return dates def get_weekly_stats(curs, dates, col): i = 0 result = [0] * len(dates) count = 0 day_i = cs.toordinal(dates[i]) for rec in sql_iter(curs): try: day = rec['day'] if rec[col] is None: n = 0 else: n = rec[col] if day <= day_i: count += n else: result[i] = count count = n while day > day_i: i += 1 day_i = cs.toordinal(dates[i]) if len(dates) == i: return result except Exception as e: print(dict(rec)) raise e return result def get_all_weekly_stats(db, dates, col, estimate_missing = True): repo_names = [entry[0] for entry in area_plot_fmt] df = pandas.DataFrame(index=dates, columns=db.list_repo_names()) for repo_name in db.list_repo_names(): curs = db.conn.cursor() curs.execute("SELECT day, " + col + " FROM stats WHERE repo_id=? ORDER BY day", ( db.get_repo_id(repo_name),)) weekly_unique_views = get_weekly_stats(curs, dates, col) curs.close() df.loc[:, repo_name] = weekly_unique_views if estimate_missing: reference_weeks_mean = np.mean(df.loc[reference_weeks, repo_name]) for index, row in df.iterrows(): if index >= replacement_weeks_first and index <= replacement_weeks_last: df.loc[index,repo_name] = reference_weeks_mean return df def area_plot(df, title, fontsize=None, saveas=None): fig, ax = plt.subplots(figsize=(10,6)) plt.tick_params(axis='both', which='major', labelsize=fontsize) fig.autofmt_xdate() cumsum_bottom =
np.zeros(df.shape[0])
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 4 11:48:28 2019 A set of baseline correction algorithms @author: <NAME> """ import numpy as np from scipy import sparse from scipy.spatial import ConvexHull from scipy.interpolate import interp1d from scipy.sparse.linalg import spsolve from multiprocessing.pool import Pool, ThreadPool import os import dill def straight(x, y): """ Return a straight line baseline correction. x: wavenumbers, sorted either way y: spectrum or spectra at those wavenumbers; shape (..., wavenumber) progressCallback(int a, int b): callback function called to indicated that the processing is complete to a fraction a/b. Returns: baseline of the spectrum, measured at the same points """ # Create baseline using linear interpolation between vertices if x[0] < x[-1]: return interp1d(x[[0,-1]], y[...,[0,-1]], assume_sorted=True)(x) return interp1d(x[[-1,0]], y[...,[-1,0]], assume_sorted=True)(x) def apply_packed_function_for_map(dumped): "Unpack dumped function as target function and call it with arguments." return dill.loads(dumped[0])(dumped[1]) def pack_function_for_map(target_function, items): dumped_function = dill.dumps(target_function) dumped_items = [(dumped_function, item) for item in items] return apply_packed_function_for_map, dumped_items def mp_bgcorrection(func, y, lim_single=8, lim_tp=40, progressCallback=None): if len(y) < 1: return y.copy() if y.ndim < 2: return func(y) if hasattr(os, 'sched_getaffinity'): cpus = len(os.sched_getaffinity(os.getpid())) else: cpus = os.cpu_count() cpus = min(cpus, len(y)) if cpus == 1 or len(y) <= lim_single: cpus = 1 it = map(func, y) elif len(y) <= lim_tp: cpus = min(cpus, 3) pool = ThreadPool(cpus) it = pool.imap(func, y, chunksize=5) else: pool = Pool(cpus) it = pool.imap(*pack_function_for_map(func, y), chunksize=10) ret =
np.empty_like(y)
numpy.empty_like
import _pickle, numpy as np, itertools as it from time import perf_counter # from cppimport import import_hook # # # import cppimport # # # cppimport.set_quiet(False) # import rpxdock as rp from rpxdock.bvh import bvh_test from rpxdock.bvh import BVH, bvh import rpxdock.homog as hm def test_bvh_isect_cpp(): assert bvh_test.TEST_bvh_test_isect() def test_bvh_isect_fixed(): # print() mindist = 0.01 totbvh, totnaive = 0, 0 for i in range(10): xyz1 = np.random.rand(1000, 3) + [0.9, 0.9, 0] xyz2 = np.random.rand(1000, 3) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre assert len(bvh1) == 1000 pos1 = hm.htrans([0.9, 0.9, 0.9]) pos2 = np.eye(4) tbvh = perf_counter() clash1 = bvh.bvh_isect_fixed(bvh1, bvh2, mindist) tbvh = perf_counter() - tbvh tn = perf_counter() clash2 = bvh.naive_isect_fixed(bvh1, bvh2, mindist) tn = perf_counter() - tn assert clash1 == clash2 # print(f"{i:3} clash {clash1:1} {tn / tbvh:8.2f}, {tn:1.6f}, {tbvh:1.6f}") totbvh += tbvh totnaive += tn print("total times", totbvh, totnaive / totbvh, totnaive) def test_bvh_isect(): t = rp.Timer().start() N1, N2 = 10, 10 N = N1 * N2 mindist = 0.04 nclash = 0 for outer in range(N1): xyz1 = np.random.rand(1250, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1250, 3) - [0.5, 0.5, 0.5] pos1 = hm.rand_xform(N2, cart_sd=0.8) pos2 = hm.rand_xform(N2, cart_sd=0.8) t.checkpoint('init') bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) t.checkpoint('BVH') clash = list() for inner in range(N2): clash1 = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[inner], pos2=pos2[inner], mindist=mindist) t.checkpoint('bvh_isect') clash2 = bvh.naive_isect(bvh1, bvh2, pos1[inner], pos2[inner], mindist) t.checkpoint('naive_isect') assert clash1 == clash2 clash.append(clash1) clashvec = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, mindist) t.checkpoint('bvh_isect_vec') assert np.all(clashvec == clash) nclash += sum(clash) assert clashvec[1] == bvh.bvh_isect_vec(bvh1, bvh2, pos1[1], pos2[1], mindist) bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2[1], mindist) # ?? make sure api works? bvh.bvh_isect_vec(bvh1, bvh2, pos1[1], pos2, mindist) print( f"Ngeom {N1:,} Npos {N2:,} isect {nclash/N:4.2f} bvh: {int(N/t.sum.bvh_isect):,}/s", f"bvh_vec {int(N/t.sum.bvh_isect_vec):,} fastnaive {int(N/t.sum.naive_isect):,}/s", f"ratio {int(t.sum.naive_isect/t.sum.bvh_isect_vec):,}x", ) def test_bvh_isect_fixed_range(): N1, N2 = 10, 10 N = N1 * N2 mindist = 0.04 nclash = 0 for outer in range(N1): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) bvh1_half = BVH(xyz1[250:750]) bvh2_half = BVH(xyz2[250:750]) pos1 = hm.rand_xform(N2, cart_sd=0.5) pos2 = hm.rand_xform(N2, cart_sd=0.5) isect1 = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, mindist) isect2, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(isect1 == isect2) bounds = [250], [749], [250], [749] isect1 = bvh.bvh_isect_vec(bvh1_half, bvh2_half, pos1, pos2, mindist) isect2, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist, *bounds) assert np.all(isect1 == isect2) def test_bvh_min_cpp(): assert bvh_test.TEST_bvh_test_min() def test_bvh_min_dist_fixed(): xyz1 = np.random.rand(5000, 3) + [0.9, 0.9, 0.0] xyz2 = np.random.rand(5000, 3) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist_fixed(bvh1, bvh2) tbvh = perf_counter() - tbvh dtest = np.linalg.norm(xyz1[i1] - xyz2[i2]) assert np.allclose(d, dtest, atol=1e-6) # tnp = perf_counter() # dnp = np.min(np.linalg.norm(xyz1[:, None] - xyz2[None], axis=2)) # tnp = perf_counter() - tnp tn = perf_counter() dn = bvh.naive_min_dist_fixed(bvh1, bvh2) tn = perf_counter() - tn print() print("from bvh: ", d) print("from naive:", dn) assert np.allclose(dn, d, atol=1e-6) print(f"tnaivecpp {tn:5f} tbvh {tbvh:5f} tbvhcreate {tcre:5f}") print("bvh acceleration vs naive", tn / tbvh) # assert tn / tbvh > 100 def test_bvh_min_dist(): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre # print() totbvh, totnaive = 0, 0 N = 10 pos1 = hm.rand_xform(N, cart_sd=1) pos2 = hm.rand_xform(N, cart_sd=1) dis = list() for i in range(N): tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tbvh = perf_counter() - tbvh dtest = np.linalg.norm(pos1[i] @ hm.hpoint(xyz1[i1]) - pos2[i] @ hm.hpoint(xyz2[i2])) assert np.allclose(d, dtest, atol=1e-6) tn = perf_counter() dn = bvh.naive_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tn = perf_counter() - tn assert np.allclose(dn, d, atol=1e-6) dis.append((d, i1, i2)) # print( # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # np.linalg.norm(pos1[:3, 3]), # dtest - d, # ) totnaive += tn totbvh += tbvh d, i1, i2 = bvh.bvh_min_dist_vec(bvh1, bvh2, pos1, pos2) for a, b, c, x in zip(d, i1, i2, dis): assert a == x[0] assert b == x[1] assert c == x[2] print( "total times", totbvh / N * 1000, "ms", totnaive / totbvh, totnaive, f"tcre {tcre:2.4f}", ) def test_bvh_min_dist_floormin(): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre # print() totbvh, totnaive = 0, 0 N = 10 for i in range(N): pos1 = hm.rand_xform(cart_sd=1) pos2 = hm.rand_xform(cart_sd=1) tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) tbvh = perf_counter() - tbvh dtest = np.linalg.norm(pos1 @ hm.hpoint(xyz1[i1]) - pos2 @ hm.hpoint(xyz2[i2])) assert np.allclose(d, dtest, atol=1e-6) tn = perf_counter() dn = bvh.naive_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn assert np.allclose(dn, d, atol=1e-6) # print( # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # np.linalg.norm(pos1[:3, 3]), # dtest - d, # ) totnaive += tn totbvh += tbvh print( "total times", totbvh / N * 1000, "ms", totnaive / totbvh, totnaive, f"tcre {tcre:2.4f}", ) def test_bvh_slide_single_inline(): bvh1 = BVH([[-10, 0, 0]]) bvh2 = BVH([[0, 0, 0]]) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=1.0, dirn=[1, 0, 0]) assert d == 8 # moves xyz1 to -2,0,0 # should always come in from "infinity" from -direction bvh1 = BVH([[10, 0, 0]]) bvh2 = BVH([[0, 0, 0]]) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=1.0, dirn=[1, 0, 0]) assert d == -12 # also moves xyz1 to -2,0,0 for i in range(100): np.random.seed(i) dirn = np.array([np.random.randn(), 0, 0]) dirn /= np.linalg.norm(dirn) rad = np.abs(np.random.randn() / 10) xyz1 = np.array([[np.random.randn(), 0, 0]]) xyz2 = np.array([[np.random.randn(), 0, 0]]) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=rad, dirn=dirn) xyz1 += d * dirn assert np.allclose(np.linalg.norm(xyz1 - xyz2), 2 * rad, atol=1e-4) def test_bvh_slide_single(): nmiss = 0 for i in range(100): # np.random.seed(i) dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) rad = np.abs(np.random.randn()) xyz1 = np.random.randn(1, 3) xyz2 = np.random.randn(1, 3) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=rad, dirn=dirn) if d < 9e8: xyz1 += d * dirn assert np.allclose(np.linalg.norm(xyz1 - xyz2), 2 * rad, atol=1e-4) else: nmiss += 1 delta = xyz2 - xyz1 d0 = delta.dot(dirn) dperp2 = np.sum(delta * delta) - d0 * d0 target_d2 = 4 * rad**2 assert target_d2 < dperp2 print("nmiss", nmiss, nmiss / 1000) def test_bvh_slide_single_xform(): nmiss = 0 for i in range(1000): dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) rad = np.abs(np.random.randn() * 2.0) xyz1 = np.random.randn(1, 3) xyz2 = np.random.randn(1, 3) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform() pos2 = hm.rand_xform() d = bvh.bvh_slide(bvh1, bvh2, pos1, pos2, rad=rad, dirn=dirn) if d < 9e8: p1 = (pos1 @ hm.hpoint(xyz1[0]))[:3] + d * dirn p2 = (pos2 @ hm.hpoint(xyz2[0]))[:3] assert np.allclose(np.linalg.norm(p1 - p2), 2 * rad, atol=1e-4) else: nmiss += 1 p2 = pos2 @ hm.hpoint(xyz2[0]) p1 = pos1 @ hm.hpoint(xyz1[0]) delta = p2 - p1 d0 = delta[:3].dot(dirn) dperp2 = np.sum(delta * delta) - d0 * d0 target_d2 = 4 * rad**2 assert target_d2 < dperp2 print("nmiss", nmiss, nmiss / 1000) def test_bvh_slide_whole(): # timings wtih -Ofast # slide test 10,000 iter bvhslide float: 16,934/s double: 16,491/s bvhmin 17,968/s fracmiss: 0.0834 # np.random.seed(0) N1, N2 = 2, 10 totbvh, totbvhf, totmin = 0, 0, 0 nmiss = 0 for j in range(N1): xyz1 = np.random.rand(5000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(5000, 3) - [0.5, 0.5, 0.5] # tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) # bvh1f = BVH_32bit(xyz1) # bvh2f = BVH_32bit(xyz2) # tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=0.5) pos2 = hm.rand_xform(N2, cart_sd=0.5) dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) radius = 0.001 + np.random.rand() / 10 slides = list() for i in range(N2): tbvh = perf_counter() dslide = bvh.bvh_slide(bvh1, bvh2, pos1[i], pos2[i], radius, dirn) tbvh = perf_counter() - tbvh tbvhf = perf_counter() # dslide = bvh.bvh_slide_32bit(bvh1f, bvh2f, pos1[i], pos2[i], radius, dirn) tbvhf = perf_counter() - tbvhf slides.append(dslide) if dslide > 9e8: tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tn = perf_counter() - tn assert dn > 2 * radius nmiss += 1 else: tmp = hm.htrans(dirn * dslide) @ pos1[i] tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, tmp, pos2[i]) tn = perf_counter() - tn if not np.allclose(dn, 2 * radius, atol=1e-6): print(dn, 2 * radius) assert np.allclose(dn, 2 * radius, atol=1e-6) # print( # i, # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # np.linalg.norm(pos1[:3, 3]), # dslide, # ) totmin += tn totbvh += tbvh totbvhf += tbvhf slides2 = bvh.bvh_slide_vec(bvh1, bvh2, pos1, pos2, radius, dirn) assert np.allclose(slides, slides2) N = N1 * N2 print( f"slide test {N:,} iter bvhslide double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", # f"slide test {N:,} iter bvhslide float: {int(N/totbvhf):,}/s double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", f"fracmiss: {nmiss/N}", ) def test_collect_pairs_simple(): print("test_collect_pairs_simple") bufbvh = -np.ones((100, 2), dtype="i4") bufnai = -np.ones((100, 2), dtype="i4") bvh1 = BVH([[0, 0, 0], [0, 2, 0]]) bvh2 = BVH([[0.9, 0, 0], [0.9, 2, 0]]) assert len(bvh1) == 2 mindist = 1.0 pos1 = np.eye(4) pos2 = np.eye(4) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert not o print(pbvh.shape) assert len(pbvh) == 2 and nnai == 2 assert np.all(pbvh == [[0, 0], [1, 1]]) assert np.all(bufnai[:nnai] == [[0, 0], [1, 1]]) pos1 = hm.htrans([0, 2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert not o assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[0, 1]]) assert np.all(bufnai[:nnai] == [[0, 1]]) pos1 = hm.htrans([0, -2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert not o assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[1, 0]]) assert np.all(bufnai[:nnai] == [[1, 0]]) def test_collect_pairs_simple_selection(): print("test_collect_pairs_simple_selection") bufbvh = -np.ones((100, 2), dtype="i4") bufnai = -np.ones((100, 2), dtype="i4") crd1 = [[0, 0, 0], [0, 0, 0], [0, 2, 0], [0, 0, 0]] crd2 = [[0, 0, 0], [0.9, 0, 0], [0, 0, 0], [0.9, 2, 0]] mask1 = [1, 0, 1, 0] mask2 = [0, 1, 0, 1] bvh1 = BVH(crd1, mask1) bvh2 = BVH(crd2, mask2) assert len(bvh1) == 2 assert np.allclose(bvh1.radius(), 1.0, atol=1e-6) assert np.allclose(bvh1.center(), [0, 1, 0], atol=1e-6) mindist = 1.0 pos1 = np.eye(4) pos2 = np.eye(4) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert len(pbvh) == 2 and nnai == 2 assert np.all(pbvh == [[0, 1], [2, 3]]) assert np.all(bufnai[:nnai] == [[0, 1], [2, 3]]) pos1 = hm.htrans([0, 2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[0, 3]]) assert np.all(bufnai[:nnai] == [[0, 3]]) pos1 = hm.htrans([0, -2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[2, 1]]) assert np.all(bufnai[:nnai] == [[2, 1]]) def test_collect_pairs(): N1, N2 = 1, 50 N = N1 * N2 Npts = 500 totbvh, totbvhf, totmin = 0, 0, 0 totbvh, totnai, totct, ntot = 0, 0, 0, 0 bufbvh = -np.ones((Npts * Npts, 2), dtype="i4") bufnai = -np.ones((Npts * Npts, 2), dtype="i4") for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = np.linalg.norm(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.append(x1) pos2.append(x2) if len(pos1) == N2: break pos1 = np.stack(pos1) pos2 = np.stack(pos2) pairs = list() mindist = 0.002 + np.random.rand() / 10 for i in range(N2): tbvh = perf_counter() pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1[i], pos2[i], mindist, bufbvh) tbvh = perf_counter() - tbvh assert not o tnai = perf_counter() nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1[i], pos2[i], mindist, bufnai) tnai = perf_counter() - tnai tct = perf_counter() nct = bvh.bvh_count_pairs(bvh1, bvh2, pos1[i], pos2[i], mindist) tct = perf_counter() - tct ntot += nct assert nct == len(pbvh) totnai += 1 pairs.append(pbvh.copy()) totbvh += tbvh totnai += tnai totct += tct assert len(pbvh) == nnai if len(pbvh) == 0: continue o = np.lexsort((pbvh[:, 1], pbvh[:, 0])) pbvh[:] = pbvh[:][o] o = np.lexsort((bufnai[:nnai, 1], bufnai[:nnai, 0])) bufnai[:nnai] = bufnai[:nnai][o] assert np.all(pbvh == bufnai[:nnai]) pair1 = pos1[i] @ hm.hpoint(xyz1[pbvh[:, 0]])[..., None] pair2 = pos2[i] @ hm.hpoint(xyz2[pbvh[:, 1]])[..., None] dpair = np.linalg.norm(pair2 - pair1, axis=1) assert np.max(dpair) <= mindist pcount = bvh.bvh_count_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(pcount == [len(x) for x in pairs]) pairs2, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) for i, p in enumerate(pairs): lb, ub = lbub[i] assert np.all(pairs2[lb:ub] == pairs[i]) x, y = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1[:3], pos2[0], mindist) assert len(y) == 3 x, y = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1[0], pos2[:5], mindist) assert len(y) == 5 print( f"collect test {N:,} iter bvh {int(N/totbvh):,}/s naive {int(N/totnai):,}/s ratio {totnai/totbvh:7.2f} count-only {int(N/totct):,}/s avg cnt {ntot/N}" ) def test_collect_pairs_range(): N1, N2 = 1, 500 N = N1 * N2 Npts = 1000 for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = np.linalg.norm(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.append(x1) pos2.append(x2) if len(pos1) == N2: break pos1 = np.stack(pos1) pos2 = np.stack(pos2) pairs = list() mindist = 0.002 + np.random.rand() / 10 pairs, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(lbub == rlbub) assert np.all(pairs == rpairs) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, [250], [750]) assert len(rlbub) == len(pos1) assert np.all(rpairs[:, 0] >= 250) assert np.all(rpairs[:, 0] <= 750) filt_pairs = pairs[np.logical_and(pairs[:, 0] >= 250, pairs[:, 0] <= 750)] # assert np.all(filt_pairs == rpairs) # sketchy??? assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, [600], [1000], -1, [100], [400], -1) assert len(rlbub) == len(pos1) assert np.all(rpairs[:, 0] >= 600) assert np.all(rpairs[:, 0] <= 1000) assert np.all(rpairs[:, 1] >= 100) assert np.all(rpairs[:, 1] <= 400) filt_pairs = pairs[(pairs[:, 0] >= 600) * (pairs[:, 0] <= 1000) * (pairs[:, 1] >= 100) * (pairs[:, 1] <= 400)] assert np.all(filt_pairs == rpairs) # sketchy??? assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) def test_collect_pairs_range_sym(): # np.random.seed(132) N1, N2 = 5, 100 N = N1 * N2 Npts = 1000 for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = np.linalg.norm(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.append(x1) pos2.append(x2) if len(pos1) == N2: break pos1 = np.stack(pos1) pos2 = np.stack(pos2) pairs = list() mindist = 0.002 + np.random.rand() / 10 pairs, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(lbub == rlbub) assert np.all(pairs == rpairs) bounds = [100], [400], len(xyz1) // 2 rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, *bounds) assert len(rlbub) == len(pos1) assert np.all( np.logical_or(np.logical_and(100 <= rpairs[:, 0], rpairs[:, 0] <= 400), np.logical_and(600 <= rpairs[:, 0], rpairs[:, 0] <= 900))) filt_pairs = pairs[np.logical_or(np.logical_and(100 <= pairs[:, 0], pairs[:, 0] <= 400), np.logical_and(600 <= pairs[:, 0], pairs[:, 0] <= 900))] assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) bounds = [100], [400], len(xyz1) // 2, [20], [180], len(xyz1) // 5 rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, *bounds) def awful(p): return np.logical_and( np.logical_or(np.logical_and(100 <= p[:, 0], p[:, 0] <= 400), np.logical_and(600 <= p[:, 0], p[:, 0] <= 900)), np.logical_or( np.logical_and(+20 <= p[:, 1], p[:, 1] <= 180), np.logical_or( np.logical_and(220 <= p[:, 1], p[:, 1] <= 380), np.logical_or( np.logical_and(420 <= p[:, 1], p[:, 1] <= 580), np.logical_or(np.logical_and(620 <= p[:, 1], p[:, 1] <= 780), np.logical_and(820 <= p[:, 1], p[:, 1] <= 980)))))) assert len(rlbub) == len(pos1) assert np.all(awful(rpairs)) filt_pairs = pairs[awful(pairs)] assert np.all(filt_pairs == rpairs) # sketchy??? assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) def test_slide_collect_pairs(): # timings wtih -Ofast # slide test 10,000 iter bvhslide float: 16,934/s double: 16,491/s bvhmin 17,968/s fracmiss: 0.0834 # np.random.seed(0) N1, N2 = 2, 50 Npts = 5000 totbvh, totbvhf, totcol, totmin = 0, 0, 0, 0 nhit = 0 buf = -np.ones((Npts * Npts, 2), dtype="i4") for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyzcol1 = xyz1[:int(Npts / 5)] xyzcol2 = xyz2[:int(Npts / 5)] # tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) bvhcol1 = BVH(xyzcol1) bvhcol2 = BVH(xyzcol2) # tcre = perf_counter() - tcre for i in range(N2): dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) radius = 0.001 + np.random.rand() / 10 pairdis = 3 * radius pos1 = hm.rand_xform(cart_sd=0.5) pos2 = hm.rand_xform(cart_sd=0.5) tbvh = perf_counter() dslide = bvh.bvh_slide(bvh1, bvh2, pos1, pos2, radius, dirn) tbvh = perf_counter() - tbvh if dslide > 9e8: tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn assert dn > 2 * radius else: nhit += 1 pos1 = hm.htrans(dirn * dslide) @ pos1 tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn if not np.allclose(dn, 2 * radius, atol=1e-6): print(dn, 2 * radius) assert np.allclose(dn, 2 * radius, atol=1e-6) tcol = perf_counter() pair, o = bvh.bvh_collect_pairs(bvhcol1, bvhcol2, pos1, pos2, pairdis, buf) assert not o if len(pair) > 0: tcol = perf_counter() - tcol totcol += tcol pair1 = pos1 @ hm.hpoint(xyzcol1[pair[:, 0]])[..., None] pair2 = pos2 @ hm.hpoint(xyzcol2[pair[:, 1]])[..., None] dpair = np.linalg.norm(pair2 - pair1, axis=1) assert np.max(dpair) <= pairdis totmin += tn totbvh += tbvh N = N1 * N2 print( f"slide test {N:,} iter bvhslide double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", # f"slide test {N:,} iter bvhslide float: {int(N/totbvhf):,}/s double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", f"fracmiss: {nhit/N} collect {int(nhit/totcol):,}/s", ) def test_bvh_accessors(): xyz = np.random.rand(10, 3) - [0.5, 0.5, 0.5] b = BVH(xyz) assert np.allclose(b.com()[:3], np.mean(xyz, axis=0)) p = b.centers() dmat = np.linalg.norm(p[:, :3] - xyz[:, None], axis=2) assert np.allclose(np.min(dmat, axis=1), 0) def random_walk(N): x = np.random.randn(N, 3).astype("f").cumsum(axis=0) x -= x.mean(axis=0) return 0.5 * x / x.std() def test_bvh_isect_range(body=None, cart_sd=0.3, N2=10, mindist=0.02): N1 = 1 if body else 2 N = N1 * N2 totbvh, totnaive, totbvh0, nhit = 0, 0, 0, 0 for ibvh in range(N1): if body: bvh1, bvh2 = body.bvh_bb, body.bvh_bb else: # xyz1 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] # xyz2 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(1000) xyz2 = random_walk(1000) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) ranges = list() for i in range(N2): tbvh0 = perf_counter() c = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist) tbvh0 = perf_counter() - tbvh0 # if not c: # continue if c: nhit += 1 tbvh = perf_counter() range1 = bvh.isect_range_single(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist) tbvh = perf_counter() - tbvh tn = perf_counter() range2 = bvh.naive_isect_range(bvh1, bvh2, pos1[i], pos2[i], mindist) assert range1 == range2 tn = perf_counter() - tn ranges.append(range1) # print(f"{str(range1):=^80}") # body.move_to(pos1).dump_pdb("test1.pdb") # body.move_to(pos2).dump_pdb("test2.pdb") # return # print(f"{i:3} range {range1} {tn / tbvh:8.2f}, {tn:1.6f}, {tbvh:1.6f}") totbvh += tbvh totnaive += tn totbvh0 += tbvh0 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, mindist) ranges = np.array(ranges) assert np.all(lb == ranges[:, 0]) assert np.all(ub == ranges[:, 1]) ok = np.logical_and(lb >= 0, ub >= 0) isect, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist, lb, ub) assert not np.any(isect[ok]) print( f"iscet {nhit:,} hit of {N:,} iter bvh: {int(nhit/totbvh):,}/s fastnaive {int(nhit/totnaive):,}/s", f"ratio {int(totnaive/totbvh):,}x isect-only: {totbvh/totbvh0:3.3f}x", ) def test_bvh_isect_range_ids(): N1 = 50 N2 = 100 N = N1 * N2 # Nids = 100 cart_sd = 0.3 mindist = 0.03 Npts = 1000 factors = [1000, 500, 250, 200, 125, 100, 50, 40, 25, 20, 10, 8, 5, 4, 2, 1] # Npts = 6 # factors = [3] # mindist = 0.3 # N1 = 1 assert all(Npts % f == 0 for f in factors) for ibvh in range(N1): # for ibvh in [5]: # np.random.seed(ibvh) # print(ibvh) Nids = factors[ibvh % len(factors)] # xyz1 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] # xyz2 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(Npts) xyz2 = random_walk(Npts) tcre = perf_counter() bvh1 = BVH(xyz1, [], np.repeat(np.arange(Nids), Npts / Nids)) bvh2 = BVH(xyz2, [], np.repeat(np.arange(Nids), Npts / Nids)) tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) # pos1 = pos1[99:] # pos2 = pos2[99:] # print(bvh1.vol_lb()) # print(bvh1.vol_ub()) # print(bvh1.obj_id()) # assert 0 # assert bvh1.max_id() == Nids - 1 # assert bvh1.min_lb() == 0 # assert bvh1.max_ub() == Nids - 1 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, mindist) pos1 = pos1[lb != -1] pos2 = pos2[lb != -1] ub = ub[lb != -1] lb = lb[lb != -1] # print(lb, ub) assert np.all(0 <= lb) and np.all(lb - 1 <= ub) and np.all(ub < Nids) isectall = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(isectall == np.logical_or(lb > 0, ub < Nids - 1)) isect, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist, lb, ub) if np.any(isect): print(np.where(isect)[0]) print('lb', lb[isect]) print('ub', ub[isect]) print('cA', clash[isect, 0]) print('cB', clash[isect, 1]) # print('is', isect.astype('i') * 100) # print('isectlbub', np.sum(isect), np.sum(isect) / len(isect)) assert not np.any(isect[lb <= ub]) def test_bvh_isect_range_lb_ub(body=None, cart_sd=0.3, N1=3, N2=20, mindist=0.02): N1 = 1 if body else N1 N = N1 * N2 Npts = 1000 nhit, nrangefail = 0, 0 args = [ rp.Bunch(maxtrim=a, maxtrim_lb=b, maxtrim_ub=c) for a in (-1, 400) for b in (-1, 300) for c in (-1, 300) ] for ibvh, arg in it.product(range(N1), args): if body: bvh1, bvh2 = body.bvh_bb, body.bvh_bb else: # xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] # xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(Npts) xyz2 = random_walk(Npts) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) ranges = list() for i in range(N2): c = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist) if c: nhit += 1 range1 = bvh.isect_range_single(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist, **arg) ranges.append(range1) if range1[0] < 0: nrangefail += 1 assert c continue assert (arg.maxtrim < 0) or (np.diff(range1) + 1 >= Npts - arg.maxtrim) assert (arg.maxtrim_lb < 0) or (range1[0] <= arg.maxtrim_lb) assert (arg.maxtrim_ub < 0) or (range1[1] + 1 >= Npts - arg.maxtrim_ub) # mostly covered elsewhere, and quite slow # range2 = bvh.naive_isect_range(bvh1, bvh2, pos1[i], pos2[i], mindist) # assert range1 == range2 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, mindist, **arg) ranges = np.array(ranges) assert np.all(lb == ranges[:, 0]) assert np.all(ub == ranges[:, 1]) print(f"iscet {nhit:,} hit of {N:,} iter, frangefail {nrangefail/nhit}", ) def test_bvh_pickle(tmpdir): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform(cart_sd=1) pos2 = hm.rand_xform(cart_sd=1) tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) rng = bvh.isect_range_single(bvh1, bvh2, pos1, pos2, mindist=d + 0.01) with open(tmpdir + "/1", "wb") as out: _pickle.dump(bvh1, out) with open(tmpdir + "/2", "wb") as out: _pickle.dump(bvh2, out) with open(tmpdir + "/1", "rb") as out: bvh1b = _pickle.load(out) with open(tmpdir + "/2", "rb") as out: bvh2b = _pickle.load(out) assert len(bvh1) == len(bvh1b) assert len(bvh2) == len(bvh2b) assert np.allclose(bvh1.com(), bvh1b.com()) assert np.allclose(bvh1.centers(), bvh1b.centers()) assert np.allclose(bvh2.com(), bvh2b.com()) assert np.allclose(bvh2.centers(), bvh2b.centers()) db, i1b, i2b = bvh.bvh_min_dist(bvh1b, bvh2b, pos1, pos2) assert np.allclose(d, db) assert i1 == i1b assert i2 == i2b rngb = bvh.isect_range_single(bvh1b, bvh2b, pos1, pos2, mindist=d + 0.01) assert rngb == rng def test_bvh_threading_isect_may_fail(): from concurrent.futures import ThreadPoolExecutor from itertools import repeat reps = 1 npos = 1000 Npts = 1000 xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) mindist = 0.1 tottmain, tottthread = 0, 0 nt = 2 exe = ThreadPoolExecutor(nt) for i in range(reps): pos1 = hm.rand_xform(npos, cart_sd=0.5) pos2 = hm.rand_xform(npos, cart_sd=0.5) buf = np.empty((Npts, 2), dtype="i4") t = perf_counter() _ = [bvh.bvh_isect(bvh1, bvh2, p1, p2, mindist) for p1, p2 in zip(pos1, pos2)] isect = np.array(_) tmain = perf_counter() - t tottmain += tmain t = perf_counter() futures = exe.map( bvh.bvh_isect_vec, repeat(bvh1), repeat(bvh2), np.split(pos1, nt), np.split(pos2, nt), repeat(mindist), ) isect2 = np.concatenate([f for f in futures]) tthread = perf_counter() - t tottthread += tthread print("fisect", np.sum(isect2) / len(isect2)) assert np.allclose(isect, isect2) # print("bvh_isect", i, tmain / tthread, ">= 1.1") # assert tmain / tthread > 1.1 print("bvh_isect", tottmain / tottthread) def test_bvh_threading_mindist_may_fail(): from concurrent.futures import ThreadPoolExecutor from itertools import repeat reps = 1 npos = 100 Npts = 1000 xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 =
np.random.rand(Npts, 3)
numpy.random.rand
import math import os import random import re from collections import namedtuple from itertools import combinations import numpy as np from pr2_never_collisions import NEVER_COLLISIONS from utils import multiply, get_link_pose, joint_from_name, set_joint_position, \ set_joint_positions, get_joint_positions, get_min_limit, get_max_limit, quat_from_euler, read_pickle, set_pose, set_base_values, \ get_pose, euler_from_quat, link_from_name, has_link, point_from_pose, invert, Pose, \ unit_pose, joints_from_names, PoseSaver, get_lower_upper, get_joint_limits, get_joints, \ ConfSaver, get_bodies, create_mesh, remove_body, single_collision, unit_from_theta, angle_between, violates_limit, \ violates_limits, add_line, get_body_name, get_num_joints, approximate_as_cylinder, approximate_as_prism # TODO: restrict number of pr2 rotations to prevent from wrapping too many times ARM_NAMES = ('left', 'right') def arm_from_arm(arm): # TODO: rename assert (arm in ARM_NAMES) return '{}_arm'.format(arm) def gripper_from_arm(arm): assert (arm in ARM_NAMES) return '{}_gripper'.format(arm) PR2_GROUPS = { 'base': ['x', 'y', 'theta'], 'torso': ['torso_lift_joint'], 'head': ['head_pan_joint', 'head_tilt_joint'], arm_from_arm('left'): ['l_shoulder_pan_joint', 'l_shoulder_lift_joint', 'l_upper_arm_roll_joint', 'l_elbow_flex_joint', 'l_forearm_roll_joint', 'l_wrist_flex_joint', 'l_wrist_roll_joint'], arm_from_arm('right'): ['r_shoulder_pan_joint', 'r_shoulder_lift_joint', 'r_upper_arm_roll_joint', 'r_elbow_flex_joint', 'r_forearm_roll_joint', 'r_wrist_flex_joint', 'r_wrist_roll_joint'], gripper_from_arm('left'): ['l_gripper_l_finger_joint', 'l_gripper_r_finger_joint', 'l_gripper_l_finger_tip_joint', 'l_gripper_r_finger_tip_joint'], gripper_from_arm('right'): ['r_gripper_l_finger_joint', 'r_gripper_r_finger_joint', 'r_gripper_l_finger_tip_joint', 'r_gripper_r_finger_tip_joint'], # r_gripper_joint & l_gripper_joint are not mimicked } HEAD_LINK_NAME = 'high_def_optical_frame' # high_def_optical_frame | high_def_frame | wide_stereo_l_stereo_camera_frame | ... # kinect - 'head_mount_kinect_rgb_optical_frame' | 'head_mount_kinect_rgb_link' PR2_TOOL_FRAMES = { 'left': 'l_gripper_palm_link', # l_gripper_palm_link | l_gripper_tool_frame | l_gripper_tool_joint 'right': 'r_gripper_palm_link', # r_gripper_palm_link | r_gripper_tool_frame 'head': HEAD_LINK_NAME, } # Arm tool poses TOOL_POSE = ([0.18, 0., 0.], [0., 0.70710678, 0., 0.70710678]) TOOL_DIRECTION = [0., 0., 1.] ##################################### # Special configurations TOP_HOLDING_LEFT_ARM = [0.67717021, -0.34313199, 1.2, -1.46688405, 1.24223229, -1.95442826, 2.22254125] SIDE_HOLDING_LEFT_ARM = [0.39277395, 0.33330058, 0., -1.52238431, 2.72170996, -1.21946936, -2.98914779] REST_LEFT_ARM = [2.13539289, 1.29629967, 3.74999698, -0.15000005, 10000., -0.10000004, 10000.] WIDE_LEFT_ARM = [1.5806603449288885, -0.14239066980481405, 1.4484623937179126, -1.4851759349218694, 1.3911839347271555, -1.6531320011389408, -2.978586584568441] CENTER_LEFT_ARM = [-0.07133691252641006, -0.052973836083405494, 1.5741805775919033, -1.4481146328076862, 1.571782540186805, -1.4891468812835686, -9.413338322697955] # WIDE_RIGHT_ARM = [-1.3175723551150083, -0.09536552225976803, -1.396727055561703, -1.4433371993320296, -1.5334243909312468, -1.7298129320065025, 6.230244924007009] PR2_LEFT_ARM_CONFS = { 'top': TOP_HOLDING_LEFT_ARM, } ##################################### PR2_URDF = "models/pr2_description/pr2.urdf" # 87 joints DRAKE_PR2_URDF = "models/drake/pr2_description/urdf/pr2_simplified.urdf" # 82 joints def is_drake_pr2(robot): # 87 return (get_body_name(robot) == 'pr2') and (get_num_joints(robot) == 82) ##################################### # TODO: for when the PR2 is copied and loses it's joint names # PR2_JOINT_NAMES = [] # # def set_pr2_joint_names(pr2): # for joint in get_joints(pr2): # PR2_JOINT_NAMES.append(joint) # # def get_pr2_joints(joint_names): # joint_from_name = dict(zip(PR2_JOINT_NAMES, range(len(PR2_JOINT_NAMES)))) # return [joint_from_name[name] for name in joint_names] ##################################### def rightarm_from_leftarm(config): # right_from_left = np.array([-1, 1, -1, 1, -1, 1, 1]) right_from_left = np.array([-1, 1, -1, 1, -1, 1, -1]) # Drake return config * right_from_left def arm_conf(arm, left_config): if arm == 'left': return left_config elif arm == 'right': return rightarm_from_leftarm(left_config) else: raise ValueError(arm) def get_carry_conf(arm, grasp_type): if grasp_type == 'top': return arm_conf(arm, TOP_HOLDING_LEFT_ARM) elif grasp_type == 'side': return arm_conf(arm, SIDE_HOLDING_LEFT_ARM) else: raise NotImplementedError(grasp_type) def get_other_arm(arm): for other_arm in ARM_NAMES: if other_arm != arm: return other_arm raise ValueError(arm) ##################################### def get_disabled_collisions(pr2): #disabled_names = PR2_ADJACENT_LINKS #disabled_names = PR2_DISABLED_COLLISIONS disabled_names = NEVER_COLLISIONS #disabled_names = PR2_DISABLED_COLLISIONS + NEVER_COLLISIONS return {(link_from_name(pr2, name1), link_from_name(pr2, name2)) for name1, name2 in disabled_names if has_link(pr2, name1) and has_link(pr2, name2)} def load_dae_collisions(): # pr2-beta-static.dae: link 0 = base_footprint # pybullet: link -1 = base_footprint dae_file = 'models/pr2_description/pr2-beta-static.dae' dae_string = open(dae_file).read() link_regex = r'<\s*link\s+sid="(\w+)"\s+name="(\w+)"\s*>' link_mapping = dict(re.findall(link_regex, dae_string)) ignore_regex = r'<\s*ignore_link_pair\s+link0="kmodel1/(\w+)"\s+link1="kmodel1/(\w+)"\s*/>' disabled_collisions = [] for link1, link2 in re.findall(ignore_regex, dae_string): disabled_collisions.append((link_mapping[link1], link_mapping[link2])) return disabled_collisions def load_srdf_collisions(): srdf_file = 'models/pr2_description/pr2.srdf' srdf_string = open(srdf_file).read() regex = r'<\s*disable_collisions\s+link1="(\w+)"\s+link2="(\w+)"\s+reason="(\w+)"\s*/>' disabled_collisions = [] for link1, link2, reason in re.findall(regex, srdf_string): if reason == 'Never': disabled_collisions.append((link1, link2)) return disabled_collisions ##################################### def get_group_joints(robot, group): return joints_from_names(robot, PR2_GROUPS[group]) def get_group_conf(robot, group): return get_joint_positions(robot, get_group_joints(robot, group)) def set_group_conf(robot, group, positions): set_joint_positions(robot, get_group_joints(robot, group), positions) ##################################### # End-effectors def get_arm_joints(robot, arm): return get_group_joints(robot, arm_from_arm(arm)) #def get_arm_conf(robot, arm): # return get_joint_positions(robot, get_arm_joints(robot, arm)) def set_arm_conf(robot, arm, conf): set_joint_positions(robot, get_arm_joints(robot, arm), conf) def get_gripper_link(robot, arm): assert arm in ARM_NAMES return link_from_name(robot, PR2_TOOL_FRAMES[arm]) # def get_gripper_pose(robot): # # world_from_gripper * gripper_from_tool * tool_from_object = world_from_object # pose = multiply(get_link_pose(robot, link_from_name(robot, LEFT_ARM_LINK)), TOOL_POSE) # #pose = get_link_pose(robot, link_from_name(robot, LEFT_TOOL_NAME)) # return pose def get_gripper_joints(robot, arm): return get_group_joints(robot, gripper_from_arm(arm)) def open_arm(robot, arm): # These are mirrored on the pr2 for joint in get_gripper_joints(robot, arm): set_joint_position(robot, joint, get_max_limit(robot, joint)) def close_arm(robot, arm): for joint in get_gripper_joints(robot, arm): set_joint_position(robot, joint, get_min_limit(robot, joint)) ##################################### # Box grasps # TODO: test if grasp is in collision #GRASP_LENGTH = 0.04 GRASP_LENGTH = 0. #GRASP_LENGTH = -0.01 #MAX_GRASP_WIDTH = 0.07 MAX_GRASP_WIDTH = np.inf SIDE_HEIGHT_OFFSET = 0.03 # z distance from top of object # TODO: rename the box grasps def get_top_grasps(body, under=False, tool_pose=TOOL_POSE, body_pose=unit_pose(), max_width=MAX_GRASP_WIDTH, grasp_length=GRASP_LENGTH): center, (w, l, h) = approximate_as_prism(body, body_pose=body_pose) reflect_z = Pose(euler=[0, math.pi, 0]) translate_z = Pose(point=[0, 0, h / 2 - grasp_length]) translate_center = Pose(point=point_from_pose(body_pose)-center) grasps = [] if w <= max_width: for i in range(1 + under): rotate_z = Pose(euler=[0, 0, math.pi / 2 + i * math.pi]) grasps += [multiply(tool_pose, translate_z, rotate_z, reflect_z, translate_center, body_pose)] if l <= max_width: for i in range(1 + under): rotate_z = Pose(euler=[0, 0, i * math.pi]) grasps += [multiply(tool_pose, translate_z, rotate_z, reflect_z, translate_center, body_pose)] return grasps def get_side_grasps(body, under=False, tool_pose=TOOL_POSE, body_pose=unit_pose(), max_width=MAX_GRASP_WIDTH, grasp_length=GRASP_LENGTH, top_offset=SIDE_HEIGHT_OFFSET): # TODO: compute bounding box width wrt tool frame center, (w, l, h) = approximate_as_prism(body, body_pose=body_pose) translate_center = Pose(point=point_from_pose(body_pose)-center) grasps = [] #x_offset = 0 x_offset = h/2 - top_offset for j in range(1 + under): swap_xz = Pose(euler=[0, -math.pi / 2 + j * math.pi, 0]) if w <= max_width: translate_z = Pose(point=[x_offset, 0, l / 2 - grasp_length]) for i in range(2): rotate_z = Pose(euler=[math.pi / 2 + i * math.pi, 0, 0]) grasps += [multiply(tool_pose, translate_z, rotate_z, swap_xz, translate_center, body_pose)] # , np.array([w]) if l <= max_width: translate_z = Pose(point=[x_offset, 0, w / 2 - grasp_length]) for i in range(2): rotate_z = Pose(euler=[i * math.pi, 0, 0]) grasps += [multiply(tool_pose, translate_z, rotate_z, swap_xz, translate_center, body_pose)] # , np.array([l]) return grasps ##################################### # Cylinder grasps def get_top_cylinder_grasps(body, tool_pose=TOOL_POSE, body_pose=unit_pose(), max_width=MAX_GRASP_WIDTH, grasp_length=GRASP_LENGTH): # Apply transformations right to left on object pose center, (diameter, height) = approximate_as_cylinder(body, body_pose=body_pose) reflect_z = Pose(euler=[0, math.pi, 0]) translate_z = Pose(point=[0, 0, height / 2 - grasp_length]) translate_center = Pose(point=point_from_pose(body_pose)-center) if max_width < diameter: return while True: theta = random.uniform(0, 2*np.pi) rotate_z = Pose(euler=[0, 0, theta]) yield multiply(tool_pose, translate_z, rotate_z, reflect_z, translate_center, body_pose) def get_side_cylinder_grasps(body, under=False, tool_pose=TOOL_POSE, body_pose=unit_pose(), max_width=MAX_GRASP_WIDTH, grasp_length=GRASP_LENGTH, top_offset=SIDE_HEIGHT_OFFSET): center, (diameter, height) = approximate_as_cylinder(body, body_pose=body_pose) translate_center = Pose(point_from_pose(body_pose)-center) #x_offset = 0 x_offset = height/2 - top_offset if max_width < diameter: return while True: theta = random.uniform(0, 2*np.pi) translate_rotate = ([x_offset, 0, diameter / 2 - grasp_length], quat_from_euler([theta, 0, 0])) for j in range(1 + under): swap_xz = Pose(euler=[0, -math.pi / 2 + j * math.pi, 0]) yield multiply(tool_pose, translate_rotate, swap_xz, translate_center, body_pose) def get_edge_cylinder_grasps(body, under=False, tool_pose=TOOL_POSE, body_pose=unit_pose(), grasp_length=GRASP_LENGTH): center, (diameter, height) = approximate_as_cylinder(body, body_pose=body_pose) translate_yz = Pose(point=[0, diameter/2, height/2 - grasp_length]) reflect_y = Pose(euler=[0, math.pi, 0]) translate_center = Pose(point=point_from_pose(body_pose)-center) while True: theta = random.uniform(0, 2*np.pi) rotate_z = Pose(euler=[0, 0, theta]) for i in range(1 + under): rotate_under = Pose(euler=[0, 0, i * math.pi]) yield multiply(tool_pose, rotate_under, translate_yz, rotate_z, reflect_y, translate_center, body_pose) ##################################### # Cylinder pushes PUSH_HEIGHT = 0.02 PUSH_DISTANCE = 0.03 def get_cylinder_push(body, theta, under=False, tool_pose=TOOL_POSE, body_pose=unit_pose()): center, (diameter, height) = approximate_as_cylinder(body, body_pose=body_pose) reflect_z = Pose(euler=[0, math.pi, 0]) translate_z = Pose(point=[0, 0, -height / 2 + PUSH_HEIGHT]) translate_center = Pose(point=point_from_pose(body_pose)-center) rotate_x = Pose(euler=[0, 0, theta]) translate_x = Pose(point=[-diameter / 2 - PUSH_DISTANCE, 0, 0]) grasps = [] for i in range(1 + under): rotate_z = Pose(euler=[0, 0, i * math.pi]) grasps.append(multiply(tool_pose, translate_z, translate_x, rotate_x, rotate_z, reflect_z, translate_center, body_pose)) return grasps ##################################### # Button presses PRESS_OFFSET = 0.02 def get_x_presses(body, max_orientations=1, body_pose=unit_pose(), top_offset=PRESS_OFFSET): # gripper_from_object # TODO: update center, (w, _, h) = approximate_as_prism(body, body_pose=body_pose) translate_center = Pose(-center) press_poses = [] for j in range(max_orientations): swap_xz = Pose(euler=[0, -math.pi / 2 + j * math.pi, 0]) translate = Pose(point=[0, 0, w / 2 + top_offset]) press_poses += [multiply(TOOL_POSE, translate, swap_xz, translate_center, body_pose)] return press_poses def get_top_presses(body, tool_pose=TOOL_POSE, body_pose=unit_pose(), top_offset=PRESS_OFFSET): center, (_, height) = approximate_as_cylinder(body, body_pose=body_pose) reflect_z = Pose(euler=[0, math.pi, 0]) translate_z = Pose(point=[0, 0, height / 2 + top_offset]) translate_center = Pose(point=point_from_pose(body_pose)-center) while True: theta = random.uniform(0, 2*np.pi) rotate_z = Pose(euler=[0, 0, theta]) yield multiply(tool_pose, translate_z, rotate_z, reflect_z, translate_center, body_pose) GET_GRASPS = { 'top': get_top_grasps, 'side': get_side_grasps, # 'press': get_x_presses, } # TODO: include approach/carry info ##################################### # Inverse reachability DATABASES_DIR = '../databases' IR_FILENAME = '{}_{}_ir.pickle' def get_database_file(filename): directory = os.path.dirname(os.path.abspath(__file__)) return os.path.join(directory, DATABASES_DIR, filename) def load_inverse_reachability(arm, grasp_type): filename = IR_FILENAME.format(grasp_type, arm) path = get_database_file(filename) return read_pickle(path)['gripper_from_base'] def learned_forward_generator(robot, base_pose, arm, grasp_type): gripper_from_base_list = load_inverse_reachability(arm, grasp_type) random.shuffle(gripper_from_base_list) for gripper_from_base in gripper_from_base_list: yield multiply(base_pose, invert(gripper_from_base)) def learned_pose_generator(robot, gripper_pose, arm, grasp_type): gripper_from_base_list = load_inverse_reachability(arm, grasp_type) random.shuffle(gripper_from_base_list) for gripper_from_base in gripper_from_base_list: base_point, base_quat = multiply(gripper_pose, gripper_from_base) x, y, _ = base_point _, _, theta = euler_from_quat(base_quat) base_values = (x, y, theta) #set_base_values(robot, base_values) #yield get_pose(robot) yield base_values ##################################### # Camera WIDTH, HEIGHT = 640, 480 FX, FY = 772.55, 772.5 MAX_VISUAL_DISTANCE = 5.0 MAX_KINECT_DISTANCE = 2.5 def get_camera_matrix(width, height, fx, fy): # cx, cy = 320.5, 240.5 cx, cy = width / 2., height / 2. return np.array([ [fx, 0, cx], [0, fy, cy], [0, 0, 1]]) def ray_from_pixel(camera_matrix, pixel): return np.linalg.inv(camera_matrix).dot(np.append(pixel, 1)) def pixel_from_ray(camera_matrix, ray): return camera_matrix.dot(ray / ray[2])[:2] def get_pr2_camera_matrix(): return get_camera_matrix(WIDTH, HEIGHT, FX, FY) def get_pr2_view_section(z): camera_matrix = get_pr2_camera_matrix() pixels = [(0, 0), (WIDTH, HEIGHT)] return [z*ray_from_pixel(camera_matrix, p) for p in pixels] def get_pr2_field_of_view(): z = 1 view_lower, view_upper = get_pr2_view_section(z=z) theta = angle_between([view_lower[0], 0, z], [view_upper[0], 0, z]) # 0.7853966439794928 phi = angle_between([0, view_lower[1], z], [0, view_upper[1], z]) # 0.6024511557247721 return theta, phi def is_visible_point(camera_matrix, depth, point): if not (0 <= point[2] < depth): return False px, py = pixel_from_ray(camera_matrix, point) # TODO: bounding box methods? return (0 <= px < WIDTH) and (0 <= py < HEIGHT) def is_visible_aabb(body_lower, body_upper): # TODO: do intersect as well for identifying new obstacles z = body_lower[2] if z < 0: return False view_lower, view_upper = get_pr2_view_section(z) # TODO: bounding box methods? return not (np.any(body_lower[:2] < view_lower[:2]) or np.any(view_upper[:2] < body_upper[:2])) def support_from_aabb(lower, upper): min_x, min_y, z = lower max_x, max_y, _ = upper return [(min_x, min_y, z), (min_x, max_y, z), (max_x, max_y, z), (max_x, min_y, z)] ##################################### def cone_vertices_from_base(base): return [np.zeros(3)] + base def cone_wires_from_support(support): #vertices = cone_vertices_from_base(support) # TODO: could obtain from cone_mesh_from_support # TODO: could also just return vertices and indices apex = np.zeros(3) lines = [] for vertex in support: lines.append((apex, vertex)) #for i, v2 in enumerate(support): # v1 = support[i-1] # lines.append((v1, v2)) for v1, v2 in combinations(support, 2): lines.append((v1, v2)) center = np.average(support, axis=0) lines.append((apex, center)) return lines def cone_mesh_from_support(support): assert(len(support) == 4) vertices = cone_vertices_from_base(support) faces = [(1, 4, 3), (1, 3, 2)] for i in range(len(support)): index1 = 1+i index2 = 1+(i+1)%len(support) faces.append((0, index1, index2)) return vertices, faces def get_viewcone_base(depth=MAX_VISUAL_DISTANCE): # TODO: attach to the pr2? cone = [(0, 0), (WIDTH, 0), (WIDTH, HEIGHT), (0, HEIGHT)] camera_matrix = get_pr2_camera_matrix() vertices = [] for pixel in cone: ray = depth * ray_from_pixel(camera_matrix, pixel) vertices.append(ray[:3]) return vertices def get_viewcone(depth=MAX_VISUAL_DISTANCE, **kwargs): # TODO: attach to the pr2? mesh = cone_mesh_from_support(get_viewcone_base(depth=depth)) assert (mesh is not None) return create_mesh(mesh, **kwargs) def attach_viewcone(robot, head_name=HEAD_LINK_NAME, depth=MAX_VISUAL_DISTANCE, color=(1, 0, 0), **kwargs): head_link = link_from_name(robot, head_name) lines = [] for v1, v2 in cone_wires_from_support(get_viewcone_base(depth=depth)): lines.append(add_line(v1, v2, color=color, parent=robot, parent_link=head_link, **kwargs)) return lines ##################################### def inverse_visibility(pr2, point, head_name=HEAD_LINK_NAME): # TODO: test visibility by getting box # TODO: IK version # https://github.com/PR2/pr2_controllers/blob/kinetic-devel/pr2_head_action/src/pr2_point_frame.cpp #head_joints = [joint_from_name(pr2, name) for name in PR2_GROUPS['head']] #head_link = head_joints[-1] optical_frame = ('optical' in head_name) head_link = link_from_name(pr2, head_name) head_joints = joints_from_names(pr2, PR2_GROUPS['head']) with ConfSaver(pr2): set_joint_positions(pr2, head_joints, np.zeros(len(head_joints))) head_pose = get_link_pose(pr2, head_link) point_head = point_from_pose(multiply(invert(head_pose), Pose(point))) if optical_frame: dy, dz, dx = np.array([-1, -1, 1])*np.array(point_head) else: dx, dy, dz = np.array(point_head) theta = np.math.atan2(dy, dx) # TODO: might need to negate the minus for the default one phi = np.math.atan2(-dz, np.sqrt(dx ** 2 + dy ** 2)) conf = [theta, phi] #pose = Pose(point_from_pose(head_pose), Euler(pitch=phi, yaw=theta)) # TODO: initial roll? if violates_limits(pr2, head_joints, conf): return None return conf def plan_scan_path(pr2, tilt=0): head_joints = joints_from_names(pr2, PR2_GROUPS['head']) start_conf = get_joint_positions(pr2, head_joints) lower_limit, upper_limit = get_joint_limits(pr2, head_joints[0]) first_conf = np.array([lower_limit, tilt]) second_conf = np.array([upper_limit, tilt]) if start_conf[0] > 0: first_conf, second_conf = second_conf, first_conf return [first_conf, second_conf] #return [start_conf, first_conf, second_conf] #third_conf = np.array([0, tilt]) #return [start_conf, first_conf, second_conf, third_conf] def plan_pause_scan_path(pr2, tilt=0): head_joints = joints_from_names(pr2, PR2_GROUPS['head']) assert(not violates_limit(pr2, head_joints[1], tilt)) theta, _ = get_pr2_field_of_view() lower_limit, upper_limit = get_joint_limits(pr2, head_joints[0]) # Add one because half visible on limits n = int(np.math.ceil((upper_limit - lower_limit) / theta) + 1) epsilon = 1e-3 return [np.array([pan, tilt]) for pan in np.linspace(lower_limit + epsilon, upper_limit - epsilon, n, endpoint=True)] ##################################### Detection = namedtuple('Detection', ['body', 'distance']) def get_detection_cone(pr2, body, depth=MAX_VISUAL_DISTANCE): head_link = link_from_name(pr2, HEAD_LINK_NAME) with PoseSaver(body): body_head = multiply(invert(get_link_pose(pr2, head_link)), get_pose(body)) set_pose(body, body_head) body_lower, body_upper = get_lower_upper(body) z = body_lower[2] if depth < z: return None, z if not is_visible_aabb(body_lower, body_upper): return None, z return cone_mesh_from_support(support_from_aabb(body_lower, body_upper)), z def get_detections(pr2, p_false_neg=0, **kwargs): detections = [] for body in get_bodies(): if
np.random.random()
numpy.random.random
import cv2 import numpy as np from collections import OrderedDict import colour from colour_checker_detection import detect_colour_checkers_segmentation class CreateSpyderCheck: name = "SpyderChecker 24" # Color checker reference values are in xyY color space data = OrderedDict() data["Aqua"] = np.array([0.29131, 0.39533, 0.4102]) data["Lavender"] = np.array([0.29860, 0.28411, 0.22334]) data["Evergreen"] = np.array([0.36528, 0.46063, 0.12519]) data["Steel Blue"] = np.array([0.27138, 0.29748, 0.17448]) data["Classic Light Skin"] = np.array([0.42207, 0.37609, 0.34173]) data["Classic Dark Skin"] = np.array([0.44194, 0.38161, 0.09076]) data["Primary Orange"] = np.array([0.54238, 0.40556, 0.2918]) data["Blueprint"] = np.array([0.22769, 0.21517, 0.09976]) data["Pink"] = np.array([0.50346, 0.32519, 0.1826]) data["Violet"] = np.array([0.30813, 0.24004, 0.05791]) data["Apple Green"] = np.array([0.40262, 0.50567, 0.44332]) data["Sunflower"] = np.array([0.50890, 0.43959, 0.4314]) data["Primary Cyan"] = np.array([0.19792, 0.30072, 0.16111]) data["Primary Magenta"] = np.array([0.38429, 0.23929, 0.18286]) data["Primary Yellow"] = np.array([0.47315, 0.47936, 0.63319]) data["Primary Red"] =
np.array([0.59685, 0.31919, 0.11896])
numpy.array
# -*- coding: utf-8 -*- import sys, logging import numpy as np from math import ceil from gseapy.stats import multiple_testing_correction from joblib import delayed, Parallel def enrichment_score(gene_list, correl_vector, gene_set, weighted_score_type=1, nperm=1000, seed=None, single=False, scale=False): """This is the most important function of GSEApy. It has the same algorithm with GSEA and ssGSEA. :param gene_list: The ordered gene list gene_name_list, rank_metric.index.values :param gene_set: gene_sets in gmt file, please use gsea_gmt_parser to get gene_set. :param weighted_score_type: It's the same with gsea's weighted_score method. Weighting by the correlation is a very reasonable choice that allows significant gene sets with less than perfect coherence. options: 0(classic),1,1.5,2. default:1. if one is interested in penalizing sets for lack of coherence or to discover sets with any type of nonrandom distribution of tags, a value p < 1 might be appropriate. On the other hand, if one uses sets with large number of genes and only a small subset of those is expected to be coherent, then one could consider using p > 1. Our recommendation is to use p = 1 and use other settings only if you are very experienced with the method and its behavior. :param correl_vector: A vector with the correlations (e.g. signal to noise scores) corresponding to the genes in the gene list. Or rankings, rank_metric.values :param nperm: Only use this parameter when computing esnull for statistical testing. Set the esnull value equal to the permutation number. :param seed: Random state for initializing gene list shuffling. Default: seed=None :return: ES: Enrichment score (real number between -1 and +1) ESNULL: Enrichment score calculated from random permutations. Hits_Indices: Index of a gene in gene_list, if gene is included in gene_set. RES: Numerical vector containing the running enrichment score for all locations in the gene list . """ N = len(gene_list) # Test whether each element of a 1-D array is also present in a second array # It's more intuitive here than original enrichment_score source code. # use .astype to covert bool to integer tag_indicator = np.in1d(gene_list, gene_set, assume_unique=True).astype(int) # notice that the sign is 0 (no tag) or 1 (tag) if weighted_score_type == 0 : correl_vector = np.repeat(1, N) else: correl_vector = np.abs(correl_vector)**weighted_score_type # get indices of tag_indicator hit_ind = np.flatnonzero(tag_indicator).tolist() # if used for compute esnull, set esnull equal to permutation number, e.g. 1000 # else just compute enrichment scores # set axis to 1, because we have 2D array axis = 1 tag_indicator = np.tile(tag_indicator, (nperm+1,1)) correl_vector = np.tile(correl_vector,(nperm+1,1)) # gene list permutation rs = np.random.RandomState(seed) for i in range(nperm): rs.shuffle(tag_indicator[i]) # np.apply_along_axis(rs.shuffle, 1, tag_indicator) Nhint = tag_indicator.sum(axis=axis, keepdims=True) sum_correl_tag = np.sum(correl_vector*tag_indicator, axis=axis, keepdims=True) # compute ES score, the code below is identical to gsea enrichment_score method. no_tag_indicator = 1 - tag_indicator Nmiss = N - Nhint norm_tag = 1.0/sum_correl_tag norm_no_tag = 1.0/Nmiss RES = np.cumsum(tag_indicator * correl_vector * norm_tag - no_tag_indicator * norm_no_tag, axis=axis) if scale: RES = RES / N if single: es_vec = RES.sum(axis=axis) else: max_ES, min_ES = RES.max(axis=axis), RES.min(axis=axis) es_vec = np.where(np.abs(max_ES) > np.abs(min_ES), max_ES, min_ES) # extract values es, esnull, RES = es_vec[-1], es_vec[:-1], RES[-1,:] return es, esnull, hit_ind, RES def enrichment_score_tensor(gene_mat, cor_mat, gene_sets, weighted_score_type, nperm=1000, seed=None, single=False, scale=False): """Next generation algorithm of GSEA and ssGSEA. Works for 3d array :param gene_mat: the ordered gene list(vector) with or without gene indices matrix. :param cor_mat: correlation vector or matrix (e.g. signal to noise scores) corresponding to the genes in the gene list or matrix. :param dict gene_sets: gmt file dict. :param float weighted_score_type: weighting by the correlation. options: 0(classic), 1, 1.5, 2. default:1 for GSEA and 0.25 for ssGSEA. :param int nperm: permutation times. :param bool scale: If True, normalize the scores by number of genes_mat. :param bool single: If True, use ssGSEA algorithm, otherwise use GSEA. :param seed: Random state for initialize gene list shuffling. Default: seed=None :return: a tuple contains:: | ES: Enrichment score (real number between -1 and +1), for ssGSEA, set scale eq to True. | ESNULL: Enrichment score calculated from random permutation. | Hits_Indices: Indices of genes if genes are included in gene_set. | RES: The running enrichment score for all locations in the gene list. """ rs = np.random.RandomState(seed) # gene_mat -> 1d: prerank, ssSSEA or 2d: GSEA keys = sorted(gene_sets.keys()) if weighted_score_type == 0: # don't bother doing calcuation, just set to 1 cor_mat = np.ones(cor_mat.shape) elif weighted_score_type > 0: pass else: logging.error("Using negative values of weighted_score_type, not allowed") raise ValueError("weighted_score_type should be postive numerics") cor_mat = np.abs(cor_mat) if cor_mat.ndim ==1: # ssGSEA or Prerank # genestes->M, genes->N, perm-> axis=2 N, M = len(gene_mat), len(keys) # generate gene hits matrix # for 1d ndarray of gene_mat, set assume_unique=True, # means the input arrays are both assumed to be unique, # which can speed up the calculation. tag_indicator = np.vstack([np.in1d(gene_mat, gene_sets[key], assume_unique=True) for key in keys]) tag_indicator = tag_indicator.astype(int) # index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in tag_indicator ] # generate permutated hits matrix perm_tag_tensor = np.repeat(tag_indicator, nperm+1).reshape((M,N,nperm+1)) # shuffle matrix, last matrix is not shuffled when nperm > 0 if nperm: np.apply_along_axis(lambda x: np.apply_along_axis(rs.shuffle,0,x),1, perm_tag_tensor[:,:,:-1]) # missing hits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,np.newaxis])** weighted_score_type elif cor_mat.ndim == 2: # GSEA # 2d ndarray, gene_mat and cor_mat are shuffled already # reshape matrix cor_mat = cor_mat.T # gene_mat is a tuple contains (gene_name, permuate_gene_name_indices) genes, genes_ind = gene_mat # genestes->M, genes->N, perm-> axis=2 # don't use assume_unique=True in 2d array when use np.isin(). # elements in gene_mat are not unique, or will cause unwanted results tag_indicator = np.vstack([np.in1d(genes, gene_sets[key], assume_unique=True) for key in keys]) tag_indicator = tag_indicator.astype(int) perm_tag_tensor = np.stack([tag.take(genes_ind).T for tag in tag_indicator], axis=0) #index of hits hit_ind = [ np.flatnonzero(tag).tolist() for tag in perm_tag_tensor[:,:,-1] ] # nohits no_tag_tensor = 1 - perm_tag_tensor # calculate numerator, denominator of each gene hits rank_alpha = (perm_tag_tensor*cor_mat[np.newaxis,:,:])** weighted_score_type else: logging.error("Program die because of unsupported input") raise ValueError("Correlation vector or matrix (cor_mat) is not supported") # Nhint = tag_indicator.sum(1) # Nmiss = N - Nhint axis=1 P_GW_denominator = np.sum(rank_alpha, axis=axis, keepdims=True) P_NG_denominator = np.sum(no_tag_tensor, axis=axis, keepdims=True) REStensor = np.cumsum(rank_alpha / P_GW_denominator - no_tag_tensor / P_NG_denominator, axis=axis) # ssGSEA: scale es by gene numbers ? # https://gist.github.com/gaoce/39e0907146c752c127728ad74e123b33 if scale: REStensor = REStensor / len(gene_mat) if single: #ssGSEA esmatrix = REStensor.sum(axis=axis) else: #GSEA esmax, esmin = REStensor.max(axis=axis), REStensor.min(axis=axis) esmatrix = np.where(np.abs(esmax)>np.abs(esmin), esmax, esmin) es, esnull, RES = esmatrix[:,-1], esmatrix[:,:-1], REStensor[:,:,-1] return es, esnull, hit_ind, RES def ranking_metric_tensor(exprs, method, permutation_num, pos, neg, classes, ascending, seed=None, skip_last=False): """Build shuffled ranking matrix when permutation_type eq to phenotype. Works for 3d array. :param exprs: gene_expression DataFrame, gene_name indexed. :param str method: calculate correlation or ranking. methods including: 1. 'signal_to_noise' (s2n) or 'abs_signal_to_noise' (abs_s2n). 2. 't_test'. 3. 'ratio_of_classes' (also referred to as fold change). 4. 'diff_of_classes'. 5. 'log2_ratio_of_classes'. :param int permuation_num: how many times of classes is being shuffled :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what class of phenotype. :param bool ascending: bool. Sort ascending vs. descending. :param seed: random_state seed :param bool skip_last: (internal use only) whether to skip the permutation of the last rankings. :return: returns two 2d ndarray with shape (nperm, gene_num). | cor_mat_indices: the indices of sorted and permutated (exclude last row) ranking matrix. | cor_mat: sorted and permutated (exclude last row) ranking matrix. """ rs = np.random.RandomState(seed) # S: samples, G: gene number G, S = exprs.shape # genes = exprs.index.values expr_mat = exprs.values.T perm_cor_tensor = np.tile(expr_mat, (permutation_num,1,1)) if skip_last: # random shuffle on the first dim, the last matrix (expr_mat) is not shuffled for arr in perm_cor_tensor[:-1]: rs.shuffle(arr) else: for arr in perm_cor_tensor: rs.shuffle(arr) # metrics classes = np.array(classes) pos = classes == pos neg = classes == neg n_pos = np.sum(pos) n_neg = np.sum(neg) pos_cor_mean = perm_cor_tensor[:,pos,:].mean(axis=1) neg_cor_mean = perm_cor_tensor[:,neg,:].mean(axis=1) pos_cor_std = perm_cor_tensor[:,pos,:].std(axis=1, ddof=1) neg_cor_std = perm_cor_tensor[:,neg,:].std(axis=1, ddof=1) if method in ['signal_to_noise', 's2n']: cor_mat = (pos_cor_mean - neg_cor_mean)/(pos_cor_std + neg_cor_std) elif method in ['abs_signal_to_noise', 'abs_s2n']: cor_mat = np.abs((pos_cor_mean - neg_cor_mean)/(pos_cor_std + neg_cor_std)) elif method == 't_test': denom = np.sqrt((pos_cor_std**2)/n_pos + (neg_cor_std**2)/n_neg) cor_mat = (pos_cor_mean - neg_cor_mean)/ denom elif method == 'ratio_of_classes': cor_mat = pos_cor_mean / neg_cor_mean elif method == 'diff_of_classes': cor_mat = pos_cor_mean - neg_cor_mean elif method == 'log2_ratio_of_classes': cor_mat = np.log2(pos_cor_mean / neg_cor_mean) else: logging.error("Please provide correct method name!!!") raise LookupError("Input method: %s is not supported"%method) # return matix[nperm+1, perm_cors] cor_mat_ind = cor_mat.argsort() # ndarray: sort in place cor_mat.sort() # genes_mat = genes.take(cor_mat_ind) if ascending: return cor_mat_ind, cor_mat # descending order of ranking and genes # return genes_mat[:,::-1], cor_mat[:,::-1] return cor_mat_ind[:, ::-1], cor_mat[:, ::-1] def ranking_metric(df, method, pos, neg, classes, ascending): """The main function to rank an expression table. works for 2d array. :param df: gene_expression DataFrame. :param method: The method used to calculate a correlation or ranking. Default: 'log2_ratio_of_classes'. Others methods are: 1. 'signal_to_noise' (s2n) or 'abs_signal_to_noise' (abs_s2n) You must have at least three samples for each phenotype to use this metric. The larger the signal-to-noise ratio, the larger the differences of the means (scaled by the standard deviations); that is, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 2. 't_test' Uses the difference of means scaled by the standard deviation and number of samples. Note: You must have at least three samples for each phenotype to use this metric. The larger the tTest ratio, the more distinct the gene expression is in each phenotype and the more the gene acts as a “class marker.” 3. 'ratio_of_classes' (also referred to as fold change). Uses the ratio of class means to calculate fold change for natural scale data. 4. 'diff_of_classes' Uses the difference of class means to calculate fold change for natural scale data 5. 'log2_ratio_of_classes' Uses the log2 ratio of class means to calculate fold change for natural scale data. This is the recommended statistic for calculating fold change for log scale data. :param str pos: one of labels of phenotype's names. :param str neg: one of labels of phenotype's names. :param dict classes: column id to group mapping. :param bool ascending: bool or list of bool. Sort ascending vs. descending. :return: returns a pd.Series of correlation to class of each variable. Gene_name is index, and value is rankings. visit here for more docs: http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html """ # exclude any zero stds. df_mean = df.groupby(by=classes, axis=1).mean() df_std = df.groupby(by=classes, axis=1).std() n_pos = np.sum(classes == pos) n_neg = np.sum(classes == neg) if method in ['signal_to_noise', 's2n']: ser = (df_mean[pos] - df_mean[neg])/(df_std[pos] + df_std[neg]) elif method in ['abs_signal_to_noise', 'abs_s2n']: ser = ((df_mean[pos] - df_mean[neg])/(df_std[pos] + df_std[neg])).abs() elif method == 't_test': ser = (df_mean[pos] - df_mean[neg])/ np.sqrt(df_std[pos]**2/n_pos+df_std[neg]**2/n_neg) elif method == 'ratio_of_classes': ser = df_mean[pos] / df_mean[neg] elif method == 'diff_of_classes': ser = df_mean[pos] - df_mean[neg] elif method == 'log2_ratio_of_classes': ser = np.log2(df_mean[pos] / df_mean[neg]) else: logging.error("Please provide correct method name!!!") raise LookupError("Input method: %s is not supported"%method) ser = ser.sort_values(ascending=ascending) return ser def gsea_compute_tensor(data, gmt, n, weighted_score_type, permutation_type, method, pheno_pos, pheno_neg, classes, ascending, processes=1, seed=None, single=False, scale=False): """compute enrichment scores and enrichment nulls. This function will split large array into smaller pieces to advoid memroy overflow. :param data: preprocessed expression dataframe or a pre-ranked file if prerank=True. :param dict gmt: all gene sets in .gmt file. need to call load_gmt() to get results. :param int n: permutation number. default: 1000. :param str method: ranking_metric method. see above. :param str pheno_pos: one of labels of phenotype's names. :param str pheno_neg: one of labels of phenotype's names. :param list classes: a list of phenotype labels, to specify which column of dataframe belongs to what category of phenotype. :param float weighted_score_type: default:1 :param bool ascending: sorting order of rankings. Default: False. :param seed: random seed. Default: np.random.RandomState() :param bool scale: if true, scale es by gene number. :return: a tuple contains:: | zipped results of es, nes, pval, fdr. | nested list of hit indices of input gene_list. | nested list of ranked enrichment score of each input gene_sets. | list of enriched terms """ w = weighted_score_type subsets = sorted(gmt.keys()) genes_mat, cor_mat = data.index.values, data.values base = 5 if data.shape[0] >= 5000 else 10 ## phenotype permutation np.random.seed(seed) # control the ranodm numbers if permutation_type == "phenotype": # shuffling classes and generate random correlation rankings logging.debug("Start to permutate classes..............................") if (n + 1) % base == 0: # n+1: last permute is for orignial ES calculation num_bases = [ base ] * ((n + 1) // base) skip_last = [0] * ( n // base) + [1] # last is not permuted else: num_bases = [ base ] * ((n + 1) // base) + [ (n +1) % base] skip_last = [0] * ((n + 1) // base) + [ (n +1) % base] random_seeds = np.random.randint(np.iinfo(np.int32).max, size=len(num_bases)) genes_ind = [] cor_mat = [] # split permutation array into smaller blocks to save memory temp_rnk = Parallel(n_jobs=processes)(delayed(ranking_metric_tensor)( data, method, b, pheno_pos, pheno_neg, classes, ascending, se, skip) for b, skip, se in zip(num_bases, skip_last, random_seeds)) for k, temp in enumerate(temp_rnk): gi, cor = temp genes_ind.append(gi) cor_mat.append(cor) genes_ind, cor_mat = np.vstack(genes_ind), np.vstack(cor_mat) # convert to tuple genes_mat = (data.index.values, genes_ind) logging.debug("Start to compute es and esnulls........................") # Prerank, ssGSEA, GSEA es = [] RES = [] hit_ind = [] esnull = [] temp_esnu = [] # split gmt dataset, too block = ceil(len(subsets) / base) random_seeds = np.random.randint(np.iinfo(np.int32).max, size=block) # split large array into smaller blocks to avoid memory overflow i, m = 1, 0 gmt_block = [] while i <= block: # you have to reseed, or all your processes are sharing the same seed value rs = random_seeds[i-1] gmtrim = {k: gmt.get(k) for k in subsets[m:base * i]} gmt_block.append(gmtrim) m = base * i i += 1 ## if permutation_type == "phenotype": n = 0 ## NOTE for GSEA: cor_mat is 2d array, it won't permute again when call enrichment_score_tensor temp_esnu = Parallel(n_jobs=processes)(delayed(enrichment_score_tensor)( genes_mat, cor_mat, gmtrim, w, n, rs, single, scale) for gmtrim, rs in zip(gmt_block, random_seeds)) # esn is a list, don't need to use append method. for si, temp in enumerate(temp_esnu): # e, enu, hit, rune = temp.get() e, enu, hit, rune = temp esnull.append(enu) es.append(e) RES.append(rune) hit_ind += hit # concate results es, esnull, RES =
np.hstack(es)
numpy.hstack
''' python -m visdom.server http://localhost:8097 <env_name>.json file present in your ~/.visdom directory. tensorboard --logdir=runs http://localhost:6006/ 非常奇怪的出错 ONNX export failed on ATen operator ifft because torch.onnx.symbolic.ifft does not exist ''' import seaborn as sns; sns.set() from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import visdom import matplotlib.pyplot as plt import numpy as np import torchvision import cv2 from torchvision import datasets, transforms from .Z_utils import COMPLEX_utils as Z def matplotlib_imshow(img, one_channel=False): if one_channel: img = img.mean(dim=0) img = img / 2 + 0.5 # unnormalize npimg = img.numpy() if one_channel: plt.imshow(npimg, cmap="Greys") else: plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() class Visualize: def __init__(self,env_title="onnet",plots=[], **kwargs): self.log_dir = f'runs/{env_title}' self.plots = plots self.loss_step = 0 self.writer = SummaryWriter(self.log_dir) self.img_dir="./dump/images/" self.dpi = 100 #https://stackoverflow.com/questions/9662995/matplotlib-change-title-and-colorbar-text-and-tick-colors def MatPlot(self,arr, title=""): fig, ax = plt.subplots() #plt.axis('off') plt.grid(b=None) im = ax.imshow(arr, interpolation='nearest', cmap='coolwarm') fig.colorbar(im, orientation='horizontal') plt.savefig(f'{self.img_dir}{title}.jpg') #plt.show() plt.close() def fig2data(self,fig): fig.canvas.draw() if True: # https://stackoverflow.com/questions/42603161/convert-an-image-shown-in-python-into-an-opencv-image img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) return img else: w, h = fig.canvas.get_width_height() buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode buf = np.roll(buf, 3, axis=2) return buf ''' sns.heatmap 很难用,需用自定义,参见https://stackoverflow.com/questions/53248186/custom-ticks-for-seaborn-heatmap ''' def HeatMap(self, data, file_name, params={},noAxis=True, cbar=True): title,isSave = file_name,True if 'save' in params: isSave = params['save'] if 'title' in params: title = params['title'] path = '{}{}_.jpg'.format(self.img_dir, file_name) sns.set(font_scale=3) s = max(data.shape[1] / self.dpi, data.shape[0] / self.dpi) # fig.set_size_inches(18.5, 10.5) cmap = 'coolwarm' # "plasma" #https://matplotlib.org/examples/color/colormaps_reference.html # cmap = sns.cubehelix_palette(start=1, rot=3, gamma=0.8, as_cmap=True) if noAxis: # tight samples for training(No text!!!) figsize = (s, s) fig, ax = plt.subplots(figsize=figsize, dpi=self.dpi) ax = sns.heatmap(data, ax=ax, cmap=cmap, cbar=False, xticklabels=False, yticklabels=False) fig.savefig(path, bbox_inches='tight', pad_inches=0,figsize=(20,10)) if False: image = cv2.imread(path) # image = fig2data(ax.get_figure()) #会放大尺寸,难以理解 if (len(title) > 0): assert (image.shape == self.args.spp_image_shape) # 必须固定一个尺寸 cv2.imshow("",image); cv2.waitKey(0) plt.close("all") return path else: # for paper ticks = np.linspace(0, 1, 10) xlabels = [int(i) for i in
np.linspace(0, 56, 10)
numpy.linspace
# This includes functions which help with the m9 motions from __future__ import absolute_import from __future__ import print_function import os import numpy as np import GMHelper import SimM9MotionHelper from requests_toolbelt.adapters import appengine appengine.monkeypatch() CLOUD_STORAGE_BUCKET = 'm9-project-bucket-west' os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'M9ProjectBroadbands-412691040693.json' def GetSynFileFromM9Folder(Realization, Latitude, Longitude, Folder='A', M9Folder='F:/M9/DataArchive/'): import numpy as np path = M9Folder + '/' + Realization + '/' + Folder + '/' SWCornerUTM = [4467300, 100080] SWCornerLatLong = [40.26059706792827, -127.70217428430801] import utm utmcoord = utm.from_latlon(Latitude, Longitude, 10)[:2] Easting, Northing = utmcoord[0] - SWCornerUTM[1], utmcoord[1] - SWCornerUTM[ 0] # these are relative Easting and Northings to the SW corner # Rounding Function def round_to(n, precision): correction = 0.5 if n >= 0 else -0.5 return int(n / precision + correction) * precision stationid, northing, easting = np.genfromtxt(path + '/BroadbandLocations.utm', skip_header=1, dtype=str, unpack=True) northing = np.array(northing, dtype=np.float) easting = np.array(easting, dtype=np.float) precision = easting[1] - easting[0] Easting = round_to(Easting, precision) Northing = round_to(Northing, precision) # Get File Name for i in range(len(northing)): y = round_to(northing[i], precision) x = round_to(easting[i], precision) if Easting == x and Northing == y: Name = stationid[i] # print i break if i == len(northing) - 1: print('Syn file not found') try: Syn = np.loadtxt(path + '%s/%s.syn' % (Name[0:3], Name)) except: print('error, rs or ds file not found') return None # Find CutOff cutoffTime = SimM9MotionHelper.GetCutOffTime(Name, Realization, Folder) cutoffIndex = int(cutoffTime / (Syn[1, 0] - Syn[0, 0])) class Output(): def __init__(self): self.FileName = Name self.time = Syn[:, 0] self.dt = self.time[1] - self.time[0] self.ag_Z = Syn[:, 1] / 980. # convert to G self.ag_X = Syn[:, 3] / 980. #convert to G self.ag_Y = Syn[:, 2] / 980. #convert to G self.CutOffIndex = cutoffIndex self.CutOffTime = cutoffTime self.LatLon = utm.to_latlon(x + SWCornerUTM[1], y + SWCornerUTM[0], 10, 'T')[:2] return Output() def GetSynFileFromM9FolderUsingSynFileName(Realization, SynFileName, Folder='A', M9Folder='F:/M9/DataArchive/'): import numpy as np path = M9Folder + '/' + Realization + '/' + Folder + '/' Name = SynFileName try: Syn = np.loadtxt(path + '%s/%s.syn' % (Name[0:3], Name)) except: print('error, rs or ds file not found') return None # Find CutOff cutoffTime = SimM9MotionHelper.GetCutOffTime(Name, Realization, Folder) cutoffIndex = int(cutoffTime / (Syn[1, 0] - Syn[0, 0])) class Output(): def __init__(self): self.FileName = Name self.time = Syn[:, 0] self.dt = self.time[1] - self.time[0] self.ag_Z = Syn[:, 1] / 980. # convert to G self.ag_X = Syn[:, 3] / 980. #convert to G self.ag_Y = Syn[:, 2] / 980. #convert to G self.CutOffIndex = cutoffIndex self.CutOffTime = cutoffTime return Output() def GetSynFile(SynFileName, Folder): import numpy as np if not SynFileName.endswith('.syn'): SynFileName += '.syn' try: Syn = np.loadtxt(Folder + SynFileName) except: print('error, file not found') return None class Output(): def __init__(self): self.FileName = SynFileName self.time = Syn[:, 0] self.ag_X = Syn[:, 3] / 980. #convert to G self.ag_Y = Syn[:, 2] / 980. #convert to G self.ag_Z = Syn[:, 1] / 980. # convert to G self.Dt = Syn[1,0] - Syn[0,0] return Output() def GetIMs(Easting, Northing, BroadbandLocation): # Rounding Function def round_to(n, precision): correction = 0.5 if n >= 0 else -0.5 return int(n / precision + correction) * precision f = open(BroadbandLocation[:-2] + 'A/BroadBandLocations.utm') precision = 1000 Easting = round_to(Easting, precision) Northing = round_to(Northing, precision) # Get File Name for line in f.readlines(): line = line.split() y = round_to(float(line[1]), precision) x = round_to(float(line[2]), precision) if Easting == x and Northing == y: Name = line[0] import numpy as np try: print(Name) RS = np.loadtxt(BroadbandLocation[:-2] + 'A/%s/RS_(%s).dat' % (Name[0:3], Name)) Ds =
np.loadtxt(BroadbandLocation[:-2] + 'A/%s/Ds_(%s).dat' % (Name[0:3], Name))
numpy.loadtxt
import numpy as np ''' @alt(配列|行列|ベクトル) @alt(作る=[作る|作成する|初期化する]) @prefix(aArray;[配列|行列|ベクトル]) @prefix(aList;リスト) @alt(要素ごと|各要素) ベクトル[の|][演算|計算]を[する|行う] 行列[の|][演算|計算]を[する|行う] numpyを[使う|入れる|インポートする] ''' iterable = np.array([0, 1, 2, 3]) aArray = np.array([1, 2, 3, 4]) aArray2 = iterable aList = [1, 2] n = 3 要素数 = 3 行数 = 2 列数 = 2 初期値 = 0 行番号 = 0 列番号 = 0 __X__ = np.int dtype = __X__ ''' @X(np.int;np.int8;np.uint8;np.int16;np.int32;bool;complex) @Y(整数;8ビット整数;符号なし8ビット整数;32ビット整数;[ブール|論理値];複素数) <オプション>データ型を指定する <オプション>__Y__型を使う ''' np.array(aList) ''' aListを配列に変換する {aListから|配列を}作る ''' np.array(iterable) ''' iterableを配列に変換する {iterableから|配列を}作る ''' np.zeros(要素数) ''' {全要素を|0で}初期化された配列[|を作る] ゼロ埋めされた配列[|を作る] ''' np.zeros(要素数, dtype=__X__) ''' {ゼロ埋めされた|__Y__型の}配列[|を作る] ''' np.zeros(行数, 列数) ''' {全要素を|0で}初期化された行列[|を作る] ゼロ埋めされた行列[|を作る] ''' np.zeros(行数, 列数, dtype=__X__) ''' {{全要素を|0で}初期化された|__Y__型の}行列[|を作る] ''' np.ones(要素数, dtype=np.int) ''' {全要素を|1で}初期化された配列[|を作る] 要素が全て1の配列[|を作る] ''' np.ones(行数, 列数, dtype=np.int) ''' {全要素を|1で}初期化された行列[|を作る] 全要素が1の行列[|を作る] ''' np.full(要素数, 初期値, dtype=np.int) ''' {全要素を|初期値で}初期化された配列[|を作る] 要素が全て初期値の配列[|を作る] ''' np.full((行数, 列数), 初期値, dtype=np.int) ''' {全要素を|初期値で}初期化された行列[|を作る] 全要素が初期値の行列[|を作る] ''' np.eye(行数, 列数) ''' 単位行列[|を作る] ''' np.identity(N) ''' [単位正方行列|正方単位行列][|を作る] ''' np.empty(要素数, dtype=np.int) ''' 未初期化の配列[|を作る] ''' np.empty((行数, 列数), dtype=np.int) ''' 未初期化の行列[|を作る] ''' np.empty_like(aArray) ''' aArrayと同じ大きさの[空配列|空の配列]を作る ''' N = 10 開始値 = 0 終端値 = 10 等差 = 2 np.arange(N) ''' 0からNまでの配列[|を作る] ''' np.arange(1, N+1) ''' 1からNまでの配列[|を作る] ''' np.arange(開始値, 終端値, 等差) ''' 等差数列を配列に変換する ''' aArray.reshape(行数, 列数) ''' aArray[の[次元|形状]|]を変形する ''' aArray.reshape(-1, 1) ''' aArrayを[2次元1列|縦ベクトル]に変形する ''' aArray.reshape(1, -1) ''' aArrayを[2次元1行|横ベクトル]に変形する ''' np.zeros_like(aArray) ''' @alt(ベースに=[元に|ベースに][|して]) [既存の|]aArrayをベースに全要素が0の配列[|を作る] ''' np.ones_like(aArray) ''' [既存の|]aArrayをベースに全要素が1の配列[|を作る] ''' np.full_like(aArray, 初期値) ''' [既存の|]aArrayをベースに全要素が初期値の配列[|を作る] ''' 指定の値 = 0 aArray[:, :] = 指定の値 ''' aArrayの全要素の値を変更する aArrayの全要素を指定の値にする ''' aArray[行番号, 列番号] ''' [行列|aArray]の値[|を得る] ''' aArray[行番号, 列番号] = 指定の値 ''' [行列|aArray]の値を変更する ''' aArray[行番号] ''' [行列|aArray]の行[|を選択する] ''' aArray[:, 列番号] ''' [行列|aArray]の列[|を選択する] ''' # ユニーク np.unique(aArray) ''' [|aArrayの]ユニークな値を要素とする配列[|を得る] ''' np.unique(aArray, return_counts=True) ''' [|aArrayの]ユニークな要素ごとの[頻度|出現回数][|を得る] ''' # 転置行列 [list(x) for x in list(zip(*aList))] ''' 2次元リストを転置する 2次元リストの転置行列[|を求める] ''' aArray.T ''' aArrayを転置する [行列|aArray]の転置行列[|を求める] ''' aArray + aArray2 ''' aArrayの和[|を求める] aArrayの要素ごとに加算する ''' aArray - aArray2 ''' aArrayの差[|を求める] ''' aArray * n ''' aArrayのスカラー倍[|を求める] ''' np.multiply(aArray, aArray2) ''' aArrayの要素ごとの[積|アダマール積][|を求める] ''' np.dot(aArray, aArray2) ''' aArrayの内積[|を求める] ''' np.matmul(aArray, aArray2) ''' [[行列|aArray]の|]行列積[|を求める] ''' np.linalg.inv(aArray) ''' [[行列|aArray]の|]逆行列[|を求める] ''' np.linalg.pinv(aArray) ''' [[行列|aArray]の|]ムーア・ペンローズの擬似逆行列[|を求める] ''' np.linalg.det(aArray) ''' [[行列|aArray]の|]行列式[|を求める] '''
np.linalg.eig(aArray)
numpy.linalg.eig
#======================================================================= """ A set of utilities for comparing results. """ #======================================================================= from __future__ import division import matplotlib from matplotlib.testing.noseclasses import ImageComparisonFailure from matplotlib.testing import image_util, util from matplotlib import _png from matplotlib import _get_configdir from distutils import version import hashlib import math import operator import os import numpy as np import shutil import subprocess import sys from functools import reduce #======================================================================= __all__ = [ 'compare_float', 'compare_images', 'comparable_formats', ] #----------------------------------------------------------------------- def make_test_filename(fname, purpose): """ Make a new filename by inserting `purpose` before the file's extension. """ base, ext = os.path.splitext(fname) return '%s-%s%s' % (base, purpose, ext) def compare_float( expected, actual, relTol = None, absTol = None ): """Fail if the floating point values are not close enough, with the givem message. You can specify a relative tolerance, absolute tolerance, or both. """ if relTol is None and absTol is None: exMsg = "You haven't specified a 'relTol' relative tolerance " exMsg += "or a 'absTol' absolute tolerance function argument. " exMsg += "You must specify one." raise ValueError(exMsg) msg = "" if absTol is not None: absDiff = abs( expected - actual ) if absTol < absDiff: expectedStr = str( expected ) actualStr = str( actual ) absDiffStr = str( absDiff ) absTolStr = str( absTol ) msg += "\n" msg += " Expected: " + expectedStr + "\n" msg += " Actual: " + actualStr + "\n" msg += " Abs Diff: " + absDiffStr + "\n" msg += " Abs Tol: " + absTolStr + "\n" if relTol is not None: # The relative difference of the two values. If the expected value is # zero, then return the absolute value of the difference. relDiff = abs( expected - actual ) if expected: relDiff = relDiff / abs( expected ) if relTol < relDiff: # The relative difference is a ratio, so it's always unitless. relDiffStr = str( relDiff ) relTolStr = str( relTol ) expectedStr = str( expected ) actualStr = str( actual ) msg += "\n" msg += " Expected: " + expectedStr + "\n" msg += " Actual: " + actualStr + "\n" msg += " Rel Diff: " + relDiffStr + "\n" msg += " Rel Tol: " + relTolStr + "\n" if msg: return msg else: return None #----------------------------------------------------------------------- # A dictionary that maps filename extensions to functions that map # parameters old and new to a list that can be passed to Popen to # convert files with that extension to png format. def get_cache_dir(): cache_dir = os.path.join(_get_configdir(), 'test_cache') if not os.path.exists(cache_dir): try: os.makedirs(cache_dir) except IOError: return None if not os.access(cache_dir, os.W_OK): return None return cache_dir def get_file_hash(path, block_size=2**20): md5 = hashlib.md5() with open(path, 'rb') as fd: while True: data = fd.read(block_size) if not data: break md5.update(data) return md5.hexdigest() converter = { } def make_external_conversion_command(cmd): def convert(old, new): cmdline = cmd(old, new) pipe = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if not os.path.exists(new) or errcode: msg = "Conversion command failed:\n%s\n" % ' '.join(cmdline) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) return convert if matplotlib.checkdep_ghostscript() is not None: def make_ghostscript_conversion_command(): # FIXME: make checkdep_ghostscript return the command if sys.platform == 'win32': gs = 'gswin32c' else: gs = 'gs' cmd = [gs, '-q', '-sDEVICE=png16m', '-sOutputFile=-'] process = util.MiniExpect(cmd) def do_convert(old, new): process.expect("GS>") process.sendline("(%s) run" % old) with open(new, 'wb') as fd: process.expect(">>showpage, press <return> to continue<<", fd) process.sendline('') return do_convert converter['pdf'] = make_ghostscript_conversion_command() converter['eps'] = make_ghostscript_conversion_command() if matplotlib.checkdep_inkscape() is not None: cmd = lambda old, new: \ ['inkscape', '-z', old, '--export-png', new] converter['svg'] = make_external_conversion_command(cmd) def comparable_formats(): '''Returns the list of file formats that compare_images can compare on this system.''' return ['png'] + converter.keys() def convert(filename, cache): ''' Convert the named file into a png file. Returns the name of the created file. If *cache* is True, the result of the conversion is cached in `~/.matplotlib/test_cache/`. The caching is based on a hash of the exact contents of the input file. The is no limit on the size of the cache, so it may need to be manually cleared periodically. ''' base, extension = filename.rsplit('.', 1) if extension not in converter: raise ImageComparisonFailure("Don't know how to convert %s files to png" % extension) newname = base + '_' + extension + '.png' if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) # Only convert the file if the destination doesn't already exist or # is out of date. if (not os.path.exists(newname) or os.stat(newname).st_mtime < os.stat(filename).st_mtime): if cache: cache_dir = get_cache_dir() else: cache_dir = None if cache_dir is not None: hash = get_file_hash(filename) new_ext = os.path.splitext(newname)[1] cached_file = os.path.join(cache_dir, hash + new_ext) if os.path.exists(cached_file): shutil.copyfile(cached_file, newname) return newname converter[extension](filename, newname) if cache_dir is not None: shutil.copyfile(newname, cached_file) return newname verifiers = { } def verify(filename): """ Verify the file through some sort of verification tool. """ if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) base, extension = filename.rsplit('.', 1) verifier = verifiers.get(extension, None) if verifier is not None: cmd = verifier(filename) pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if errcode != 0: msg = "File verification command failed:\n%s\n" % ' '.join(cmd) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) # Turning this off, because it seems to cause multiprocessing issues if matplotlib.checkdep_xmllint() and False: verifiers['svg'] = lambda filename: [ 'xmllint', '--valid', '--nowarning', '--noout', filename] def crop_to_same(actual_path, actual_image, expected_path, expected_image): # clip the images to the same size -- this is useful only when # comparing eps to pdf if actual_path[-7:-4] == 'eps' and expected_path[-7:-4] == 'pdf': aw, ah = actual_image.shape ew, eh = expected_image.shape actual_image = actual_image[int(aw/2-ew/2):int(aw/2+ew/2),int(ah/2-eh/2):int(ah/2+eh/2)] return actual_image, expected_image def compare_images( expected, actual, tol, in_decorator=False ): '''Compare two image files - not the greatest, but fast and good enough. = EXAMPLE # img1 = "./baseline/plot.png" # img2 = "./output/plot.png" # # compare_images( img1, img2, 0.001 ): = INPUT VARIABLES - expected The filename of the expected image. - actual The filename of the actual image. - tol The tolerance (a unitless float). This is used to determine the 'fuzziness' to use when comparing images. - in_decorator If called from image_comparison decorator, this should be True. (default=False) ''' verify(actual) # Convert the image to png extension = expected.split('.')[-1] if extension != 'png': actual = convert(actual, False) expected = convert(expected, True) # open the image files and remove the alpha channel (if it exists) expectedImage = _png.read_png_int( expected ) actualImage = _png.read_png_int( actual ) actualImage, expectedImage = crop_to_same(actual, actualImage, expected, expectedImage) # compare the resulting image histogram functions expected_version = version.LooseVersion("1.6") found_version = version.LooseVersion(np.__version__) # On Numpy 1.6, we can use bincount with minlength, which is much faster than # using histogram if found_version >= expected_version: rms = 0 for i in xrange(0, 3): h1p = expectedImage[:,:,i] h2p = actualImage[:,:,i] h1h = np.bincount(h1p.ravel(), minlength=256) h2h = np.bincount(h2p.ravel(), minlength=256) rms += np.sum(np.power((h1h-h2h), 2)) else: rms = 0 bins = np.arange(257) for i in xrange(0, 3): h1p = expectedImage[:,:,i] h2p = actualImage[:,:,i] h1h = np.histogram(h1p, bins=bins)[0] h2h = np.histogram(h2p, bins=bins)[0] rms += np.sum(np.power((h1h-h2h), 2)) rms =
np.sqrt(rms / (256 * 3))
numpy.sqrt
from __future__ import print_function # Helper functions import numpy as np import quantities as pq from quantities import Quantity import yaml import elephant import os from os.path import join import MEAutility as MEA import h5py ### LOAD FUNCTIONS ### def load_tmp_eap(templates_folder, celltypes=None, samples_per_cat=None): ''' Loads EAP from temporary folder Parameters ---------- templates_folder: temporary folder celltypes: (optional) list of celltypes to be loaded samples_per_cat (optional) number of eap to load per category Returns ------- templates, locations, rotations, celltypes, info ''' print("Loading spike data ...") spikelist = [f for f in os.listdir(templates_folder) if f.startswith('eap')] loclist = [f for f in os.listdir(templates_folder) if f.startswith('pos')] rotlist = [f for f in os.listdir(templates_folder) if f.startswith('rot')] infolist = [f for f in os.listdir(templates_folder) if f.startswith('info')] spikes_list = [] loc_list = [] rot_list = [] cat_list = [] spikelist = sorted(spikelist) loclist = sorted(loclist) rotlist = sorted(rotlist) infolist = sorted(infolist) loaded_categories = set() ignored_categories = set() for idx, f in enumerate(spikelist): celltype = f.split('-')[1][:-4] print('loading cell type: ', f) if celltypes is not None: if celltype in celltypes: spikes = np.load(join(templates_folder, f)) locs = np.load(join(templates_folder, loclist[idx])) rots = np.load(join(templates_folder, rotlist[idx])) if samples_per_cat is None or samples_per_cat > len(spikes): samples_to_read = len(spikes) else: samples_to_read = samples_per_cat spikes_list.extend(spikes[:samples_to_read]) rot_list.extend(rots[:samples_to_read]) loc_list.extend(locs[:samples_to_read]) cat_list.extend([celltype] * samples_to_read) loaded_categories.add(celltype) else: ignored_categories.add(celltype) else: spikes = np.load(join(templates_folder, f)) locs = np.load(join(templates_folder, loclist[idx])) rots = np.load(join(templates_folder, rotlist[idx])) if samples_per_cat is None or samples_per_cat > len(spikes): samples_to_read = len(spikes) else: samples_to_read = samples_per_cat spikes_list.extend(spikes[:samples_to_read]) rot_list.extend(rots[:samples_to_read]) loc_list.extend(locs[:samples_to_read]) cat_list.extend([celltype] * samples_to_read) loaded_categories.add(celltype) # load info with open(join(templates_folder, infolist[0]), 'r') as fl: info = yaml.load(fl) info['General'].pop('cell name', None) print("Done loading spike data ...") return np.array(spikes_list), np.array(loc_list), np.array(rot_list), np.array(cat_list, dtype=str), info def load_templates(template_folder): ''' Load generated eap templates (from template_gen.py) Parameters ---------- template_folder: templates folder Returns ------- templates, locations, rotations, celltypes - np.arrays info - dict ''' print("Loading templates...") templates = np.load(join(template_folder, 'templates.npy')) locs = np.load(join(template_folder, 'locations.npy')) rots = np.load(join(template_folder, 'rotations.npy')) celltypes = np.load(join(template_folder, 'celltypes.npy')) with open(join(template_folder, 'info.yaml'), 'r') as f: info = yaml.load(f) print("Done loading templates...") return templates, locs, rots, celltypes, info def load_spiketrains(spiketrain_folder): ''' Load generated spike trains (from spiketrain_gen.py) Parameters ---------- spiketrain_folder: spiketrain folder Returns ------- spiketrains - list of neo.Spiketrain info - dict ''' print("Loading spike trains...") spiketrains = np.load(join(spiketrain_folder, 'gtst.npy')) # jfm 9/25/19 -- make info.yaml in spiketrain folder optional if os.path.exists(join(spiketrain_folder, 'info.yaml')): with open(join(spiketrain_folder, 'info.yaml'), 'r') as f: info = yaml.load(f) else: info={} print("Done loading spike trains...") return spiketrains, info def load_recordings(recording_folder): ''' Load generated recordings (from template_gen.py) Parameters ---------- recording_folder: recordings folder Returns ------- recordings, times, positions, templates, spiketrains, sources, peaks - np.arrays info - dict ''' print("Loading recordings...") recordings = np.load(join(recording_folder, 'recordings.npy')) positions = np.load(join(recording_folder, 'positions.npy')) times = np.load(join(recording_folder, 'times.npy')) templates = np.load(join(recording_folder, 'templates.npy')) spiketrains = np.load(join(recording_folder, 'spiketrains.npy')) sources = np.load(join(recording_folder, 'sources.npy')) peaks = np.load(join(recording_folder, 'peaks.npy')) with open(join(recording_folder, 'info.yaml'), 'r') as f: info = yaml.load(f) if not isinstance(times, pq.Quantity): times = times * pq.ms print("Done loading recordings...") return recordings, times, positions, templates, spiketrains, sources, peaks, info ### TEMPLATES INFO ### def get_binary_cat(celltypes, excit, inhib): ''' Parameters ---------- celltypes: np.array with celltypes excit: list of excitatory celltypes inhib: list of inhibitory celltypes Returns ------- bin_cat: binary celltype (E-I) - np.array ''' binary_cat = [] for i, cat in enumerate(celltypes): if np.any([ex in str(cat) for ex in excit]): binary_cat.append('E') elif np.any([inh in str(cat) for inh in inhib]): binary_cat.append('I') return np.array(binary_cat, dtype=str) def get_EAP_features(EAP, feat_list, dt=None, EAP_times=None, threshold_detect=0, normalize=False): ''' Parameters ---------- EAP feat_list dt EAP_times threshold_detect normalize Returns ------- ''' reference_mode = 't0' if EAP_times is not None and dt is not None: test_dt = (EAP_times[-1] - EAP_times[0]) / (len(EAP_times) - 1) if dt != test_dt: raise ValueError('EAP_times and dt do not match.') elif EAP_times is not None: dt = (EAP_times[-1] - EAP_times[0]) / (len(EAP_times) - 1) elif dt is not None: EAP_times = np.arange(EAP.shape[-1]) * dt else: raise NotImplementedError('Please, specify either dt or EAP_times.') if len(EAP.shape) == 1: EAP = np.reshape(EAP, [1, 1, -1]) elif len(EAP.shape) == 2: EAP = np.reshape(EAP, [1, EAP.shape[0], EAP.shape[1]]) if len(EAP.shape) != 3: raise ValueError('Cannot handle EAPs with shape', EAP.shape) if normalize: signs = np.sign(np.min(EAP.reshape([EAP.shape[0], -1]), axis=1)) norm = np.abs(np.min(EAP.reshape([EAP.shape[0], -1]), axis=1)) EAP = np.array([EAP[i] / n if signs[i] > 0 else EAP[i] / n - 2. for i, n in enumerate(norm)]) features = {} amps = np.zeros((EAP.shape[0], EAP.shape[1])) na_peak =
np.zeros((EAP.shape[0], EAP.shape[1]))
numpy.zeros
import logging import os import traceback from argparse import ArgumentParser from typing import List import numpy as np import pandas as pd from scipy import stats from record import Record, record_factory, EXPECTED_SUBGRAPH_NUMBER, convert_subgraph_index_to_label from visualize import boxplot, lineplot, heatmap, scatterplot, MultiPageContext, errorbar def rankdata_greater(row): return stats.rankdata(-row, method="ordinal") def get_consecutive_rank_tau(df): ret = np.zeros((len(df) - 1,)) for i in range(1, len(df)): ret[i - 1], _ = stats.kendalltau(df.iloc[i - 1], df.iloc[i]) return ret def get_tau_curves_by_groups(df, gt, group_table, groups): return {cur: get_tau_along_epochs(df, gt, np.where(group_table == cur)[0]) for cur in groups} def get_tau_along_epochs(df, gt, group): return np.array([stats.kendalltau(row[group].values, gt[group])[0] for _, row in df.iterrows()]) def get_tau_along_epochs_combining_best_groups(df, gt, group_table, groups, universe): tau_curves_by_groups = get_tau_curves_by_groups(df, gt, group_table, groups) ref_gt_acc = np.zeros((len(df), EXPECTED_SUBGRAPH_NUMBER)) for cur in groups: # for each group, enumerate the epochs from the most obedient to most rebellious for i, loc in enumerate(np.argsort(-tau_curves_by_groups[cur])): group_mask = np.where(group_table == cur)[0] ref_gt_acc[i][group_mask] = df[group_mask].iloc[loc] ref_gt_acc_tau = np.array([stats.kendalltau(acc[universe], gt[universe])[0] for acc in ref_gt_acc]) return ref_gt_acc, ref_gt_acc_tau def get_top_k_acc_rank(acc_table, acc_gt): gt_rank = rankdata_greater(acc_gt) idx = np.stack([np.argsort(-row) for row in acc_table]) top_acc = np.maximum.accumulate(acc_gt[idx], 1) top_rank = np.minimum.accumulate(gt_rank[idx], 1) return top_acc, top_rank def report_mean_std_max_min(analysis_dir, logger, name, arr): np.savetxt(os.path.join(analysis_dir, "METRICS-{}.txt".format(name)), np.array([np.mean(arr), np.std(arr), np.max(arr), np.min(arr)])) logger.info("{}: mean={:.4f}, std={:.4f}, max={:.4f}, min={:.4f}".format(name, np.mean(arr), np.std(arr), np.max(arr), np.min(arr))) def stack_with_index(index, row): return np.stack([index, row]).T def plot_top_k_variance_chart(filepath, index, top_acc, top_rank, gt_acc, topk): gt_acc_index = np.argsort(-gt_acc) curves = [] for k in topk: curves.append(stack_with_index(index, np.array([gt_acc[gt_acc_index[k - 1]]] * top_acc.shape[0]))) curves.append(stack_with_index(index, top_acc[:, k - 1])) lineplot(curves, filepath=filepath + "_acc") curves = [] for k in topk: curves.append(stack_with_index(index, np.array([k] * top_acc.shape[0]))) curves.append(stack_with_index(index, top_rank[:, k - 1])) lineplot(curves, filepath=filepath + "_rank", inverse_y=True) def pipeline_for_single_instance(logger, analysis_dir, main: Record, finetune: List[Record], by: str, gt: np.ndarray): logger.info("Analysing results for {}".format(analysis_dir)) main_df = main.validation_acc_dataframe(by) main_archit = main.grouping_subgraph_training_dataframe(by) main_grouping = main.grouping_numpy os.makedirs(analysis_dir, exist_ok=True) # Save raw data main_df.to_csv(os.path.join(analysis_dir, "val_acc_all_epochs.csv"), index=True) np.savetxt(os.path.join(analysis_dir, "group_info.txt"), main_grouping, "%d") # correlation between subgraphs corr_matrix = main_df.corr().values heatmap(corr_matrix, filepath=os.path.join(analysis_dir, "corr_heatmap")) np.savetxt(os.path.join(analysis_dir, "corr_heatmap.txt"), corr_matrix) # Consecutive tau (single) consecutive_taus = get_consecutive_rank_tau(main_df) lineplot([np.array(list(zip(main_df.index[1:], consecutive_taus)))], filepath=os.path.join(analysis_dir, "consecutive_tau_single")) # GT rank (for color reference) gt_rank = rankdata_greater(gt) gt_rank_color = 1 - gt_rank / EXPECTED_SUBGRAPH_NUMBER # in some cases, it could be a subset of 64 subgraphs; process this later # Acc variance (lineplot) acc_curves = [np.array(list(zip(main_df.index, main_df[i]))) for i in main_df.columns] subgraph_markers = [[] for _ in range(EXPECTED_SUBGRAPH_NUMBER)] if len(main.groups) != len(main.columns): # hide it for ground truth for i, (_, row) in enumerate(main_archit.iterrows()): for k in filter(lambda k: k >= 0, row.values): subgraph_markers[k].append(i) else: logger.info("Markers hidden because groups == columns") lineplot(acc_curves, filepath=os.path.join(analysis_dir, "acc_curve_along_epochs"), color=[gt_rank_color[i] for i in main_df.columns], alpha=0.7, markers=[subgraph_markers[i] for i in main_df.columns], fmt=["-D"] * len(acc_curves)) # Rank version of df df_rank = main_df.apply(rankdata_greater, axis=1, result_type="expand") df_rank.columns = main_df.columns # Rank variance (lineplot) rank_curves = [np.array(list(zip(df_rank.index, df_rank[i]))) for i in df_rank.columns] lineplot(rank_curves, filepath=os.path.join(analysis_dir, "rank_curve_along_epochs"), color=[gt_rank_color[i] for i in df_rank.columns], alpha=0.7, inverse_y=True, markers=subgraph_markers) # Rank variance for top-5 subgraphs found at half and end # recalculate for original order for loc in [len(main_df) // 2, len(main_df) - 1]: selected_rank_curves = [rank_curves[i] for i in np.argsort(-main_df.iloc[loc])[:5]] lineplot(selected_rank_curves, inverse_y=True, filepath=os.path.join(analysis_dir, "rank_curves_along_epochs_for_ep{}".format(main_df.index[loc]))) # Rank variance (boxplot), sorted by the final rank boxplot(sorted(df_rank.values.T, key=lambda d: d[-1]), filepath=os.path.join(analysis_dir, "rank_boxplot_along_epochs_sorted_final_rank"), inverse_y=True) gt_order = np.argsort(-gt) # Group info np.savetxt(os.path.join(analysis_dir, "group_info_sorted_gt.txt"), main_grouping[gt_order], "%d") # Rank variance (boxplot), sorted by ground truth boxplot([df_rank[i] for i in gt_order if i in df_rank.columns], inverse_y=True, filepath=os.path.join(analysis_dir, "rank_boxplot_along_epochs_sorted_gt_rank")) boxplot([df_rank[i][-10:] for i in gt_order if i in df_rank.columns], inverse_y=True, filepath=os.path.join(analysis_dir, "rank_boxplot_along_epochs_sorted_gt_rank_last_10")) # Tau every epoch gt_tau_data = get_tau_along_epochs(main_df, gt, main.columns) report_mean_std_max_min(analysis_dir, logger, "GT-Tau-In-Window", gt_tau_data) lineplot([stack_with_index(main_df.index, gt_tau_data)], filepath=os.path.join(analysis_dir, "tau_curve_along_epochs")) if finetune: # Finetune curves for data in finetune: try: finetune_step = data.finetune_step if by == "epochs": finetune_step //= 196 half_length = len(main_df.loc[main_df.index <= finetune_step]) finetune_df = data.validation_acc_dataframe(by, cutoff=finetune_step).iloc[:half_length] if finetune_step < min(main_df.index) - 1 or finetune_step > max(main_df.index) + 1: continue finetune_df.index += finetune_step finetune_curves = [np.array([[finetune_step, main_df.loc[finetune_step, i]]] + list(zip(finetune_df.index, finetune_df[i]))) for i in main_df.columns] finetune_tau_curve = get_tau_along_epochs(finetune_df, gt, data.columns) finetune_colors = [gt_rank_color[i] for i in finetune_df.columns] logger.info("Finetune step {}, found {} finetune curves".format(finetune_step, len(finetune_curves))) lineplot([c[:half_length] for c in acc_curves] + finetune_curves, filepath=os.path.join(analysis_dir, "acc_curve_along_epochs_finetune_{}".format(finetune_step)), color=[gt_rank_color[i] for i in main_df.columns] + finetune_colors, alpha=0.7, fmt=["-"] * len(acc_curves) + [":"] * len(finetune_curves)) lineplot([stack_with_index(main_df.index, gt_tau_data)[:half_length], np.concatenate((np.array([[finetune_step, gt_tau_data[half_length - 1]]]), stack_with_index(finetune_df.index, finetune_tau_curve)))], filepath=os.path.join(analysis_dir, "tau_curve_along_epochs_finetune_{}".format(finetune_step)), color=["tab:blue", "tab:blue"], alpha=1, fmt=["-", ":"]) except ValueError: pass # Tau every epoch group by groups grouping_info_backup = main.grouping_info.copy() divide_group = main.group_number == 1 and len(main.columns) == 64 for partition_file in [None] + list(os.listdir("assets")): suffix = "" if partition_file is not None: if not partition_file.startswith("partition"): continue if not divide_group: continue suffix = "_" + os.path.splitext(partition_file)[0] # regrouping main.grouping_info = {idx: g for idx, g in enumerate(np.loadtxt(os.path.join("assets", partition_file), dtype=np.int))} tau_curves_by_groups = get_tau_curves_by_groups(main_df, gt, main.grouping_numpy, main.groups) tau_curves_by_groups_mean = [np.mean(tau_curves_by_groups[cur]) for cur in main.groups] tau_curves_by_groups_std = [np.std(tau_curves_by_groups[cur]) for cur in main.groups] report_mean_std_max_min(analysis_dir, logger, "GT-Tau-By-Groups-Mean{}".format(suffix), np.array(tau_curves_by_groups_mean)) report_mean_std_max_min(analysis_dir, logger, "GT-Tau-By-Groups-Std{}".format(suffix), np.array(tau_curves_by_groups_std)) tau_curves_by_groups_for_plt = [stack_with_index(main_df.index, tau_curves_by_groups[cur]) for cur in main.groups] pd.DataFrame(tau_curves_by_groups, columns=main.groups, index=main_df.index).to_csv( os.path.join(analysis_dir, "tau_curves_by_groups{}.csv".format(suffix)) ) lineplot(tau_curves_by_groups_for_plt, filepath=os.path.join(analysis_dir, "tau_curves_by_groups{}".format(suffix))) # Acc curves (by group) with MultiPageContext(os.path.join(analysis_dir, "acc_curve_along_epochs_group_each{}".format(suffix))) as pdf: for g in range(main.group_number): subgraphs = np.where(main.grouping_numpy == g)[0] gt_rank_group = [gt_rank_color[i] for i in subgraphs] subgraph_names = list(map(convert_subgraph_index_to_label, subgraphs)) subgraph_names_ranks = ["{} (Rank {})".format(name, gt_rank[i]) for name, i in zip(subgraph_names, subgraphs)] # cannot leverage acc_curves, because it's a list, this can be a subset, which cannot be used as index lineplot([np.array(list(zip(main_df.index, main_df[i]))) for i in subgraphs] + [stack_with_index(main_df.index, [gt[i]] * len(main_df.index)) for i in subgraphs], context=pdf, color=gt_rank_group * 2, alpha=0.8, labels=subgraph_names_ranks, fmt=["-D"] * len(subgraphs) + ["--"] * len(subgraphs), markers=[subgraph_markers[i] for i in subgraphs] + [[]] * len(subgraphs), title="Group {}, Subgraph {} -- {}".format(g, "/".join(map(str, subgraphs)), "/".join(subgraph_names))) main.grouping_info = grouping_info_backup # Tau among steps for k in (10, 64): max_tau_calc = min(k, len(main_df)) tau_correlation = np.zeros((max_tau_calc, max_tau_calc)) for i in range(max_tau_calc): for j in range(max_tau_calc): tau_correlation[i][j] = stats.kendalltau(main_df.iloc[-i - 1], main_df.iloc[-j - 1])[0] heatmap(tau_correlation, filepath=os.path.join(analysis_dir, "tau_correlation_last_{}".format(k))) np.savetxt(os.path.join(analysis_dir, "tau_correlation_last_{}.txt".format(k)), tau_correlation) tau_correlation = tau_correlation[np.triu_indices_from(tau_correlation, k=1)] report_mean_std_max_min(analysis_dir, logger, "Tau-as-Corr-Last-{}".format(k), tau_correlation) # Calculate best tau and log ref_gt_acc, ref_gt_acc_tau = get_tau_along_epochs_combining_best_groups(main_df, gt, main_grouping, main.groups, main.columns) pd.DataFrame(ref_gt_acc).to_csv(os.path.join(analysis_dir, "acc_epochs_combining_different_epochs_sorted_gt.csv")) lineplot([stack_with_index(np.arange(len(ref_gt_acc_tau)), ref_gt_acc_tau)], filepath=os.path.join(analysis_dir, "tau_curve_epochs_sorted_combining_different_epochs")) # Show subgraph for each batch scatterplot([stack_with_index(main_archit.index, main_archit[col]) for col in main_archit.columns], filepath=os.path.join(analysis_dir, "subgraph_id_for_each_batch_validated")) # Substituted with ground truth rank scatterplot([stack_with_index(main_archit.index, gt_rank[main_archit[col]]) for col in main_archit.columns], filepath=os.path.join(analysis_dir, "subgraph_rank_for_each_batch_validated"), inverse_y=True) # Top-K-Rank top_acc, top_rank = get_top_k_acc_rank(main_df.values, gt) plot_top_k_variance_chart(os.path.join(analysis_dir, "top_k_along_epochs"), main_df.index, top_acc, top_rank, gt, (1, 3)) # Observe last window (for diff. epochs) for k in (10, 64,): report_mean_std_max_min(analysis_dir, logger, "GT-Tau-In-Window-Last-{}".format(k), gt_tau_data[-k:]) for v in (1, 3): report_mean_std_max_min(analysis_dir, logger, "Top-{}-Rank-Last-{}".format(v, k), top_rank[-k:, v - 1]) def pipeline_for_inter_instance(logger, analysis_dir, data, by, gt): logger.info("Analysing results for {}".format(analysis_dir)) data_as_df = [d.validation_acc_dataframe(by) for d in data] os.makedirs(analysis_dir, exist_ok=True) subgraphs = data[0].columns for d in data: assert d.columns == subgraphs final_acc = np.zeros((len(data), len(subgraphs))) for i, df in enumerate(data_as_df): final_acc[i] = df.iloc[-1] # Consecutive tau (multi) lineplot([np.array(list(zip(df.index[1:], get_consecutive_rank_tau(df)))) for df in data_as_df], filepath=os.path.join(analysis_dir, "taus_consecutive_epochs")) # Final acc distribution boxplot(final_acc, filepath=os.path.join(analysis_dir, "final_acc")) # Final rank distribution final_rank = np.stack([rankdata_greater(row) for row in final_acc]) boxplot(final_rank, filepath=os.path.join(analysis_dir, "final_rank_boxplot"), inverse_y=True) # GT-Tau gt_tau = np.array([stats.kendalltau(row, gt[subgraphs])[0] for row in final_acc]) np.savetxt(os.path.join(analysis_dir, "inst_gt_tau.txt"), gt_tau) report_mean_std_max_min(analysis_dir, logger, "GT-Tau", gt_tau) # Tau every epoch tau_data = [get_tau_along_epochs(df, gt, subgraphs) for df in data_as_df] tau_data_mean_over_instances = np.mean(np.stack(tau_data, axis=0), axis=0) report_mean_std_max_min(analysis_dir, logger, "GT-Tau-In-Window", np.concatenate(tau_data)) tau_curves = [stack_with_index(df.index, tau_d) for df, tau_d in zip(data_as_df, tau_data)] lineplot(tau_curves, filepath=os.path.join(analysis_dir, "tau_curve_along_epochs")) for k in (10, 64): tau_data_clip = [t[-k:] for t in tau_data] report_mean_std_max_min(analysis_dir, logger, "GT-Tau-In-Window-Last-{}-Mean".format(k), np.array([np.mean(t) for t in tau_data_clip])) report_mean_std_max_min(analysis_dir, logger, "GT-Tau-In-Window-Last-{}-Std".format(k), np.array([np.std(t) for t in tau_data_clip])) report_mean_std_max_min(analysis_dir, logger, "GT-Tau-In-Window-Last-{}-Max".format(k), np.array([
np.max(t)
numpy.max
import os from torch.utils.data import Dataset, DataLoader import torch import numpy as np from .base import print_loaded_dataset_shapes, log_call_parameters class DSpritesDataset(Dataset): def __init__(self, indices, classification=False, colored=False, data_file=None): super(DSpritesDataset, self).__init__() if data_file is None: data_file = os.path.join(os.environ['DATA_DIR'], 'dsprites-dataset', 'dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz') data = np.load(data_file, encoding='latin1', allow_pickle=True) self.indices = indices # color related stuff self.colored = colored self.colors = None self.n_colors = 1 indices_without_color = indices if colored: color_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'resources/rainbow-7.npy') self.colors = np.load(color_file) self.n_colors = len(self.colors) indices_without_color = [idx // self.n_colors for idx in indices] # factor_names and factor_sizes meta = data['metadata'].item() self.factor_names = list(meta['latents_names'][1:]) self.factor_sizes = list(meta['latents_sizes'][1:]) if colored: self.factor_names.append('color') self.factor_sizes.append(self.n_colors) self.n_factors = len(self.factor_names) # save relevant part of the grid self.imgs = data['imgs'][indices_without_color] # factor values, classes, possible_values self.factor_values = data['latents_values'][indices_without_color] self.factor_values = [arr[1:] for arr in self.factor_values] self.factor_classes = data['latents_classes'][indices_without_color] self.factor_classes = [arr[1:] for arr in self.factor_classes] self.possible_values = [] for name in ['shape', 'scale', 'orientation', 'posX', 'posY']: self.possible_values.append(meta['latents_possible_values'][name]) if colored: for i, idx in enumerate(self.indices): color_class = idx % self.n_colors color_value = color_class / (self.n_colors - 1.0) self.factor_classes[i] = np.append(self.factor_classes[i], color_class) self.factor_values[i] = np.append(self.factor_values[i], color_value) self.possible_values.append(list(
np.arange(0, self.n_colors)
numpy.arange
import numpy as np from cv2 import cv2 from mss import mss from PIL import Image import time init_time = last_time = time.time() count = 0 while 1: with mss() as sct: monitor = {'top': 40, 'left': 0, 'width': 800, 'height': 450} img = np.array(sct.grab(monitor)) print('Loop took {} seconds ' .format(time.time()-last_time)) count += 1 last_time = time.time() cv2.imshow('test',
np.array(img)
numpy.array
from torch.utils.data import Dataset, DataLoader import torchvision.transforms as transforms import random import numpy as np from PIL import Image import json import os from torchnet.meter import AUCMeter def uniform_mix_C(mixing_ratio, num_classes): ''' returns a linear interpolation of a uniform matrix and an identity matrix ''' return mixing_ratio * np.full((num_classes, num_classes), 1 / num_classes) + \ (1 - mixing_ratio) * np.eye(num_classes) def flip_labels_C(corruption_prob, num_classes): ''' returns a matrix with (1 - corruption_prob) on the diagonals, and corruption_prob concentrated in only one other entry for each row ''' C =
np.eye(num_classes)
numpy.eye
import networkx as nx import numpy as np import pandas as pd import math import numbers import os from collections import namedtuple from graph_nets import utils_np Point = namedtuple('Point', ['x', 'y', 'z']) Pos = namedtuple('Pos', ['x', 'y', 'z', 'eta', 'phi', 'theta', 'r3', 'r']) def calc_dphi(phi1, phi2): """Computes phi2-phi1 given in range [-pi,pi]""" dphi = phi2 - phi1 if dphi > np.pi: dphi -= 2*np.pi if dphi < -np.pi: dphi += 2*np.pi return dphi def pos_transform(r, phi, z): x = r * math.cos(phi) y = r * math.sin(phi) r3 = math.sqrt(r**2 + z**2) theta = math.acos(z/r3) eta = -math.log(math.tan(theta*0.5)) return Pos(x, y, z, eta, phi, theta, r3, r) def dist(x, y): return math.sqrt(x**2 + y**2) def wdist(a, d, w): pp = a.x*a.x + a.y*a.y + a.z*a.z*w pd = a.x*d.x + a.y*d.y + a.z*d.z*w dd = d.x*d.x + d.y*d.y + d.z*d.z*w return math.sqrt(abs(pp - pd*pd/dd)) def wdistr(r1, dr, az, dz, w): pp = r1*r1+az*az*w pd = r1*dr+az*dz*w dd = dr*dr+dz*dz*w return math.sqrt(abs(pp-pd*pd/dd)) def circle(a, b, c): ax = a.x-c.x ay = a.y-c.y bx = b.x-c.x by = b.y-c.y aa = ax*ax + ay*ay bb = bx*bx + by*by idet = 0.5/(ax*by-ay*bx) p0 = Point(x=(aa*by-bb*ay)*idet, y=(ax*bb-bx*aa)*idet, z=0) r = math.sqrt(p0.x*p0.x + p0.y*p0.y) p = Point(x=p0.x+c.x, y=p0.y+c.y, z=p0.z) return p, r def zdists(a, b): origin = Point(x=0, y=0, z=0) p, r = circle(origin, a, b) ang_ab = 2*math.asin(dist(a.x-b.x, a.y-b.y)*0.5/r) ang_a = 2*math.asin(dist(a.x, a.y)*0.5/r) return abs(b.z-a.z-a.z*ang_ab/ang_a) def get_edge_features2(in_node, out_node, add_angles=False): # input are the features of incoming and outgoing nodes # they are ordered as [r, phi, z] v_in = pos_transform(*in_node) v_out = pos_transform(*out_node) deta = v_out.eta - v_in.eta dphi = calc_dphi(v_out.phi, v_in.phi) dR = np.sqrt(deta**2 + dphi**2) #dZ = v_out.z - v_in.z dZ = v_in.z - v_out.z # results = {"distance": np.array([deta, dphi, dR, dZ])} if add_angles: pa = Point(x=v_out.x, y=v_out.y, z=v_out.z) pb = Point(x=v_in.x, y=v_in.y, z=v_in.z) pd = Point(x=pa.x-pb.x, y=pa.y-pb.y, z=pa.z-pb.z) wd0 = wdist(pa, pd, 0) wd1 = wdist(pa, pd, 1) zd0 = zdists(pa, pb) wdr = wdistr(v_out.r, v_in.r-v_out.r, pa.z, pd.z, 1) results['angles'] = np.array([wd0, wd1, zd0, wdr]) return results def get_edge_features(in_node, out_node): # input are the features of incoming and outgoing nodes # they are ordered as [r, phi, z] in_r, in_phi, in_z = in_node out_r, out_phi, out_z = out_node in_r3 = np.sqrt(in_r**2 + in_z**2) out_r3 = np.sqrt(out_r**2 + out_z**2) in_theta = np.arccos(in_z/in_r3) in_eta = -np.log(np.tan(in_theta/2.0)) out_theta = np.arccos(out_z/out_r3) out_eta = -np.log(np.tan(out_theta/2.0)) deta = out_eta - in_eta dphi = calc_dphi(out_phi, in_phi) dR =
np.sqrt(deta**2 + dphi**2)
numpy.sqrt
import numpy as np import math def periodize_angle(theta): result = np.array(theta % (2.0 * np.pi)) idx = result > np.pi result[idx] -= 2 * np.pi return result def dirichlet(w, K): """Drichlet kernel :param w: The argument of the kernel. :param K: order of the Dirichlet kernel. :return: The values of the Dirichlet kernel.""" return np.sin(w * (K+0.5)) / np.sin(w/2.) def dirichlet_inverse(y, K, threshold=0.01): """Numerial inverse of the Drichlet kernel :param y: Value of the kernel. :param K: order of the Dirichlet kernel. :param threshold: numerical accuracy of the numerical inverse. :return: The values of the Dirichlet kernel.""" w_solve = np.linspace(0, np.pi+np.pi/10000, 10000) y_tmp = np.abs(dirichlet(w_solve, K) - y) idx = np.argwhere(np.isclose(y_tmp[:-1], np.zeros(y_tmp[:-1].shape), atol=threshold)).reshape(-1) min_inds =
np.array([], dtype=int)
numpy.array
import numpy as nm from sfepy.base.conf import transform_functions from sfepy.base.testing import TestCommon def get_vertices(coors, domain=None): x, z = coors[:,0], coors[:,2] return nm.where((z < 0.1) & (x < 0.1))[0] def get_cells(coors, domain=None): return nm.where(coors[:, 0] < 0)[0] class Test(TestCommon): @staticmethod def from_conf( conf, options ): from sfepy import data_dir from sfepy.discrete.fem import Mesh, FEDomain from sfepy.discrete import Functions mesh = Mesh('test mesh', data_dir + '/meshes/various_formats/abaqus_tet.inp') mesh.nodal_bcs['set0'] = [0, 7] domain = FEDomain('test domain', mesh) conf_functions = { 'get_vertices' : (get_vertices,), 'get_cells' : (get_cells,), } functions = Functions.from_conf(transform_functions(conf_functions)) test = Test(conf=conf, options=options, domain=domain, functions=functions) return test def test_selectors(self): """ Test basic region selectors. """ selectors = [ ['all', 'cell'], ['vertices of surface', 'facet'], ['vertices of group 0', 'facet'], ['vertices of set set0', 'vertex'], ['vertices in (z < 0.1) & (x < 0.1)', 'facet'], ['vertices by get_vertices', 'cell'], ['vertex 0, 1, 2', 'vertex'], ['vertex in r.r6', 'vertex'], ['cells of group 0', 'cell'], # ['cells of set 0', 'cell'], not implemented... ['cells by get_cells', 'cell'], ['cell 1, 4, 5', 'cell'], ['cell (0, 1), (0, 4), (0, 5)', 'cell'], ['copy r.r5', 'cell'], ['r.r5', 'cell'], ] vertices = [ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [0, 1, 3, 7], [0, 7], [1, 2, 3, 4, 5, 9, 11], [1, 2, 3, 4, 5, 9, 11], [0, 1, 2], [0], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [0, 1, 2, 3, 4, 5, 6, 9, 10, 11], [0, 1, 2, 3, 4, 5, 6, 8], [0, 1, 2, 3, 4, 5, 6, 8], [1, 2, 3, 4, 5, 9, 11], [1, 2, 3, 4, 5, 9, 11], ] ok = True for ii, sel in enumerate(selectors): self.report('select:', sel) reg = self.domain.create_region('r%d' % ii, sel[0], kind=sel[1], functions=self.functions) _ok = ((len(reg.vertices) == len(vertices[ii])) and (reg.vertices == vertices[ii]).all()) self.report(' vertices:', _ok) ok = ok and _ok return ok def test_operators(self): """ Test operators in region selectors. """ ok = True r1 = self.domain.create_region('r1', 'all') sel = 'r.r1 -v vertices of group 0' self.report('select:', sel) reg = self.domain.create_region('reg', sel, kind='vertex') av = [2, 4, 5, 6, 8, 9, 10, 11, 12] _ok = (reg.vertices == nm.array(av)).all() self.report(' vertices:', _ok) ok = ok and _ok sel = 'vertex 0, 1, 2 +v vertices of group 0' self.report('select:', sel) reg = self.domain.create_region('reg', sel, kind='vertex') av = [0, 1, 2, 3, 7] _ok = (reg.vertices ==
nm.array(av)
numpy.array
# To import required modules: import numpy as np import time import os import sys import matplotlib import matplotlib.cm as cm #for color maps import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec #for specifying plot attributes from matplotlib import ticker #for setting contour plots to log scale import scipy.integrate #for numerical integration import scipy.misc #for factorial function from scipy.special import erf #error function, used in computing CDF of normal distribution import scipy.interpolate #for interpolation functions import corner #corner.py package for corner plots #matplotlib.rc('text', usetex=True) sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))) from src.functions_general import * from src.functions_compare_kepler import * from src.functions_load_sims import * from src.functions_plot_catalogs import * from src.functions_plot_params import * savefigures = False savefigures_directory = '/Users/hematthi/Documents/GradSchool/Research/ExoplanetsSysSim_Clusters/Figures/Model_Optimization/AMD_system/Split_stars/Singles_ecc/Params11_KS/durations_norm_circ_singles_multis_GF2020_KS/Best_models/GP_med/' ##### To load the underlying populations: loadfiles_directory = '/Users/hematthi/Documents/GradSchool/Research/ACI/Simulated_Data/AMD_system/Split_stars/Singles_ecc/Params11_KS/Distribute_AMD_per_mass/durations_norm_circ_singles_multis_GF2020_KS/GP_med/' #Lognormal_mass_Earthlike_rocky/ run_number = '' N_sim, cos_factor, P_min, P_max, radii_min, radii_max = read_targets_period_radius_bounds(loadfiles_directory + 'periods%s.out' % run_number) param_vals_all = read_sim_params(loadfiles_directory + 'periods%s.out' % run_number) sssp_per_sys, sssp = compute_summary_stats_from_cat_phys(file_name_path=loadfiles_directory, run_number=run_number, load_full_tables=True) ##### To load some mass-radius tables: # NWG-2018 model: MR_table_file = '../../data/MRpredict_table_weights3025_R1001_Q1001.txt' with open(MR_table_file, 'r') as file: lines = (line for line in file if not line.startswith('#')) MR_table = np.genfromtxt(lines, names=True, delimiter=', ') # Li Zeng models: MR_earthlike_rocky = np.genfromtxt('../../data/MR_earthlike_rocky.txt', names=['mass','radius']) # mass and radius are in Earth units MR_pure_iron = np.genfromtxt('../../data/MR_pure_iron.txt', names=['mass','radius']) # mass and radius are in Earth units # To construct an interpolation function for each MR relation: MR_NWG2018_interp = scipy.interpolate.interp1d(10.**MR_table['log_R'], 10.**MR_table['05']) MR_earthlike_rocky_interp = scipy.interpolate.interp1d(MR_earthlike_rocky['radius'], MR_earthlike_rocky['mass']) MR_pure_iron_interp = scipy.interpolate.interp1d(MR_pure_iron['radius'], MR_pure_iron['mass']) # To find where the Earth-like rocky relation intersects with the NWG2018 mean relation (between 1.4-1.5 R_earth): def diff_MR(R): M_NWG2018 = MR_NWG2018_interp(R) M_earthlike_rocky = MR_earthlike_rocky_interp(R) return np.abs(M_NWG2018 - M_earthlike_rocky) # The intersection is approximately 1.472 R_earth radii_switch = 1.472 # IDEA 1: Normal distribution for rho centered around Earth-like rocky, with a sigma_rho that grows with radius # To define sigma_rho such that log10(sigma_rho) is a linear function of radius: rho_earthlike_rocky = rho_from_M_R(MR_earthlike_rocky['mass'], MR_earthlike_rocky['radius']) # mean density (g/cm^3) for Earth-like rocky as a function of radius rho_pure_iron = rho_from_M_R(MR_pure_iron['mass'], MR_pure_iron['radius']) # mean density (g/cm^3) for pure iron as a function of radius sigma_rho_at_radii_switch = 3. # std of mean density (g/cm^3) at radii_switch sigma_rho_at_radii_min = 1. # std of mean density (g/cm^3) at radii_min rho_radius_slope = (np.log10(sigma_rho_at_radii_switch)-np.log10(sigma_rho_at_radii_min)) / (radii_switch - radii_min) # dlog(rho)/dR; slope between radii_min and radii_switch in log(rho) sigma_rho = 10.**( rho_radius_slope*(MR_earthlike_rocky['radius'] - radii_min) + np.log10(sigma_rho_at_radii_min) ) # IDEA 2: Lognormal distribution for mass centered around Earth-like rocky, with a sigma_log_M that grows with radius # To define sigma_log_M as a linear function of radius: sigma_log_M_at_radii_switch = 0.3 # std of log_M (Earth masses) at radii_switch sigma_log_M_at_radii_min = 0.04 # std of log_M (Earth masses) at radii_min sigma_log_M_radius_slope = (sigma_log_M_at_radii_switch - sigma_log_M_at_radii_min) / (radii_switch - radii_min) sigma_log_M = sigma_log_M_radius_slope*(MR_earthlike_rocky['radius'] - radii_min) + sigma_log_M_at_radii_min ##### To make mass-radius plots: afs = 20 #axes labels font size tfs = 20 #text labels font size lfs = 16 #legend labels font size bins = 100 # Density vs. radius for new model based on Li Zeng's Earth-like rocky: fig = plt.figure(figsize=(8,8)) plot = GridSpec(4, 1, left=0.15, bottom=0.1, right=0.98, top=0.98, wspace=0, hspace=0) ax = plt.subplot(plot[0,:]) # sigma_rho vs. radius plt.plot(MR_earthlike_rocky['radius'], sigma_rho, color='orange', ls='-', lw=3, label=r'Linear $\log(\sigma_\rho)$ vs $R_p$') plt.gca().set_yscale("log") ax.tick_params(axis='both', labelsize=afs) plt.xticks([]) plt.yticks([1., 2., 3., 4., 5.]) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) ax.yaxis.get_major_formatter().set_scientific(False) ax.yaxis.get_major_formatter().set_useOffset(False) plt.xlim([radii_min, radii_switch]) plt.ylim([0.9, 4.]) plt.ylabel(r'$\sigma_\rho$ ($g/cm^3$)', fontsize=tfs) plt.legend(loc='upper left', bbox_to_anchor=(0.01,0.99), ncol=1, frameon=False, fontsize=lfs) ax = plt.subplot(plot[1:,:]) # rho vs. radius plt.plot(MR_pure_iron['radius'], rho_pure_iron, color='r', ls='--', lw=3, label='Pure iron') plt.plot(MR_earthlike_rocky['radius'], rho_earthlike_rocky, color='orange', ls='--', lw=3, label='Earth-like rocky') plt.fill_between(MR_earthlike_rocky['radius'], rho_earthlike_rocky - sigma_rho, rho_earthlike_rocky + sigma_rho, color='orange', alpha=0.5, label=r'Earth-like rocky $\pm \sigma_\rho$') plt.fill_between(MR_earthlike_rocky['radius'], rho_earthlike_rocky - 2.*sigma_rho, rho_earthlike_rocky + 2.*sigma_rho, color='orange', alpha=0.3, label=r'Earth-like rocky $\pm 2\sigma_\rho$') plt.fill_between(MR_earthlike_rocky['radius'], rho_earthlike_rocky - 3.*sigma_rho, rho_earthlike_rocky + 3.*sigma_rho, color='orange', alpha=0.1, label=r'Earth-like rocky $\pm 3\sigma_\rho$') plt.axhline(y=1., color='c', lw=3, label='Water density (1 g/cm^3)') plt.gca().set_yscale("log") ax.tick_params(axis='both', labelsize=afs) plt.minorticks_off() plt.yticks([1., 2., 3., 4., 5., 7., 10., 15.]) ax.yaxis.set_minor_formatter(ticker.ScalarFormatter()) ax.yaxis.set_major_formatter(ticker.ScalarFormatter()) ax.yaxis.get_major_formatter().set_scientific(False) ax.yaxis.get_major_formatter().set_useOffset(False) plt.xlim([radii_min, radii_switch]) plt.ylim([0.9, 20.]) plt.xlabel(r'$R_p$ ($R_\oplus$)', fontsize=tfs) plt.ylabel(r'$\rho$ ($g/cm^3$)', fontsize=tfs) plt.legend(loc='lower right', bbox_to_anchor=(0.99,0.01), ncol=1, frameon=False, fontsize=lfs) if savefigures: plt.savefig(savefigures_directory + 'Density_radius.pdf') plt.close() plt.show() # Mass vs. radius: fig = plt.figure(figsize=(16,8)) plot = GridSpec(5, 5, left=0.1, bottom=0.1, right=0.98, top=0.98, wspace=0, hspace=0) ax = plt.subplot(plot[1:,:4]) masses_all = sssp_per_sys['mass_all'][sssp_per_sys['mass_all'] > 0.] radii_all = sssp_per_sys['radii_all'][sssp_per_sys['radii_all'] > 0.] corner.hist2d(np.log10(radii_all), np.log10(masses_all), bins=50, plot_density=True, contour_kwargs={'colors': ['0.6','0.4','0.2','0']}, data_kwargs={'color': 'k'}) plt.plot(MR_table['log_R'], MR_table['05'], '-', color='g', label='Mean prediction (NWG2018)') plt.fill_between(MR_table['log_R'], MR_table['016'], MR_table['084'], color='g', alpha=0.5, label=r'16%-84% (NWG2018)') plt.plot(MR_table['log_R'], np.log10(M_from_R_rho(10.**MR_table['log_R'], rho=5.51)), color='b', label='Earth density (5.51 g/cm^3)') plt.plot(MR_table['log_R'], np.log10(M_from_R_rho(10.**MR_table['log_R'], rho=3.9)), color='m', label='Mars density (3.9 g/cm^3)') plt.plot(MR_table['log_R'], np.log10(M_from_R_rho(10.**MR_table['log_R'], rho=1.)), color='c', label='Water density (1 g/cm^3)') plt.plot(MR_table['log_R'], np.log10(M_from_R_rho(10.**MR_table['log_R'], rho=7.9)), color='r', label='Iron density (7.9 g/cm^3)') plt.plot(MR_table['log_R'], np.log10(M_from_R_rho(10.**MR_table['log_R'], rho=100.)), color='k', label='100 g/cm^3') plt.plot(np.log10(MR_earthlike_rocky['radius']), np.log10(MR_earthlike_rocky['mass']), color='orange', ls='--', lw=3, label='Earth-like rocky') #plt.fill_between(np.log10(MR_earthlike_rocky['radius']), np.log10(M_from_R_rho(MR_earthlike_rocky['radius'], rho=rho_earthlike_rocky-sigma_rho)), np.log10(M_from_R_rho(MR_earthlike_rocky['radius'], rho=rho_earthlike_rocky+sigma_rho)), color='orange', alpha=0.5, label=r'16%-84% ($\rho \sim \mathcal{N}(\rho_{\rm Earthlike\:rocky}, \sigma_\rho(R_p))$)') #label=r'$\rho \sim \mathcal{N}(\rho_{\rm Earthlike\:rocky}, 10^{[\frac{d\log\rho}{dR_p}(R_p - 0.5) + \log{\rho_0}]})$' plt.fill_between(np.log10(MR_earthlike_rocky['radius']), np.log10(MR_earthlike_rocky['mass']) - sigma_log_M, np.log10(MR_earthlike_rocky['mass']) + sigma_log_M, color='orange', alpha=0.5, label=r'16%-84% ($\log{M_p} \sim \mathcal{N}(M_{p,\rm Earthlike\:rocky}, \sigma_{\log{M_p}})$)') plt.plot(np.log10(MR_pure_iron['radius']), np.log10(MR_pure_iron['mass']), color='r', ls='--', lw=3, label='Pure iron') #plt.axvline(x=np.log10(0.7), color='k', ls='--', lw=3) plt.axvline(x=np.log10(radii_switch), color='k', ls='--', lw=3) ax.tick_params(axis='both', labelsize=afs) xtick_vals = np.array([0.5, 1., 2., 4., 10.]) ytick_vals =
np.array([1e-1, 1., 10., 1e2])
numpy.array
# encoding=utf8 """ Functions for performing classical hypothesis testing. Hypothesis Testing ------------------ .. autosummary:: :toctree: generated/ BinomialTest ChiSquareTest tTest References ---------- <NAME>., & <NAME>. (2012). Methods of multivariate analysis (3rd Edition). <NAME>. (1956). Nonparametric statistics: For the behavioral sciences. McGraw-Hill. ISBN 07-057348-4 Student's t-test. (2017, June 20). In Wikipedia, The Free Encyclopedia. From https://en.wikipedia.org/w/index.php?title=Student%27s_t-test&oldid=786562367 <NAME>. "Chi-Squared Test." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Chi-SquaredTest.html Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval. In Wikipedia, The Free Encyclopedia. Retrieved 15:03, August 10, 2018, from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725 Wikipedia contributors. (2018, July 5). Chi-squared test. In Wikipedia, The Free Encyclopedia. Retrieved 13:56, August 19, 2018, from https://en.wikipedia.org/w/index.php?title=Chi-squared_test&oldid=848986171 Wikipedia contributors. (2018, April 12). Pearson's chi-squared test. In Wikipedia, The Free Encyclopedia. Retrieved 12:55, August 23, 2018, from https://en.wikipedia.org/w/index.php?title=Pearson%27s_chi-squared_test&oldid=836064929 """ import numpy as np import numpy_indexed as npi from scipy.stats import beta, norm, t from scipy.special import comb class BinomialTest(object): r""" Performs a one-sample binomial test. Parameters ---------- x : int Number of successes out of :math:`n` trials. n : int Number of trials p : float, optional Expected probability of success alternative: str, {'two-sided', 'greater', 'lesser'}, optional Specifies the alternative hypothesis :math:`H_1`. Must be one of 'two-sided' (default), 'greater', or 'less'. alpha : float, optional Significance level continuity: bool, optional If True, the continuity corrected version of the Wilson score interval is used. Attributes ---------- x : int Number of successes out of :math:`n` trials. n : int Number of trials p : float Expected probability of success q : float Defined as :math:`1 - p` alternative : str Specifies the alternative hypothesis :math:`H_1`. Must be one of 'two-sided' (default), 'greater', or 'less'. alpha : float Significance level continuity : bool If True, the continuity corrected version of the Wilson score interval is used. p_value : float Computed p-value z : float z-score used in computation of intervals clopper_pearson_interval : dict Dictionary of the Clopper-Pearson lower and upper intervals and probability of success. wilson_score_interval : dict Dictionary of the Wilson Score lower and upper intervals and probability of success. agresti_coull_interval : dict Dictionary of the Agresti-Coull lower and upper intervals and probability of success. arcsine_transform_interval : dict Dictionary of the arcsine transformation lower and upper intervals and probability of success. test_summary : dict Dictionary containing test summary statistics. Raises ------ ValueError If number of successes :math:`x` is greater than the number of trials :math:`n`. ValueError If expected probability :math:`p` is greater than 1. ValueError If parameter :code:`alternative` is not one of {'two-sided', 'greater', 'lesser'} Notes ----- The Binomial test is a one-sample test applicable in the case of populations consisting of two classes or groups, such as male/female, cat/dog, etc. The proportion of the first group is denoted :math:`p`, while the second group is often denoted :math:`q`, which we know to be :math:`1 - p`. The null hypothesis of the test is that the proportion of the population is indeed :math:`p` and gives the researcher more information to determine if the random sample that was drawn could have come from a population having a proportion of :math:`p`. As the name of the test implies, the binomial distribution is the sampling distribution the of the proportions that could be observed when drawing random samples from a population. Therefore, the probability of obtaining :math:`x` objects in one category and :math:`n - x` in the other category out of a total :math:`n` trials is given by the binomial distribution probability mass function: .. math:: p(x) = \binom{n}{x} P^x (1 - P)^{n - x} :math:`(1 - P)` may be substituted for :math:`Q`. The binomial coefficient :math:`\binom{n}{x}` is defined as: .. math:: \binom{n}{x} = \frac{n!}{k!(n - k)!} The p-value of the test is calculated by the binomial distribution's cumulative distribution function, defined as: .. math:: Pr(X \leq x) = \sum^{[k]}_{i=0} \binom{n}{i} P^i (1 - P)^{n - i} There are several confidence intervals that can be computed when performing a binomial test. The most common is known as the Clopper-Pearson interval, which is an exact interval as it is based on the binomial distribution. The Clopper-Pearson interval can be defined several ways, one of which uses the relationship between the binomial distribution nad the beta distribution. .. math:: B\left(\frac{\alpha}{2};x,n-x+1\right) < \theta < B\left(1 - \frac{\alpha}{2};x + 1, n - x \right) The Agresti-Coull interval utilizes the standard normal distribution. :math:`z` is given as :math:`1 - \frac{\alpha}{2}`. The interval calculation proceeds as: With :math:`x` successes out of a total :math:`n` trials, we define :math:`\tilde{n}` as: .. math:: `\tilde{n} = n + z^2 and, .. math:: \tilde{p} = \frac{1}{\tilde{n}} \left(x + \frac{z^2}{2} \right) The confidence interval for the probability of success, :math:`p`, is then given as: .. math:: \tilde{p} \pm z \sqrt{\frac{\tilde{p}}{\tilde{n}} (1 - \tilde{p})} The arcsine transformation confidence interval is defined as: .. math:: sin^2 \left(\arcsin{\sqrt{p}} - \frac{z}{2\sqrt{n}} \right) < \theta < sin^2 \left(arcsin{\sqrt{p}} + \frac{z}{2\sqrt{n}} \right) Where :math:`z` is the quantile :math:`1 - \frac{\alpha}{2}}` of the standard normal distribution, as before. Lastly, the Wilson score interval can be computed with or without continuity correction. Without correction, the Wilson score interval success proability :math:`p` is defined as: .. math:: \frac{\hat{p} + \frac{z^2}{2n}}{1 + \frac{z^2}{n} \pm \frac{z}{1 + \frac{z^2}{n}} \sqrt{\frac{\hat{p} (1 - \hat{p}}{n}}{1 + \frac{z^2}{n}}} The Wilson score interval with continuity correction is defined as: .. math:: w^- = max \Bigg\{0, \frac{2n\hat{P} + z^2 - \Big[z \sqrt{z^2 - \frac{1}{n} + 4n\hat{p}(1 - \hat{p}) + (4\hat{p} - 2) + 1}\Big]}{2(n + z^2)}\Bigg\} w^+ = min \Bigg\{1, \frac{2n\hat{P} + z^2 + \Big[z \sqrt{z^2 - \frac{1}{n} + 4n\hat{p}(1 - \hat{p}) - (4\hat{p} - 2) + 1}\Big]}{2(n + z^2)}\Bigg\} Where :math:`w^-` and :math:`w^+` are the lower and upper bounds of the Wilson score interval corrected for contiunity. Examples -------- >>> x = 682 >>> n = 925 >>> bt = BinomialTest(n, x) >>> bt.test_summary {'Number of Successes': 682, 'Number of Trials': 925, 'alpha': 0.05, 'intervals': {'Agresti-Coull': {'conf level': 0.95, 'interval': (0.7079790581519885, 0.7646527304391209), 'probability of success': 0.7363158942955547}, 'Arcsine Transform': {'conf level': 0.95, 'interval': (0.708462749220724, 0.7651467076803447), 'probability of success': 0.7372972972972973, 'probability variance': 0.00020939458669772768}, 'Clopper-Pearson': {'conf level': 0.95, 'interval': (0.7076682640790369, 0.7654065582415227), 'probability of success': 0.7372972972972973}, 'Wilson Score': {'conf level': 0.95, 'interval': (0.46782780413153596, 0.5321721958684641), 'probability of success': 0.5}}, 'p-value': 2.4913404672588513e-13} >>> bt.p_value 2.4913404672588513e-13 >>> bt.clopper_pearson_interval {'conf level': 0.95, 'interval': (0.7076682640790369, 0.7654065582415227), 'probability of success': 0.7372972972972973} >>> bt2 = BinomialTest(n, x, alternative='greater') >>> bt2.p_value 1.2569330927920093e-49 >>> bt2.clopper_pearson_interval {'conf level': 0.95, 'interval': (0.7124129244365457, 1.0), 'probability of success': 0.7372972972972973} References ---------- <NAME>. (1956). Nonparametric statistics: For the behavioral sciences. McGraw-Hill. ISBN 07-057348-4 Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval. In Wikipedia, The Free Encyclopedia. Retrieved 15:03, August 10, 2018, from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725 """ def __init__(self, n, x, p=0.5, alternative='two-sided', alpha=0.05, continuity=True): if x > n: raise ValueError('number of successes cannot be greater than number of trials.') if p > 1.0: raise ValueError('expected probability of success cannot be greater than 1.') if alternative not in ('two-sided', 'greater', 'less'): raise ValueError("'alternative must be one of 'two-sided' (default), 'greater', or 'less'.") self.n = n self.x = x self.p = p self.q = 1.0 - self.p self.alpha = alpha self.alternative = alternative self.continuity = continuity self.p_value = self._p_value() if self.alternative == 'greater': self.z = norm.ppf(self.alpha) elif self.alternative == 'less': self.z = norm.ppf(1 - self.alpha) else: self.z = norm.ppf(1 - self.alpha / 2) self.clopper_pearson_interval = self._clopper_pearson_interval() self.wilson_score_interval = self._wilson_score_interval() self.agresti_coull_interval = self._agresti_coull_interval() self.arcsine_transform_interval = self._arcsine_transform_interval() self.test_summary = { 'Number of Successes': self.x, 'Number of Trials': self.n, 'p-value': self.p_value, 'alpha': self.alpha, 'intervals': { 'Clopper-Pearson': self.clopper_pearson_interval, 'Wilson Score': self.wilson_score_interval, 'Agresti-Coull': self.agresti_coull_interval, 'Arcsine Transform': self.arcsine_transform_interval } } def _p_value(self): r""" Calculates the p-value of the binomial test. Returns ------- pval : float The computed p-value. """ successes = np.arange(self.x + 1) pval = np.sum(comb(self.n, successes) * self.p ** successes * self.q ** (self.n - successes)) if self.alternative in ('two-sided', 'greater'): other_tail = np.arange(self.x, self.n + 1) y = comb(self.n, self.x) * (self.p ** self.x) * self.q ** (self.n - self.x) p_othertail = comb(self.n, other_tail) * self.p ** other_tail * self.q ** (self.n - other_tail) p_othertail = np.sum(p_othertail[p_othertail <= y]) if self.alternative == 'two-sided': pval = p_othertail * 2 #pval = 1 - pval elif self.alternative == 'greater': pval = p_othertail return pval def _clopper_pearson_interval(self): r""" Computes the Clopper-Pearson 'exact' confidence interval. References ---------- Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval. In Wikipedia, The Free Encyclopedia. Retrieved 00:40, August 15, 2018, from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725 """ p = self.x / self.n if self.alternative == 'less': lower_bound = 0.0 upper_bound = beta.ppf(1 - self.alpha, self.x + 1, self.n - self.x) elif self.alternative == 'greater': upper_bound = 1.0 lower_bound = beta.ppf(self.alpha, self.x, self.n - self.x + 1) else: lower_bound = beta.ppf(self.alpha / 2, self.x, self.n - self.x + 1) upper_bound = beta.ppf(1 - self.alpha / 2, self.x + 1, self.n - self.x) clopper_pearson_interval = { 'probability of success': p, 'conf level': 1 - self.alpha, 'interval': (lower_bound, upper_bound) } return clopper_pearson_interval def _wilson_score_interval(self): r""" Computes the Wilson score confidence interval. References ---------- Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval. In Wikipedia, The Free Encyclopedia. Retrieved 00:40, August 15, 2018, from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725 """ p = (self.p + (self.z ** 2 / (2. * self.n))) / (1. + (self.z ** 2. / self.n)) if self.continuity: if self.alternative == 'less': lower = 0.0 else: lower = (2. * self.n * self.p + self.z ** 2. - (self.z * np.sqrt( self.z ** 2. - (1. / self.n) + 4. * self.n * self.p * self.q + (4. * self.p - 2.) + 1.))) / \ (2. * (self.n + self.z ** 2.)) if self.alternative == 'greater': upper = 1.0 else: upper = (2. * self.n * self.p + self.z ** 2. + (self.z * np.sqrt( self.z ** 2. - (1. / self.n) + 4. * self.n * self.p * self.q + (4. * self.p - 2.) + 1))) / (2. * ( self.n + self.z ** 2.)) upper_bound, lower_bound = np.minimum(1.0, upper), np.maximum(0.0, lower) else: bound = (self.z / (1. + self.z ** 2. / self.n)) * \ np.sqrt(((self.p * self.q) / self.n) + (self.z ** 2. / (4. * self.n ** 2.))) if self.alternative == 'less': lower_bound = 0.0 else: lower_bound = p - bound if self.alternative == 'greater': upper_bound = 1.0 else: upper_bound = p + bound wilson_interval = { 'probability of success': p, 'conf level': 1 - self.alpha, 'interval': (lower_bound, upper_bound) } return wilson_interval def _agresti_coull_interval(self): r""" Calculates the Agresti-Coull confidence interval as defined in Agresti and Coull's paper "Approximate is Better than 'Exact' for Interval Estimation of Binomial Proportions." References ---------- Agresti, Alan; Coull, <NAME>. (1998). "Approximate is better than 'exact' for interval estimation of binomial proportions". The American Statistician. http://users.stat.ufl.edu/~aa/articles/agresti_coull_1998.pdf Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval. In Wikipedia, The Free Encyclopedia. Retrieved 00:40, August 15, 2018, from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725 """ nbar = self.n + self.z ** 2 p = (1 / nbar) * (self.x + self.z ** 2 / 2) bound = self.z * np.sqrt((p / nbar) * (1 - p)) if self.alternative == 'less': lower_bound = 0.0 else: lower_bound = p - bound if self.alternative == 'greater': upper_bound = 1.0 else: upper_bound = p + bound agresti_coull_interval = { 'probability of success': p, 'conf level': 1 - self.alpha, 'interval': (lower_bound, upper_bound) } return agresti_coull_interval def _arcsine_transform_interval(self): r""" Calculates the arcsine transformation interval. References ---------- Wikipedia contributors. (2018, July 14). Binomial proportion confidence interval. In Wikipedia, The Free Encyclopedia. Retrieved 00:40, August 15, 2018, from https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=850256725 """ p = self.clopper_pearson_interval['probability of success'] p_var = (p * (1 - p)) / self.n if self.alternative == 'less': lower_bound = 0.0 else: lower_bound = np.sin(np.arcsin(np.sqrt(p)) - (self.z / (2. * np.sqrt(self.n)))) ** 2 if self.alternative == 'greater': upper_bound = 1.0 else: upper_bound = np.sin(np.arcsin(
np.sqrt(p)
numpy.sqrt
"""Contains the base class for the simulation.""" import numpy as np from tqdm import auto as tqdm import numba import matplotlib.pyplot as plt from matplotlib import animation import pandas import zarr import datetime import typing class Simulation: """Base class for SOC simulations. :param L: linear size of lattice, without boundary layers :type L: int :param save_every: number of iterations per snapshot save :type save_every: int or None :param wait_for_n_iters: How many iterations to skip to skip before saving data? :type wait_for_n_iters: int """ values = NotImplemented saved_snapshots = NotImplemented BOUNDARY_SIZE = BC = 1 def __init__(self, L: int, save_every: int = 1, wait_for_n_iters: int = 10): self.L = L self.visited = np.zeros((self.L_with_boundary, self.L_with_boundary), dtype=bool) self.data_acquisition = [] self.save_every = save_every self.wait_for_n_iters = wait_for_n_iters @property def size(self) -> int: """ The total size of the simulation grid, without boundaries """ return self.L**2 @property def L_with_boundary(self) -> int: """ The total width of the simulation grid, with boundaries. """ return self.L + 2 * self.BOUNDARY_SIZE def drive(self): """ Drive the simulation by adding particles from the outside. Must be overriden in subclasses. """ raise NotImplementedError("Your model needs to override the drive method!") def topple_dissipate(self): """ Distribute material from overloaded sites to neighbors. Must be overriden in subclasses. """ raise NotImplementedError("Your model needs to override the topple method!") @classmethod def clean_boundary_inplace(cls, array: np.ndarray) -> np.ndarray: """ Convenience wrapper to `common.clean_boundary_inplace` with the simulation's boundary size. :param array: array to clean :type array: np.ndarray :rtype: np.ndarray """ return clean_boundary_inplace(array, cls.BOUNDARY_SIZE) @classmethod def inside(cls, array: np.ndarray) -> np.ndarray: """ Convenience function to get an array without simulation boundaries :param array: array :type array: np.ndarray :return: array of width smaller by 2BC :rtype: np.ndarray """ return array[cls.BC:-cls.BC, cls.BC:-cls.BC] def AvalancheLoop(self) -> dict: """ Bring the current simulation's state to equilibrium by repeatedly toppling and dissipating. Returns a dictionary with the total size of the avalanche and the number of iterations the avalanche took. :rtype: dict """ self.visited[...] = False number_of_iterations = self.topple_dissipate() AvalancheSize = self.inside(self.visited).sum() return dict(AvalancheSize=AvalancheSize, number_of_iterations=number_of_iterations) def run(self, N_iterations: int, filename: str = None, wait_for_n_iters: int = 10, ) -> str: """ Simulation loop. Drives the simulation, possibly starts avalanches, gathers data. :param N_iterations: number of iterations (per grid node if `scale` is True) :type N_iterations: int :rtype: dict :param filename: filename for saving snapshots. if None, saves to memory; by default if False, makes something like array_Manna_2019-12-17T19:40:00.546426.zarr :type filename: str :param wait_for_n_iters: wait this many iterations before collecting data (lets model thermalize) :type wait_for_n_iters: int """ if filename is False: filename = f"array_{self.__class__.__name__}_{datetime.datetime.now().isoformat()}.zarr" scaled_wait_for_n_iters = wait_for_n_iters scaled_n_iterations = N_iterations + scaled_wait_for_n_iters if scaled_n_iterations % self.save_every != 0: raise ValueError(f"Ensure save_every ({self.save_every}) is a divisor of the total number of iterations ({scaled_n_iterations})") print(f"Waiting for wait_for_n_iters={wait_for_n_iters} iterations before collecting data. This should let the system thermalize.") total_snapshots = max([scaled_n_iterations // self.save_every, 1]) self.saved_snapshots = zarr.open(filename, shape=( total_snapshots, # czas self.L_with_boundary, # x self.L_with_boundary, # y ), chunks=( 100, self.L_with_boundary, self.L_with_boundary, ), dtype=self.values.dtype, ) self.saved_snapshots.attrs['save_every'] = self.save_every for i in tqdm.trange(scaled_n_iterations): self.drive() observables = self.AvalancheLoop() if i >= scaled_wait_for_n_iters: self.data_acquisition.append(observables) if self.save_every is not None and (i % self.save_every) == 0: self._save_snapshot(i) return filename def _save_snapshot(self, i: int): """ Use Zarr to save the current values array as snapshot in the appropriate time index. :param i: timestep index :type i: int """ self.saved_snapshots[i // self.save_every] = self.values @property def data_df(self) -> pandas.DataFrame: """ Displays the gathered data as a Pandas DataFrame. :return: dataframe with gathered data :rtype: pandas.DataFrame """ return pandas.DataFrame(self.data_acquisition) def plot_state(self, with_boundaries: bool = False) -> plt.Figure: """ Plots the current state of the simulation. :param with_boundaries: should the boundaries be displayed as well? :type with_boundaries: bool :return: figure with plot :rtype: plt.Figure """ fig, ax = plt.subplots() if with_boundaries: values = self.values else: values = self.values[self.BOUNDARY_SIZE:-self.BOUNDARY_SIZE, self.BOUNDARY_SIZE:-self.BOUNDARY_SIZE] IM = ax.imshow(values, interpolation='nearest') plt.colorbar(IM) return fig def animate_states(self, notebook: bool = False, with_boundaries: bool = False, interval: int = 30, ): """ Animates the collected states of the simulation. :param notebook: if True, displays via html5 video in a notebook; otherwise returns MPL animation :type notebook: bool :param with_boundaries: include boundaries in the animation? :type with_boundaries: bool :param interval: number of miliseconds to wait between each frame. :type interval: int """ fig, ax = plt.subplots() if with_boundaries: values = np.dstack(self.saved_snapshots) else: values = np.dstack(self.saved_snapshots)[self.BOUNDARY_SIZE:-self.BOUNDARY_SIZE, self.BOUNDARY_SIZE:-self.BOUNDARY_SIZE, :] IM = ax.imshow(values[:, :, 0], interpolation='nearest', vmin = values.min(), vmax = values.max() ) plt.colorbar(IM) iterations = values.shape[2] title = ax.set_title("Iteration {}/{}".format(0, iterations * self.save_every)) def animate(i): IM.set_data(values[:,:,i]) title.set_text("Iteration {}/{}".format(i * self.save_every, iterations * self.save_every)) return IM, title anim = animation.FuncAnimation(fig, animate, frames=iterations, interval=interval, ) if notebook: from IPython.display import HTML, display plt.close(anim._fig) display(HTML(anim.to_html5_video())) else: return anim def save(self, file_name = 'sim'): """ serialization of object and saving it to file""" root = zarr.open_group('state/' + file_name + '.zarr', mode = 'w') values = root.create_dataset('values', shape = (self.L_with_boundary, self.L_with_boundary), chunks = (10, 10), dtype = 'i4') # TODO this probably still needs fixing values = zarr.array(self.values) #data_acquisition = root.create_dataset('data_acquisition', shape = (len(self.data_acquisition)), chunks = (1000), dtype = 'i4') #data_acquisition = zarr.array(self.data_acquisition) root.attrs['L'] = self.L root.attrs['save_every'] = self.save_every return root # TODO should be a classmethod def open(self, file_name = 'sim'): root = zarr.open_group('state/' + file_name + '.zarr', mode = 'r') self.values = np.array(root['values'][:]) #self.data_acquisition = root['data_acquisition'][:] self.L = root.attrs['L'] self.save_every = root.attrs['save_every'] def get_exponent(self, column: str = 'AvalancheSize', low: int = 1, high: int = 10, plot: bool = True, plot_filename: typing.Optional[str] = None) -> dict: """ Plot histogram of gathered data from data_df, :param column: which column of data_df should be visualized? :type column: str :param low: lower cutoff for log-log-linear fit :type low: int :param high: higher cutoff for log-log-linear fit :type high: int :param plot: if False, skips all plotting and just returns fit parameters :type plot: bool :param plot_filename: optional filename for saved plot. This skips displaying the plot! :type plot_filename: bool :return: fit parameters :rtype: dict """ df = self.data_df filtered = df.loc[df.number_of_iterations != 0, column] sizes, counts = np.unique(filtered, return_counts=True) indices = (low < sizes) & (sizes < high) coef_a, coef_b = poly = np.polyfit(
np.log10(sizes[indices])
numpy.log10
# # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import dask.dataframe as dd import numpy as np import pandas as pd import pytest import nvtabular as nvt from merlin.core.dispatch import make_df from nvtabular import ColumnSelector, Schema, Workflow, ops try: import cudf _CPU = [True, False] except ImportError: _CPU = [True] @pytest.mark.parametrize("cpu", _CPU) @pytest.mark.parametrize("keys", [["name"], "id", ["name", "id"]]) def test_groupby_op(keys, cpu): # Initial timeseries dataset size = 60 df1 = make_df( { "name": np.random.choice(["Dave", "Zelda"], size=size), "id": np.random.choice([0, 1], size=size), "ts":
np.linspace(0.0, 10.0, num=size)
numpy.linspace
from typing import Dict, List import numpy as np import pandas as pd import seaborn as sn from matplotlib import pyplot as plt from sklearn.base import BaseEstimator from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, roc_auc_score from sklearn.model_selection import StratifiedKFold from sklearn.naive_bayes import ComplementNB from sklearn.neighbors import KNeighborsClassifier def get_data(path: str = "") -> List[pd.DataFrame]: """ function to read data from csv :param path: string path to folder containing log2.csv (default value if CWD) :return: list of dataframes containing data and class labels respectively """ X = pd.read_csv("log2.csv") y = X[["Action"]] X = X.drop("Action", axis=1) return [X, y] def visualize(X: pd.DataFrame, y: pd.DataFrame) -> None: """ function to visualize proportion of class sizes in the dataset :param X: dataframe containing data :param y: dataframe containing class labels corresponding to X :return: None """ y["Action"].value_counts().plot.pie(explode=(0.02, 0.04, 0.05, 0.09), title="Proportion of classes in dataset") plt.savefig("Figures/proportions") for i, column in enumerate(X.columns): fig, ax = plt.subplots(1, 2) ax[0].hist( ( X[y["Action"] == "allow"][column], X[y["Action"] == "deny"][column], X[y["Action"] == "drop"][column], X[y["Action"] == "reset-both"][column], ) ) ax[0].set_xlabel(column) ax[0].set_ylabel("Frequency") ax[1].boxplot( ( X[y["Action"] == "allow"][column], X[y["Action"] == "deny"][column], X[y["Action"] == "drop"][column], X[y["Action"] == "reset-both"][column], ) ) ax[1].set_xlabel("Action") ax[1].set_ylabel(column) X[column].hist(by=y["Action"]) ax[0].legend(["allow", "deny", "drop", "reset-both"]) ax[1].set_xticklabels(["allow", "deny", "drop", "reset-both"]) fig.suptitle("Distribution of classes among attributes") plt.savefig("Figures/boxplots") def cross_validate(estimator: BaseEstimator, X: pd.DataFrame, y: pd.DataFrame, num_splits: int, save_name: str) -> None: """ function to perform cross validation and call error_profile at the end to generate an error report for a sklearn model :param estimator: SkLearn classification model :param X: dataframe containing data :param y: dataframe containing class labels corresponding to X :param num_splits: number of folds for k-fold cross validation :param save_name: save name for error profile plots (file extension will be appended) :return: None """ splitter = StratifiedKFold(n_splits=num_splits, shuffle=True, random_state=0) predictions = {"test": [], "train": []} y_true = {"test": [], "train": []} for train_index, test_index in splitter.split(X, y): estimator.fit(X.iloc[train_index, :], y.iloc[train_index, 0]) test_pred = estimator.predict(X.iloc[test_index, :]) train_pred = estimator.predict(X.iloc[train_index, :]) predictions["train"].append(train_pred) predictions["test"].append(test_pred) y_true["train"].append(np.array(y.iloc[train_index])[:, 0]) y_true["test"].append(np.array(y.iloc[test_index])[:, 0]) error_profile(y_true, predictions, model_type=save_name) def fit_and_test(X, y) -> None: """ function to fit and test numerous models for the given data :param X: dataframe containing data :param y: dataframe containing class labels corresponding to X :return: None """ models = { "tree2": RandomForestClassifier(n_estimators=1, n_jobs=-1, class_weight="balanced", random_state=0), "tree1": RandomForestClassifier(n_estimators=1, n_jobs=-1, random_state=0, criterion="entropy"), "random_forest_10": RandomForestClassifier( n_estimators=10, n_jobs=-1, class_weight="balanced", criterion="gini" ), "random_forest_100": RandomForestClassifier(n_estimators=100, n_jobs=-1, criterion="entropy"), "knn_1": KNeighborsClassifier(n_neighbors=1, n_jobs=-1, metric="hamming"), "knn_5": KNeighborsClassifier(n_neighbors=5, n_jobs=-1, metric="hamming"), "knn_15": KNeighborsClassifier(n_neighbors=15, n_jobs=-1, metric="hamming"), "cnb": ComplementNB(), } for model_name in models.keys(): cross_validate(estimator=models[model_name], X=X, y=y, num_splits=5, save_name=model_name) def error_profile(y_true: Dict[str, List[np.ndarray]], y_pred: Dict[str, List[np.ndarray]], model_type: str) -> None: """ function to generate the error profile based on true labels and predicted labels for a classification problem :param y_true: dictionary containing true labels for training and testing of each fold :param y_pred: dictionary containing predicted labels for training and testing of each fold :param model_type: name of model to use to save error profile plots (file extensions will be appended) :return: None """ num_folds = len(y_pred["train"]) acc = {"train": [], "test": []} test_predictions = np.array([]) test_labels = np.array([]) for k in range(num_folds): y_train_true = y_true["train"][k] y_train_pred = y_pred["train"][k] y_test_true = y_true["test"][k] y_test_pred = y_pred["test"][k] # Accuracies train_acc = np.sum(
np.equal(y_train_true, y_train_pred)
numpy.equal
import qinfer as qi import numpy as np import scipy as sp import random import math import copy import itertools import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from inspect import currentframe, getframeinfo try: from lfig import LatexFigure except: from qmla.shared_functionality.latex_figure import LatexFigure import qmla.logging frameinfo = getframeinfo(currentframe()) __all__ = [ "ExperimentDesignHueristic", "MultiParticleGuessHeuristic", "MixedMultiParticleLinspaceHeuristic", "VolumeAdaptiveParticleGuessHeuristic", ] def identity(arg): return arg class ExperimentDesignHueristic(qi.Heuristic): """ Experiment Design Heuristic base class, to be inherited by specific implementations. This object has access to the QInfer Updater and Model objects, so it can, e.g., sample from the particle distribution, to use these values in the design of a new experiment. :param updater: QInfer updater for SMC :type updater: QInfer Updater object :param model_id: ID of model under study, defaults to 1 :type model_id: int :param oplist: list of matrices representing the operators constituting this model, defaults to None :type oplist: list, optional :param norm: type of norm to use, defaults to 'Frobenius' :type norm: str, optional :param inv_field: inversion field to use (legacy - should not matter) defaults to 'x_' :type inv_field: str, optional :param t_field: name of field corresponding to $t$, defaults to 't' :type t_field: str, optional :param maxiters: manimum number of iterations to attempt to find distinct particles from the distribution, defaults to 10 :type maxiters: int, optional :param other_fields: optional further fields, defaults to None :type other_fields: list, optional :param inv_func: inverse function, used by QInfer, (legacy - should not matter) defaults to identity :type inv_func: function, optional :param t_func: function for computing $t$, defaults to identity :type t_func: function, optional :param log_file: path to log file, defaults to 'qmla_log.log' :type log_file: str, optional """ def __init__( self, updater, model_id=1, oplist=None, norm="Frobenius", inv_field="x_", t_field="t", maxiters=10, other_fields=None, inv_func=identity, t_func=identity, log_file="qmla_log.log", **kwargs ): super().__init__(updater) # Most importantly - access to updater and underlying model self._model_id = model_id self._updater = updater self._model = updater.model # Other useful attributes passed self._norm = norm self._x_ = inv_field self._t = t_field self._inv_func = inv_func self._t_func = t_func self._other_fields = other_fields if other_fields is not None else {} self._maxiters = maxiters self._oplist = oplist self._num_experiments = kwargs["num_experiments"] self._figure_format = kwargs["figure_format"] self._log_file = log_file # probe ID self.probe_id = 0 self.probe_rotation_frequency = 5 self.num_probes = kwargs["num_probes"] # storage infrastructure self.heuristic_data = {} # to be stored by model instance self._resample_epochs = [] self._volumes = [] self.effective_sample_size = [] self._times_suggested = [] self._label_fontsize = 10 # consistency when plotting def _get_exp_params_array(self, epoch_id): r"""Return an empty array with a position for every experiment design parameter.""" experiment_params = np.empty((1,), dtype=self._model.expparams_dtype) # fill in particle in expparams particle = self._updater.sample() n_params = particle.shape[1] for i in range(n_params): p = particle[0][i] corresponding_expparam = self._model.modelparam_names[i] experiment_params[corresponding_expparam] = p # choose probe id if epoch_id % self.probe_rotation_frequency == 0: self.probe_id += 1 if self.probe_id >= self.num_probes: self.probe_id = 0 experiment_params["probe_id"] = self.probe_id return experiment_params def log_print(self, to_print_list): r"""Wrapper for :func:`~qmla.print_to_log`""" qmla.logging.print_to_log( to_print_list=to_print_list, log_file=self._log_file, log_identifier="Heuristic {}".format( self._model_id ), # TODO add heuristic name ) def __call__(self, **kwargs): """By calling the heuristic, it produces an experiment to be performed to learn upon. :return: all necessary data to perform an experiment, e.g. evolution time and probe ID. :rtype: named tuple """ # Process some data from the model first try: current_volume = kwargs["current_volume"] except: current_volume = None self._volumes.append(current_volume) if self._updater.just_resampled: self._resample_epochs.append(kwargs["epoch_id"] - 1) self.effective_sample_size.append(self._updater.n_ess) # Design a new experiment new_experiment = self.design_experiment(**kwargs) new_time = new_experiment["t"] if new_time > 1e6: # TODO understand cutoff at which time # calculation becomes unstable new_time = np.random.uniform(1e5, 1e6) # self.log_print([ # "Time too high -> randomising to ", new_time # ]) if "force_time_choice" in kwargs: new_time = kwargs["force_time_choice"] self._times_suggested.append(new_time) new_experiment["t"] = new_time return new_experiment def design_experiment(self, **kwargs): r""" Design an experiment. Children classes can overwrite this function to implement custom logic for the deisggn of experiments. """ raise RuntimeError("experiment design method not written for this heuristic.") def finalise_heuristic(self, **kwargs): r"""Any functionality the user wishes to happen at the final call to the heuristic.""" self.log_print( [ "{} Resample epochs: {}".format( len(self._resample_epochs), self._resample_epochs, ) # "\nTimes suggested:", self._times_suggested ] ) def plot_heuristic_attributes(self, save_to_file, **kwargs): """ Summarise the heuristic used for the model training through several plots. volume of distribution at each experiment time designed by heuristic for each experiment effecitve sample size at each experiment, used to determine when to resample :param save_to_file: path to which the summary figure is stored :type save_to_file: path """ plots_to_include = ["volume", "times_used", "effective_sample_size"] plt.clf() nrows = len(plots_to_include) lf = LatexFigure(gridspec_layout=(nrows, 1)) if "volume" in plots_to_include: ax = lf.new_axis() self._plot_volumes(ax=ax) ax.legend() if "times_used" in plots_to_include: ax = lf.new_axis() self._plot_suggested_times(ax=ax) ax.legend() if "effective_sample_size" in plots_to_include: ax = lf.new_axis() self._plot_effective_sample_size(ax=ax) ax.legend() # Save figure self.log_print(["LatexFigure has size:", lf.size]) lf.save(save_to_file, file_format=self._figure_format) def _plot_suggested_times(self, ax, **kwargs): full_epoch_list = range(len(self._times_suggested)) ax.scatter( full_epoch_list, self._times_suggested, label=r"$t \sim k \ \frac{1}{V}$", s=5, ) ax.set_title("Experiment times", fontsize=self._label_fontsize) ax.set_ylabel("Time", fontsize=self._label_fontsize) ax.set_xlabel("Epoch", fontsize=self._label_fontsize) self._add_resample_epochs_to_ax(ax=ax) ax.semilogy() def _plot_volumes(self, ax, **kwargs): full_epoch_list = range(len(self._volumes)) ax.plot( full_epoch_list, self._volumes, label="Volume", ) ax.set_title("Volume", fontsize=self._label_fontsize) ax.set_ylabel("Volume", fontsize=self._label_fontsize) ax.set_xlabel("Epoch", fontsize=self._label_fontsize) self._add_resample_epochs_to_ax(ax=ax) ax.semilogy() def _plot_effective_sample_size(self, ax, **kwargs): full_epoch_list = range(len(self.effective_sample_size)) ax.plot( full_epoch_list, self.effective_sample_size, label=r"$N_{ESS}$", ) resample_thresh = self._updater.resample_thresh ax.axhline( resample_thresh * self.effective_sample_size[0], label="Resample threshold ({}%)".format(resample_thresh * 100), color="grey", ls="-", alpha=0.5, ) if resample_thresh != 0.5: ax.axhline( self.effective_sample_size[0] / 2, label="50%", color="grey", ls="--", alpha=0.5, ) ax.set_title("Effective Sample Size", fontsize=self._label_fontsize) ax.set_ylabel("$N_{ESS}$", fontsize=self._label_fontsize) ax.set_xlabel("Epoch", fontsize=self._label_fontsize) self._add_resample_epochs_to_ax(ax=ax) ax.legend() ax.set_ylim(0, self.effective_sample_size[0] * 1.1) # ax.semilogy() def _add_resample_epochs_to_ax(self, ax, **kwargs): c = "grey" a = 0.5 ls = ":" if len(self._resample_epochs) > 0: ax.axvline( self._resample_epochs[0], ls=ls, color=c, label="Resample", alpha=a ) for e in self._resample_epochs[1:]: ax.axvline(e, ls=ls, color=c, alpha=a) class MultiParticleGuessHeuristic(ExperimentDesignHueristic): def __init__(self, **kwargs): super().__init__(**kwargs) self.log_print(["Particle Guess Heuristic"]) def design_experiment(self, epoch_id=0, **kwargs): idx_iter = 0 while idx_iter < self._maxiters: sample = self._updater.sample(n=2) x, xp = sample[:, np.newaxis, :] if self._model.distance(x, xp) > 0: break else: idx_iter += 1 if self._model.distance(x, xp) == 0: self.log_print(["x,xp={},{}".format(x, xp)]) raise RuntimeError( "PGH did not find distinct particles in \ {} iterations.".format( self._maxiters ) ) d = self._model.distance(x, xp) new_time = 1 / d eps = self._get_exp_params_array(epoch_id=epoch_id) eps["t"] = new_time # get sample from x particle = self._updater.sample() # self.log_print(["Particle for IQLE=", particle]) n_params = particle.shape[1] for i in range(n_params): p = particle[0][i] corresponding_expparam = self._model.modelparam_names[i] eps[corresponding_expparam] = p return eps class MixedMultiParticleLinspaceHeuristic(ExperimentDesignHueristic): r""" First half of experiments are standard MPGH, then force times evenly spaced between 0 and max_time. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.log_print(["Mixed Particle Guess Heuristic"]) self.max_time_to_enforce = kwargs["max_time_to_enforce"] self.count_number_high_times_suggested = 0 self.num_epochs_for_first_phase = self._num_experiments / 2 # generate a list of times of length Ne/2 # evenly spaced between 0, max_time (from exploration_strategy) # then every t in that list is learned upon once. # Higher Ne means finer granularity # times are leared in a random order (from random.shuffle below) num_epochs_to_space_time_list = math.ceil( self._num_experiments - self.num_epochs_for_first_phase ) t_list = list( np.linspace(0, self.max_time_to_enforce, num_epochs_to_space_time_list + 1) ) t_list.remove(0) # dont want to waste an epoch on t=0 t_list = [np.round(t, 2) for t in t_list] # random.shuffle(t_list) self._time_list = itertools.cycle(t_list) def design_experiment(self, epoch_id=0, **kwargs): idx_iter = 0 while idx_iter < self._maxiters: x, xp = self._updater.sample(n=2)[:, np.newaxis, :] if self._model.distance(x, xp) > 0: break else: idx_iter += 1 if self._model.distance(x, xp) == 0: raise RuntimeError( "PGH did not find distinct particles in \ {} iterations.".format( self._maxiters ) ) eps = self._get_exp_params_array(epoch_id=epoch_id) if epoch_id < self.num_epochs_for_first_phase: d = self._model.distance(x, xp) new_time = self._t_func(1 / d) else: new_time = next(self._time_list) if new_time > self.max_time_to_enforce: self.count_number_high_times_suggested += 1 if epoch_id == self._num_experiments - 1: self.log_print( [ "Number of suggested t > t_max:", self.count_number_high_times_suggested, ] ) eps["t"] = new_time return eps class SampleOrderMagnitude(ExperimentDesignHueristic): def __init__(self, updater, **kwargs): super().__init__(updater, **kwargs) self.count_order_of_magnitudes = {} self.force_order = None def design_experiment(self, epoch_id=0, **kwargs): experiment = self._get_exp_params_array( epoch_id=epoch_id ) # empty experiment array # sample from updater idx_iter = 0 while idx_iter < self._maxiters: x, xp = self._updater.sample(n=2)[:, np.newaxis, :] if self._model.distance(x, xp) > 0: break else: idx_iter += 1 cov_mtx = self._updater.est_covariance_mtx() orders_of_magnitude = np.log10( np.sqrt(np.abs(np.diag(cov_mtx))) ) # of the uncertainty on the individual parameters orders_of_magnitude[orders_of_magnitude < 1] = 1 # lower bound probs_of_orders = [ i / sum(orders_of_magnitude) for i in orders_of_magnitude ] # weight of each order of magnitude # sample from the present orders of magnitude selected_order = np.random.choice(a=orders_of_magnitude, p=probs_of_orders) if self.force_order is not None: selected_order = self.force_order try: self.count_order_of_magnitudes[np.round(selected_order)] += 1 except: self.count_order_of_magnitudes[np.round(selected_order)] = 1 idx_params_of_similar_uncertainty = np.where( np.isclose(orders_of_magnitude, selected_order, atol=1) ) # within 1 order of magnitude of the max # change the scaling matrix used to calculate the distance # to place importance only on the sampled order of magnitude self._model._Q = np.zeros(len(orders_of_magnitude)) for idx in idx_params_of_similar_uncertainty: self._model._Q[idx] = 1 d = self._model.distance(x, xp) new_time = 1 / d if self.force_order == 9: new_time *= 100 experiment[self._t] = new_time # print("Available orders of magnitude:", orders_of_magnitude) # print("Selected order = ", selected_order) # print("x= {}".format(x)) # print("x'={}".format(xp)) # print("Distance = ", d) # print("Distance order mag=", np.log10(d)) # print("=> time=", new_time) return experiment def finalise_heuristic(self): super().finalise_heuristic() self.log_print(["count_order_of_magnitudes:", self.count_order_of_magnitudes]) class SampledUncertaintyWithConvergenceThreshold(ExperimentDesignHueristic): def __init__(self, updater, **kwargs): super().__init__(updater, **kwargs) self._qinfer_model = self._model cov_mtx = self._updater.est_covariance_mtx() self.initial_uncertainties = np.sqrt(np.abs(np.diag(cov_mtx))) self.track_param_uncertainties = np.zeros(self._qinfer_model.n_modelparams) self.selection_criteria = ( "relative_volume_decrease" # 'hard_code_6' # 'hard_code_6_9_magnitudes' ) self.count_order_of_magnitudes = {} self.all_count_order_of_magnitudes = {} self.counter_productive_experiments = 0 self.call_counter = 0 self._num_experiments = kwargs["num_experiments"] self._num_exp_to_switch_magnitude = self._num_experiments / 2 print("Heuristic - num experiments = ", self._num_experiments) print("epoch to switch target at:", self._num_exp_to_switch_magnitude) def design_experiment(self, epoch_id=0, **kwargs): self.call_counter += 1 experiment = self._get_exp_params_array( epoch_id=epoch_id ) # empty experiment array # sample from updater idx_iter = 0 while idx_iter < self._maxiters: x, xp = self._updater.sample(n=2)[:, np.newaxis, :] if self._model.distance(x, xp) > 0: break else: idx_iter += 1 current_param_est = self._updater.est_mean() cov_mtx = self._updater.est_covariance_mtx() param_uncertainties = np.sqrt( np.abs(np.diag(cov_mtx)) ) # uncertainty of params individually orders_of_magnitude = np.log10( param_uncertainties ) # of the uncertainty on the individual parameters param_order_mag = np.log10(current_param_est) relative_order_magnitude = param_order_mag / max(param_order_mag) weighting_by_relative_order_magnitude = 10 ** relative_order_magnitude self.track_param_uncertainties = np.vstack( (self.track_param_uncertainties, param_uncertainties) ) if self.selection_criteria.startswith("hard_code"): if self.selection_criteria == "hard_code_6_9_magnitudes": if self.call_counter > self._num_exp_to_switch_magnitude: order_to_target = 6 else: order_to_target = 9 elif self.selection_criteria == "hard_code_6": order_to_target = 6 locations = np.where( np.isclose(orders_of_magnitude, order_to_target, atol=1) ) weights = np.zeros(len(orders_of_magnitude)) weights[locations] = 1 probability_of_param = weights / sum(weights) elif self.selection_criteria == "relative_volume_decrease": # probability of choosing order of magnitude # of each parameter based on the ratio # (change in volume)/(current estimate) # for that parameter print("Sampling by delta uncertainty/ estimate") change_in_uncertainty = np.diff( self.track_param_uncertainties[-2:], # most recent two track-params axis=0, )[0] print("change in uncertainty=", change_in_uncertainty) if np.all(change_in_uncertainty < 0): # TODO better way to deal with all increasing uncertainties print("All parameter uncertainties increased") self.counter_productive_experiments += 1 weights = 1 / np.abs(change_in_uncertainty) else: # disregard changes which INCREASE volume: change_in_uncertainty[change_in_uncertainty < 0] = 0 # weight = ratio of how much that change has decreased the volume # over the current best estimate of the parameter weights = change_in_uncertainty / current_param_est weights *= weighting_by_relative_order_magnitude # weight the likelihood of selecting a parameter by its order of magnitude probability_of_param = weights / sum(weights) elif self.selection_criteria == "order_of_magniutde": # probability directly from order of magnitude print("Sampling by order magnitude") probability_of_param = np.array(orders_of_magnitude) / sum( orders_of_magnitude ) else: # sample evenly print("Sampling evenly") probability_of_param = np.ones(self._qinfer_model.n_modelparams) # sample from the present orders of magnitude selected_order = np.random.choice(a=orders_of_magnitude, p=probability_of_param) try: self.count_order_of_magnitudes[np.round(selected_order)] += 1 self.all_count_order_of_magnitudes[np.round(selected_order)] += 1 except: self.count_order_of_magnitudes[np.round(selected_order)] = 1 self.all_count_order_of_magnitudes[np.round(selected_order)] = 1 idx_params_of_similar_uncertainty = np.where( np.isclose(orders_of_magnitude, selected_order, atol=1) ) # within 1 order of magnitude of the max self._model._Q = np.zeros(len(orders_of_magnitude)) for idx in idx_params_of_similar_uncertainty: self._qinfer_model._Q[idx] = 1 d = self._qinfer_model.distance(x, xp) new_time = 1 / d experiment[self._t] = new_time print("Current param estimates:", current_param_est) try: print("Weights:", weights) except: pass print("probability_of_param: ", probability_of_param) print("orders_of_magnitude:", orders_of_magnitude) print("Selected order = ", selected_order) print("x={}".format(x)) print("xp={}".format(xp)) print("Distance = ", d) print("Distance order mag=", np.log10(d)) print("=> time=", new_time) return experiment class VolumeAdaptiveParticleGuessHeuristic(ExperimentDesignHueristic): def __init__(self, updater, **kwargs): super().__init__(updater, **kwargs) self.time_multiplicative_factor = 1 self.derivative_frequency = self._num_experiments / 20 self.burn_in_learning_time = 6 * self.derivative_frequency self.log_print( [ "Derivative freq:{} \t burn in:{}".format( self.derivative_frequency, self.burn_in_learning_time ) ] ) self.time_factor_boost = 10 # factor to increase/decrease by self.derivatives = {1: {}, 2: {}} self.time_factor_changes = {"decreasing": [], "increasing": []} self.distances = [] distance_metrics = [ "cityblock", "euclidean", "chebyshev", "canberra", "braycurtis", "minkowski", ] self.designed_times = {m: {} for m in distance_metrics} self.distance_metric_to_use = "euclidean" def design_experiment(self, epoch_id=0, **kwargs): # Maybe increase multiplicative factor for time chosen later if ( epoch_id % self.derivative_frequency == 0 and epoch_id > self.burn_in_learning_time ): current_volume = self._volumes[-1] previous_epoch_to_compare = int(-1 - self.derivative_frequency) try: previous_volume = self._volumes[previous_epoch_to_compare] except: previous_volume = self._volumes[0] self.log_print( [ "Couldn't find {}th element of volumes: {}".format( previous_epoch_to_compare, self._volumes ) ] ) relative_change = 1 - current_volume / previous_volume self.log_print( [ "At epoch {} V_old/V_new={}/{}. relative change={}".format( epoch_id,
np.round(previous_volume, 2)
numpy.round
""" This file contains the code required for IteratedWatersheds """ #----------------------------------------------------------------------------------------------# #--------------------------------------- PRIORITY QUEUE ---------------------------------------# #----------------------------------------------------------------------------------------------# import itertools import heapq class priorityQueue: def __init__(self): self.pq = [] self.entry_finder = {} self.REMOVED = "REMOVED" self.counter = itertools.count() def add_element(self, elt, priority=0): """ Add an element to the queue """ if elt in self.entry_finder.keys(): self.remove_element(elt) count = next(self.counter) entry = [priority, count, elt] self.entry_finder[elt] = entry heapq.heappush(self.pq, entry) def remove_element(self, elt): """ """ entry = self.entry_finder[elt] entry[-1] = self.REMOVED def pop_element(self): while self.pq: priority, count, elt = heapq.heappop(self.pq) if elt != self.REMOVED: del self.entry_finder[elt] return elt raise KeyError('Cannot pop an element from empty queue') #-----------------------------------------------------------------------------------------------# #---------------------------------- IMAGE FORESTING TRANSFORM ----------------------------------# #-----------------------------------------------------------------------------------------------# import numpy as np def _get_cost(a,b,flag='SP_SUM'): if flag == 'SP_SUM': return a+b elif flag == 'SP_MAX': return max(a,b) else: raise Exception('flag should be SP_SUM or SP_MAX but got {}'.format(flag)) def _ift(graph,init_labels,alg_flag='SP_SUM'): """Return the image foresting transform for the labels graph : sparse matrix The edge weighted graph on which the shortest path must be calculated init_labels : ndarray Initial Labelling. 0 indicates unlabelled pixels. """ size = graph.shape[0] indices, indptr, data = graph.indices, graph.indptr, graph.data # Initialization - Labels and Cost labelling = np.array(init_labels) cost = np.inf*np.ones(size, dtype=np.int32) cost[init_labels > 0] = 0 pq = priorityQueue() for i in np.where(init_labels > 0)[0]: pq.add_element(i,0) while pq.pq: try: x = pq.pop_element() except: break for i in range(indptr[x],indptr[x+1]): y = indices[i] c_prime = _get_cost(cost[x],data[i],alg_flag) # New cost if c_prime < cost[y]: cost[y] = c_prime pq.add_element(y,priority=c_prime) labelling[y] = labelling[x] assert np.all(labelling > 0), "Some labellings are still 0. Check if the graph is connected!!" return labelling, np.sum(cost) #-----------------------------------------------------------------------------------------------# #-------------------------------------- CALCULATE CENTERS --------------------------------------# #-----------------------------------------------------------------------------------------------# from scipy.sparse.csgraph import floyd_warshall def _calc_centers(graph, X, labelling, method='nearest'): """Return the new centers graph : sparse matrix Indicates the graph constructed from X X : ndarray Original Data labelling: 1d array The labelling of the vertices method : one of 'nearest', 'floyd_warshall', 'erosion' Method to calculate the new centers """ size = graph.shape[0] centers = np.zeros(size) max_label = int(np.max(labelling)) for label in range(1, max_label+1): index_vert = np.where(labelling == label)[0] if method == 'floyd_warshall': subgraph = ((graph[index_vert]).transpose())[index_vert] FW = floyd_warshall(subgraph, directed=False) ind_center = np.argmin(np.max(FW, axis=-1)) centers[index_vert[ind_center]] = label elif method == 'nearest': mean_subgraph = np.mean(X[index_vert,:], axis=0, keepdims=True) dist_from_mean = np.sum((X[index_vert,:] - mean_subgraph)**2, axis = -1) ind_center = np.argmin(dist_from_mean.flatten()) centers[index_vert[ind_center]] = label else: raise Exception("Only use floyd_warshall or nearest methods (for now)") return centers #------------------------------------------------------------------------------------------------# #-------------------------------------- ITERATED WATERSHED --------------------------------------# #------------------------------------------------------------------------------------------------# import numpy as np def iterated_watershed(graph, X, number_clusters=6, max_iterations=100): """ """ size = graph.shape[0] #Initialize Random Centers centers = np.zeros(size, dtype=np.int32) index_centers = np.random.choice(size,number_clusters,replace=False) centers[index_centers] = np.arange(number_clusters) + 1 #Cost cost_history = [] opt_cost = np.inf opt_labels = None opt_centers = None for i in range(max_iterations): # Label all the vertices labels, cost_arr = _ift(graph,centers) # Update the optimal cost if cost_arr < opt_cost: opt_labels = labels opt_cost = cost_arr opt_centers = centers # Compute the cost and append it to the history cost_history.append(cost_arr) # Compute the new centers centersNew = _calc_centers(graph, X, labels) # Break if the centers did not change! if np.all(centers==centersNew): break else: centers=centersNew return opt_labels, cost_history, opt_centers #-------------------------------------------------------------------------------------# #------------------------------- MAKE GRAPH UNDIRECTED -------------------------------# #-------------------------------------------------------------------------------------# import scipy as sp def make_undirected(G): """This function takes the graph and returns the undirected version. """ u,v,w = sp.sparse.find(G) edges = dict() for i in range(u.shape[0]): edges[(u[i],v[i])] = w[i] edges[(v[i],u[i])] = w[i] sizeNew = len(edges) uNew = np.zeros(sizeNew, dtype=np.int32) vNew = np.zeros(sizeNew, dtype=np.int32) wNew = np.zeros(sizeNew, dtype=np.float64) i = 0 for ((u,v),w) in edges.items(): uNew[i], vNew[i], wNew[i] = u, v, w i += 1 assert i == sizeNew, "Something went wrong" return sp.sparse.csr_matrix((wNew,(uNew,vNew)), shape=G.shape) #-----------------------------------------------------------------------------------------------# #------------------------------------ CONSTRUCT 4-ADJ GRAPH ------------------------------------# #-----------------------------------------------------------------------------------------------# from scipy.sparse import csr_matrix def img_to_graph(img, beta=1., eps=1e-6, which='similarity'): """ """ s0, s1, s2 = img.shape xGrid, yGrid = np.meshgrid(np.arange(s0), np.arange(s1)) indGrid = (xGrid*s1 + yGrid).transpose() data_vert = np.sum((img[:-1,:,:] - img[1:,:,:])**2, axis = -1).flatten() row_vert = indGrid[:-1,:].flatten() col_vert = indGrid[1:,:].flatten() data_horiz = np.sum((img[:,:-1,:] - img[:,1:,:])**2, axis = -1).flatten() row_horiz = indGrid[:,:-1].flatten() col_horiz = indGrid[:,1:].flatten() data = np.concatenate((data_vert, data_horiz)) row = np.concatenate((row_vert, row_horiz)) col = np.concatenate((col_vert, col_horiz)) if which == 'similarity': # Make the data into similarities data = np.exp(-beta*data/data.std()) + eps elif which == 'dissimilarity': data += eps else: raise Exception("Should be one of similarity or dissimilarity.") graph = csr_matrix((data,(row, col)), shape = (s0*s1, s0*s1)) graph = make_undirected(graph) return graph #-------------------------------------------------------------------------------------------------# #----------------------------------------- GENERATE DATA -----------------------------------------# #-------------------------------------------------------------------------------------------------# from PIL import Image import numpy as np import os def generate_data_1Object(number_images=10**6): """Generate data from weizman 1-Object dataset """ list_names = list(filter(lambda x:(x[0] != '.') and (x[-3:] != "mat"), os.listdir("./Workstation_files/1obj"))) np.random.shuffle(list_names) total_count = len(list_names) for i in range(min(total_count, number_images)): fname = list_names[i] img = np.array(Image.open("./Workstation_files/1obj/"+fname+"/src_color/"+fname+".png"), dtype=np.float64) img = img/255. list_gt_fname = list(filter(lambda x: x[0] != '.', os.listdir("./Workstation_files/1obj/"+fname+"/human_seg/"))) gt = [] for gt_name in list_gt_fname: tmp = np.array(Image.open("./Workstation_files/1obj/"+fname+"/human_seg/"+gt_name), dtype=np.int32) z = np.zeros(tmp.shape[:2], dtype=np.int32) z[np.where(tmp[:,:,0]/255. == 1)] = 1 gt.append(z) yield img, gt, fname def generate_data_2Object(number_images=10**6): """Generate data from weizman 2-Object dataset """ list_names = list(filter(lambda x: (x[0] != '.') and (x[-3:] != "mat"), os.listdir("./Workstation_files/2obj"))) np.random.shuffle(list_names) total_count = len(list_names) for i in range(min(total_count, number_images)): fname = list_names[i] img = np.array(Image.open("./Workstation_files/2obj/"+fname+"/src_color/"+fname+".png"), dtype=np.float64) img = img/255. list_gt_fname = list(filter(lambda x: x[0] != '.', os.listdir("./Workstation_files/2obj/"+fname+"/human_seg/"))) gt = [] for gt_name in list_gt_fname: tmp = np.array(Image.open("./Workstation_files/2obj/"+fname+"/human_seg/"+gt_name), dtype=np.int32) z = np.zeros(tmp.shape[:2], dtype=np.int32) z[np.where(tmp[:,:,0]/255. == 1)] = 1 z[np.where(tmp[:,:,2]/255. == 1)] = 2 gt.append(z) yield img, gt, fname #-------------------------------------------------------------------------------------------------# #---------------------------------------- EVAULATE OUTPUT ----------------------------------------# #-------------------------------------------------------------------------------------------------# from sklearn.metrics import adjusted_mutual_info_score from sklearn.metrics import adjusted_rand_score from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster.supervised import _comb2 def evaluate_output(ypred, list_gt): """ """ list_AMI, list_ARI, list_fScore, list_acc = [], [], [], [] for gt in list_gt: ytrue = gt.flatten() ypred = ypred.flatten() AMI = adjusted_mutual_info_score(ytrue, ypred) list_AMI.append(AMI) ARI = adjusted_rand_score(ytrue, ypred) list_ARI.append(ARI) # Get the contigency matrix contingency = contingency_matrix(ytrue, ypred) # F-Score : TP = sum(_comb2(n_ij) for n_ij in contingency.flatten()) total_positive_pred = sum(_comb2(n_c) for n_c in np.ravel(contingency.sum(axis=1))) total_positive_true = sum(_comb2(n_c) for n_c in np.ravel(contingency.sum(axis=0))) precision, recall = TP/total_positive_pred, TP/total_positive_true f_score = 2*precision*recall/(precision + recall) list_fScore.append(f_score) # Assume that the class of a predicted label is the class with highest intersection accuracy = np.sum(np.max(contingency, axis=0))/np.sum(contingency) list_acc.append(accuracy) return np.max(list_AMI), np.max(list_ARI), np.max(list_fScore), np.max(list_acc) #-------------------------------------------------------------------------------------------------# #-------------------------------------- SPECTRAL CLUSTERING --------------------------------------# #-------------------------------------------------------------------------------------------------# from scipy.sparse import csr_matrix from sklearn.cluster import k_means from scipy.sparse.csgraph import connected_components, laplacian from scipy.sparse.linalg import eigsh import scipy as sp from scipy import sparse from sklearn.cluster import spectral_clustering as _spectral_clustering def spectral_clustering(graph, n_clusters, beta_weight=1., eps_weight=1e-6): """ """ graphTmp = csr_matrix(graph, copy=True) graphTmp.data = np.exp(-beta_weight*graphTmp.data/graphTmp.data.std()) + eps_weight L = laplacian(graphTmp, normed=True) eigval, embed = eigsh(L, 6, sigma = 1e-10) d0, labels, d2 = k_means(embed,6, n_init=10) return labels #--------------------------------------------------------------------------------------------------# #----------------------------------- ISOPERIMETRIC PARTITIONING -----------------------------------# #--------------------------------------------------------------------------------------------------# from IsoperimetricPartitioning import recursive_iso_parition, isoperimetric_Full """ isoperimetric_Full(img_graph, ground=0) recursive_iso_parition(img_graph, algCode='full') """ def isoperimetric_partitioning(graph, beta_weight=1., eps_weight=1e-6, which='full'): """ """ graphTmp = csr_matrix(graph, copy=True) graphTmp.data = np.exp(-beta_weight*graphTmp.data/graphTmp.data.std()) + eps_weight seed = 0 if which == 'full': labels, isoSolution = isoperimetric_Full(graphTmp, ground=seed) elif which == 'recursive': labels = recursive_iso_parition(graphTmp, algCode='full') return labels #--------------------------------------------------------------------------------------------------# #-------------------------------------- K-MEANS PARTITIONING --------------------------------------# #--------------------------------------------------------------------------------------------------# from sklearn.cluster import KMeans def kmeans_adapted(img, n_clusters): """ """ s0, s1, s2 = img.shape X = img.reshape((s0*s1, s2)) xgrid, ygrid = np.meshgrid(np.arange(s0), np.arange(s1)) xgrid, ygrid = xgrid.transpose(), ygrid.transpose() xgrid, ygrid = (xgrid.flatten()).reshape((-1,1)), (ygrid.flatten()).reshape((-1,1)) grid = np.hstack((xgrid, ygrid)) grid = grid/np.max(grid) X = np.hstack((X, grid)) clf = KMeans(n_clusters=n_clusters) labels = clf.fit_predict(X) return labels #---------------------------------------------------------------------------------------------------# #-------------------------------------- GET ROAD NETWORK DATA --------------------------------------# #---------------------------------------------------------------------------------------------------# import pandas as pd import numpy as np import networkx as nx import scipy as sp def get_road_network_data(city='Mumbai'): """ """ data = pd.read_csv("./RoadNetwork/"+city+"/"+city+"_Edgelist.csv") size = data.shape[0] X = np.array(data[['XCoord','YCoord']]) u, v = np.array(data['START_NODE'], dtype=np.int32), np.array(data['END_NODE'], dtype=np.int32) w = np.array(data['LENGTH'], dtype=np.float64) w = w/np.max(w) + 1e-6 G = sp.sparse.csr_matrix((w, (u,v)), shape = (size, size)) n, labels = sp.sparse.csgraph.connected_components(G) if n == 1: return G # If there are more than one connected component, return the largest connected component count_size_comp = np.bincount(labels) z = np.argmax(count_size_comp) indSelect = np.where(labels==z) Gtmp = G[indSelect].transpose()[indSelect] Gtmp = make_undirected(Gtmp) return X[indSelect], Gtmp #---------------------------------------------------------------------------------------------------# #------------------------------------- K-MEANS ON ROAD NETWORK -------------------------------------# #---------------------------------------------------------------------------------------------------# from sklearn.cluster import KMeans from scipy.sparse.csgraph import dijkstra def kmeans_on_roadNetwork(G, X, nClusters): """ """ clf = KMeans(n_clusters=nClusters, n_init=20) labels = clf.fit_predict(X) seeds = np.zeros(X.shape[0], dtype=np.int32) for l in
np.unique(labels)
numpy.unique
# coding=utf-8 import pandas import numpy as np import scipy import statsmodels.api as sm import traceback import logging import math import random from time import time from msgpack import unpackb, packb from redis import StrictRedis from scipy import stats from sklearn.ensemble import IsolationForest from sklearn.cluster import KMeans from settings import ( ALGORITHMS, CONSENSUS, FULL_DURATION, MAX_TOLERABLE_BOREDOM, MIN_TOLERABLE_LENGTH, STALE_PERIOD, REDIS_SOCKET_PATH, ENABLE_SECOND_ORDER, BOREDOM_SET_SIZE, K_MEANS_CLUSTER, VERTEX_WEIGHT_ETA, VERTEX_THRESHOLD, ANOMALY_COLUMN, ANOMALY_PATH, CSHL_NUM, CSHL_PATH, ) from algorithm_exceptions import * logger = logging.getLogger("AnalyzerLog") redis_conn = StrictRedis(unix_socket_path=REDIS_SOCKET_PATH) vertex_centers = np.zeros((1, 1)) vertex_avg_score = -1 cshl_weight = [-1.35455734e-01, -5.44036064e-04, -1.35455734e-01, -5.44036064e-04, -1.35455734e-01, -1.35455734e-01, -5.44036064e-04, -1.35455734e-01, -5.44036064e-04, -1.35455734e-01, -5.44036064e-04, -5.44036064e-04, -1.67484694e+00, 1.04843752e+00, 6.61651030e-01, 4.13469487e-08, 1.78945321e-01, -3.60150391e-01, 1.21850659e-01, 4.61800469e-01, -1.00200490e-01, -1.33467708e-06, 9.32745829e-19, 4.21863030e-09, -3.36662454e-10, -8.90717918e-06, -4.42558069e-05, -2.87667856e-09] """ This is no man's land. Do anything you want in here, as long as you return a boolean that determines whether the input timeseries is anomalous or not. To add an algorithm, define it here, and add its name to settings.ALGORITHMS. """ def vertex_score(timeseries): """ A timeseries is anomalous if vertex score in hypergraph is greater than average score of observed anomalous vertex. :return: True or False """ if vertex_centers.shape[0] <= 1: update_vertex_param() timeseries = np.array(timeseries) test_data = timeseries[:, 1:] test_data = (test_data - np.min(test_data, axis=0)) / (np.max(test_data, axis=0) - np.min(test_data, axis=0)) test_data = np.nan_to_num(test_data) score = calculate_vertex_score(test_data, vertex_centers) if np.sum(score[score > vertex_avg_score]) > VERTEX_THRESHOLD: return True return False def cshl_detect(timeseries): timeseries = np.delete(np.array(timeseries), [0,1,2,15], axis=1) abnormal_num = 0 for i in range(timeseries.shape[0]): zeta = np.dot(timeseries[i], cshl_weight) if zeta < 0: abnormal_num = abnormal_num + 1 if abnormal_num >= CSHL_NUM: return True return False def update_vertex_param(): """ Read observed abnormal data and update cluster centers """ global vertex_centers global vertex_avg_score origin_data = pandas.read_csv(ANOMALY_PATH).values abnormal = origin_data[:, 3:] abnormal = (abnormal - np.min(abnormal, axis=0)) / (np.max(abnormal, axis=0) - np.min(abnormal, axis=0)) abnormal = np.nan_to_num(abnormal) k_means = KMeans(n_clusters=K_MEANS_CLUSTER) k_means.fit_predict(abnormal) vertex_centers = k_means.cluster_centers_ vertex_avg_score = np.mean(calculate_vertex_score(abnormal, vertex_centers)) def calculate_vertex_score(samples, center): """ we use similarity score and isolation score to initialize vertex weight according to their correlations :param samples: all the samples :param center: abnormal cluster center :return: total score of samples """ clf = IsolationForest() clf.fit(samples) num = samples.shape[0] IS = (0.5 - clf.decision_function(samples)).reshape((num, 1)) distance = np.array(np.min(euclidean_distances(samples, center), axis=1)) dis_min = np.min(distance) dis_max = np.max(distance) distance = (distance - dis_min) / (dis_max - dis_min) SS = np.exp(-distance).reshape((num, 1)) TS = VERTEX_WEIGHT_ETA * IS + (1-VERTEX_WEIGHT_ETA) * SS return TS def euclidean_distances(A, B): """ Euclidean distance between matrix A and B :param A: np array :param B: np array :return: np array """ BT = B.transpose() vec_prod = np.dot(A, BT) SqA = A**2 sumSqA = np.matrix(np.sum(SqA, axis=1)) sumSqAEx = np.tile(sumSqA.transpose(), (1, vec_prod.shape[1])) SqB = B**2 sumSqB = np.sum(SqB, axis=1) sumSqBEx = np.tile(sumSqB, (vec_prod.shape[0], 1)) SqED = sumSqBEx + sumSqAEx - 2*vec_prod SqED[SqED < 0] = 0.0 ED = np.sqrt(SqED) return ED def tail_avg(timeseries): """ This is a utility function used to calculate the average of the last three datapoints in the series as a measure, instead of just the last datapoint. It reduces noise, but it also reduces sensitivity and increases the delay to detection. """ timeseries = np.array(timeseries) timeseries = timeseries[:, 1:] try: t = (timeseries[-1] + timeseries[-2] + timeseries[-3]) / 3 return t except IndexError: return timeseries[-1] def update_cshl(): global cshl_weight csv_data = pandas.read_csv(CSHL_PATH, header=None) csv_data.drop([1, 2, 15], axis=1, inplace=True) csv_data.drop_duplicates() normal_data = csv_data[csv_data[0] == 0] abnormal_data = csv_data[csv_data[0] == 1] measure_data = np.vstack((normal_data, abnormal_data)) measure_label = measure_data[:, 0] measure_label[measure_label == 0] = -1 measure_data = measure_data[:, 1:] measure_data = (measure_data - np.min(measure_data, axis=0)) / ( np.max(measure_data, axis=0) - np.min(measure_data, axis=0)) measure_data = np.nan_to_num(measure_data) cshl_weight = hpconstruct(measure_data, measure_label, 5) def hpconstruct(x, y, k): """ construct hypergraph and interative process :param x: np array, train and test set :param y: np array, cost for each sample :param k: value, kNN :return: evaluation criteria """ length = len(x) h = np.zeros((length, length)) dvlist = [] delist = [] totaldis = 0.0 alpha = 0.05 wm = np.eye(length) wm = (1.0 / length) * wm # initialize W for xi in range(length): diffMat = np.tile(x[xi], (length, 1)) - x # 求inX与训练集各个实例的差 sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances ** 0.5 # 求欧式距离 sortedDistIndicies = distances.argsort() # 取排序的索引,用于排label for i in range(k): index = sortedDistIndicies[i + 1] h[index][xi] = distances[index] totaldis += distances.sum() avedis = totaldis / (length ** 2 - length) for xi in range(length): for yi in range(length): if h[xi][yi]: h[xi][yi] = math.exp(((h[xi][yi] / avedis) ** 2) / (-alpha)) h[xi][xi] = 1 # initialize H,横坐标代表点,纵坐标代表边(中心点为序号) for xi in range(length): vertextmp = 0 for yi in range(length): vertextmp += wm[yi][yi] * h[xi][yi] dvlist.append(vertextmp) dv = np.diag(dvlist) # initialize Dv for xi in range(length): edgetmp = 0 for yi in range(length): edgetmp += h[yi][xi] delist.append(edgetmp) de = np.diag(delist) # initialize De di = [] # y = np.array([]) for i in range(length): if y[i] == 1: di.append(1) elif y[i] == -1: di.append(1) else: di.append(0) v = np.diag(di) # initialize Υ for i in range(length): dv[i][i] = 1 / (math.sqrt(dv[i][i])) # de[i][i] = 1 / de[i][i] # calculate power of Dv and De de =
np.linalg.inv(de)
numpy.linalg.inv
import numpy as np from scipy.interpolate import interp1d from pyTools import * ################################################################################ #~~~~~~~~~Log ops ################################################################################ def logPolyVal(p,x): ord = p.order() logs = [] for idx in xrange(ord+1): logs.append( np.log( p[idx] ) + (ord-idx)*np.log(x) ) return logs ################################################################################ #~~~~~~~~~Symmeterize data ################################################################################ def symmeterize( x, y, interp_type='cubic' ): if x.min() <= 0: raise ValueError('x.min() must be greater than zero.') xs = np.array([-x,x]).flatten() xs.sort() f = interp1d( x , y , kind=interp_type ) return { 'x':xs , 'y':f(np.abs(xs)) } ################################################################################ #~~~~~~~~~3D Shapes ################################################################################ def makeSphere(x0=0,y0=0,z0=0,r=1,ntheta=30,nphi=30): u = np.linspace(0, np.pi, ntheta) v = np.linspace(0, 2 * np.pi, nphi) x = np.outer(np.sin(u), np.sin(v))*r y = np.outer(np.sin(u), np.cos(v))*r z = np.outer(np.cos(u), np.ones_like(v))*r return x+x0, y+y0, z+z0 def makeCylinder(x0=0,y0=0,z0=0,r=1,h=10,ntheta=30,nz=30): u = np.linspace(0, 2*np.pi, ntheta) z = np.linspace(0, h, nz) UU,ZZ = np.meshgrid(u,z) XX = np.cos(UU)*r YY = np.sin(UU)*r # ax.plot_wireframe(x, y, z) return XX+x0, YY+y0, ZZ+z0 def generateLine3D( x0=0, x1=1, y0=0, y1=1, z0=0, z1=0, N=2 ): return {'line':{'xData':np.linspace(x0,x1,N), 'yData':np.linspace(y0,y1,N), 'zData':np.linspace(z0,z1,N), 'cData':np.ones((N,1))}} ################################################################################ #~~~~~~~~~2D Shapes ################################################################################ def generateCircle(R=1, X0=0, Y0=0, N = 60, thetaMin = 0, thetaMax = 2*np.pi ): thetas = np.linspace( thetaMin , thetaMax , N) uY = np.sin( thetas )*R uX = np.cos( thetas )*R return {'circle':{'xData':uX+X0, 'yData':uY+Y0}} def generateEllipse( RX=2, RY=1, X0=0, Y0=0, N = 60, thetaMin = 0, thetaMax = 2*np.pi ): thetas = np.linspace( thetaMin , thetaMax , N) uY = np.sin( thetas )*RY uX = np.cos( thetas )*RX return {'ellipse':{'xData':uX+X0, 'yData':uY+Y0}} def makeCylinder2D( L = 10., R = 1., N=60, view_degrees=30. ): yFac =
np.cos(view_degrees * np.pi/180.)
numpy.cos
import os import numpy as np import torch import torch.utils.data from PIL import Image import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor import torch.onnx as onnx import torchvision.models as models from engine import train_one_epoch, evaluate import utils import transforms as T from torch.profiler import profile, record_function, ProfilerActivity class NNDataset(torch.utils.data.Dataset): def __init__(self, root, transforms=None): self.root = root self.transforms = transforms # load all image files, sorting them to # ensure that they are aligned self.imgs = list(sorted(os.listdir(os.path.join(root, "Images")))) self.masks = list(sorted(os.listdir(os.path.join(root, "Masks")))) def __getitem__(self, idx): # load images ad masks img_path = os.path.join(self.root, "Images", self.imgs[idx]) mask_path = os.path.join(self.root, "Masks", self.masks[idx]) img = Image.open(img_path).convert("RGB") # convert masks to grayscale mode to distinguish background and objects mask = Image.open(mask_path).convert("L") mask = np.array(mask) # instances are encoded as different colors obj_ids =
np.unique(mask)
numpy.unique
from math import floor, ceil import numpy as np import json import os class RPNconfig: """Simple config holder with ability to save and load""" def __init__(self, image_size, fm_size, scales, sizes): self.image_size = image_size self.fm_size = fm_size self.sizes = sizes self.scales = scales self.anchors_per_fm_point = len(sizes) * len(scales) self.anchor_boxes, self.valid_indices = rpn_anchor_boxes(image_size, fm_size, sizes, scales) def save_json(self, path): assert os.path.splitext(path)[-1] == '.json', 'Config can only be a json' data = {'image_size': self.image_size, 'fm_size': self.fm_size, 'sizes': self.sizes, 'scales': self.scales} with open(path, 'w') as file: json.dump(data, file) @staticmethod def load_json(path): assert os.path.splitext(path)[-1] == '.json', 'Config can only be a json' with open(path, 'r') as file: data = json.load(file) return RPNconfig(**data) def rpn_anchor_boxes(image_size, *args, **kwargs): """Generate anchor boxes and indices of valid anchor boxes beforehand""" anchor_boxes = generate_anchor_boxes(image_size, *args, **kwargs) valid_ab_indices = valid_anchor_boxes(anchor_boxes, image_size) return anchor_boxes, valid_ab_indices def generate_anchor_boxes(image_size, feature_map_size, sizes, scales): """Generates all anchor boxes for current RPN configuration. Receives: sizes: sizes of 1:1 anchor boxes scales: sides ratios of anchor boxes image_size: (iH, iW) feature_map_size: (fH, fW) Returns: anchor_boxes: shape (N, 4) """ image_height, image_width = image_size fm_height, fm_width = feature_map_size height_stride = int(image_height / fm_height) width_stride = int(image_width / fm_width) # Compose horizontal and vertical positions into grid and reshape result into (-1, 2) y_centers = np.arange(0, image_height, height_stride) x_centers = np.arange(0, image_width, width_stride) centers = np.dstack(np.meshgrid(y_centers, x_centers)).reshape((-1, 2)) # Creates anchor boxes pyramid. Somewhat vectorized version of itertools.product r_scales = np.repeat([scales], len(sizes), axis=0).ravel() r_sides = np.repeat([sizes], len(scales), axis=1).ravel() ab_pyramid = np.transpose([r_sides / (r_scales ** .5), r_sides * (r_scales ** .5)]).astype(int) # Creates combinations of all anchor boxes centers and sides r_centers = np.repeat(centers, len(ab_pyramid), axis=0) r_ab_pyramid = np.repeat([ab_pyramid], len(centers), axis=0).reshape((-1, 2)) return np.hstack((r_centers, r_ab_pyramid)) def valid_anchor_boxes(anchor_boxes, image_size): """Return indices of valid anchor boxes, Anchor box is considered valid if it is inside image entirely Receives: anchor_boxes: shape (N, 4) image_size: (iH, iW) Returns: indices shape (M) """ img_height, img_width = image_size y, x, height, width = np.transpose(anchor_boxes) # TODO(Mocurin) Optimize? # Indicator matrix indicators = np.array([y - height // 2 >= 0, x - width // 2 >= 0, y + height // 2 <= img_height, x + width // 2 <= img_width]).transpose() # Get indices of anchor boxes inside image return np.flatnonzero(np.all(indicators, axis=1, keepdims=False)) def compute_deltas(anchor_boxes, gt_boxes): """Computes deltas between anchor boxes and respective gt boxes Receives: anchor_boxes: shape (N, 4) 'center' format gt_boxes: shape (N, 4) 'corners' format Returns: deltas: shape (n, 4) These 4 are: dy = gt_y_center - y) / h dx = gt_x_center - x) / w dh = log(gt_height / h) dw = log(gt_width / w)""" y, x, height, width = np.transpose(anchor_boxes) y0, x0, y1, x1 =
np.transpose(gt_boxes)
numpy.transpose
import os import re from collections import namedtuple import numpy as np from scipy.stats import rankdata from sklearn.utils import check_random_state from csrank.constants import OBJECT_RANKING from .util import sub_sampling_rankings from ..dataset_reader import DatasetReader __all__ = ['DepthDatasetReader'] class DepthDatasetReader(DatasetReader): def __init__(self, dataset_type='deep', random_state=None, **kwargs): super(DepthDatasetReader, self).__init__(learning_problem=OBJECT_RANKING, dataset_folder='depth_data', **kwargs) options = {'deep': ['complete_deep_train.dat', 'complete_deep_test.dat'], 'basic': ['saxena_basic61x55.dat', 'saxena_basicTest61x55.dat'], 'semantic': ['saxena_semantic61x55.dat', 'saxena_semanticTest61x55.dat'] } if dataset_type not in options: dataset_type = 'deep' train_filename, test_file_name = options[dataset_type] self.train_file = os.path.join(self.dirname, train_filename) self.test_file = os.path.join(self.dirname, test_file_name) self.random_state = check_random_state(random_state) self.__load_dataset__() def __load_dataset__(self): self.x_train, self.depth_train = load_dataset(self.train_file) self.x_test, self.depth_test = load_dataset(self.test_file) def get_train_test_datasets(self, n_datasets=5): splits = np.array(n_datasets) return self.splitter(splits) def get_single_train_test_split(self): seed = self.random_state.randint(2 ** 32, dtype='uint32') X_train, Y_train = self.get_train_dataset_sampled_partial_rankings(seed=seed) X_train, Y_train = sub_sampling_rankings(X_train, Y_train, n_objects=5) X_test, Y_test = self.get_test_dataset_ties() return X_train, Y_train, X_test, Y_test def get_dataset_dictionaries(self): pass def splitter(self, iter): for i in iter: X_train, Y_train = self.get_train_dataset_sampled_partial_rankings(seed=10 * i + 32) X_test, Y_test = self.get_test_dataset_ties() yield X_train, Y_train, X_test, Y_test def get_test_dataset_sampled_partial_rankings(self, **kwargs): self.X, self.Y = self.get_dataset_sampled_partial_rankings(datatype='test', **kwargs) self.__check_dataset_validity__() return self.X, self.Y def get_train_dataset_sampled_partial_rankings(self, **kwargs): self.X, self.Y = self.get_dataset_sampled_partial_rankings(datatype='train', **kwargs) self.__check_dataset_validity__() return self.X, self.Y def get_test_dataset(self): self.X, self.Y = self.get_dataset(datatype='test') self.__check_dataset_validity__() return self.X, self.Y def get_train_dataset(self): self.X, self.Y = self.get_dataset(datatype='train') self.__check_dataset_validity__() return self.X, self.Y def get_test_dataset_ties(self): self.X, self.Y = self.get_dataset_ties(datatype='test') self.__check_dataset_validity__() return self.X, self.Y def get_train_dataset_ties(self): self.X, self.Y = self.get_dataset_ties(datatype='train') self.__check_dataset_validity__() return self.X, self.Y def get_dataset_sampled_partial_rankings(self, datatype='train', max_number_of_rankings_per_image=10, seed=42): random_state = np.random.RandomState(seed=seed) x_train, depth_train = self.get_deep_copy_dataset(datatype) X = [] rankings = [] order_lengths = np.array( [len(np.unique(depths[np.where(depths <= 0.80)[0]], return_index=True)[1]) for depths in depth_train]) order_length = np.min(order_lengths) for features, depths in zip(x_train, depth_train): value, obj_indices = np.unique(depths[np.where(depths <= 0.80)[0]], return_index=True) interval = int(len(obj_indices) / order_length) if interval < max_number_of_rankings_per_image: num_of_orderings_per_image = interval else: num_of_orderings_per_image = max_number_of_rankings_per_image objects_i = np.empty([order_length, num_of_orderings_per_image], dtype=int) for i in range(order_length): if i != order_length - 1: objs = random_state.choice(obj_indices[i * interval:(i + 1) * interval], num_of_orderings_per_image, replace=False) else: objs = random_state.choice(obj_indices[i * interval:len(obj_indices)], num_of_orderings_per_image, replace=False) objects_i[i] = objs for i in range(num_of_orderings_per_image): indices = objects_i[:, i] np.random.shuffle(indices) X.append(features[indices]) ranking = rankdata(depths[indices]) - 1 rankings.append(ranking) X = np.array(X) rankings = np.array(rankings) return X, rankings def get_dataset(self, datatype='train'): x, y = self.get_deep_copy_dataset(datatype) X = [] rankings = [] for features, depths in zip(x, y): value, indices = np.unique(depths, return_index=True) np.random.shuffle(indices) X.append(features[indices]) ranking = rankdata(depths[indices]) - 1 rankings.append(ranking) X = np.array(X) rankings = np.array(rankings) return X, rankings def get_dataset_ties(self, datatype='train'): X, y = self.get_deep_copy_dataset(datatype) for depth in y: depth[np.where(depth >= 0.80)[0]] = 0.80 rankings = np.array([rankdata(depth) - 1 for depth in y]) return X, rankings def get_deep_copy_dataset(self, datatype): if datatype == 'train': x, y = np.copy(self.x_train),
np.copy(self.depth_train)
numpy.copy
# authors: <NAME>, email:<EMAIL> # <NAME>, email:<EMAIL> # This is the code repo for the paper "Deep-learning based decoding of constrained sequence codes", # in IEEE Journal on Selected Areas in Communications, https://ieeexplore.ieee.org/document/8792188. # Credit is also given to Tobias Gruber et al and their github repo https://github.com/gruberto/DL-ChannelDecoding, # where this code repo is initially partly written based on theirs. #!/usr/bin/env python import numpy as np import random from keras import backend as K ### def modulateBPSK(x): return -2 * x + 1 def addNoise_fixedlengthCode(x, sigma): w = K.random_normal(K.shape(x), mean=0.0, stddev=sigma) return x + w def addNoise(x, sigma, len_test = None): if len_test is None: w = K.random_normal(K.shape(x), mean=0.0, stddev=sigma) positives = K.equal(x, 3) positives = K.cast(positives, K.floatx()) noisy = x + w noisy = noisy - noisy*positives + 3*positives K.print_tensor(noisy) return noisy else: w = np.random.normal(0.0, sigma, x.shape) noisy = x + w for noisy_test_i in range(0, noisy.shape[0]): if len_test[noisy_test_i][0] < noisy.shape[1]: noisy[noisy_test_i][int(len_test[noisy_test_i][0]):] = [3] * (noisy.shape[1] - int(len_test[noisy_test_i][0])) return noisy; def ber(y_true, y_pred): return K.mean(K.not_equal(y_true, K.round(y_pred))) def return_output_shape(input_shape): return input_shape def log_likelihood_ratio(x, sigma): return 2 * x / np.float32(sigma ** 2) def errors(y_true, y_pred): return K.sum(K.cast(K.not_equal(y_true, K.round(y_pred)), dtype='float')) def half_adder(a, b): s = a ^ b c = a & b return s, c def full_adder(a, b, c): s = (a ^ b) ^ c # for current bit position c = (a & b) | (c & (a ^ b)) # for the next bit position # print("s: ", s," c: ", c); return s, c def add_bool(a, b): if len(a) != len(b): raise ValueError('arrays with different length') k = len(a) s = np.zeros(k, dtype=bool) c = False for i in reversed(range(0, k)): s[i], c = full_adder(a[i], b[i], c) if c: warnings.warn("Addition overflow!") return s def inc_bool(a): k = len(a) increment = np.hstack((np.zeros(k - 1, dtype=bool), np.ones(1, dtype=bool))) # print("a: ", a," increment: ", increment); a = add_bool(a, increment) return a def bitrevorder(x): m = np.amax(x) n = np.ceil(np.log2(m)).astype(int) for i in range(0, len(x)): x[i] = int('{:0{n}b}'.format(x[i], n=n)[::-1], 2) return x def int2bin(x, N): if isinstance(x, list) or isinstance(x, np.ndarray): binary = np.zeros((len(x), N), dtype='bool') for i in range(0, len(x)): binary[i] = np.array([int(j) for j in bin(x[i])[2:].zfill(N)]) else: binary = np.array([int(j) for j in bin(x)[2:].zfill(N)], dtype=bool) return binary def bin2int(b): if isinstance(b[0], list): integer = np.zeros((len(b),), dtype=int) for i in range(0, len(b)): out = 0 for bit in b[i]: out = (out << 1) | bit integer[i] = out elif isinstance(b, np.ndarray): if len(b.shape) == 1: out = 0 for bit in b: out = (out << 1) | bit integer = out else: integer = np.zeros((b.shape[0],), dtype=int) for i in range(0, b.shape[0]): out = 0 for bit in b[i]: out = (out << 1) | bit integer[i] = out return integer def polar_design_awgn(N, k, design_snr_dB): S = 10 ** (design_snr_dB / 10) z0 = np.zeros(N) z0[0] = np.exp(-S) for j in range(1, int(np.log2(N)) + 1): u = 2 ** j for t in range(0, int(u / 2)): T = z0[t] z0[t] = 2 * T - T ** 2 # upper channel z0[int(u / 2) + t] = T ** 2 # lower channel # sort into increasing order idx = np.argsort(z0) # select k best channels idx = np.sort(bitrevorder(idx[0:k])) A = np.zeros(N, dtype=bool) A[idx] = True return A def polar_transform_iter(u): N = len(u) n = 1 x = np.copy(u) stages = np.log2(N).astype(int) for s in range(0, stages): i = 0 while i < N: for j in range(0, n): idx = i + j x[idx] = x[idx] ^ x[idx + n] i = i + 2 * n n = 2 * n return x def error_correction_hard(clen, received, codebook_decode_array_shuffle = None): if codebook_decode_array_shuffle.size != 0: codebook = codebook_decode_array_shuffle else: codebook = code_word_4b6b min_hamming_distance = clen + 1 for key in codebook: hamming_distance = 0 for bit in range(0, clen): if received[bit] != key[bit]: hamming_distance += 1 if hamming_distance < min_hamming_distance: min_hamming_distance = hamming_distance corrected = key return corrected def error_correction_soft(clen, received, codebook_decode_array_shuffle = None): if codebook_decode_array_shuffle.size != 0: codebook = codebook_decode_array_shuffle else: codebook = code_word_4b6b min_distance = 10.0 ** 10.0 for key in codebook: distance = 0.0 for bit in range(0, clen): distance += abs(received[bit] - (-2.0 * key[bit] + 1.0)) * abs(received[bit] - (-2.0 * key[bit] + 1.0)) if distance < min_distance: # print(distance,"\n") min_distance = distance corrected = key return corrected def error_correction_soft_DCfreeN5(clen, received): if clen == 2: codebook = code_word_DCfreeN5_len2 elif clen == 4: codebook = code_word_DCfreeN5_len4 else: print("received word not recoginzed (length can only be 2 or 4)") exit(-1) min_distance = 10.0 ** 10.0 for key in codebook: distance = 0.0 for bit in range(0, clen): distance += abs(received[bit] - (-2.0 * key[bit] + 1.0)) * abs(received[bit] - (-2.0 * key[bit] + 1.0)) if distance < min_distance: # print(distance,"\n") min_distance = distance corrected = key return corrected def bit_err(ber, bits, clen): """ bit error rate vs S/N ratio :param ber: ber array [sigma, error, bits] :param bits: number of bit :param clen: code length :return: """ biterr = np.zeros((ber.shape[0], 2)) biterr[:, 0] = 10 * np.log10(1 / (2.0 * ber[:, 0] * ber[:, 0])) - 10 * np.log10(float(bits) / clen) biterr[:, 1] = ber[:, 1] / ber[:, 2] return biterr def score(biterr0, biterr1): """ score to evaluate the decoder :param biterr0: bit error rate (optimal) [sigma, biterr] :param biterr1: bit error rate for evaluation [sigma. biterr] :return: """ n = biterr1[0:len(biterr0) - 1, 1]/biterr0[0:len(biterr0) - 1, 1] s = np.nansum(n) if biterr1[len(biterr0) - 1, 1] == 0: s += 1 else: s += 10 s = s / 5.0 return s def scoreBLER(BLER0, BLER1): s= 0.0 for i in range(0, len(BLER0)): if BLER1[i] == 0: if BLER0[i] == 0: s += 0 else: s += 10 else: s += float(BLER0[i]) / float(BLER1[i]) s = s / len(BLER0) return s def shuffle_code_book(encode_book): """ shuffle the code book :param encode_book: code book :return: shuffled code book """ codbok = np.array(list(encode_book.items())) ids0 = np.random.permutation(codbok.shape[0]) ids1 = np.random.permutation(codbok.shape[0]) cod = codbok[ids0, 0] word = codbok[ids1, 1] shuff_encode_book = dict() for i in range(len(cod)): shuff_encode_book[cod[i]] = word[i] return shuff_encode_book def cartesian(arrays, out=None): """ Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] dtype = arrays[0].dtype n = np.prod([x.size for x in arrays]) if out is None: out = np.zeros([n, len(arrays)], dtype=dtype) m = int(n / arrays[0].size) out[:,0] = np.repeat(arrays[0], m) if arrays[1:]: cartesian(arrays[1:], out=out[0:m,1:]) for j in range(1, arrays[0].size): out[j*m:(j+1)*m,1:] = out[0:m,1:] return out def create_codebook_shuffle(nframe = 5): cbs = [] np.random.seed(0) for i in range(nframe): cbi = shuffle_code_book(codebook_4b6b) cbs.append(cbi) comb_codbok = combine_codes(cbs) return comb_codbok def combine_codes(codboks): """ combine multiple code books to a big code :param codboks: tuple/list of code books :return: code book for the combined code """ idx = () for cb in codboks: key = cb.keys() idx = idx + (list(key),) idx = cartesian(idx) res = dict() cur_index = 0; for id in idx: cur_index += 1; print("processing ", cur_index, " hash entry in the shuffled codebook") cod = '' word = '' for i in range(len(id)): cod += id[i] word += " " + codboks[i][id[i]] cod = np.array(cod.replace('[', ' ').replace(']', ' ').split()).astype(int) word = word.lstrip(" ") res[str(cod)] = word return res def get_decode_book(codbok): """ get decode book from code boook :param codbok: code book :return: decode book """ decodbok = dict() decodbok_array = [] for key, val in codbok.items(): decodbok[str(np.array(val.split()).astype(int))] = key.replace('[', '').replace(']', '') decodbok_array.append(np.array(list(val.split(' ')), dtype = 'int')) decodbok_array = np.array(decodbok_array) return decodbok, decodbok_array # hash table for encoding codebook_4b6b = {str(np.array([0, 0, 0, 0])):'0 0 1 1 1 0', str(np.array([0, 0, 0, 1])):'0 0 1 1 0 1', str(np.array([0, 0, 1, 0])):'0 1 0 0 1 1', str(np.array([0, 0, 1, 1])):'0 1 0 1 1 0', str(np.array([0, 1, 0, 0])):'0 1 0 1 0 1', str(np.array([0, 1, 0, 1])):'1 0 0 0 1 1', str(np.array([0, 1, 1, 0])):'1 0 0 1 1 0', str(np.array([0, 1, 1, 1])):'1 0 0 1 0 1', str(np.array([1, 0, 0, 0])):'0 1 1 0 0 1', str(np.array([1, 0, 0, 1])):'0 1 1 0 1 0', str(np.array([1, 0, 1, 0])):'0 1 1 1 0 0', str(np.array([1, 0, 1, 1])):'1 1 0 0 0 1', str(np.array([1, 1, 0, 0])):'1 1 0 0 1 0', str(np.array([1, 1, 0, 1])):'1 0 1 0 0 1', str(np.array([1, 1, 1, 0])):'1 0 1 0 1 0', str(np.array([1, 1, 1, 1])):'1 0 1 1 0 0'} # hash table for decoding decode_4b6b = {str(np.array([0, 0, 1, 1, 1, 0])): '0 0 0 0', str(np.array([0, 0, 1, 1, 0, 1])):'0 0 0 1', str(np.array([0, 1, 0, 0, 1, 1])):'0 0 1 0', str(np.array([0, 1, 0, 1, 1, 0])):'0 0 1 1', str(np.array([0, 1, 0, 1, 0, 1])):'0 1 0 0', str(np.array([1, 0, 0, 0, 1, 1])):'0 1 0 1', str(np.array([1, 0, 0, 1, 1, 0])):'0 1 1 0', str(np.array([1, 0, 0, 1, 0, 1])):'0 1 1 1', str(np.array([0, 1, 1, 0, 0, 1])):'1 0 0 0', str(np.array([0, 1, 1, 0, 1, 0])):'1 0 0 1', str(np.array([0, 1, 1, 1, 0, 0])):'1 0 1 0', str(np.array([1, 1, 0, 0, 0, 1])):'1 0 1 1', str(np.array([1, 1, 0, 0, 1, 0])):'1 1 0 0', str(np.array([1, 0, 1, 0, 0, 1])):'1 1 0 1', str(np.array([1, 0, 1, 0, 1, 0])):'1 1 1 0', str(np.array([1, 0, 1, 1, 0, 0])):'1 1 1 1'} # hash table for error correction during decoding, same as codebook_decode but different type, # to be compatible with function error_correction_hard() and error_correction_soft() code_word_4b6b = np.array([[0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 0, 1], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 0, 1], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 0, 1], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 1, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 1, 0, 0]]) vary_length_1_3dk = { str(np.array([0])): '0 1', str(np.array([1, 0])): '0 0 1', str(np.array([1, 1])): '0 0 0 1' } vary_length_DCfreeN5_state_1 = { str(np.array([0, 1, 0])): [0, 1, 1, 1], str(
np.array([0, 1, 1])
numpy.array
import json import random import os import numpy as np import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader import copy import math import h5py import models.Constants as Constants from bisect import bisect_left import torch.nn.functional as F import pickle from pandas.io.json import json_normalize def resampling(source_length, target_length): return [round(i * (source_length-1) / (target_length-1)) for i in range(target_length)] def get_frames_idx(length, n_frames, random_type, equally_sampling=False): bound = [int(i) for i in np.linspace(0, length, n_frames+1)] idx = [] all_idx = [i for i in range(length)] if random_type == 'all_random' and not equally_sampling: idx = random.sample(all_idx, n_frames) else: for i in range(n_frames): if not equally_sampling: tmp = np.random.randint(bound[i], bound[i+1]) else: tmp = (bound[i] + bound[i+1]) // 2 idx.append(tmp) return sorted(idx) class VideoDataset(Dataset): def __init__(self, opt, mode, print_info=False, shuffle_feats=0, specific=-1): super(VideoDataset, self).__init__() self.mode = mode self.random_type = opt.get('random_type', 'segment_random') assert self.mode in ['train', 'validate', 'test', 'all', 'trainval'] assert self.random_type in ['segment_random', 'all_random'] # load the json file which contains information about the dataset data = pickle.load(open(opt['info_corpus'], 'rb')) info = data['info'] self.itow = info['itow'] self.wtoi = {v: k for k, v in self.itow.items()} self.itoc = info.get('itoc', None) self.itop = info.get('itop', None) self.itoa = info.get('itoa', None) self.length_info = info['length_info'] self.splits = info['split'] if self.mode == 'trainval': self.splits['trainval'] = self.splits['train'] + self.splits['validate'] self.split_category = info.get('split_category', None) self.id_to_vid = info.get('id_to_vid', None) self.captions = data['captions'] self.pos_tags = data['pos_tags'] self.references = pickle.load(open(opt['reference'], 'rb')) self.specific = specific self.num_category = opt.get('num_category', 20) self.max_len = opt["max_len"] self.n_frames = opt['n_frames'] self.equally_sampling = opt.get('equally_sampling', False) self.total_frames_length = opt.get('total_frames_length', 60) self.data_i = [self.load_database(opt["feats_i"]), opt["dim_i"], opt.get("dummy_feats_i", False)] self.data_m = [self.load_database(opt["feats_m"]), opt["dim_m"], opt.get("dummy_feats_m", False)] #self.data_i = [[], opt["dim_i"], opt.get("dummy_feats_i", False)] #self.data_m = [[], opt["dim_m"], opt.get("dummy_feats_m", False)] self.data_a = [self.load_database(opt["feats_a"]), opt["dim_a"], opt.get("dummy_feats_a", False)] self.data_s = [self.load_database(opt.get("feats_s", [])), opt.get("dim_s", 10), False] self.data_t = [self.load_database(opt.get("feats_t", [])), opt.get('dim_t', 10), False] self.mask_prob = opt.get('teacher_prob', 1) self.decoder_type = opt['decoder_type'] self.random = np.random.RandomState(opt.get('seed', 0)) self.obj = self.load_database(opt.get('object_path', '')) self.all_caps_a_round = opt['all_caps_a_round'] self.load_feats_type = opt['load_feats_type'] self.method = opt.get('method', 'mp') self.demand = opt['demand'] self.opt = opt if print_info: self.print_info(opt) self.beta_low, self.beta_high = opt.get('beta', [0, 1]) if (opt.get('triplet', False) or opt.get('knowledge_distillation_with_bert', False)) and self.mode == 'train': self.bert_embeddings = self.load_database(opt['bert_embeddings']) else: self.bert_embeddings = None if opt.get('load_generated_captions', False): self.generated_captions = pickle.load(open(opt['generated_captions'], 'rb')) assert self.mode in ['test'] else: self.generated_captions = None self.infoset = self.make_infoset() def get_references(self): return self.references def get_preprocessed_references(self): return self.captions def make_infoset(self): infoset = [] # decide the size of infoset if self.specific != -1: # we only evaluate partial examples with a specific category (MSRVTT, [0, 19]) ix_set = [int(item) for item in self.split_category[self.mode][self.specific]] else: # we evaluate all examples ix_set = [int(item) for item in self.splits[self.mode]] vatex = self.opt['dataset'] == 'VATEX' and self.mode == 'test' for ix in ix_set: vid = 'video%d' % ix if vatex: category = 0 captions = [[0]] pos_tags = [[0]] length_target = [0] else: category = self.itoc[ix] if self.itoc is not None else 0 captions = self.captions[vid] pos_tags = self.pos_tags[vid] if self.pos_tags is not None else ([None] * len(captions)) # prepare length info for each video example, only if decoder_type == 'NARFormmer' # e.g., 'video1': [0, 0, 3, 5, 0] if self.length_info is None: length_target = np.zeros(self.max_len) else: length_target = self.length_info[vid] #length_target = length_target[1:self.max_len+1] length_target = length_target[:self.max_len] if len(length_target) < self.max_len: length_target += [0] * (self.max_len - len(length_target)) #right_sum = sum(length_target[self.max_len+1:]) #length_target[-1] += right_sum length_target = np.array(length_target) / sum(length_target) if self.mode == 'train' and self.all_caps_a_round: # infoset will contain all captions for i, (cap, pt) in enumerate(zip(captions, pos_tags)): item = { 'vid': vid, 'labels': cap, 'pos_tags': pt, 'category': category, 'length_target': length_target, 'cap_id': i, } infoset.append(item) else: if self.generated_captions is not None: # edit the generated captions cap = self.generated_captions[vid][-1]['caption'] #print(cap) labels = [Constants.BOS] for w in cap.split(' '): labels.append(self.wtoi[w]) labels.append(Constants.EOS) #print(labels) item = { 'vid': vid, 'labels': labels, 'pos_tags': pos_tags[0], 'category': category, 'length_target': length_target } else: # infoset will contain partial captions, one caption per video clip cap_ix = random.randint(0, len(self.captions[vid]) - 1) if self.mode == 'train' else 0 #print(captions[0]) item = { 'vid': vid, 'labels': captions[cap_ix], 'pos_tags': pos_tags[cap_ix], 'category': category, 'length_target': length_target, 'cap_id': cap_ix, } infoset.append(item) return infoset def shuffle(self): random.shuffle(self.infoset) def __getitem__(self, ix): vid = self.infoset[ix]['vid'] labels = self.infoset[ix]['labels'] taggings = self.infoset[ix]['pos_tags'] category = self.infoset[ix]['category'] length_target = self.infoset[ix]['length_target'] cap_id = self.infoset[ix].get('cap_id', None) if cap_id is not None and self.bert_embeddings is not None: bert_embs = np.asarray(self.bert_embeddings[0][vid])#[cap_id] else: bert_embs = None attribute = self.itoa[vid] frames_idx = get_frames_idx( self.total_frames_length, self.n_frames, self.random_type, equally_sampling = True if self.mode != 'train' else self.equally_sampling ) if self.load_feats_type == 0 else None load_feats_func = self.load_feats if self.load_feats_type == 0 else self.load_feats_padding feats_i = load_feats_func(self.data_i, vid, frames_idx) feats_m = load_feats_func(self.data_m, vid, frames_idx, padding=False)#, scale=0.1) feats_a = load_feats_func(self.data_a, vid, frames_idx)#, padding=False) feats_s = load_feats_func(self.data_s, vid, frames_idx) feats_t = load_feats_func(self.data_t, vid, frames_idx)#, padding=False) results = self.make_source_target(labels, taggings) tokens, labels, pure_target, taggings = map( lambda x: results[x], ["dec_source", "dec_target", "pure_target", "tagging"] ) tokens_1 = results.get('dec_source_1', None) labels_1 = results.get('dec_target_1', None) data = {} data['feats_i'] = torch.FloatTensor(feats_i) data['feats_m'] = torch.FloatTensor(feats_m)#.mean(0).unsqueeze(0).repeat(self.n_frames, 1) data['feats_a'] = torch.FloatTensor(feats_a) data['feats_s'] = F.softmax(torch.FloatTensor(feats_s), dim=1) #print(feats_t.shape) data['feats_t'] = torch.FloatTensor(feats_t) data['tokens'] = torch.LongTensor(tokens) data['labels'] = torch.LongTensor(labels) data['pure_target'] = torch.LongTensor(pure_target) data['length_target'] = torch.FloatTensor(length_target) data['attribute'] = torch.FloatTensor(attribute) if tokens_1 is not None: data['tokens_1'] = torch.LongTensor(tokens_1) data['labels_1'] = torch.LongTensor(labels_1) if taggings is not None: data['taggings'] = torch.LongTensor(taggings) if bert_embs is not None: data['bert_embs'] = torch.FloatTensor(bert_embs) if self.decoder_type == 'LSTM' or self.decoder_type == 'ENSEMBLE': tmp =
np.zeros(self.num_category)
numpy.zeros
''' This module makes some figures for cstwMPC. It requires that quite a few specifications of the model have been estimated, with the results stored in ./Results. ''' import matplotlib.pyplot as plt import csv import numpy as np f = open('./Results/LCbetaPointNetWorthLorenzFig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) lorenz_percentiles = [] scf_lorenz = [] beta_point_lorenz = [] for j in range(len(raw_data)): lorenz_percentiles.append(float(raw_data[j][0])) scf_lorenz.append(float(raw_data[j][1])) beta_point_lorenz.append(float(raw_data[j][2])) f.close() lorenz_percentiles = np.array(lorenz_percentiles) scf_lorenz = np.array(scf_lorenz) beta_point_lorenz = np.array(beta_point_lorenz) f = open('./Results/LCbetaDistNetWorthLorenzFig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) beta_dist_lorenz = [] for j in range(len(raw_data)): beta_dist_lorenz.append(float(raw_data[j][2])) f.close() beta_dist_lorenz = np.array(beta_dist_lorenz) f = open('./Results/LCbetaPointNetWorthMPCfig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) mpc_percentiles = [] mpc_beta_point = [] for j in range(len(raw_data)): mpc_percentiles.append(float(raw_data[j][0])) mpc_beta_point.append(float(raw_data[j][1])) f.close() mpc_percentiles = np.asarray(mpc_percentiles) mpc_beta_point = np.asarray(mpc_beta_point) f = open('./Results/LCbetaDistNetWorthMPCfig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) mpc_beta_dist = [] for j in range(len(raw_data)): mpc_beta_dist.append(float(raw_data[j][1])) f.close() mpc_beta_dist = np.asarray(mpc_beta_dist) f = open('./Results/LCbetaDistLiquidMPCfig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) mpc_beta_dist_liquid = [] for j in range(len(raw_data)): mpc_beta_dist_liquid.append(float(raw_data[j][1])) f.close() mpc_beta_dist_liquid = np.asarray(mpc_beta_dist_liquid) f = open('./Results/LCbetaDistNetWorthKappaByAge.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) kappa_mean_age = [] kappa_lo_beta_age = [] kappa_hi_beta_age = [] for j in range(len(raw_data)): kappa_mean_age.append(float(raw_data[j][0])) kappa_lo_beta_age.append(float(raw_data[j][1])) kappa_hi_beta_age.append(float(raw_data[j][2])) kappa_mean_age = np.array(kappa_mean_age) kappa_lo_beta_age = np.array(kappa_lo_beta_age) kappa_hi_beta_age = np.array(kappa_hi_beta_age) age_list = np.array(range(len(kappa_mean_age)),dtype=float)*0.25 + 24.0 f.close() f = open('./Results/LC_KYbyBeta.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) KY_by_beta_lifecycle = [] beta_list = [] for j in range(len(raw_data)): beta_list.append(float(raw_data[j][0])) KY_by_beta_lifecycle.append(float(raw_data[j][1])) beta_list = np.array(beta_list) KY_by_beta_lifecycle = np.array(KY_by_beta_lifecycle) f.close() f = open('./Results/IH_KYbyBeta.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) KY_by_beta_infinite = [] for j in range(len(raw_data)): KY_by_beta_infinite.append(float(raw_data[j][1])) KY_by_beta_infinite = np.array(KY_by_beta_infinite) f.close() plt.plot(100*lorenz_percentiles,beta_point_lorenz,'-.k',linewidth=1.5) plt.plot(100*lorenz_percentiles,beta_dist_lorenz,'--k',linewidth=1.5) plt.plot(100*lorenz_percentiles,scf_lorenz,'-k',linewidth=1.5) plt.xlabel('Wealth percentile',fontsize=14) plt.ylabel('Cumulative wealth ownership',fontsize=14) plt.title('Lorenz Curve Matching, Lifecycle Model',fontsize=16) plt.legend((r'$\beta$-point',r'$\beta$-dist','SCF data'),loc=2,fontsize=12) plt.ylim(-0.01,1) plt.savefig('./Figures/LorenzLifecycle.pdf') plt.show() plt.plot(mpc_beta_point,mpc_percentiles,'-.k',linewidth=1.5) plt.plot(mpc_beta_dist,mpc_percentiles,'--k',linewidth=1.5) plt.plot(mpc_beta_dist_liquid,mpc_percentiles,'-.k',linewidth=1.5) plt.xlabel('Marginal propensity to consume',fontsize=14) plt.ylabel('Cumulative probability',fontsize=14) plt.title('CDF of the MPC, Lifecycle Model',fontsize=16) plt.legend((r'$\beta$-point NW',r'$\beta$-dist NW',r'$\beta$-dist LA'),loc=0,fontsize=12) plt.savefig('./Figures/MPCdistLifecycle.pdf') plt.show() plt.plot(age_list,kappa_mean_age,'-k',linewidth=1.5) plt.plot(age_list,kappa_lo_beta_age,'--k',linewidth=1.5) plt.plot(age_list,kappa_hi_beta_age,'-.k',linewidth=1.5) plt.legend(('Population average','Most impatient','Most patient'),loc=2,fontsize=12) plt.xlabel('Age',fontsize=14) plt.ylabel('Average MPC',fontsize=14) plt.title('Marginal Propensity to Consume by Age',fontsize=16) plt.xlim(24,100) plt.ylim(0,1) plt.savefig('./Figures/MPCbyAge.pdf') plt.show() plt.plot(beta_list,KY_by_beta_infinite,'-k',linewidth=1.5) plt.plot(beta_list,KY_by_beta_lifecycle,'--k',linewidth=1.5) plt.plot([0.95,1.01],[10.26,10.26],'--k',linewidth=0.75) plt.text(0.96,12,'U.S. K/Y ratio') plt.legend(('Perpetual youth','Lifecycle'),loc=2,fontsize=12) plt.xlabel(r'Discount factor $\beta$',fontsize=14) plt.ylabel('Capital to output ratio',fontsize=14) plt.title('K/Y Ratio by Discount Factor',fontsize=16) plt.ylim(0,100) plt.savefig('./Figures/KYratioByBeta.pdf') plt.show() f = open('./Results/IHbetaPointNetWorthLorenzFig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) lorenz_percentiles = [] scf_lorenz = [] beta_point_lorenz = [] for j in range(len(raw_data)): lorenz_percentiles.append(float(raw_data[j][0])) scf_lorenz.append(float(raw_data[j][1])) beta_point_lorenz.append(float(raw_data[j][2])) f.close() lorenz_percentiles = np.array(lorenz_percentiles) scf_lorenz = np.array(scf_lorenz) beta_point_lorenz = np.array(beta_point_lorenz) f = open('./Results/IHbetaDistNetWorthLorenzFig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) beta_dist_lorenz = [] for j in range(len(raw_data)): beta_dist_lorenz.append(float(raw_data[j][2])) f.close() beta_dist_lorenz = np.array(beta_dist_lorenz) f = open('./Results/IHbetaPointLiquidLorenzFig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) beta_point_lorenz_liquid = [] for j in range(len(raw_data)): beta_point_lorenz_liquid.append(float(raw_data[j][2])) f.close() beta_point_lorenz_liquid = np.array(beta_point_lorenz_liquid) f = open('./Results/IHbetaDistLiquidLorenzFig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) beta_dist_lorenz_liquid = [] for j in range(len(raw_data)): beta_dist_lorenz_liquid.append(float(raw_data[j][2])) f.close() beta_dist_lorenz_liquid = np.array(beta_dist_lorenz_liquid) f = open('./Results/IHbetaPointNetWorthMPCfig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) mpc_percentiles = [] mpc_beta_point = [] for j in range(len(raw_data)): mpc_percentiles.append(float(raw_data[j][0])) mpc_beta_point.append(float(raw_data[j][1])) f.close() mpc_percentiles = np.asarray(mpc_percentiles) mpc_beta_point = np.asarray(mpc_beta_point) f = open('./Results/IHbetaDistNetWorthMPCfig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) mpc_beta_dist = [] for j in range(len(raw_data)): mpc_beta_dist.append(float(raw_data[j][1])) f.close() mpc_beta_dist = np.asarray(mpc_beta_dist) f = open('./Results/IHbetaDistLiquidMPCfig.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) mpc_beta_dist_liquid = [] for j in range(len(raw_data)): mpc_beta_dist_liquid.append(float(raw_data[j][1])) f.close() mpc_beta_dist_liquid = np.asarray(mpc_beta_dist_liquid) plt.plot(100*lorenz_percentiles,beta_point_lorenz,'-.k',linewidth=1.5) plt.plot(100*lorenz_percentiles,scf_lorenz,'-k',linewidth=1.5) plt.xlabel('Wealth percentile',fontsize=14) plt.ylabel('Cumulative wealth ownership',fontsize=14) plt.title('Lorenz Curve Matching, Perpetual Youth Model',fontsize=16) plt.legend((r'$\beta$-point','SCF data'),loc=2,fontsize=12) plt.ylim(-0.01,1) plt.savefig('./Figures/LorenzInfiniteBP.pdf') plt.show() plt.plot(100*lorenz_percentiles,beta_point_lorenz,'-.k',linewidth=1.5) plt.plot(100*lorenz_percentiles,beta_dist_lorenz,'--k',linewidth=1.5) plt.plot(100*lorenz_percentiles,scf_lorenz,'-k',linewidth=1.5) plt.xlabel('Wealth percentile',fontsize=14) plt.ylabel('Cumulative wealth ownership',fontsize=14) plt.title('Lorenz Curve Matching, Perpetual Youth Model',fontsize=16) plt.legend((r'$\beta$-point',r'$\beta$-dist','SCF data'),loc=2,fontsize=12) plt.ylim(-0.01,1) plt.savefig('./Figures/LorenzInfinite.pdf') plt.show() plt.plot(100*lorenz_percentiles,beta_point_lorenz_liquid,'-.k',linewidth=1.5) plt.plot(100*lorenz_percentiles,beta_dist_lorenz_liquid,'--k',linewidth=1.5) plt.plot(np.array([20,40,60,80]),np.array([0.0, 0.004, 0.025,0.117]),'.r',markersize=10) plt.xlabel('Wealth percentile',fontsize=14) plt.ylabel('Cumulative wealth ownership',fontsize=14) plt.title('Lorenz Curve Matching, Perpetual Youth (Liquid Assets)',fontsize=16) plt.legend((r'$\beta$-point',r'$\beta$-dist','SCF targets'),loc=2,fontsize=12) plt.ylim(-0.01,1) plt.savefig('./Figures/LorenzLiquid.pdf') plt.show() plt.plot(mpc_beta_point,mpc_percentiles,'-.k',linewidth=1.5) plt.plot(mpc_beta_dist,mpc_percentiles,'--k',linewidth=1.5) plt.plot(mpc_beta_dist_liquid,mpc_percentiles,'-.k',linewidth=1.5) plt.xlabel('Marginal propensity to consume',fontsize=14) plt.ylabel('Cumulative probability',fontsize=14) plt.title('CDF of the MPC, Perpetual Youth Model',fontsize=16) plt.legend((r'$\beta$-point NW',r'$\beta$-dist NW',r'$\beta$-dist LA'),loc=0,fontsize=12) plt.savefig('./Figures/MPCdistInfinite.pdf') plt.show() f = open('./Results/SensitivityRho.txt','r') my_reader = csv.reader(f,delimiter='\t') raw_data = list(my_reader) rho_sensitivity =
np.array(raw_data)
numpy.array
# -*- coding: utf-8 -*- """ Created on Mon May 31 15:40:31 2021 @author: jessm this is comparing the teporal cube slices to their impainted counterparts """ import os import matplotlib.pyplot as plt import numpy as np from astropy.table import QTable, Table, Column from astropy import units as u dimage=np.load('np_align30.npy') dthresh=np.load('thresh_a30.npy') dtable=np.load('table_a30.npy') #reimage=np.load('np_rebinned5e7.npy') #rethresh=np.load('thresh5e7.npy') #retable=np.load('table5e7.npy') reimage=
np.load('inpaint_a30.npy')
numpy.load
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ Process Hi-C output into AGP for chromosomal-scale scaffolding. """ from __future__ import print_function import array import json import logging import math import os import os.path as op import sys from collections import defaultdict from functools import partial from multiprocessing import Pool import numpy as np from jcvi.algorithms.ec import GA_run, GA_setup from jcvi.algorithms.formula import outlier_cutoff from jcvi.algorithms.matrix import get_signs from jcvi.apps.base import ActionDispatcher, OptionParser, backup, iglob, mkdir, symlink from jcvi.apps.console import green, red from jcvi.apps.grid import Jobs from jcvi.assembly.allmaps import make_movie from jcvi.compara.synteny import check_beds, get_bed_filenames from jcvi.formats.agp import order_to_agp from jcvi.formats.base import LineFile, must_open from jcvi.formats.bed import Bed from jcvi.formats.blast import Blast from jcvi.formats.sizes import Sizes from jcvi.graphics.base import ( markup, normalize_axes, plt, savefig, ticker, human_readable, ) from jcvi.graphics.dotplot import dotplot from jcvi.utils.cbook import gene_name, human_size from jcvi.utils.natsort import natsorted # Map orientations to ints FF = {"+": 1, "-": -1, "?": 1} RR = {"+": -1, "-": 1, "?": -1} LB = 18 # Lower bound for golden_array() UB = 29 # Upper bound for golden_array() BB = UB - LB + 1 # Span for golden_array() ACCEPT = green("ACCEPT") REJECT = red("REJECT") BINSIZE = 50000 class ContigOrderingLine(object): """Stores one line in the ContigOrdering file """ def __init__(self, line, sep="|"): args = line.split() self.contig_id = args[0] self.contig_name = args[1].split(sep)[0] contig_rc = args[2] assert contig_rc in ("0", "1") self.strand = "+" if contig_rc == "0" else "-" self.orientation_score = args[3] self.gap_size_after_contig = args[4] class ContigOrdering(LineFile): """ContigOrdering file as created by LACHESIS, one per chromosome group. Header contains summary information per group, followed by list of contigs with given ordering. """ def __init__(self, filename): super(ContigOrdering, self).__init__(filename) fp = open(filename) for row in fp: if row[0] == "#": continue orderline = ContigOrderingLine(row) self.append(orderline) def write_agp( self, obj, sizes, fw=sys.stdout, gapsize=100, gaptype="contig", evidence="map" ): """Converts the ContigOrdering file into AGP format """ contigorder = [(x.contig_name, x.strand) for x in self] order_to_agp( obj, contigorder, sizes, fw, gapsize=gapsize, gaptype=gaptype, evidence=evidence, ) class CLMFile: """CLM file (modified) has the following format: tig00046211+ tig00063795+ 1 53173 tig00046211+ tig00063795- 1 116050 tig00046211- tig00063795+ 1 71155 tig00046211- tig00063795- 1 134032 tig00030676+ tig00077819+ 5 136407 87625 87625 106905 102218 tig00030676+ tig00077819- 5 126178 152952 152952 35680 118923 tig00030676- tig00077819+ 5 118651 91877 91877 209149 125906 tig00030676- tig00077819- 5 108422 157204 157204 137924 142611 """ def __init__(self, clmfile, skiprecover=False): self.name = op.basename(clmfile).rsplit(".", 1)[0] self.clmfile = clmfile self.idsfile = clmfile.rsplit(".", 1)[0] + ".ids" self.parse_ids(skiprecover) self.parse_clm() self.signs = None def parse_ids(self, skiprecover): """IDS file has a list of contigs that need to be ordered. 'recover', keyword, if available in the third column, is less confident. tig00015093 46912 tig00035238 46779 recover tig00030900 119291 """ idsfile = self.idsfile logging.debug("Parse idsfile `{}`".format(idsfile)) fp = open(idsfile) tigs = [] for row in fp: if row[0] == "#": # Header continue atoms = row.split() tig, _, size = atoms size = int(size) if skiprecover and len(atoms) == 3 and atoms[2] == "recover": continue tigs.append((tig, size)) # Arrange contig names and sizes _tigs, _sizes = zip(*tigs) self.contigs = set(_tigs) self.sizes = np.array(_sizes) self.tig_to_size = dict(tigs) # Initially all contigs are considered active self.active = set(_tigs) def parse_clm(self): clmfile = self.clmfile logging.debug("Parse clmfile `{}`".format(clmfile)) fp = open(clmfile) contacts = {} contacts_oriented = defaultdict(dict) orientations = defaultdict(list) for row in fp: atoms = row.strip().split("\t") assert len(atoms) == 3, "Malformed line `{}`".format(atoms) abtig, links, dists = atoms atig, btig = abtig.split() at, ao = atig[:-1], atig[-1] bt, bo = btig[:-1], btig[-1] if at not in self.tig_to_size: continue if bt not in self.tig_to_size: continue dists = [int(x) for x in dists.split()] contacts[(at, bt)] = len(dists) gdists = golden_array(dists) contacts_oriented[(at, bt)][(FF[ao], FF[bo])] = gdists contacts_oriented[(bt, at)][(RR[bo], RR[ao])] = gdists strandedness = 1 if ao == bo else -1 orientations[(at, bt)].append((strandedness, dists)) self.contacts = contacts self.contacts_oriented = contacts_oriented # Preprocess the orientations dict for (at, bt), dists in orientations.items(): dists = [(s, d, hmean_int(d)) for (s, d) in dists] strandedness, md, mh = min(dists, key=lambda x: x[-1]) orientations[(at, bt)] = (strandedness, len(md), mh) self.orientations = orientations def calculate_densities(self): """ Calculate the density of inter-contig links per base. Strong contigs considered to have high level of inter-contig links in the current partition. """ active = self.active densities = defaultdict(int) for (at, bt), links in self.contacts.items(): if not (at in active and bt in active): continue densities[at] += links densities[bt] += links logdensities = {} for x, d in densities.items(): s = self.tig_to_size[x] logd = np.log10(d * 1.0 / min(s, 500000)) logdensities[x] = logd return logdensities def report_active(self): logging.debug( "Active contigs: {} (length={})".format(self.N, self.active_sizes.sum()) ) def activate(self, tourfile=None, minsize=10000, backuptour=True): """ Select contigs in the current partition. This is the setup phase of the algorithm, and supports two modes: - "de novo": This is useful at the start of a new run where no tours available. We select the strong contigs that have significant number of links to other contigs in the partition. We build a histogram of link density (# links per bp) and remove the contigs that appear as outliers. The orientations are derived from the matrix decomposition of the pairwise strandedness matrix O. - "hotstart": This is useful when there was a past run, with a given tourfile. In this case, the active contig list and orientations are derived from the last tour in the file. """ if tourfile and (not op.exists(tourfile)): logging.debug("Tourfile `{}` not found".format(tourfile)) tourfile = None if tourfile: logging.debug("Importing tourfile `{}`".format(tourfile)) tour, tour_o = iter_last_tour(tourfile, self) self.active = set(tour) tig_to_idx = self.tig_to_idx tour = [tig_to_idx[x] for x in tour] signs = sorted([(x, FF[o]) for (x, o) in zip(tour, tour_o)]) _, signs = zip(*signs) self.signs = np.array(signs, dtype=int) if backuptour: backup(tourfile) tour = array.array("i", tour) else: self.report_active() while True: logdensities = self.calculate_densities() lb, ub = outlier_cutoff(list(logdensities.values())) logging.debug("Log10(link_densities) ~ [{}, {}]".format(lb, ub)) remove = set( x for x, d in logdensities.items() if (d < lb and self.tig_to_size[x] < minsize * 10) ) if remove: self.active -= remove self.report_active() else: break logging.debug("Remove contigs with size < {}".format(minsize)) self.active = set(x for x in self.active if self.tig_to_size[x] >= minsize) tour = range(self.N) # Use starting (random) order otherwise tour = array.array("i", tour) # Determine orientations self.flip_all(tour) self.report_active() self.tour = tour return tour def evaluate_tour_M(self, tour): """ Use Cythonized version to evaluate the score of a current tour """ from .chic import score_evaluate_M return score_evaluate_M(tour, self.active_sizes, self.M) def evaluate_tour_P(self, tour): """ Use Cythonized version to evaluate the score of a current tour, with better precision on the distance of the contigs. """ from .chic import score_evaluate_P return score_evaluate_P(tour, self.active_sizes, self.P) def evaluate_tour_Q(self, tour): """ Use Cythonized version to evaluate the score of a current tour, taking orientation into consideration. This may be the most accurate evaluation under the right condition. """ from .chic import score_evaluate_Q return score_evaluate_Q(tour, self.active_sizes, self.Q) def flip_log(self, method, score, score_flipped, tag): logging.debug("{}: {} => {} {}".format(method, score, score_flipped, tag)) def flip_all(self, tour): """ Initialize the orientations based on pairwise O matrix. """ if self.signs is None: # First run score = 0 else: old_signs = self.signs[: self.N] (score,) = self.evaluate_tour_Q(tour) # Remember we cannot have ambiguous orientation code (0 or '?') here self.signs = get_signs(self.O, validate=False, ambiguous=False) (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped >= score: tag = ACCEPT else: self.signs = old_signs[:] tag = REJECT self.flip_log("FLIPALL", score, score_flipped, tag) return tag def flip_whole(self, tour): """ Test flipping all contigs at the same time to see if score improves. """ (score,) = self.evaluate_tour_Q(tour) self.signs = -self.signs (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped > score: tag = ACCEPT else: self.signs = -self.signs tag = REJECT self.flip_log("FLIPWHOLE", score, score_flipped, tag) return tag def flip_one(self, tour): """ Test flipping every single contig sequentially to see if score improves. """ n_accepts = n_rejects = 0 any_tag_ACCEPT = False for i, t in enumerate(tour): if i == 0: (score,) = self.evaluate_tour_Q(tour) self.signs[t] = -self.signs[t] (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped > score: n_accepts += 1 tag = ACCEPT else: self.signs[t] = -self.signs[t] n_rejects += 1 tag = REJECT self.flip_log( "FLIPONE ({}/{})".format(i + 1, len(self.signs)), score, score_flipped, tag, ) if tag == ACCEPT: any_tag_ACCEPT = True score = score_flipped logging.debug("FLIPONE: N_accepts={} N_rejects={}".format(n_accepts, n_rejects)) return ACCEPT if any_tag_ACCEPT else REJECT def prune_tour(self, tour, cpus): """ Test deleting each contig and check the delta_score; tour here must be an array of ints. """ while True: (tour_score,) = self.evaluate_tour_M(tour) logging.debug("Starting score: {}".format(tour_score)) active_sizes = self.active_sizes M = self.M args = [] for i, t in enumerate(tour): stour = tour[:i] + tour[i + 1 :] args.append((t, stour, tour_score, active_sizes, M)) # Parallel run p = Pool(processes=cpus) results = list(p.imap(prune_tour_worker, args)) assert len(tour) == len( results ), "Array size mismatch, tour({}) != results({})".format( len(tour), len(results) ) # Identify outliers active_contigs = self.active_contigs idx, log10deltas = zip(*results) lb, ub = outlier_cutoff(log10deltas) logging.debug("Log10(delta_score) ~ [{}, {}]".format(lb, ub)) remove = set(active_contigs[x] for (x, d) in results if d < lb) self.active -= remove self.report_active() tig_to_idx = self.tig_to_idx tour = [active_contigs[x] for x in tour] tour = array.array("i", [tig_to_idx[x] for x in tour if x not in remove]) if not remove: break self.tour = tour self.flip_all(tour) return tour @property def active_contigs(self): return list(self.active) @property def active_sizes(self): return np.array([self.tig_to_size[x] for x in self.active]) @property def N(self): return len(self.active) @property def oo(self): return range(self.N) @property def tig_to_idx(self): return dict((x, i) for (i, x) in enumerate(self.active)) @property def M(self): """ Contact frequency matrix. Each cell contains how many inter-contig links between i-th and j-th contigs. """ N = self.N tig_to_idx = self.tig_to_idx M = np.zeros((N, N), dtype=int) for (at, bt), links in self.contacts.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] M[ai, bi] = M[bi, ai] = links return M @property def O(self): """ Pairwise strandedness matrix. Each cell contains whether i-th and j-th contig are the same orientation +1, or opposite orientation -1. """ N = self.N tig_to_idx = self.tig_to_idx O = np.zeros((N, N), dtype=int) for (at, bt), (strandedness, md, mh) in self.orientations.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] score = strandedness * md O[ai, bi] = O[bi, ai] = score return O @property def P(self): """ Contact frequency matrix with better precision on distance between contigs. In the matrix M, the distance is assumed to be the distance between mid-points of two contigs. In matrix Q, however, we compute harmonic mean of the links for the orientation configuration that is shortest. This offers better precision for the distance between big contigs. """ N = self.N tig_to_idx = self.tig_to_idx P = np.zeros((N, N, 2), dtype=int) for (at, bt), (strandedness, md, mh) in self.orientations.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] P[ai, bi, 0] = P[bi, ai, 0] = md P[ai, bi, 1] = P[bi, ai, 1] = mh return P @property def Q(self): """ Contact frequency matrix when contigs are already oriented. This is s a similar matrix as M, but rather than having the number of links in the cell, it points to an array that has the actual distances. """ N = self.N tig_to_idx = self.tig_to_idx signs = self.signs Q = np.ones((N, N, BB), dtype=int) * -1 # Use -1 as the sentinel for (at, bt), k in self.contacts_oriented.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] ao = signs[ai] bo = signs[bi] Q[ai, bi] = k[(ao, bo)] return Q def hmean_int(a, a_min=5778, a_max=1149851): """ Harmonic mean of an array, returns the closest int """ from scipy.stats import hmean return int(round(hmean(np.clip(a, a_min, a_max)))) def golden_array(a, phi=1.61803398875, lb=LB, ub=UB): """ Given list of ints, we aggregate similar values so that it becomes an array of multiples of phi, where phi is the golden ratio. phi ^ 14 = 843 phi ^ 33 = 7881196 So the array of counts go between 843 to 788196. One triva is that the exponents of phi gets closer to integers as N grows. See interesting discussion here: <https://www.johndcook.com/blog/2017/03/22/golden-powers-are-nearly-integers/> """ counts = np.zeros(BB, dtype=int) for x in a: c = int(round(math.log(x, phi))) if c < lb: c = lb if c > ub: c = ub counts[c - lb] += 1 return counts def prune_tour_worker(arg): """ Worker thread for CLMFile.prune_tour() """ from .chic import score_evaluate_M t, stour, tour_score, active_sizes, M = arg (stour_score,) = score_evaluate_M(stour, active_sizes, M) delta_score = tour_score - stour_score log10d = np.log10(delta_score) if delta_score > 1e-9 else -9 return t, log10d def main(): actions = ( # LACHESIS output processing ("agp", "generate AGP file based on LACHESIS output"), ("score", "score the current LACHESIS CLM"), # Simulation ("simulate", "simulate CLM data"), # Scaffolding ("optimize", "optimize the contig order and orientation"), ("density", "estimate link density of contigs"), # Plotting ("movieframe", "plot heatmap and synteny for a particular tour"), ("movie", "plot heatmap optimization history in a tourfile"), # Reference-based analytics ("bam2mat", "convert bam file to .npy format used in plotting"), ("mergemat", "combine counts from multiple .npy data files"), ("heatmap", "plot heatmap based on .npy file"), ("dist", "plot distance distribution based on .dist.npy file"), ) p = ActionDispatcher(actions) p.dispatch(globals()) def fit_power_law(xs, ys): """ Fit power law distribution. See reference: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html Assumes the form Y = A * X^B, returns Args: xs ([int]): X vector ys ([float64]): Y vector Returns: (A, B), the coefficients """ import math sum_logXlogY, sum_logXlogX, sum_logX, sum_logY = 0, 0, 0, 0 N = len(xs) for i in range(N): if not xs[i] or not ys[i]: continue logXs, logYs = math.log(xs[i]), math.log(ys[i]) sum_logXlogY += logXs * logYs sum_logXlogX += logXs * logXs sum_logX += logXs sum_logY += logYs B = (N * sum_logXlogY - sum_logX * sum_logY) / ( N * sum_logXlogX - sum_logX * sum_logX ) A = math.exp((sum_logY - B * sum_logX) / N) logging.debug("Power law Y = {:.1f} * X ^ {:.4f}".format(A, B)) label = "$Y={:.1f} \\times X^{{ {:.4f} }}$".format(A, B) return A, B, label def dist(args): """ %prog dist input.dist.npy genome.json Plot histogram based on .dist.npy data file. The .npy file stores an array with link counts per dist bin, with the bin starts stored in the genome.json. """ import seaborn as sns import pandas as pd from jcvi.graphics.base import human_base_formatter, markup p = OptionParser(dist.__doc__) p.add_option("--title", help="Title of the histogram") p.add_option("--xmin", default=300, help="Minimum distance") p.add_option("--xmax", default=6000000, help="Maximum distance") opts, args, iopts = p.set_image_options(args, figsize="6x6") if len(args) != 2: sys.exit(not p.print_help()) npyfile, jsonfile = args pf = npyfile.rsplit(".", 1)[0] header = json.loads(open(jsonfile).read()) distbin_starts =
np.array(header["distbinstarts"], dtype="float64")
numpy.array
import numpy as np import minkf as kf def test_filter_and_smoother(): # case 1: 1d-signal, constant matrices y = np.ones(3) x0 = np.array([0.0]) Cest0 = 1 * np.array([[1.0]]) M = np.array([[1.0]]) K = np.array([[1.0]]) Q = np.array([[1.0]]) R = np.array([[1.0]]) res = kf.run_filter(y, x0, Cest0, M, K, Q, R, likelihood=True) exp_x = [np.array([0.66666]),
np.array([0.875])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([-1,0,0,0,1,0,0,0,-1])
numpy.array
# =========================================================================== # This module is created based on the code from 2 libraries: Lasagne and keras # Original work Copyright (c) 2014-2015 keras contributors # Original work Copyright (c) 2014-2015 Lasagne contributors # Modified work Copyright 2016-2017 TrungNT # =========================================================================== from __future__ import division, absolute_import, print_function import numpy as np import scipy as sp from ..config import floatX # =========================================================================== # RandomStates # =========================================================================== _MAGIC_SEED = 12082518 _SEED_GENERATOR = np.random.RandomState(_MAGIC_SEED) def set_magic_seed(seed): global _MAGIC_SEED, _SEED_GENERATOR _MAGIC_SEED = seed _SEED_GENERATOR = np.random.RandomState(_MAGIC_SEED) def get_magic_seed(): return _MAGIC_SEED def get_random_magic_seed(): return _SEED_GENERATOR.randint(10e6) def get_random_generator(): return _SEED_GENERATOR # =========================================================================== # Main # =========================================================================== def is_ndarray(x): return isinstance(x, np.ndarray) def np_masked_output(X, X_mask): ''' Example ------- X: [[1,2,3,0,0], [4,5,0,0,0]] X_mask: [[1,2,3,0,0], [4,5,0,0,0]] return: [[1,2,3],[4,5]] ''' res = [] for x, mask in zip(X, X_mask): x = x[np.nonzero(mask)] res.append(x.tolist()) return res def np_one_hot(y, n_classes=None): '''Convert class vector (integers from 0 to nb_classes) to binary class matrix, for use with categorical_crossentropy ''' y = np.asarray(y, dtype='int32') if not n_classes: n_classes = np.max(y) + 1 Y = np.zeros((len(y), n_classes)) for i in range(len(y)): Y[i, y[i]] = 1. return Y def np_split_chunks(a, maxlen, overlap): ''' Example ------- >>> print(split_chunks(np.array([1, 2, 3, 4, 5, 6, 7, 8]), 5, 1)) >>> [[1, 2, 3, 4, 5], [4, 5, 6, 7, 8]] ''' chunks = [] nchunks = int((max(a.shape) - maxlen) / (maxlen - overlap)) + 1 for i in xrange(nchunks): start = i * (maxlen - overlap) chunks.append(a[start: start + maxlen]) # ====== Some spare frames at the end ====== # wasted = max(a.shape) - start - maxlen if wasted >= (maxlen - overlap) / 2: chunks.append(a[-maxlen:]) return chunks def np_ordered_set(seq): seen = {} result = [] for marker in seq: if marker in seen: continue seen[marker] = 1 result.append(marker) return np.asarray(result) def np_shrink_labels(labels, maxdist=1): ''' Example ------- >>> print(shrink_labels(np.array([0, 0, 1, 0, 1, 1, 0, 0, 4, 5, 4, 6, 6, 0, 0]), 1)) >>> [0, 1, 0, 1, 0, 4, 5, 4, 6, 0] >>> print(shrink_labels(np.array([0, 0, 1, 0, 1, 1, 0, 0, 4, 5, 4, 6, 6, 0, 0]), 2)) >>> [0, 1, 0, 4, 6, 0] Notes ----- Different from ordered_set, the resulted array still contain duplicate if they a far away each other. ''' maxdist = max(1, maxdist) out = [] l = len(labels) i = 0 while i < l: out.append(labels[i]) last_val = labels[i] dist = min(maxdist, l - i - 1) j = 1 while (i + j < l and labels[i + j] == last_val) or (j < dist): j += 1 i += j return out # =========================================================================== # Special random algorithm for weights initialization # =========================================================================== def np_normal(shape, mean=0., std=1.): return np.cast[floatX()]( get_random_generator().normal(mean, std, size=shape)) def np_uniform(shape, range=0.05): if isinstance(range, (int, float, long)): range = (-abs(range), abs(range)) return np.cast[floatX()]( get_random_generator().uniform(low=range[0], high=range[1], size=shape)) def np_constant(shape, val=0.): return np.cast[floatX()](np.zeros(shape) + val) def np_symmetric_uniform(shape, range=0.01, std=None, mean=0.0): if std is not None: a = mean - np.sqrt(3) * std b = mean +
np.sqrt(3)
numpy.sqrt
import numpy as np from numpy import testing import pytest from unittest import TestCase import pickle from .basis import Basis from .grid import Grid def test_init_0(): x = np.linspace(0, 1, 10, endpoint=False) y = np.linspace(0, 1, 20, endpoint=False) z = np.linspace(0, 1, 30, endpoint=False) xx, yy, zz = np.meshgrid(x, y, z, indexing='ij') data = xx * 2 + yy * 2 + zz * 2 c = Grid( Basis.orthorhombic((1, 1, 1)), (x, y, z), data, ) assert len(c.coordinates) == 3 testing.assert_equal(c.coordinates[0], x)
testing.assert_equal(c.coordinates[1], y)
numpy.testing.assert_equal
# -*- coding: utf-8 -*- ########## ------------------------------- IMPORTS ------------------------ ########## import os import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt import PyQt5 from tidy_to_pzfx import tidy_to_grouped # mpl.use('TkAgg') ########## ---------------------------------------------------------------- ########## class GridGraph: def __init__(self ,path, filename, data, x='freq',y=None): """ Creates an object that stores tidy data from .csv that can create a dynamic facet plot. First column must be individual index. Last column will be the values to graph (y-axis) unless specified with y argument. Middle columns can contain any number of categories. Parameters ---------- path : str, Full path of the directory containing the data to be graphed. filename : str, name of the .csv file to export. data: dataframe of tidy data to graph x: col name for x axis, defaults to 'freq' y: col name for y axis, defaults to the last column Returns ------- None. """ self.kind='box' self.first_time=True self.g=None #pass inputs to object self.path=path self.filename=filename self.data = data #get the categories from the columns self.param_list=list(self.data.columns) # Y defaults to the last column is the value to graph if y in self.data.columns: self.graph_value = y else: self.graph_value = self.data.columns[-1] self.param_list.remove(self.graph_value) if x in self.param_list: self.x=x else: raise Exception('"{}" not found in data!'.format(x)) PyQt5.QtCore.qInstallMessageHandler(self.handler)#supress the error message def on_pick(self, event): """ Callback for clicking on graphs. Export data if title is clicked, and changes the category if graph parameter is clicked Parameters ---------- event : matplotlib event object. Returns ------- None. """ pivot_params=self.param_list.copy() var1='' var2='' # if clicked on a graphing parameter if ":" in event.artist.get_text(): if 'X:' in event.artist.get_text(): return switched=event.artist.get_text().split(":")[1][1:] self.param_list.remove(switched)# put the clicked on at the end self.param_list.append(switched) exec(self.type) return # if clicked on a graph title elif '|' in event.artist.get_text(): # parse the string for categories and variables str1,str2=event.artist.axes.get_title().split(r" | ") cat1,var1=str1.split(" = ") cat2,var2=str2.split(" = ") # create index by filtering for both variables index1=self.data[cat1]==var1 index2=self.data[cat2]==var2 export_index=index1&index2 # update the list of cats to pivot back to pivot_params.remove(cat1) pivot_params.remove(cat2) elif " = " in event.artist.get_text(): cat1,var1=event.artist.axes.get_title().split(" = ") export_index=self.data[cat1]==var1 pivot_params.remove(cat1) else: export_index=
np.ones(self.data.shape[0])
numpy.ones
import torch import torch.utils.data import torch.nn as nn from torch import optim from torch.nn import functional as F import numpy as np import pandas as pd import os import time import random import importlib from shutil import copyfile from functools import partial import argparse from se3cnn.util import * from cnns4qspr.util.pred_blocks import VAE from se3cnn.util.format_data import CathData def vae_loss(vae_in, vae_out, mu, logvar): BCE = F.binary_cross_entropy(vae_out, vae_in.view(-1, 256), reduction='mean') KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return abs(BCE) + abs(KLD) def predictor_loss(labels, predictions): PCE = F.cross_entropy(predictions, labels, reduction='mean') return PCE def train_loop(model, loader, optimizer, epoch): """Main training loop :param model: Model to be trained :param train_loader: DataLoader object for training set :param optimizer: Optimizer object :param epoch: Current epoch index """ model.train() total_losses = [] vae_losses = [] predictor_losses = [] training_accs = [] latent_space = [] training_labels = [] for batch_idx, data in enumerate(loader): if use_gpu: data = data.cuda() input = data[:,:-1] label = data[:,-1] vae_in = torch.autograd.Variable(input) labels = torch.autograd.Variable(label).long() # forward and backward propagation vae_out, mu, logvar, predictions = model(vae_in) z = model.sample_latent_space(vae_in) loss_vae = vae_loss(vae_in, vae_out, mu, logvar) loss_predictor = predictor_loss(labels, predictions) loss = loss_vae + loss_predictor loss.backward() optimizer.step() optimizer.zero_grad() _, argmax = torch.max(predictions, 1) acc = (argmax.squeeze() == labels).float().mean() total_losses.append(loss.item()) vae_losses.append(loss_vae.item()) predictor_losses.append(loss_predictor.item()) training_accs.append(acc.data.cpu().numpy()) latent_space.append(mu.data.cpu().numpy()) training_labels.append(labels.data.cpu().numpy()) avg_vae_loss = np.mean(vae_losses) avg_pred_loss = np.mean(predictor_losses) avg_acc =
np.mean(training_accs)
numpy.mean
import pytest import numpy as np from scipy.linalg import toeplitz from struntho.utils._testing import assert_allclose from struntho.inference.maxmin_spmp_multiclass import maxmin_multiclass_cvxopt, maxmin_spmp_multiclass_p from struntho.inference._maxmin_spmp_multiclass import multiclass_oracle_c def create_losses(n_states): Losses = [] # 0-1 loss loss = np.ones((n_states, n_states)) np.fill_diagonal(loss, 0.0) Losses.append(loss) # ordinal loss Losses.append(toeplitz(np.arange(n_states))) # random loss loss = np.random.random_sample((n_states, n_states)) np.fill_diagonal(loss, 0.0) Losses.append(loss) return Losses def test_multiclass_oracle_p(): # N_states, Precisions = [2, 5, 10], [1, 2, 3] N_states, Precisions = [5], [1, 2] for n_states in N_states: Losses = create_losses(n_states) for Loss in Losses: scores = np.random.random_sample((n_states,)) # run cvxopt mu_cx, en_cx, _ , _ = maxmin_multiclass_cvxopt(scores, Loss) L = np.max(Loss) * np.log(n_states) eta = np.log(n_states) / (2 * L) # initialize variables nu = np.ones(n_states) / n_states p = np.ones(n_states) / n_states Eps = [1 / (10 ** precision) for precision in Precisions] Logs = [int(4 * L / eps) for eps in Eps] max_iter = Logs[-1] mu_p, q_avg, _, _, _, En_p = maxmin_spmp_multiclass_p(nu, p, scores, Loss, max_iter, eta, Logs=Logs) for i, en_p in enumerate(En_p): assert_allclose(en_p, en_cx, rtol=Precisions[i]) def test_multiclass_oracle_c(): n_states = 10 Losses = create_losses(n_states) for Loss in Losses: Loss = np.random.random_sample((n_states, n_states)) scores = np.random.random_sample((n_states,)) L = np.max(Loss) *
np.log(n_states)
numpy.log
import cv2 import numpy as np import pandas as pd import re def Header_Boundary(img,scaling_factor): crop_img=img[:1200,:6800,:].copy() blur_cr_img=cv2.blur(crop_img,(7,7)) crop_img_resize=cv2.resize(blur_cr_img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) crop_img_resize_n=cv2.fastNlMeansDenoisingColored(crop_img_resize,None,10,10,7,21) crop_img_resize_n_gray=cv2.cvtColor(crop_img_resize_n,cv2.COLOR_BGR2GRAY) th3 = cv2.adaptiveThreshold(crop_img_resize_n_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,37,1) max_start=int(np.argmax(np.sum(th3,axis=1))/scaling_factor) return max_start def rotate_check_column_border(img,th3,angle,scaling_factor,imgshape_f): th4=rotate(th3,angle,value_replace=0) th_sum00=np.sum(th4,axis=0) empty_spc_clm=np.where(th_sum00<(np.min(th_sum00)+100))[0] empty_spc_clm_dif=np.ediff1d(empty_spc_clm) Column_boundries=(empty_spc_clm[np.where(empty_spc_clm_dif>np.mean(empty_spc_clm_dif))[0]+1]/(scaling_factor/2)).astype(int) Column_boundries=np.delete(Column_boundries,np.where(Column_boundries<(img.shape[1]/5))[0]) Column_boundries=np.append(Column_boundries,[0,img.shape[1]]) Column_boundries=np.unique(Column_boundries) for i in range(len(Column_boundries)): closer=np.where(np.ediff1d(Column_boundries)<(img.shape[1])/5)[0] if len(closer)>0: Column_boundries=np.delete(Column_boundries,closer[-1]) else: break #[2968 7864 8016] return Column_boundries[1:] def rotate(image, angle, center = None, scale = 1.0,value_replace=0): (h, w) = image.shape[:2] if center is None: center = (w / 2, h / 2) # Perform the rotation M = cv2.getRotationMatrix2D(center, angle, scale) rotated = cv2.warpAffine(image, M, (w, h),borderValue=value_replace) return rotated def method5_column(img,th3,scaling_factor,angle_rec,morph_op=False): for ang in angle_rec: if morph_op: th4=rotate(th3.copy(),ang) else: kernel=np.ones((100,9),np.uint8) th4=cv2.morphologyEx(rotate(th3.copy(),ang), cv2.MORPH_CLOSE, kernel) # cv2.imshow('morphologyEx',th4) # cv2.waitKey(0) th4=cv2.bitwise_not(th4) # cv2.imshow('bitwise_not',th4) # cv2.waitKey(0) th4[th4==255]=1 # print([np.sum(th4,axis=0)]) # print(np.max(np.sum(th4,axis=0)),np.mean(np.sum(th4,axis=0))) split_candidates=np.where(np.sum(th4,axis=0)>=(np.max(np.sum(th4,axis=0))-np.mean(np.sum(th4,axis=0))))[0] split_candidates=np.unique(np.append(split_candidates,[0,th4.shape[1]])) empty_spc_clm_dif=np.ediff1d(split_candidates) Column_boundries=(split_candidates[np.where(empty_spc_clm_dif>np.mean(empty_spc_clm_dif))[0]+1]/(scaling_factor/2)).astype(int) # print('Col0umn_boundries1:',Column_boundries) Column_boundries=np.append(Column_boundries,[0,img.shape[1]]) Column_boundries=np.unique(Column_boundries) for i in range(len(Column_boundries)): closer=np.where(np.ediff1d(Column_boundries)<(img.shape[1])/5)[0] if len(closer)>0: Column_boundries=np.delete(Column_boundries,closer[-1]) else: break Column_boundries=Column_boundries[1:] # print('Column_boundries2:',Column_boundries) if len(Column_boundries)>2: break return Column_boundries,ang def row_split_smaller(th3,image_row_split_ratio,angle,scaling_factor): th4=rotate(th3.copy(),angle,value_replace=0) image_row_th=int(th4.shape[0]/image_row_split_ratio) row_sum_location=np.where(np.sum(th4,axis=1)<2)[0] row_sum_location=row_sum_location[np.where(np.ediff1d(row_sum_location)==1)[0]] row_split_pos1=[] # print('row_sum_location:',row_sum_location) for i in range(image_row_split_ratio): split_s=row_sum_location[np.where((row_sum_location-(image_row_th*i))>=0)[0]] # print('split_s:',split_s) try: point_place=split_s[np.where(split_s>row_split_pos1[-1]+int(image_row_th/3))[0][0]] row_split_pos1.append(point_place) except: if len(split_s)>0: row_split_pos1.append(split_s[0]) row_split_pos1=np.array(row_split_pos1) row_split_pos1=np.append(row_split_pos1,[0,th4.shape[0]]) row_split_pos1=np.unique(row_split_pos1) for i in range(len(row_split_pos1)): closer=np.where(np.ediff1d(row_split_pos1)<(th4.shape[0])/5)[0] if len(closer)>0: row_split_pos1=np.delete(row_split_pos1,closer[-1]) else: break if row_split_pos1[0]<(th4.shape[0])/5: row_split_pos1[0]=0 return (row_split_pos1/(scaling_factor)).astype(int) def angle_out_row(column_img,scaling_factor): blur_cr_img=cv2.blur(column_img,(13,13)) crop_img_resize=cv2.resize(blur_cr_img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) crop_img_resize_n=cv2.fastNlMeansDenoisingColored(crop_img_resize,None,10,10,7,21) crop_img_resize_n_gray=cv2.cvtColor(crop_img_resize_n,cv2.COLOR_BGR2GRAY) th3 = cv2.adaptiveThreshold(crop_img_resize_n_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,21,7) Angles_outputs=[] for angle in [-0.1,0.2,-0.2,0.3,-0.3,0.4,-0.4,0.5,-0.5]: result=row_split_smaller(th3,int(1/scaling_factor),angle,scaling_factor) Angles_outputs.append([angle,len(result),result]) Angles_outputs=np.array(Angles_outputs,dtype=object) set_angle,_,row_split_pos1=Angles_outputs[np.argmax(Angles_outputs[:,1])] return set_angle,row_split_pos1 def Row_splitter(column_img,scaling_factor,image_row_split_ratio=8): blur_cr_img=cv2.blur(column_img,(13,13)) crop_img_resize=cv2.resize(blur_cr_img, None, fx=scaling_factor/2, fy=scaling_factor/2, interpolation=cv2.INTER_AREA) crop_img_resize_n=cv2.fastNlMeansDenoisingColored(crop_img_resize,None,10,10,7,21) crop_img_resize_n_gray=cv2.cvtColor(crop_img_resize_n,cv2.COLOR_BGR2GRAY) th3 = cv2.adaptiveThreshold(crop_img_resize_n_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,21,7) image_row_th=int(th3.shape[0]/image_row_split_ratio) row_sum_location=np.where(np.sum(th3,axis=1)<2)[0] row_sum_location=row_sum_location[np.where(np.ediff1d(row_sum_location)==1)[0]] # print(row_sum_location) row_split_pos=[] for i in range(image_row_split_ratio): split_s=row_sum_location[np.where((row_sum_location-(image_row_th*i))>=0)[0]] # print(split_s) try: point_place=split_s[np.where(split_s>row_split_pos[-1]+int(image_row_th/3))[0][0]] # print(split_s,point_place) row_split_pos.append(point_place) except: if len(split_s)>0: row_split_pos.append(split_s[0]) row_split_pos=np.array(row_split_pos) row_split_pos=np.append(row_split_pos,[0,th3.shape[0]]) row_split_pos=np.unique(row_split_pos) for i in range(len(row_split_pos)): closer=np.where(np.ediff1d(row_split_pos)<(th3.shape[0])/10)[0] if len(closer)>0: row_split_pos=np.delete(row_split_pos,closer[-1]) else: break row_split_pos=(row_split_pos/(scaling_factor/2)).astype(int) return np.unique(row_split_pos) def Column_main_Extracter_sub(img,scaling_factor): blur_cr_img=cv2.blur(img,(13,13)) crop_img_resize=cv2.resize(blur_cr_img, None, fx=scaling_factor/2, fy=scaling_factor/2, interpolation=cv2.INTER_AREA) crop_img_resize_n=cv2.fastNlMeansDenoisingColored(crop_img_resize,None,10,10,7,21) crop_img_resize_n_gray=cv2.cvtColor(crop_img_resize_n,cv2.COLOR_BGR2GRAY) th3 = cv2.adaptiveThreshold(crop_img_resize_n_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,21,7) kernel=np.ones((100,9),np.uint8) th4=cv2.morphologyEx(th3.copy(), cv2.MORPH_CLOSE, kernel) th_sum00=np.sum(th4,axis=0) empty_spc_clm=np.where(th_sum00<(np.min(th_sum00)+100))[0] empty_spc_clm_dif=np.ediff1d(empty_spc_clm) Column_boundries=(empty_spc_clm[np.where(empty_spc_clm_dif>np.mean(empty_spc_clm_dif)+5)[0]+1]/(scaling_factor/2)).astype(int) Column_boundries=np.delete(Column_boundries,np.where(Column_boundries<(img.shape[1]/5))[0]) if len(Column_boundries)<3: Angles_Records=[] for angle in [0.1,-0.1,0.2,-0.2,0.3,-0.3,0.4,-0.4,0.5,-0.5,0.6,-0.6,0.7,-0.7,0.8,-0.8]: Column_boundries=rotate_check_column_border(img,th3.copy(),angle,scaling_factor,img.shape[1]) # print(Column_boundries) Angles_Records.append([angle,len(Column_boundries)]) if len(Column_boundries)>2: break Angles_Records=np.array(Angles_Records) if len(Column_boundries)>2: img=rotate(img,angle,value_replace=(255,255,255)) First_Column=img[:,0:Column_boundries[0]+10] Second_Column=img[:,Column_boundries[0]:Column_boundries[1]+10] Third_Column=img[:,Column_boundries[1]:] else: angle=np.append([0],Angles_Records) angle_rec=Angles_Records[np.where(Angles_Records[:,1]==np.max(Angles_Records[:,1]))[0]][:,0] Column_boundries,ang=method5_column(img,th3,scaling_factor,angle_rec) if len(Column_boundries)>2: img=rotate(img,ang,value_replace=(255,255,255)) First_Column=img[:,0:Column_boundries[0]+10] Second_Column=img[:,Column_boundries[0]:Column_boundries[1]+10] Third_Column=img[:,Column_boundries[1]:] else: return None,None,None else: First_Column=img[:,0:Column_boundries[0]+10] Second_Column=img[:,Column_boundries[0]:Column_boundries[1]+10] Third_Column=img[:,Column_boundries[1]:] return First_Column,Second_Column,Third_Column def Column_main_Extracter_sub_second(img,orignal_img,scaling_factor): blur_cr_img=cv2.blur(orignal_img,(13,13)) crop_img_resize=cv2.resize(blur_cr_img, None, fx=scaling_factor/2, fy=scaling_factor/2, interpolation=cv2.INTER_AREA) crop_img_resize_n=cv2.fastNlMeansDenoisingColored(crop_img_resize,None,10,10,7,21) crop_img_resize_n_gray=cv2.cvtColor(crop_img_resize_n,cv2.COLOR_BGR2GRAY) th3 = cv2.adaptiveThreshold(crop_img_resize_n_gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,21,7) top=int(th3.shape[1]/40) bottom=int(th3.shape[1]/40) left=int(th3.shape[1]/20) right=int(th3.shape[1]/20) th4 = cv2.copyMakeBorder(th3,top=top,bottom=bottom,left=left,right=right,borderType=cv2.BORDER_CONSTANT,value=0) for angle in [0.1,-0.1,0.2,-0.2,0.3,-0.3,0.4,-0.4,0.5,-0.5,0.6,-0.6,0.7,-0.7,0.8,-0.8]: th5=rotate(th4.copy(), angle) kernel=np.ones((30,9),np.uint8) th5=cv2.morphologyEx(th5.copy(), cv2.MORPH_CLOSE, kernel) th5=cv2.bitwise_not(th5) th5[th5<255]=0 th5[th5==255]=1 split_candidates=np.where(np.sum(th5,axis=0)>=(np.max(np.sum(th5,axis=0))-(np.mean(np.sum(th5,axis=0))/1.5)))[0] split_candidates=np.unique(np.append(split_candidates,[0,th5.shape[1]])) empty_spc_clm_dif=np.ediff1d(split_candidates) Column_boundries=(split_candidates[np.where(empty_spc_clm_dif>np.mean(empty_spc_clm_dif))[0]+1]/(scaling_factor/2)).astype(int) Column_boundries=
np.append(Column_boundries,[0,img.shape[1]])
numpy.append
# Copyright (c) 2012-2020 Jicamarca Radio Observatory # All rights reserved. # # Distributed under the terms of the BSD 3-clause license. """Definition of diferent Data objects for different types of data Here you will find the diferent data objects for the different types of data, this data objects must be used as dataIn or dataOut objects in processing units and operations. Currently the supported data objects are: Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters """ import copy import numpy import datetime import json import schainpy.admin from schainpy.utils import log from .jroheaderIO import SystemHeader, RadarControllerHeader from schainpy.model.data import _noise def getNumpyDtype(dataTypeCode): if dataTypeCode == 0: numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) elif dataTypeCode == 1: numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) elif dataTypeCode == 2: numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) elif dataTypeCode == 3: numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) elif dataTypeCode == 4: numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) elif dataTypeCode == 5: numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) else: raise ValueError('dataTypeCode was not defined') return numpyDtype def getDataTypeCode(numpyDtype): if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): datatype = 0 elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): datatype = 1 elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): datatype = 2 elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): datatype = 3 elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): datatype = 4 elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): datatype = 5 else: datatype = None return datatype def hildebrand_sekhon(data, navg): """ This method is for the objective determination of the noise level in Doppler spectra. This implementation technique is based on the fact that the standard deviation of the spectral densities is equal to the mean spectral density for white Gaussian noise Inputs: Data : heights navg : numbers of averages Return: mean : noise's level """ sortdata = numpy.sort(data, axis=None) ''' lenOfData = len(sortdata) nums_min = lenOfData*0.2 if nums_min <= 5: nums_min = 5 sump = 0. sumq = 0. j = 0 cont = 1 while((cont == 1)and(j < lenOfData)): sump += sortdata[j] sumq += sortdata[j]**2 if j > nums_min: rtest = float(j)/(j-1) + 1.0/navg if ((sumq*j) > (rtest*sump**2)): j = j - 1 sump = sump - sortdata[j] sumq = sumq - sortdata[j]**2 cont = 0 j += 1 lnoise = sump / j ''' return _noise.hildebrand_sekhon(sortdata, navg) class Beam: def __init__(self): self.codeList = [] self.azimuthList = [] self.zenithList = [] class GenericData(object): flagNoData = True def copy(self, inputObj=None): if inputObj == None: return copy.deepcopy(self) for key in list(inputObj.__dict__.keys()): attribute = inputObj.__dict__[key] # If this attribute is a tuple or list if type(inputObj.__dict__[key]) in (tuple, list): self.__dict__[key] = attribute[:] continue # If this attribute is another object or instance if hasattr(attribute, '__dict__'): self.__dict__[key] = attribute.copy() continue self.__dict__[key] = inputObj.__dict__[key] def deepcopy(self): return copy.deepcopy(self) def isEmpty(self): return self.flagNoData def isReady(self): return not self.flagNoData class JROData(GenericData): systemHeaderObj = SystemHeader() radarControllerHeaderObj = RadarControllerHeader() type = None datatype = None # dtype but in string nProfiles = None heightList = None channelList = None flagDiscontinuousBlock = False useLocalTime = False utctime = None timeZone = None dstFlag = None errorCount = None blocksize = None flagDecodeData = False # asumo q la data no esta decodificada flagDeflipData = False # asumo q la data no esta sin flip flagShiftFFT = False nCohInt = None windowOfFilter = 1 C = 3e8 frequency = 49.92e6 realtime = False beacon_heiIndexList = None last_block = None blocknow = None azimuth = None zenith = None beam = Beam() profileIndex = None error = None data = None nmodes = None metadata_list = ['heightList', 'timeZone', 'type'] def __str__(self): return '{} - {}'.format(self.type, self.datatime()) def getNoise(self): raise NotImplementedError @property def nChannels(self): return len(self.channelList) @property def channelIndexList(self): return list(range(self.nChannels)) @property def nHeights(self): return len(self.heightList) def getDeltaH(self): return self.heightList[1] - self.heightList[0] @property def ltctime(self): if self.useLocalTime: return self.utctime - self.timeZone * 60 return self.utctime @property def datatime(self): datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) return datatimeValue def getTimeRange(self): datatime = [] datatime.append(self.ltctime) datatime.append(self.ltctime + self.timeInterval + 1) datatime = numpy.array(datatime) return datatime def getFmaxTimeResponse(self): period = (10**-6) * self.getDeltaH() / (0.15) PRF = 1. / (period * self.nCohInt) fmax = PRF return fmax def getFmax(self): PRF = 1. / (self.ippSeconds * self.nCohInt) fmax = PRF return fmax def getVmax(self): _lambda = self.C / self.frequency vmax = self.getFmax() * _lambda / 2 return vmax @property def ippSeconds(self): ''' ''' return self.radarControllerHeaderObj.ippSeconds @ippSeconds.setter def ippSeconds(self, ippSeconds): ''' ''' self.radarControllerHeaderObj.ippSeconds = ippSeconds @property def code(self): ''' ''' return self.radarControllerHeaderObj.code @code.setter def code(self, code): ''' ''' self.radarControllerHeaderObj.code = code @property def nCode(self): ''' ''' return self.radarControllerHeaderObj.nCode @nCode.setter def nCode(self, ncode): ''' ''' self.radarControllerHeaderObj.nCode = ncode @property def nBaud(self): ''' ''' return self.radarControllerHeaderObj.nBaud @nBaud.setter def nBaud(self, nbaud): ''' ''' self.radarControllerHeaderObj.nBaud = nbaud @property def ipp(self): ''' ''' return self.radarControllerHeaderObj.ipp @ipp.setter def ipp(self, ipp): ''' ''' self.radarControllerHeaderObj.ipp = ipp @property def metadata(self): ''' ''' return {attr: getattr(self, attr) for attr in self.metadata_list} class Voltage(JROData): dataPP_POW = None dataPP_DOP = None dataPP_WIDTH = None dataPP_SNR = None def __init__(self): ''' Constructor ''' self.useLocalTime = True self.radarControllerHeaderObj = RadarControllerHeader() self.systemHeaderObj = SystemHeader() self.type = "Voltage" self.data = None self.nProfiles = None self.heightList = None self.channelList = None self.flagNoData = True self.flagDiscontinuousBlock = False self.utctime = None self.timeZone = 0 self.dstFlag = None self.errorCount = None self.nCohInt = None self.blocksize = None self.flagCohInt = False self.flagDecodeData = False # asumo q la data no esta decodificada self.flagDeflipData = False # asumo q la data no esta sin flip self.flagShiftFFT = False self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil self.profileIndex = 0 self.metadata_list = ['type', 'heightList', 'timeZone', 'nProfiles', 'channelList', 'nCohInt', 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp'] def getNoisebyHildebrand(self, channel=None): """ Determino el nivel de ruido usando el metodo Hildebrand-Sekhon Return: noiselevel """ if channel != None: data = self.data[channel] nChannels = 1 else: data = self.data nChannels = self.nChannels noise = numpy.zeros(nChannels) power = data * numpy.conjugate(data) for thisChannel in range(nChannels): if nChannels == 1: daux = power[:].real else: daux = power[thisChannel, :].real noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) return noise def getNoise(self, type=1, channel=None): if type == 1: noise = self.getNoisebyHildebrand(channel) return noise def getPower(self, channel=None): if channel != None: data = self.data[channel] else: data = self.data power = data * numpy.conjugate(data) powerdB = 10 * numpy.log10(power.real) powerdB = numpy.squeeze(powerdB) return powerdB @property def timeInterval(self): return self.ippSeconds * self.nCohInt noise = property(getNoise, "I'm the 'nHeights' property.") class Spectra(JROData): def __init__(self): ''' Constructor ''' self.useLocalTime = True self.radarControllerHeaderObj = RadarControllerHeader() self.systemHeaderObj = SystemHeader() self.type = "Spectra" self.timeZone = 0 self.nProfiles = None self.heightList = None self.channelList = None self.pairsList = None self.flagNoData = True self.flagDiscontinuousBlock = False self.utctime = None self.nCohInt = None self.nIncohInt = None self.blocksize = None self.nFFTPoints = None self.wavelength = None self.flagDecodeData = False # asumo q la data no esta decodificada self.flagDeflipData = False # asumo q la data no esta sin flip self.flagShiftFFT = False self.ippFactor = 1 self.beacon_heiIndexList = [] self.noise_estimation = None self.metadata_list = ['type', 'heightList', 'timeZone', 'pairsList', 'channelList', 'nCohInt', 'code', 'nCode', 'nBaud', 'ippSeconds', 'ipp','nIncohInt', 'nFFTPoints', 'nProfiles'] def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): """ Determino el nivel de ruido usando el metodo Hildebrand-Sekhon Return: noiselevel """ noise = numpy.zeros(self.nChannels) for channel in range(self.nChannels): daux = self.data_spc[channel, xmin_index:xmax_index, ymin_index:ymax_index] noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) return noise def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): if self.noise_estimation is not None: # this was estimated by getNoise Operation defined in jroproc_spectra.py return self.noise_estimation else: noise = self.getNoisebyHildebrand( xmin_index, xmax_index, ymin_index, ymax_index) return noise def getFreqRangeTimeResponse(self, extrapoints=0): deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) - deltafreq / 2 return freqrange def getAcfRange(self, extrapoints=0): deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 return freqrange def getFreqRange(self, extrapoints=0): deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 return freqrange def getVelRange(self, extrapoints=0): deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) if self.nmodes: return velrange/self.nmodes else: return velrange @property def nPairs(self): return len(self.pairsList) @property def pairsIndexList(self): return list(range(self.nPairs)) @property def normFactor(self): pwcode = 1 if self.flagDecodeData: pwcode = numpy.sum(self.code[0]**2) #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter return normFactor @property def flag_cspc(self): if self.data_cspc is None: return True return False @property def flag_dc(self): if self.data_dc is None: return True return False @property def timeInterval(self): timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor if self.nmodes: return self.nmodes*timeInterval else: return timeInterval def getPower(self): factor = self.normFactor z = self.data_spc / factor z = numpy.where(numpy.isfinite(z), z, numpy.NAN) avg = numpy.average(z, axis=1) return 10 * numpy.log10(avg) def getCoherence(self, pairsList=None, phase=False): z = [] if pairsList is None: pairsIndexList = self.pairsIndexList else: pairsIndexList = [] for pair in pairsList: if pair not in self.pairsList: raise ValueError("Pair %s is not in dataOut.pairsList" % ( pair)) pairsIndexList.append(self.pairsList.index(pair)) for i in range(len(pairsIndexList)): pair = self.pairsList[pairsIndexList[i]] ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) if phase: data = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real) * 180 / numpy.pi else: data = numpy.abs(avgcoherenceComplex) z.append(data) return numpy.array(z) def setValue(self, value): print("This property should not be initialized") return noise = property(getNoise, setValue, "I'm the 'nHeights' property.") class SpectraHeis(Spectra): def __init__(self): self.radarControllerHeaderObj = RadarControllerHeader() self.systemHeaderObj = SystemHeader() self.type = "SpectraHeis" self.nProfiles = None self.heightList = None self.channelList = None self.flagNoData = True self.flagDiscontinuousBlock = False self.utctime = None self.blocksize = None self.profileIndex = 0 self.nCohInt = 1 self.nIncohInt = 1 @property def normFactor(self): pwcode = 1 if self.flagDecodeData: pwcode = numpy.sum(self.code[0]**2) normFactor = self.nIncohInt * self.nCohInt * pwcode return normFactor @property def timeInterval(self): return self.ippSeconds * self.nCohInt * self.nIncohInt class Fits(JROData): def __init__(self): self.type = "Fits" self.nProfiles = None self.heightList = None self.channelList = None self.flagNoData = True self.utctime = None self.nCohInt = 1 self.nIncohInt = 1 self.useLocalTime = True self.profileIndex = 0 self.timeZone = 0 def getTimeRange(self): datatime = [] datatime.append(self.ltctime) datatime.append(self.ltctime + self.timeInterval) datatime = numpy.array(datatime) return datatime def getChannelIndexList(self): return list(range(self.nChannels)) def getNoise(self, type=1): if type == 1: noise = self.getNoisebyHildebrand() if type == 2: noise = self.getNoisebySort() if type == 3: noise = self.getNoisebyWindow() return noise @property def timeInterval(self): timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt return timeInterval @property def ippSeconds(self): ''' ''' return self.ipp_sec noise = property(getNoise, "I'm the 'nHeights' property.") class Correlation(JROData): def __init__(self): ''' Constructor ''' self.radarControllerHeaderObj = RadarControllerHeader() self.systemHeaderObj = SystemHeader() self.type = "Correlation" self.data = None self.dtype = None self.nProfiles = None self.heightList = None self.channelList = None self.flagNoData = True self.flagDiscontinuousBlock = False self.utctime = None self.timeZone = 0 self.dstFlag = None self.errorCount = None self.blocksize = None self.flagDecodeData = False # asumo q la data no esta decodificada self.flagDeflipData = False # asumo q la data no esta sin flip self.pairsList = None self.nPoints = None def getPairsList(self): return self.pairsList def getNoise(self, mode=2): indR = numpy.where(self.lagR == 0)[0][0] indT = numpy.where(self.lagT == 0)[0][0] jspectra0 = self.data_corr[:, :, indR, :] jspectra = copy.copy(jspectra0) num_chan = jspectra.shape[0] num_hei = jspectra.shape[2] freq_dc = jspectra.shape[1] / 2 ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc if ind_vel[0] < 0: ind_vel[list(range(0, 1))] = ind_vel[list( range(0, 1))] + self.num_prof if mode == 1: jspectra[:, freq_dc, :] = ( jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION if mode == 2: vel = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for fil in range(4): xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx_aux = xx_inv[0, :] for ich in range(num_chan): yy = jspectra[ich, ind_vel, :] jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) junkid = jspectra[ich, freq_dc, :] <= 0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich, freq_dc, junkid.nonzero()] = ( jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] return noise @property def timeInterval(self): return self.ippSeconds * self.nCohInt * self.nProfiles def splitFunctions(self): pairsList = self.pairsList ccf_pairs = [] acf_pairs = [] ccf_ind = [] acf_ind = [] for l in range(len(pairsList)): chan0 = pairsList[l][0] chan1 = pairsList[l][1] # Obteniendo pares de Autocorrelacion if chan0 == chan1: acf_pairs.append(chan0) acf_ind.append(l) else: ccf_pairs.append(pairsList[l]) ccf_ind.append(l) data_acf = self.data_cf[acf_ind] data_ccf = self.data_cf[ccf_ind] return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf @property def normFactor(self): acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() acf_pairs = numpy.array(acf_pairs) normFactor = numpy.zeros((self.nPairs, self.nHeights)) for p in range(self.nPairs): pair = self.pairsList[p] ch0 = pair[0] ch1 = pair[1] ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) return normFactor class Parameters(Spectra): groupList = None # List of Pairs, Groups, etc data_param = None # Parameters obtained data_pre = None # Data Pre Parametrization data_SNR = None # Signal to Noise Ratio abscissaList = None # Abscissa, can be velocities, lags or time utctimeInit = None # Initial UTC time paramInterval = None # Time interval to calculate Parameters in seconds useLocalTime = True # Fitting data_error = None # Error of the estimation constants = None library = None # Output signal outputInterval = None # Time interval to calculate output signal in seconds data_output = None # Out signal nAvg = None noise_estimation = None GauSPC = None # Fit gaussian SPC def __init__(self): ''' Constructor ''' self.radarControllerHeaderObj = RadarControllerHeader() self.systemHeaderObj = SystemHeader() self.type = "Parameters" self.timeZone = 0 def getTimeRange1(self, interval): datatime = [] if self.useLocalTime: time1 = self.utctimeInit - self.timeZone * 60 else: time1 = self.utctimeInit datatime.append(time1) datatime.append(time1 + interval) datatime =
numpy.array(datatime)
numpy.array
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An iterative dictionary learning procedure.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from absl import logging import numpy as np from numpy import linalg as LA import scipy as sp from scipy import sparse import sklearn.decomposition import sklearn.linear_model def run_lsh_omp_coder(data, dictionary, sparsity, num_buckets=1): """Solve the orthogonal matching pursuit problem with LSH bucketing. Use sklearn.linear_model.orthogonal_mp to solve the following optimization program: argmin ||y - X*gamma||^2, subject to ||gamma||_0 <= n_{nonzero coefs}, where y is 'data', size = (n_samples, n_targets), X is 'dictionary', size = (n_samples, n_features). Columns are assumed to have unit norm, gamma: sparse coding, size = (n_features, n_targets). Args: data: The matrix y in the above program, dictionary: The matrix X in the above program, sparsity: n_{nonzero coefs} in the above program. num_buckets: number of LSH buckets to use, int. Returns: gamma. """ logging.info("running LSH based sklearn.linear_model.orthogonal_mp ...") indices = lsh_knn_map( np.transpose(np.vstack((data, dictionary))), num_buckets, 1) logging.info("indices shape is %s", indices.shape) data_buckets = [[] for i in range(num_buckets)] data_index = [[] for i in range(num_buckets)] dict_buckets = [[] for i in range(num_buckets)] dict_index = [[] for i in range(num_buckets)] for i in range(data.shape[0]): data_buckets[indices[i][0]].append(data[i, :]) data_index[indices[i][0]].append(i) for i in range(dictionary.shape[0]): dict_buckets[indices[data.shape[0] + i][0]].append(dictionary[i, :]) dict_index[indices[data.shape[0] + i][0]].append(i) code = sparse.lil_matrix((data.shape[0], dictionary.shape[0])) for i in range(num_buckets): start_time = time.time() if len(data_buckets[i]) > 0: # pylint: disable=g-explicit-length-test if len(dict_buckets[i]) == 0: # pylint: disable=g-explicit-length-test logging.error( "lsh bucketing failed...empty bucket with no dictionary elements") else: small_code = sklearn.linear_model.orthogonal_mp( np.transpose(np.vstack(dict_buckets[i])), np.transpose(np.vstack(data_buckets[i])), n_nonzero_coefs=sparsity) small_code = np.transpose(small_code) row_idx = np.asarray(data_index[i]) col_idx = np.asarray(dict_index[i]) code[row_idx[:, None], col_idx] = small_code logging.info("running time of OMP for bucket %d = %d seconds", i, time.time() - start_time) return code def run_omp(data, dictionary, sparsity): """Solve the orthogonal matching pursuit problem. Use sklearn.linear_model.orthogonal_mp to solve the following optimization program: argmin ||y - X*gamma||^2, subject to ||gamma||_0 <= n_{nonzero coefs}, where y is 'data', size = (n_samples, n_targets), X is 'dictionary', size = (n_samples, n_features). Columns are assumed to have unit norm, gamma: sparse coding, size = (n_features, n_targets). Args: data: The matrix y in the above program, dictionary: The matrix X in the above program, sparsity: n_{nonzero coefs} in the above program. Returns: gamma """ logging.info("running sklearn.linear_model.orthogonal_mp ...") start_time = time.time() code = sklearn.linear_model.orthogonal_mp( np.transpose(dictionary), np.transpose(data), n_nonzero_coefs=sparsity) code = np.transpose(code) logging.info("running time of omp = %s seconds", time.time() - start_time) return code def run_dot_product_coder(data, dictionary, sparsity, k=3, batch_size=1000): """Solve the orthogonal matching pursuit problem. Use sklearn.linear_model.orthogonal_mp to solve the following optimization program: argmin ||y - X*gamma||^2, subject to ||gamma||_0 <= n_{nonzero coefs}, where y is 'data', size = (n_samples, n_targets), X is 'dictionary', size = (n_samples, n_features). Columns are assumed to have unit norm, gamma: sparse coding, size = (n_features, n_targets). Args: data: The matrix y in the above program, dictionary: The matrix X in the above program, sparsity: n_{nonzero coefs} in the above program, k: number of rows to use for generating dictionary, batch_size: batch size, positive int. Returns: gamma """ logging.info("running sparse coder sklearn.linear_model.orthogonal_mp ...") n, _ = data.shape m, _ = dictionary.shape index = 0 start_time = time.time() code = sparse.lil_matrix((n, m)) while index + batch_size < n + 1: logging.info("processing batch %d", index // batch_size) small_data = np.transpose(data[index:index + batch_size, :]) prods = np.matmul(dictionary, small_data) indices = np.argsort(-abs(prods), axis=0) union_of_indices = indices[0:k, :] union_of_indices = union_of_indices.flatten() union_of_indices = np.unique(union_of_indices) logging.info("number of indices = %d", len(union_of_indices)) small_code = sklearn.linear_model.orthogonal_mp( np.transpose(dictionary[union_of_indices, :]), small_data, n_nonzero_coefs=sparsity, precompute=False) start_index = index end_index = index + batch_size code[start_index:end_index, union_of_indices] = np.transpose(small_code) index += batch_size if index < n: small_data = np.transpose(data[index:n, :]) prods = np.matmul(dictionary, small_data) indices = np.argsort(-abs(prods), axis=0) union_of_indices = indices[0:k, :] union_of_indices = union_of_indices.flatten() union_of_indices = np.unique(union_of_indices) small_code = sklearn.linear_model.orthogonal_mp( np.transpose(dictionary[union_of_indices, :]), small_data, n_nonzero_coefs=sparsity, precompute=False) start_index = index end_index = n code[start_index:end_index, union_of_indices] = np.transpose(small_code) print("running time of omp = %s seconds" % (time.time() - start_time)) return code.tocsr() def run_batch_omp_coder(data, dictionary, sparsity, batch_size=1000): """Solve the orthogonal matching pursuit problem in mini-batch fashion. Use sklearn.linear_model.orthogonal_mp to solve the following optimization program: argmin ||y - X*gamma||^2, subject to ||gamma||_0 <= n_{nonzero coefs}, where y is 'data', size = (n_samples, n_targets), X is 'dictionary', size = (n_samples, n_features). Columns are assumed to have unit norm, gamma: sparse coding, size = (n_features, n_targets). Args: data: The matrix y in the above program, dictionary: The matrix X in the above program, sparsity: n_{nonzero coefs} in the above program, batch_size: batch size, positive int. Returns: gamma """ print("running sparse coder sklearn.linear_model.orthogonal_mp ...") [n, _] = data.shape [m, _] = dictionary.shape index = 0 start_time = time.time() code = sparse.lil_matrix((n, m)) while index + batch_size < n + 1: # in range(num_iter): logging.info("processing batch") small_code = sklearn.linear_model.orthogonal_mp( np.transpose(dictionary), np.transpose(data[index:index + batch_size, :]), n_nonzero_coefs=sparsity, precompute=False) start_index = index end_index = index + batch_size code[start_index:end_index, :] = np.transpose(small_code) index += batch_size if index < n: small_code = sklearn.linear_model.orthogonal_mp( np.transpose(dictionary), np.transpose(data[index:n, :]), n_nonzero_coefs=sparsity, precompute=False) start_index = index end_index = n code[start_index:end_index, :] = np.transpose(small_code) print("running time of omp = %s seconds" % (time.time() - start_time)) return code.tocsr() def load_indices_to_csr(indices, dict_size): """Load indices into a CSR (compressed sparse row) format indicator matrix. Example: indices = np.array([[1], [2], [0]]) dict_size = 4 sparse_matrix = load_indices_to_csr(indices, dict_size) dense_matrix = sparse_matrix.to_dense() # dense_matrix = [[0. 1. 0. 0.], [0. 0. 1. 0.], [1. 0. 0. 0.]] Args: indices: indices array, a numpy 2d array of ints; dict_size: size of dictionary, int. Returns: sparse_matrix: a sparse indicator matrix in the CSR format with dense shape (indices.shape[0], dict_size) of floats, with entries at (i, j) equal to 1.0 for i in range(indices.shape[0]), j in indices[i]. """ rows = np.zeros(indices.shape[0] * indices.shape[1], dtype=int) cols = np.zeros(indices.shape[0] * indices.shape[1], dtype=int) vals = np.zeros(indices.shape[0] * indices.shape[1], dtype=float) cnt = 0 for i in range(indices.shape[0]): for j in indices[i]: rows[cnt] = i cols[cnt] = j vals[cnt] = 1.0 cnt = cnt + 1 sparse_matrix = sp.sparse.csr_matrix((vals, (rows, cols)), shape=(indices.shape[0], dict_size)) return sparse_matrix def run_knn(data, sparsity, row_percentage, eps=0.9): """Use kNN to initialize a coding table. First, we sample a fraction of 'row_percentage' rows of 'data'. Then for each row of 'data', we map it to the 'sparsity' nearest rows that were sampled. Args: data: The original matrix sparsity: The number rows to which each row of 'data' is mapped row_percentage: Percent of rows in the sample eps: approximation tolerance factor, the returned the k-th neighbor is no further than (1 + epsilon) times the distance to the true k-th neighbor, needs to be nonnegative, float. Returns: The initial sparse coding table. """ logging.info("Running kNN ...") # 'sample_size' should be >= 'sparsity' sample_size = int(data.shape[0] * row_percentage + 1) if sample_size < sparsity: sample_size = sparsity logging.info("Reset sample_size to %d in run_knn().", sparsity) logging.info("Sample size = %d", sample_size) idx =
np.random.randint(data.shape[0], size=sample_size)
numpy.random.randint
#!/usr/bin/python from __future__ import division from __future__ import print_function import sys import os import re import datetime import zipfile import tempfile import argparse import math import warnings import json import csv import numpy as np import scipy.stats as scp from lxml import etree as et def get_rdml_lib_version(): """Return the version string of the RDML library. Returns: The version string of the RDML library. """ return "1.0.0" class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.bool_): return bool(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) class RdmlError(Exception): """Basic exception for errors raised by the RDML-Python library""" def __init__(self, message): Exception.__init__(self, message) pass class secondError(RdmlError): """Just to have, not used yet""" def __init__(self, message): RdmlError.__init__(self, message) pass def _get_first_child(base, tag): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: The first child lxml node element found or None. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return node return None def _get_first_child_text(base, tag): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: The text of first child node element found or an empty string. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return node.text return "" def _get_first_child_bool(base, tag, triple=True): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) triple: If True, None is returned if not found, if False, False Returns: The a bool value of tag or if triple is True None. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return _string_to_bool(node.text, triple) if triple is False: return False else: return None def _get_step_sort_nr(elem): """Get the number of the step eg. for sorting. Args: elem: The node element. (lxml node) Returns: The a int value of the step node nr. """ if elem is None: raise RdmlError('A step element must be provided for sorting.') ret = _get_first_child_text(elem, "nr") if ret == "": raise RdmlError('A step element must have a \"nr\" element for sorting.') return int(ret) def _sort_list_int(elem): """Get the first element of the array as int. for sorting. Args: elem: The 2d list Returns: The a int value of the first list element. """ return int(elem[0]) def _sort_list_float(elem): """Get the first element of the array as float. for sorting. Args: elem: The 2d list Returns: The a float value of the first list element. """ return float(elem[0]) def _sort_list_digital_PCR(elem): """Get the first column of the list as int. for sorting. Args: elem: The list Returns: The a int value of the first list element. """ arr = elem.split("\t") return int(arr[0]), arr[4] def _string_to_bool(value, triple=True): """Translates a string into bool value or None. Args: value: The string value to evaluate. (string) triple: If True, None is returned if not found, if False, False Returns: The a bool value of tag or if triple is True None. """ if value is None or value == "": if triple is True: return None else: return False if type(value) is bool: return value if type(value) is int: if value != 0: return True else: return False if type(value) is str: if value.lower() in ['false', '0', 'f', '-', 'n', 'no']: return False else: return True return def _value_to_booldic(value): """Translates a string, list or dic to a dictionary with true/false. Args: value: The string value to evaluate. (string) Returns: The a bool value of tag or if triple is True None. """ ret = {} if type(value) is str: ret[value] = True if type(value) is list: for ele in value: ret[ele] = True if type(value) is dict: for key, val in value.items(): ret[key] = _string_to_bool(val, triple=False) return ret def _get_first_child_by_pos_or_id(base, tag, by_id, by_pos): """Get a child element of the base node with a given tag and position or id. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) by_id: The unique id to search for. (string) by_pos: The position of the element in the list (int) Returns: The child node element found or raise error. """ if by_id is None and by_pos is None: raise RdmlError('Either an ' + tag + ' id or a position must be provided.') if by_id is not None and by_pos is not None: raise RdmlError('Only an ' + tag + ' id or a position can be provided.') allChildren = _get_all_children(base, tag) if by_id is not None: for node in allChildren: if node.get('id') == by_id: return node raise RdmlError('The ' + tag + ' id: ' + by_id + ' was not found in RDML file.') if by_pos is not None: if by_pos < 0 or by_pos > len(allChildren) - 1: raise RdmlError('The ' + tag + ' position ' + by_pos + ' is out of range.') return allChildren[by_pos] def _add_first_child_to_dic(base, dic, opt, tag): """Adds the first child element with a given tag to a dictionary. Args: base: The base node element. (lxml node) dic: The dictionary to add the element to (dictionary) opt: If false and id is not found in base, the element is added with an empty string (Bool) tag: Child elements group tag used to select the elements. (string) Returns: The dictionary with the added element. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: dic[tag] = node.text return dic if not opt: dic[tag] = "" return dic def _get_all_children(base, tag): """Get a list of all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A list with all child node elements found or an empty list. """ ret = [] for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: ret.append(node) return ret def _get_all_children_id(base, tag): """Get a list of ids of all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A list with all child id strings found or an empty list. """ ret = [] for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: ret.append(node.get('id')) return ret def _get_number_of_children(base, tag): """Count all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A int number of the found child elements with the id. """ counter = 0 for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: counter += 1 return counter def _check_unique_id(base, tag, id): """Find all child elements with a given group and check if the id is already used. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) id: The unique id to search for. (string) Returns: False if the id is already used, True if not. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: if node.get('id') == id: return False return True def _create_new_element(base, tag, id): """Create a new element with a given tag and id. Args: base: The base node element. (lxml node) tag: Child elements group tag. (string) id: The unique id of the new element. (string) Returns: False if the id is already used, True if not. """ if id is None or id == "": raise RdmlError('An ' + tag + ' id must be provided.') if not _check_unique_id(base, tag, id): raise RdmlError('The ' + tag + ' id "' + id + '" must be unique.') return et.Element(tag, id=id) def _add_new_subelement(base, basetag, tag, text, opt): """Create a new element with a given tag and id. Args: base: The base node element. (lxml node) basetag: Child elements group tag. (string) tag: Child elements own tag, to be created. (string) text: The text content of the new element. (string) opt: If true, the element is optional (Bool) Returns: Nothing, the base lxml element is modified. """ if opt is False: if text is None or text == "": raise RdmlError('An ' + basetag + ' ' + tag + ' must be provided.') et.SubElement(base, tag).text = text else: if text is not None and text != "": et.SubElement(base, tag).text = text def _change_subelement(base, tag, xmlkeys, value, opt, vtype, id_as_element=False): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) value: The text content of the new element. opt: If true, the element is optional (Bool) vtype: If true, the element is optional ("string", "int", "float") id_as_element: If true, handle tag "id" as element, else as attribute Returns: Nothing, the base lxml element is modified. """ # Todo validate values with vtype goodVal = value if vtype == "bool": ev = _string_to_bool(value, triple=True) if ev is None or ev == "": goodVal = "" else: if ev: goodVal = "true" else: goodVal = "false" if opt is False: if goodVal is None or goodVal == "": raise RdmlError('A value for ' + tag + ' must be provided.') if tag == "id" and id_as_element is False: if base.get('id') != goodVal: par = base.getparent() groupTag = base.tag.replace("{http://www.rdml.org}", "") if not _check_unique_id(par, groupTag, goodVal): raise RdmlError('The ' + groupTag + ' id "' + goodVal + '" is not unique.') base.attrib['id'] = goodVal return # Check if the tag already excists elem = _get_first_child(base, tag) if elem is not None: if goodVal is None or goodVal == "": base.remove(elem) else: elem.text = goodVal else: if goodVal is not None and goodVal != "": new_node = et.Element(tag) new_node.text = goodVal place = _get_tag_pos(base, tag, xmlkeys, 0) base.insert(place, new_node) def _get_or_create_subelement(base, tag, xmlkeys): """Get element with a given tag, if not present, create it. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) Returns: The node element with the tag. """ # Check if the tag already excists if _get_first_child(base, tag) is None: new_node = et.Element(tag) place = _get_tag_pos(base, tag, xmlkeys, 0) base.insert(place, new_node) return _get_first_child(base, tag) def _remove_irrelevant_subelement(base, tag): """If element with a given tag has no children, remove it. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) Returns: The node element with the tag. """ # Check if the tag already excists elem = _get_first_child(base, tag) if elem is None: return if len(elem) == 0: base.remove(elem) def _move_subelement(base, tag, id, xmlkeys, position): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) id: The unique id of the new element. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) position: the new position of the element (int) Returns: Nothing, the base lxml element is modified. """ pos = _get_tag_pos(base, tag, xmlkeys, position) ele = _get_first_child_by_pos_or_id(base, tag, id, None) base.insert(pos, ele) def _move_subelement_pos(base, tag, oldpos, xmlkeys, position): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) oldpos: The unique id of the new element. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) position: the new position of the element (int) Returns: Nothing, the base lxml element is modified. """ pos = _get_tag_pos(base, tag, xmlkeys, position) ele = _get_first_child_by_pos_or_id(base, tag, None, oldpos) base.insert(pos, ele) def _get_tag_pos(base, tag, xmlkeys, pos): """Returns a position were to add a subelement with the given tag inc. pos offset. Args: base: The base node element. (lxml node) tag: The id to search for. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) pos: The position relative to the tag elements (int) Returns: The int number of were to add the element with the tag. """ count = _get_number_of_children(base, tag) offset = pos if pos is None or pos < 0: offset = 0 pos = 0 if pos > count: offset = count return _get_first_tag_pos(base, tag, xmlkeys) + offset def _get_first_tag_pos(base, tag, xmlkeys): """Returns a position were to add a subelement with the given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) Returns: The int number of were to add the element with the tag. """ listrest = xmlkeys[xmlkeys.index(tag):] counter = 0 for node in base: if node.tag.replace("{http://www.rdml.org}", "") in listrest: return counter counter += 1 return counter def _writeFileInRDML(rdmlName, fileName, data): """Writes a file in the RDML zip, even if it existed before. Args: rdmlName: The name of the RDML zip file fileName: The name of the file to write into the zip data: The data string of the file Returns: Nothing, modifies the RDML file. """ needRewrite = False if os.path.isfile(rdmlName): with zipfile.ZipFile(rdmlName, 'r') as RDMLin: for item in RDMLin.infolist(): if item.filename == fileName: needRewrite = True if needRewrite: tempFolder, tempName = tempfile.mkstemp(dir=os.path.dirname(rdmlName)) os.close(tempFolder) # copy everything except the filename with zipfile.ZipFile(rdmlName, 'r') as RDMLin: with zipfile.ZipFile(tempName, mode='w', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.comment = RDMLin.comment for item in RDMLin.infolist(): if item.filename != fileName: RDMLout.writestr(item, RDMLin.read(item.filename)) if data != "": RDMLout.writestr(fileName, data) os.remove(rdmlName) os.rename(tempName, rdmlName) else: with zipfile.ZipFile(rdmlName, mode='a', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.writestr(fileName, data) def _lrp_linReg(xIn, yUse): """A function which calculates the slope or the intercept by linear regression. Args: xIn: The numpy array of the cycles yUse: The numpy array that contains the fluorescence Returns: An array with the slope and intercept. """ counts = np.ones(yUse.shape) xUse = xIn.copy() xUse[np.isnan(yUse)] = 0 counts[np.isnan(yUse)] = 0 cycSqared = xUse * xUse cycFluor = xUse * yUse sumCyc = np.nansum(xUse, axis=1) sumFluor = np.nansum(yUse, axis=1) sumCycSquared = np.nansum(cycSqared, axis=1) sumCycFluor = np.nansum(cycFluor, axis=1) n = np.nansum(counts, axis=1) ssx = sumCycSquared - (sumCyc * sumCyc) / n sxy = sumCycFluor - (sumCyc * sumFluor) / n slope = sxy / ssx intercept = (sumFluor / n) - slope * (sumCyc / n) return [slope, intercept] def _lrp_findStopCyc(fluor, aRow): """Find the stop cycle of the log lin phase in fluor. Args: fluor: The array with the fluorescence values aRow: The row to work on Returns: An int with the stop cycle. """ # Take care of nan values validTwoLessCyc = 3 # Cycles so +1 to array while (validTwoLessCyc <= fluor.shape[1] and (np.isnan(fluor[aRow, validTwoLessCyc - 1]) or np.isnan(fluor[aRow, validTwoLessCyc - 2]) or np.isnan(fluor[aRow, validTwoLessCyc - 3]))): validTwoLessCyc += 1 # First and Second Derivative values calculation fluorShift = np.roll(fluor[aRow], 1, axis=0) # Shift to right - real position is -0.5 fluorShift[0] = np.nan firstDerivative = fluor[aRow] - fluorShift if np.isfinite(firstDerivative).any(): FDMaxCyc = np.nanargmax(firstDerivative, axis=0) + 1 # Cycles so +1 to array else: return fluor.shape[1] firstDerivativeShift = np.roll(firstDerivative, -1, axis=0) # Shift to left firstDerivativeShift[-1] = np.nan secondDerivative = firstDerivativeShift - firstDerivative if FDMaxCyc + 2 <= fluor.shape[1]: # Only add two cycles if there is an increase without nan if (not np.isnan(fluor[aRow, FDMaxCyc - 1]) and not np.isnan(fluor[aRow, FDMaxCyc]) and not np.isnan(fluor[aRow, FDMaxCyc + 1]) and fluor[aRow, FDMaxCyc + 1] > fluor[aRow, FDMaxCyc] > fluor[aRow, FDMaxCyc - 1]): FDMaxCyc += 2 else: FDMaxCyc = fluor.shape[1] maxMeanSD = 0.0 stopCyc = fluor.shape[1] for cycInRange in range(validTwoLessCyc, FDMaxCyc): with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) tempMeanSD = np.mean(secondDerivative[cycInRange - 2: cycInRange + 1], axis=0) # The > 0.000000000001 is to avoid float differences to the pascal version if not np.isnan(tempMeanSD) and (tempMeanSD - maxMeanSD) > 0.000000000001: maxMeanSD = tempMeanSD stopCyc = cycInRange if stopCyc + 2 >= fluor.shape[1]: stopCyc = fluor.shape[1] return stopCyc def _lrp_findStartCyc(fluor, aRow, stopCyc): """A function which finds the start cycle of the log lin phase in fluor. Args: fluor: The array with the fluorescence values aRow: The row to work on stopCyc: The stop cycle Returns: An array [int, int] with the start cycle and the fixed start cycle. """ startCyc = stopCyc - 1 # startCyc might be NaN, so shift it to the first value firstNotNaN = 1 # Cycles so +1 to array while np.isnan(fluor[aRow, firstNotNaN - 1]) and firstNotNaN < startCyc: firstNotNaN += 1 while startCyc > firstNotNaN and np.isnan(fluor[aRow, startCyc - 1]): startCyc -= 1 # As long as there are no NaN and new values are increasing while (startCyc > firstNotNaN and not np.isnan(fluor[aRow, startCyc - 2]) and fluor[aRow, startCyc - 2] <= fluor[aRow, startCyc - 1]): startCyc -= 1 startCycFix = startCyc if (not np.isnan(fluor[aRow, startCyc]) and not np.isnan(fluor[aRow, startCyc - 1]) and not np.isnan(fluor[aRow, stopCyc - 1]) and not np.isnan(fluor[aRow, stopCyc - 2])): startStep = np.log10(fluor[aRow, startCyc]) - np.log10(fluor[aRow, startCyc - 1]) stopStep = np.log10(fluor[aRow, stopCyc - 1]) - np.log10(fluor[aRow, stopCyc - 2]) if startStep > 1.1 * stopStep: startCycFix += 1 return [startCyc, startCycFix] def _lrp_testSlopes(fluor, aRow, stopCyc, startCycFix): """Splits the values and calculates a slope for the upper and the lower half. Args: fluor: The array with the fluorescence values aRow: The row to work on stopCyc: The stop cycle startCycFix: The start cycle Returns: An array with [slopelow, slopehigh]. """ # Both start with full range loopStart = [startCycFix[aRow], stopCyc[aRow]] loopStop = [startCycFix[aRow], stopCyc[aRow]] # Now find the center ignoring nan while True: loopStart[1] -= 1 loopStop[0] += 1 while (loopStart[1] - loopStop[0]) > 1 and np.isnan(fluor[aRow, loopStart[1] - 1]): loopStart[1] -= 1 while (loopStart[1] - loopStop[0]) > 1 and np.isnan(fluor[aRow, loopStop[1] - 1]): loopStop[0] += 1 if (loopStart[1] - loopStop[0]) <= 1: break # basic regression per group ssx = [0, 0] sxy = [0, 0] slope = [0, 0] for j in range(0, 2): sumx = 0.0 sumy = 0.0 sumx2 = 0.0 sumxy = 0.0 nincl = 0.0 for i in range(loopStart[j], loopStop[j] + 1): if not np.isnan(fluor[aRow, i - 1]): sumx += i sumy += np.log10(fluor[aRow, i - 1]) sumx2 += i * i sumxy += i * np.log10(fluor[aRow, i - 1]) nincl += 1 ssx[j] = sumx2 - sumx * sumx / nincl sxy[j] = sumxy - sumx * sumy / nincl slope[j] = sxy[j] / ssx[j] return [slope[0], slope[1]] def _lrp_lastCycMeanMax(fluor, vecSkipSample, vecNoPlateau): """A function which calculates the mean of the max fluor in the last ten cycles. Args: fluor: The array with the fluorescence values vecSkipSample: Skip the sample vecNoPlateau: Sample has no plateau Returns: An float with the max mean. """ maxFlour = np.nanmax(fluor[:, -11:], axis=1) maxFlour[vecSkipSample] = np.nan maxFlour[vecNoPlateau] = np.nan # Ignore all nan slices, to fix them below with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) maxMean = np.nanmean(maxFlour) if np.isnan(maxMean): maxMean = np.nanmax(maxFlour) return maxMean def _lrp_meanPcrEff(tarGroup, vecTarget, pcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin): """A function which calculates the mean efficiency of the selected target group excluding bad ones. Args: tarGroup: The target number vecTarget: The vector with the targets numbers pcrEff: The array with the PCR efficiencies vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau vecShortLogLin: True indicates a short log lin phase Returns: An array with [meanPcrEff, pcrEffVar]. """ cnt = 0 sumEff = 0.0 sumEff2 = 0.0 for j in range(0, len(pcrEff)): if tarGroup is None or tarGroup == vecTarget[j]: if (not (vecSkipSample[j] or vecNoPlateau[j] or vecShortLogLin[j])) and pcrEff[j] > 1.0: cnt += 1 sumEff += pcrEff[j] sumEff2 += pcrEff[j] * pcrEff[j] if cnt > 1: meanPcrEff = sumEff / cnt pcrEffVar = (sumEff2 - (sumEff * sumEff) / cnt) / (cnt - 1) else: meanPcrEff = 1.0 pcrEffVar = 100 return [meanPcrEff, pcrEffVar] def _lrp_startStopInWindow(fluor, aRow, upWin, lowWin): """Find the start and the stop of the part of the curve which is inside the window. Args: fluor: The array with the fluorescence values aRow: The row to work on upWin: The upper limit of the window lowWin: The lower limit of the window Returns: The int startWinCyc, stopWinCyc and the bool notInWindow. """ startWinCyc = 0 stopWinCyc = 0 # Find the stopCyc and the startCyc cycle of the log lin phase stopCyc = _lrp_findStopCyc(fluor, aRow) [startCyc, startCycFix] = _lrp_findStartCyc(fluor, aRow, stopCyc) if np.isfinite(fluor[aRow, startCycFix - 1:]).any(): stopMaxCyc = np.nanargmax(fluor[aRow, startCycFix - 1:]) + startCycFix else: return startCyc, startCyc, True # If is true if outside the window if fluor[aRow, startCyc - 1] > upWin or fluor[aRow, stopMaxCyc - 1] < lowWin: notInWindow = True if fluor[aRow, startCyc - 1] > upWin: startWinCyc = startCyc stopWinCyc = startCyc if fluor[aRow, stopMaxCyc - 1] < lowWin: startWinCyc = stopMaxCyc stopWinCyc = stopMaxCyc else: notInWindow = False # look for stopWinCyc if fluor[aRow, stopMaxCyc - 1] < upWin: stopWinCyc = stopMaxCyc else: for i in range(stopMaxCyc, startCyc, -1): if fluor[aRow, i - 1] > upWin > fluor[aRow, i - 2]: stopWinCyc = i - 1 # look for startWinCyc if fluor[aRow, startCycFix - 1] > lowWin: startWinCyc = startCycFix else: for i in range(stopMaxCyc, startCyc, -1): if fluor[aRow, i - 1] > lowWin > fluor[aRow, i - 2]: startWinCyc = i return startWinCyc, stopWinCyc, notInWindow def _lrp_paramInWindow(fluor, aRow, upWin, lowWin): """Calculates slope, nNull, PCR efficiency and mean x/y for the curve part in the window. Args: fluor: The array with the fluorescence values aRow: The row to work on upWin: The upper limit of the window lowWin: The lower limit of the window Returns: The calculated values: indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl. """ startWinCyc, stopWinCyc, notInWindow = _lrp_startStopInWindow(fluor, aRow, upWin, lowWin) sumx = 0.0 sumy = 0.0 sumx2 = 0.0 sumy2 = 0.0 sumxy = 0.0 nincl = 0.0 ssx = 0.0 ssy = 0.0 sxy = 0.0 for i in range(startWinCyc, stopWinCyc + 1): fluorSamp = fluor[aRow, i - 1] if not np.isnan(fluorSamp): logFluorSamp = np.log10(fluorSamp) sumx += i sumy += logFluorSamp sumx2 += i * i sumy2 += logFluorSamp * logFluorSamp sumxy += i * logFluorSamp nincl += 1 if nincl > 1: ssx = sumx2 - sumx * sumx / nincl ssy = sumy2 - sumy * sumy / nincl sxy = sumxy - sumx * sumy / nincl if ssx > 0.0 and ssy > 0.0 and nincl > 0.0: cslope = sxy / ssx cinterc = sumy / nincl - cslope * sumx / nincl correl = sxy / np.sqrt(ssx * ssy) indMeanX = sumx / nincl indMeanY = sumy / nincl pcrEff = np.power(10, cslope) nnulls = np.power(10, cinterc) else: correl = np.nan indMeanX = np.nan indMeanY = np.nan pcrEff = np.nan nnulls = np.nan if notInWindow: ninclu = 0 else: ninclu = stopWinCyc - startWinCyc + 1 return indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl def _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError): """A function which calculates the mean of the max fluor in the last ten cycles. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers indMeanX: The vector with the x mean position indMeanY: The vector with the y mean position pcrEff: The array with the PCR efficiencies nnulls: The array with the calculated nnulls ninclu: The array with the calculated ninclu correl: The array with the calculated correl upWin: The upper limit of the window lowWin: The lower limit of the window vecNoAmplification: True if there is a amplification error vecBaselineError: True if there is a baseline error Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ for row in range(0, fluor.shape[0]): if tarGroup is None or tarGroup == vecTarget[row]: if not (vecNoAmplification[row] or vecBaselineError[row]): if tarGroup is None: indMeanX[row], indMeanY[row], pcrEff[row], nnulls[row], ninclu[row], correl[row] = _lrp_paramInWindow(fluor, row, upWin[0], lowWin[0]) else: indMeanX[row], indMeanY[row], pcrEff[row], nnulls[row], ninclu[row], correl[row] = _lrp_paramInWindow(fluor, row, upWin[tarGroup], lowWin[tarGroup]) else: correl[row] = np.nan indMeanX[row] = np.nan indMeanY[row] = np.nan pcrEff[row] = np.nan nnulls[row] = np.nan ninclu[row] = 0 return indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl def _lrp_meanStopFluor(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau): """Return the mean of the stop fluor or the max fluor if all rows have no plateau. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers stopCyc: The vector with the stop cycle of the log lin phase vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau Returns: The meanMax fluorescence. """ meanMax = 0.0 maxFluor = 0.0000001 cnt = 0 if tarGroup is None: for aRow in range(0, fluor.shape[0]): if not vecSkipSample[aRow]: if not vecNoPlateau[aRow]: cnt += 1 meanMax += fluor[aRow, stopCyc[aRow] - 1] else: for i in range(0, fluor.shape[1]): if fluor[aRow, i] > maxFluor: maxFluor = fluor[aRow, i] else: for aRow in range(0, fluor.shape[0]): if tarGroup == vecTarget[aRow] and not vecSkipSample[aRow]: if not vecNoPlateau[aRow]: cnt += 1 meanMax += fluor[aRow, stopCyc[aRow] - 1] else: for i in range(0, fluor.shape[1]): if fluor[aRow, i] > maxFluor: maxFluor = fluor[aRow, i] if cnt > 0: meanMax = meanMax / cnt else: meanMax = maxFluor return meanMax def _lrp_maxStartFluor(fluor, tarGroup, vecTarget, startCyc, vecSkipSample): """Return the maximum of the start fluorescence Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers startCyc: The vector with the start cycle of the log lin phase vecSkipSample: Skip the sample Returns: The maxStart fluorescence. """ maxStart = -10.0 if tarGroup is None: for aRow in range(0, fluor.shape[0]): if not vecSkipSample[aRow]: if fluor[aRow, startCyc[aRow] - 1] > maxStart: maxStart = fluor[aRow, startCyc[aRow] - 1] else: for aRow in range(0, fluor.shape[0]): if tarGroup == vecTarget[aRow] and not vecSkipSample[aRow]: if fluor[aRow, startCyc[aRow] - 1] > maxStart: maxStart = fluor[aRow, startCyc[aRow] - 1] return 0.999 * maxStart def _lrp_setLogWin(tarGroup, newUpWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal): """Sets a new window and ensures its within the total fluorescence values. Args: tarGroup: The target number newUpWin: The new upper window foldWidth: The foldWith to the lower window upWin: The upper window fluorescence lowWin: The lower window fluorescence maxFluorTotal: The maximum fluorescence over all rows minFluorTotal: The minimum fluorescence over all rows Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ # No rounding needed, only present for exact identical output with Pascal version tempUpWin = np.power(10, np.round(1000 * newUpWin) / 1000) tempLowWin = np.power(10, np.round(1000 * (newUpWin - foldWidth)) / 1000) tempUpWin = np.minimum(tempUpWin, maxFluorTotal) tempUpWin = np.maximum(tempUpWin, minFluorTotal) tempLowWin = np.minimum(tempLowWin, maxFluorTotal) tempLowWin = np.maximum(tempLowWin, minFluorTotal) if tarGroup is None: upWin[0] = tempUpWin lowWin[0] = tempLowWin else: upWin[tarGroup] = tempUpWin lowWin[tarGroup] = tempLowWin return upWin, lowWin def _lrp_logStepStop(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau): """Calculates the log of the fluorescence increase at the stop cycle. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers stopCyc: The vector with the stop cycle of the log lin phase vecSkipSample: True if row should be skipped vecNoPlateau: True if there is no plateau Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ cnt = 0 step = 0.0 for aRow in range(0, fluor.shape[0]): if (tarGroup is None or tarGroup == vecTarget[aRow]) and not (vecSkipSample[aRow] or vecNoPlateau[aRow]): cnt += 1 step += np.log10(fluor[aRow, stopCyc[aRow] - 1]) - np.log10(fluor[aRow, stopCyc[aRow] - 2]) if cnt > 0: step = step / cnt else: step = np.log10(1.8) return step def _lrp_setWoL(fluor, tarGroup, vecTarget, pointsInWoL, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, maxFluorTotal, minFluorTotal, stopCyc, startCyc, threshold, vecNoAmplification, vecBaselineError, vecSkipSample, vecNoPlateau, vecShortLogLin, vecIsUsedInWoL): """Find the window with the lowest variation in PCR efficiency and calculate its values. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers pointsInWoL: The number of points in the window indMeanX: The vector with the x mean position indMeanY: The vector with the y mean position pcrEff: The array with the PCR efficiencies nNulls: The array with the calculated nNulls nInclu: The array with the calculated nInclu correl: The array with the calculated correl upWin: The upper limit of the window lowWin: The lower limit of the window maxFluorTotal: The maximum fluorescence over all rows minFluorTotal: The minimum fluorescence over all rows stopCyc: The vector with the stop cycle of the log lin phase startCyc: The vector with the start cycle of the log lin phase threshold: The threshold fluorescence vecNoAmplification: True if there is a amplification error vecBaselineError: True if there is a baseline error vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau vecShortLogLin: True indicates a short log lin phase vecIsUsedInWoL: True if used in the WoL Returns: The values indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, threshold, vecIsUsedInWoL. """ skipGroup = False stepSize = 0.2 # was 0.5, smaller steps help in finding WoL # Keep 60 calculated results memVarEff = np.zeros(60, dtype=np.float64) memUpWin = np.zeros(60, dtype=np.float64) memFoldWidth = np.zeros(60, dtype=np.float64) maxFluorWin = _lrp_meanStopFluor(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau) if maxFluorWin > 0.0: maxFluorWin = np.log10(maxFluorWin) else: skipGroup = True minFluorLim = _lrp_maxStartFluor(fluor, tarGroup, vecTarget, startCyc, vecSkipSample) if minFluorLim > 0.0: minFluorLim = np.log10(minFluorLim) else: skipGroup = True checkMeanEff = 1.0 if not skipGroup: foldWidth = pointsInWoL * _lrp_logStepStop(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau) upWin, lowWin = _lrp_setLogWin(tarGroup, maxFluorWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal) _unused, _unused2, checkPcrEff, _unused3, _unused4, _unused5 = _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError) [checkMeanEff, _unused] = _lrp_meanPcrEff(tarGroup, vecTarget, checkPcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin) if checkMeanEff < 1.001: skipGroup = True if skipGroup: if tarGroup is None: threshold[0] = (0.5 * np.round(1000 * upWin[0]) / 1000) else: threshold[tarGroup] = (0.5 * np.round(1000 * upWin[tarGroup]) / 1000) if not skipGroup: foldWidth = np.log10(np.power(checkMeanEff, pointsInWoL)) counter = -1 maxVarEff = 0.0 maxVarEffStep = -1 lastUpWin = 2 + maxFluorWin while True: counter += 1 step = np.log10(checkMeanEff) newUpWin = maxFluorWin - counter * stepSize * step if newUpWin < lastUpWin: upWin, lowWin = _lrp_setLogWin(tarGroup, newUpWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal) _unused, _unused2, checkPcrEff, _unused3, _unused4, _unused5 = _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError) [checkMeanEff, _unused] = _lrp_meanPcrEff(tarGroup, vecTarget, checkPcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin) foldWidth = np.log10(np.power(checkMeanEff, pointsInWoL)) if foldWidth < 0.5: foldWidth = 0.5 # to avoid width = 0 above stopCyc upWin, lowWin = _lrp_setLogWin(tarGroup, newUpWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal) _unused, _unused2, checkPcrEff, _unused3, _unused4, _unused5 = _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError) [checkMeanEff, checkVarEff] = _lrp_meanPcrEff(tarGroup, vecTarget, checkPcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin) if checkVarEff > 0.0: memVarEff[counter] = np.sqrt(checkVarEff) / checkMeanEff else: memVarEff[counter] = 0.0 if checkVarEff > maxVarEff: maxVarEff = checkVarEff maxVarEffStep = counter memUpWin[counter] = newUpWin memFoldWidth[counter] = foldWidth lastUpWin = newUpWin else: checkVarEff = 0.0 if counter >= 60 or newUpWin - foldWidth / (pointsInWoL / 2.0) < minFluorLim or checkVarEff < 0.00000000001: break # corrections: start if checkVarEff < 0.00000000001: counter -= 1 # remove window with vareff was 0.0 validSteps = -1 while True: validSteps += 1 if memVarEff[validSteps] < 0.000001: break validSteps -= 1 # i = number of valid steps minSmooth = memVarEff[0] minStep = 0 # default top window # next 3 if conditions on i: added to correct smoothing if validSteps == 0: minStep = 0 if 0 < validSteps < 4: n = -1 while True: n += 1 if memVarEff[n] < minSmooth: minSmooth = memVarEff[n] minStep = n if n == validSteps: break if validSteps >= 4: n = 0 while True: n += 1 smoothVar = 0.0 for m in range(n - 1, n + 2): smoothVar = smoothVar + memVarEff[m] smoothVar = smoothVar / 3.0 if smoothVar < minSmooth: minSmooth = smoothVar minStep = n if n >= validSteps - 1 or n > maxVarEffStep: break # corrections: stop # Calculate the final values again upWin, lowWin = _lrp_setLogWin(tarGroup, memUpWin[minStep], memFoldWidth[minStep], upWin, lowWin, maxFluorTotal, minFluorTotal) if tarGroup is None: threshold[0] = (0.5 * np.round(1000 * upWin[0]) / 1000) else: threshold[tarGroup] = (0.5 * np.round(1000 * upWin[tarGroup]) / 1000) indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl = _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError) for aRow in range(0, len(pcrEff)): if tarGroup is None or tarGroup == vecTarget[aRow]: if (not (vecSkipSample[aRow] or vecNoPlateau[aRow] or vecShortLogLin[aRow])) and pcrEff[aRow] > 1.0: vecIsUsedInWoL[aRow] = True else: vecIsUsedInWoL[aRow] = False return indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, threshold, vecIsUsedInWoL def _lrp_assignNoPlateau(fluor, tarGroup, vecTarget, pointsInWoL, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, maxFluorTotal, minFluorTotal, stopCyc, startCyc, threshold, vecNoAmplification, vecBaselineError, vecSkipSample, vecNoPlateau, vecShortLogLin, vecIsUsedInWoL): """Assign no plateau again and possibly recalculate WoL if new no plateau was found. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers pointsInWoL: The number of points in the window indMeanX: The vector with the x mean position indMeanY: The vector with the y mean position pcrEff: The array with the PCR efficiencies nNulls: The array with the calculated nNulls nInclu: The array with the calculated nInclu correl: The array with the calculated correl upWin: The upper limit of the window lowWin: The lower limit of the window maxFluorTotal: The maximum fluorescence over all rows minFluorTotal: The minimum fluorescence over all rows stopCyc: The vector with the stop cycle of the log lin phase startCyc: The vector with the start cycle of the log lin phase threshold: The threshold fluorescence vecNoAmplification: True if there is a amplification error vecBaselineError: True if there is a baseline error vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau vecShortLogLin: True indicates a short log lin phase vecIsUsedInWoL: True if used in the WoL Returns: The values indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, threshold, vecIsUsedInWoL, vecNoPlateau. """ newNoPlateau = False for aRow in range(0, fluor.shape[0]): if (tarGroup is None or tarGroup == vecTarget[aRow]) and not (vecNoAmplification[aRow] or vecBaselineError[aRow] or vecNoPlateau[aRow]): expectedFluor = nNulls[aRow] * np.power(pcrEff[aRow], fluor.shape[1]) if expectedFluor / fluor[aRow, fluor.shape[1] - 1] < 5: newNoPlateau = True vecNoPlateau[aRow] = True if newNoPlateau: indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, threshold, vecIsUsedInWoL = _lrp_setWoL(fluor, tarGroup, vecTarget, pointsInWoL, indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, maxFluorTotal, minFluorTotal, stopCyc, startCyc, threshold, vecNoAmplification, vecBaselineError, vecSkipSample, vecNoPlateau, vecShortLogLin, vecIsUsedInWoL) return indMeanX, indMeanY, pcrEff, nNulls, nInclu, correl, upWin, lowWin, threshold, vecIsUsedInWoL, vecNoPlateau def _lrp_removeOutlier(data, vecNoPlateau, alpha=0.05): """A function which calculates the skewness and Grubbs test to identify outliers ignoring nan. Args: data: The numpy array with the data vecNoPlateau: The vector of samples without plateau. alpha: The the significance level (default 0.05) Returns: The a bool array with the removed outliers set true. """ oData = np.copy(data) oLogic = np.zeros(data.shape, dtype=np.bool_) loopOn = True while loopOn: count = np.count_nonzero(~np.isnan(oData)) if count < 3: loopOn = False else: mean = np.nanmean(oData) std = np.nanstd(oData, ddof=1) skewness = scp.skew(oData, bias=False, nan_policy='omit') skewness_SE = np.sqrt((6 * count * (count - 1)) / ((count - 2) * (count + 1) * (count + 3))) skewness_t = np.abs(skewness) / skewness_SE skewness_P = scp.t.sf(skewness_t, df=np.power(10, 10)) * 2 if skewness_P < alpha / 2.0: # It's skewed! grubbs_t = scp.t.ppf(1 - (alpha / count) / 2, (count - 2)) grubbs_Gcrit = ((count - 1) / np.sqrt(count)) * np.sqrt(np.power(grubbs_t, 2) / ((count - 2) + np.power(grubbs_t, 2))) if skewness > 0.0: data_max = np.nanmax(oData) grubbs_res = (data_max - mean) / std max_pos = np.nanargmax(oData) if grubbs_res > grubbs_Gcrit: # It's a true outlier oData[max_pos] = np.nan oLogic[max_pos] = True else: if vecNoPlateau[max_pos]: # It has no plateau oData[max_pos] = np.nan oLogic[max_pos] = True else: loopOn = False else: data_min = np.nanmin(oData) grubbs_res = (mean - data_min) / std min_pos = np.nanargmin(oData) if grubbs_res > grubbs_Gcrit: # It's a true outlier oData[min_pos] = np.nan oLogic[min_pos] = True else: if vecNoPlateau[min_pos]: # It has no plateau oData[min_pos] = np.nan oLogic[min_pos] = True else: loopOn = False else: loopOn = False return oLogic def _mca_smooth(tempList, rawFluor): """A function to smooth the melt curve date based on Friedmans supersmoother. # https://www.slac.stanford.edu/pubs/slacpubs/3250/slac-pub-3477.pdf Args: tempList: rawFluor: The numpy array with the raw data Returns: The numpy array with the smoothed data. """ span_s = 0.05 span_m = 0.2 span_l = 0.5 smoothFluor = np.zeros(rawFluor.shape, dtype=np.float64) padTemp = np.append(0.0, tempList) zeroPad = np.zeros((rawFluor.shape[0], 1), dtype=np.float64) padFluor = np.append(zeroPad, rawFluor, axis=1) n = len(padTemp) - 1 # Find the increase in x from 0.25 to 0.75 over the total range firstQuarter = int(0.5 + n / 4) thirdQuarter = 3 * firstQuarter scale = -1.0 while scale <= 0.0: if thirdQuarter < n: thirdQuarter += 1 if firstQuarter > 1: firstQuarter -= 1 scale = padTemp[thirdQuarter] - padTemp[firstQuarter] vsmlsq = 0.0001 * scale * 0.0001 * scale countUp = 0 for fluor in padFluor: [res_s_a, res_s_t] = _mca_sub_smooth(padTemp, fluor, span_s, vsmlsq, True) [res_s_b, _unused] = _mca_sub_smooth(padTemp, res_s_t, span_m, vsmlsq, False) [res_s_c, res_s_t] = _mca_sub_smooth(padTemp, fluor, span_m, vsmlsq, True) [res_s_d, _unused] = _mca_sub_smooth(padTemp, res_s_t, span_m, vsmlsq, False) [res_s_e, res_s_t] = _mca_sub_smooth(padTemp, fluor, span_l, vsmlsq, True) [res_s_f, _unused] = _mca_sub_smooth(padTemp, res_s_t, span_m, vsmlsq, False) res_s_fin = np.zeros(res_s_a.shape, dtype=np.float64) for thirdQuarter in range(1, n + 1): resmin = 1.0e20 if res_s_b[thirdQuarter] < resmin: resmin = res_s_b[thirdQuarter] res_s_fin[thirdQuarter] = span_s if res_s_d[thirdQuarter] < resmin: resmin = res_s_d[thirdQuarter] res_s_fin[thirdQuarter] = span_m if res_s_f[thirdQuarter] < resmin: res_s_fin[thirdQuarter] = span_l [res_s_bb, _unused] = _mca_sub_smooth(padTemp, res_s_fin, span_m, vsmlsq, False) res_s_cc = np.zeros(res_s_a.shape, dtype=np.float64) for thirdQuarter in range(1, n + 1): # compare res_s_bb with spans[] and make sure the no res_s_bb[] is below span_s or above span_l if res_s_bb[thirdQuarter] <= span_s: res_s_bb[thirdQuarter] = span_s if res_s_bb[thirdQuarter] >= span_l: res_s_bb[thirdQuarter] = span_l f = res_s_bb[thirdQuarter] - span_m if f >= 0.0: # in case res_s_bb[] is higher than span_m: calculate res_s_cc[] from res_s_c and res_s_e # using linear interpolation between span_l and span_m f = f / (span_l - span_m) res_s_cc[thirdQuarter] = (1.0 - f) * res_s_c[thirdQuarter] + f * res_s_e[thirdQuarter] else: # in case res_s_bb[] is less than span_m: calculate res_s_cc[] from res_s_c and res_s_a # using linear interpolation between span_s and span_m f = -f / (span_m - span_s) res_s_cc[thirdQuarter] = (1.0 - f) * res_s_c[thirdQuarter] + f * res_s_a[thirdQuarter] # final smoothing of combined optimally smoothed values in res_s_cc[] into smo[] [res_s_t, _unused] = _mca_sub_smooth(padTemp, res_s_cc, span_s, vsmlsq, False) smoothFluor[countUp] = res_s_t[1:] countUp += 1 return smoothFluor def _mca_sub_smooth(temperature, fluor, span, vsmlsq, saveVarianceData): """A function to smooth the melt curve date based on Friedmans supersmoother. # https://www.slac.stanford.edu/pubs/slacpubs/3250/slac-pub-3477.pdf Args: temperature: fluor: The numpy array with the raw data span: The selected span vsmlsq: The width saveVarianceData: Sava variance data Returns: [smoothData[], varianceData[]] where smoothData[] contains smoothed data, varianceData[] contains residuals scaled to variance. """ n = len(temperature) - 1 smoothData = np.zeros(len(temperature), dtype=np.float64) varianceData = np.zeros(len(temperature), dtype=np.float64) windowSize = int(0.5 * span * n + 0.6) if windowSize < 2: windowSize = 2 windowStop = 2 * windowSize + 1 # range of smoothing window xm = temperature[1] ym = fluor[1] tempVar = 0.0 fluorVar = 0.0 for i in range(2, windowStop + 1): xm = ((i - 1) * xm + temperature[i]) / i ym = ((i - 1) * ym + fluor[i]) / i tmp = i * (temperature[i] - xm) / (i - 1) tempVar += tmp * (temperature[i] - xm) fluorVar += tmp * (fluor[i] - ym) fbw = windowStop for j in range(1, n + 1): # Loop through all windowStart = j - windowSize - 1 windowEnd = j + windowSize if not (windowStart < 1 or windowEnd > n): tempStart = temperature[windowStart] tempEnd = temperature[windowEnd] fbo = fbw fbw = fbw - 1.0 tmp = 0.0 if fbw > 0.0: xm = (fbo * xm - tempStart) / fbw if fbw > 0.0: ym = (fbo * ym - fluor[windowStart]) / fbw if fbw > 0.0: tmp = fbo * (tempStart - xm) / fbw tempVar = tempVar - tmp * (tempStart - xm) fluorVar = fluorVar - tmp * (fluor[windowStart] - ym) fbo = fbw fbw = fbw + 1.0 tmp = 0.0 if fbw > 0.0: xm = (fbo * xm + tempEnd) / fbw if fbw > 0.0: ym = (fbo * ym + fluor[windowEnd]) / fbw if fbo > 0.0: tmp = fbw * (tempEnd - xm) / fbo tempVar = tempVar + tmp * (tempEnd - xm) fluorVar = fluorVar + tmp * (fluor[windowEnd] - ym) if tempVar > vsmlsq: smoothData[j] = (temperature[j] - xm) * fluorVar / tempVar + ym # contains smoothed data else: smoothData[j] = ym # contains smoothed data if saveVarianceData: h = 0.0 if fbw > 0.0: h = 1.0 / fbw if tempVar > vsmlsq: h = h + (temperature[j] - xm) * (temperature[j] - xm) / tempVar if 1.0 - h > 0.0: varianceData[j] = abs(fluor[j] - smoothData[j]) / (1.0 - h) # contains residuals scaled to variance else: if j > 1: varianceData[j] = varianceData[j - 1] # contains residuals scaled to variance else: varianceData[j] = 0.0 return [smoothData, varianceData] def _mca_linReg(xIn, yUse, start, stop): """A function which calculates the slope or the intercept by linear regression. Args: xIn: The numpy array of the temperatures yUse: The numpy array that contains the fluorescence Returns: An array with the slope and intercept. """ counts = np.ones(yUse.shape) xUse = xIn.copy() xUse[np.isnan(yUse)] = 0 counts[np.isnan(yUse)] = 0 myStop = stop + 1 tempSqared = xUse * xUse tempFluor = xUse * yUse sumCyc = np.nansum(xUse[:, start:myStop], axis=1) sumFluor = np.nansum(yUse[:, start:myStop], axis=1) sumCycSquared = np.nansum(tempSqared[:, start:myStop], axis=1) sumCycFluor = np.nansum(tempFluor[:, start:myStop], axis=1) n = np.nansum(counts[:, start:myStop], axis=1) ssx = sumCycSquared - (sumCyc * sumCyc) / n sxy = sumCycFluor - (sumCyc * sumFluor) / n slope = sxy / ssx intercept = (sumFluor / n) - slope * (sumCyc / n) return [slope, intercept] def _cleanErrorString(inStr, cleanStyle): outStr = ";" inStr += ";" if cleanStyle == "melt": outStr = inStr.replace('several products with different melting temperatures detected', '') outStr = outStr.replace('product with different melting temperatures detected', '') outStr = outStr.replace('no product with expected melting temperature', '') else: strList = inStr.split(";") knownWarn = ["amplification in negative control", "plateau in negative control", "no amplification in positive control", "baseline error in positive control", "no plateau in positive control", "noisy sample in positive control", "Cq < 10, N0 unreliable", "Cq > 34", "no indiv PCR eff can be calculated", "PCR efficiency outlier", "no amplification", "baseline error", "no plateau", "noisy sample", "Cq too high"] for ele in strList: if ele in knownWarn: continue if re.search(r"^only \d+ values in log phase", ele): continue if re.search(r"^indiv PCR eff is .+", ele): continue outStr += ele + ";" # if inStr.find('several products with different melting temperatures detected') >= 0: # outStr += ';several products with different melting temperatures detected;' # if inStr.find('product with different melting temperatures detected') >= 0: # outStr += ';product with different melting temperatures detected;' # if inStr.find('no product with expected melting temperature') >= 0: # outStr += ';no product with expected melting temperature;' outStr = re.sub(r';+', ';', outStr) return outStr def _numpyTwoAxisSave(var, fileName): with np.printoptions(precision=3, suppress=True): np.savetxt(fileName, var, fmt='%.6f', delimiter='\t', newline='\n') def _getXMLDataType(): return ["tar", "cq", "N0", "ampEffMet", "ampEff", "ampEffSE", "corrF", "meltTemp", "excl", "note", "adp", "mdp", "endPt", "bgFluor", "quantFluor"] class Rdml: """RDML-Python library The root element used to open, write, read and edit RDML files. Attributes: _rdmlData: The RDML XML object from lxml. _node: The root node of the RDML XML object. """ def __init__(self, filename=None): """Inits an empty RDML instance with new() or load RDML file with load(). Args: self: The class self parameter. filename: The name of the RDML file to load. Returns: No return value. Function may raise RdmlError if required. """ self._rdmlData = None self._rdmlFilename = None self._node = None if filename: self.load(filename) else: self.new() def __getitem__(self, key): """Returns data of the key. Args: self: The class self parameter. key: The key of the experimenter subelement Returns: A string of the data or None. """ if key == "version": return self.version() if key in ["dateMade", "dateUpdated"]: return _get_first_child_text(self._node, key) raise KeyError def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["version", "dateMade", "dateUpdated"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["dateMade", "dateUpdated", "id", "experimenter", "documentation", "dye", "sample", "target", "thermalCyclingConditions", "experiment"] def new(self): """Creates an new empty RDML object with the current date. Args: self: The class self parameter. Returns: No return value. Function may raise RdmlError if required. """ data = "<rdml version='1.2' xmlns:rdml='http://www.rdml.org' xmlns='http://www.rdml.org'>\n<dateMade>" data += datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S") data += "</dateMade>\n<dateUpdated>" data += datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S") data += "</dateUpdated>\n</rdml>" self.loadXMLString(data) return def load(self, filename): """Load an RDML file with decompression of rdml_data.xml or an XML file. Uses loadXMLString(). Args: self: The class self parameter. filename: The name of the RDML file to load. Returns: No return value. Function may raise RdmlError if required. """ if zipfile.is_zipfile(filename): self._rdmlFilename = filename zf = zipfile.ZipFile(filename, 'r') try: data = zf.read('rdml_data.xml').decode('utf-8') except KeyError: raise RdmlError('No rdml_data.xml in compressed RDML file found.') else: self.loadXMLString(data) finally: zf.close() else: with open(filename, 'r') as txtfile: data = txtfile.read() if data: self.loadXMLString(data) else: raise RdmlError('File format error, not a valid RDML or XML file.') def save(self, filename): """Save an RDML file with compression of rdml_data.xml. Args: self: The class self parameter. filename: The name of the RDML file to save to. Returns: No return value. Function may raise RdmlError if required. """ elem = _get_or_create_subelement(self._node, "dateUpdated", self.xmlkeys()) elem.text = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S") data = et.tostring(self._rdmlData, pretty_print=True) _writeFileInRDML(filename, 'rdml_data.xml', data) def loadXMLString(self, data): """Create RDML object from xml string. !ENTITY and DOCSTRINGS will be removed. Args: self: The class self parameter. data: The xml string of the RDML file to load. Returns: No return value. Function may raise RdmlError if required. """ # To avoid some xml attacs based on # <!ENTITY entityname "replacement text"> data = re.sub(r"<\W*!ENTITY[^>]+>", "", data) data = re.sub(r"!ENTITY", "", data) try: self._rdmlData = et.ElementTree(et.fromstring(data.encode('utf-8'))) # Change to bytecode and defused? except et.XMLSyntaxError: raise RdmlError('XML load error, not a valid RDML or XML file.') self._node = self._rdmlData.getroot() if self._node.tag.replace("{http://www.rdml.org}", "") != 'rdml': raise RdmlError('Root element is not \'rdml\', not a valid RDML or XML file.') rdml_version = self._node.get('version') # Remainder: Update version in new() and validate() if rdml_version not in ['1.0', '1.1', '1.2', '1.3']: raise RdmlError('Unknown or unsupported RDML file version.') def validate(self, filename=None): """Validate the RDML object against its schema or load file and validate it. Args: self: The class self parameter. filename: The name of the RDML file to load. Returns: A string with the validation result as a two column table. """ notes = "" if filename: try: vd = Rdml(filename) except RdmlError as err: notes += 'RDML file structure:\tFalse\t' + str(err) + '\n' return notes notes += "RDML file structure:\tTrue\tValid file structure.\n" else: vd = self version = vd.version() rdmlws = os.path.dirname(os.path.abspath(__file__)) if version == '1.0': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_0_REC.xsd')) elif version == '1.1': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_1_REC.xsd')) elif version == '1.2': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_2_REC.xsd')) elif version == '1.3': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_3_CR.xsd')) else: notes += 'RDML version:\tFalse\tUnknown schema version' + version + '\n' return notes notes += "RDML version:\tTrue\t" + version + "\n" xmlschema = et.XMLSchema(xmlschema_doc) result = xmlschema.validate(vd._rdmlData) if result: notes += 'Schema validation result:\tTrue\tRDML file is valid.\n' else: notes += 'Schema validation result:\tFalse\tRDML file is not valid.\n' log = xmlschema.error_log for err in log: notes += 'Schema validation error:\tFalse\t' notes += "Line %s, Column %s: %s \n" % (err.line, err.column, err.message) return notes def isvalid(self, filename=None): """Validate the RDML object against its schema or load file and validate it. Args: self: The class self parameter. filename: The name of the RDML file to load. Returns: True or false as the validation result. """ if filename: try: vd = Rdml(filename) except RdmlError: return False else: vd = self version = vd.version() rdmlws = os.path.dirname(os.path.abspath(__file__)) if version == '1.0': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_0_REC.xsd')) elif version == '1.1': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_1_REC.xsd')) elif version == '1.2': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_2_REC.xsd')) elif version == '1.3': xmlschema_doc = et.parse(os.path.join(rdmlws, 'schema', 'RDML_v1_3_CR.xsd')) else: return False xmlschema = et.XMLSchema(xmlschema_doc) result = xmlschema.validate(vd._rdmlData) if result: return True else: return False def version(self): """Returns the version string of the RDML object. Args: self: The class self parameter. Returns: A string of the version like '1.1'. """ return self._node.get('version') def migrate_version_1_0_to_1_1(self): """Migrates the rdml version from v1.0 to v1.1. Args: self: The class self parameter. Returns: A list of strings with the modifications made. """ ret = [] rdml_version = self._node.get('version') if rdml_version != '1.0': raise RdmlError('RDML version for migration has to be v1.0.') exp = _get_all_children(self._node, "thirdPartyExtensions") if len(exp) > 0: ret.append("Migration to v1.1 deleted \"thirdPartyExtensions\" elements.") for node in exp: self._node.remove(node) hint = "" exp1 = _get_all_children(self._node, "experiment") for node1 in exp1: exp2 = _get_all_children(node1, "run") for node2 in exp2: exp3 = _get_all_children(node2, "react") for node3 in exp3: exp4 = _get_all_children(node3, "data") for node4 in exp4: exp5 = _get_all_children(node4, "quantity") for node5 in exp5: hint = "Migration to v1.1 deleted react data \"quantity\" elements." node4.remove(node5) if hint != "": ret.append(hint) xml_keys = ["description", "documentation", "xRef", "type", "interRunCalibrator", "quantity", "calibratorSample", "cdnaSynthesisMethod", "templateRNAQuantity", "templateRNAQuality", "templateDNAQuantity", "templateDNAQuality"] exp1 = _get_all_children(self._node, "sample") for node1 in exp1: hint = "" exp2 = _get_all_children(node1, "templateRNAQuantity") if len(exp2) > 0: templateRNAQuantity = _get_first_child_text(node1, "templateRNAQuantity") node1.remove(exp2[0]) if templateRNAQuantity != "": hint = "Migration to v1.1 modified sample \"templateRNAQuantity\" element without loss." ele = _get_or_create_subelement(node1, "templateRNAQuantity", xml_keys) _change_subelement(ele, "value", ["value", "unit"], templateRNAQuantity, True, "float") _change_subelement(ele, "unit", ["value", "unit"], "ng", True, "float") if hint != "": ret.append(hint) hint = "" exp2 = _get_all_children(node1, "templateRNAQuantity") if len(exp2) > 0: templateDNAQuantity = _get_first_child_text(node1, "templateDNAQuantity") node1.remove(exp2[0]) if templateDNAQuantity != "": hint = "Migration to v1.1 modified sample \"templateDNAQuantity\" element without loss." ele = _get_or_create_subelement(node1, "templateDNAQuantity", xml_keys) _change_subelement(ele, "value", ["value", "unit"], templateDNAQuantity, True, "float") _change_subelement(ele, "unit", ["value", "unit"], "ng", True, "float") if hint != "": ret.append(hint) xml_keys = ["description", "documentation", "xRef", "type", "amplificationEfficiencyMethod", "amplificationEfficiency", "detectionLimit", "dyeId", "sequences", "commercialAssay"] exp1 = _get_all_children(self._node, "target") all_dyes = {} hint = "" for node1 in exp1: hint = "" dye_ele = _get_first_child_text(node1, "dyeId") node1.remove(_get_first_child(node1, "dyeId")) if dye_ele == "": dye_ele = "conversion_dye_missing" hint = "Migration to v1.1 created target nonsense \"dyeId\"." forId = _get_or_create_subelement(node1, "dyeId", xml_keys) forId.attrib['id'] = dye_ele all_dyes[dye_ele] = True if hint != "": ret.append(hint) for dkey in all_dyes.keys(): if _check_unique_id(self._node, "dye", dkey): new_node = et.Element("dye", id=dkey) place = _get_tag_pos(self._node, "dye", self.xmlkeys(), 999999) self._node.insert(place, new_node) xml_keys = ["description", "documentation", "experimenter", "instrument", "dataCollectionSoftware", "backgroundDeterminationMethod", "cqDetectionMethod", "thermalCyclingConditions", "pcrFormat", "runDate", "react"] exp1 = _get_all_children(self._node, "experiment") for node1 in exp1: exp2 = _get_all_children(node1, "run") for node2 in exp2: old_format = _get_first_child_text(node2, "pcrFormat") exp3 = _get_all_children(node2, "pcrFormat") for node3 in exp3: node2.remove(node3) rows = "1" columns = "1" rowLabel = "ABC" columnLabel = "123" if old_format == "single-well": rowLabel = "123" if old_format == "48-well plate; A1-F8": rows = "6" columns = "8" if old_format == "96-well plate; A1-H12": rows = "8" columns = "12" if old_format == "384-well plate; A1-P24": rows = "16" columns = "24" if old_format == "3072-well plate; A1a1-D12h8": rows = "32" columns = "96" rowLabel = "A1a1" columnLabel = "A1a1" if old_format == "32-well rotor; 1-32": rows = "32" rowLabel = "123" if old_format == "72-well rotor; 1-72": rows = "72" rowLabel = "123" if old_format == "100-well rotor; 1-100": rows = "100" rowLabel = "123" if old_format == "free format": rows = "-1" columns = "1" rowLabel = "123" ele3 = _get_or_create_subelement(node2, "pcrFormat", xml_keys) _change_subelement(ele3, "rows", ["rows", "columns", "rowLabel", "columnLabel"], rows, True, "string") _change_subelement(ele3, "columns", ["rows", "columns", "rowLabel", "columnLabel"], columns, True, "string") _change_subelement(ele3, "rowLabel", ["rows", "columns", "rowLabel", "columnLabel"], rowLabel, True, "string") _change_subelement(ele3, "columnLabel", ["rows", "columns", "rowLabel", "columnLabel"], columnLabel, True, "string") if old_format == "48-well plate A1-F8" or \ old_format == "96-well plate; A1-H12" or \ old_format == "384-well plate; A1-P24": exp3 = _get_all_children(node2, "react") for node3 in exp3: old_id = node3.get('id') old_letter = ord(re.sub(r"\d", "", old_id).upper()) - ord("A") old_nr = int(re.sub(r"\D", "", old_id)) newId = old_nr + old_letter * int(columns) node3.attrib['id'] = str(newId) if old_format == "3072-well plate; A1a1-D12h8": exp3 = _get_all_children(node2, "react") for node3 in exp3: old_id = node3.get('id') old_left = re.sub(r"\D\d+$", "", old_id) old_left_letter = ord(re.sub(r"\d", "", old_left).upper()) - ord("A") old_left_nr = int(re.sub(r"\D", "", old_left)) - 1 old_right = re.sub(r"^\D\d+", "", old_id) old_right_letter = ord(re.sub(r"\d", "", old_right).upper()) - ord("A") old_right_nr = int(re.sub(r"\D", "", old_right)) newId = old_left_nr * 8 + old_right_nr + old_left_letter * 768 + old_right_letter * 96 node3.attrib['id'] = str(newId) self._node.attrib['version'] = "1.1" return ret def migrate_version_1_1_to_1_2(self): """Migrates the rdml version from v1.1 to v1.2. Args: self: The class self parameter. Returns: A list of strings with the modifications made. """ ret = [] rdml_version = self._node.get('version') if rdml_version != '1.1': raise RdmlError('RDML version for migration has to be v1.1.') exp1 = _get_all_children(self._node, "sample") for node1 in exp1: hint = "" exp2 = _get_all_children(node1, "templateRNAQuality") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.2 deleted sample \"templateRNAQuality\" element." if hint != "": ret.append(hint) hint = "" exp2 = _get_all_children(node1, "templateRNAQuantity") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.2 deleted sample \"templateRNAQuantity\" element." if hint != "": ret.append(hint) hint = "" exp2 = _get_all_children(node1, "templateDNAQuality") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.2 deleted sample \"templateDNAQuality\" element." if hint != "": ret.append(hint) hint = "" exp2 = _get_all_children(node1, "templateDNAQuantity") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.2 deleted sample \"templateDNAQuantity\" element." if hint != "": ret.append(hint) self._node.attrib['version'] = "1.2" return ret def migrate_version_1_2_to_1_1(self): """Migrates the rdml version from v1.2 to v1.1. Args: self: The class self parameter. Returns: A list of strings with the modifications made. """ ret = [] rdml_version = self._node.get('version') if rdml_version != '1.2': raise RdmlError('RDML version for migration has to be v1.2.') exp1 = _get_all_children(self._node, "sample") for node1 in exp1: hint = "" exp2 = _get_all_children(node1, "annotation") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.1 deleted sample \"annotation\" element." if hint != "": ret.append(hint) hint = "" exp2 = _get_all_children(node1, "templateQuantity") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.1 deleted sample \"templateQuantity\" element." if hint != "": ret.append(hint) exp1 = _get_all_children(self._node, "target") for node1 in exp1: hint = "" exp2 = _get_all_children(node1, "amplificationEfficiencySE") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.1 deleted target \"amplificationEfficiencySE\" element." if hint != "": ret.append(hint) hint = "" exp1 = _get_all_children(self._node, "experiment") for node1 in exp1: exp2 = _get_all_children(node1, "run") for node2 in exp2: exp3 = _get_all_children(node2, "react") for node3 in exp3: exp4 = _get_all_children(node3, "data") for node4 in exp4: exp5 = _get_all_children(node4, "bgFluorSlp") for node5 in exp5: hint = "Migration to v1.1 deleted react data \"bgFluorSlp\" elements." node4.remove(node5) if hint != "": ret.append(hint) self._node.attrib['version'] = "1.1" return ret def migrate_version_1_2_to_1_3(self): """Migrates the rdml version from v1.2 to v1.3. Args: self: The class self parameter. Returns: A list of strings with the modifications made. """ ret = [] rdml_version = self._node.get('version') if rdml_version != '1.2': raise RdmlError('RDML version for migration has to be v1.2.') self._node.attrib['version'] = "1.3" return ret def migrate_version_1_3_to_1_2(self): """Migrates the rdml version from v1.3 to v1.2. Args: self: The class self parameter. Returns: A list of strings with the modifications made. """ ret = [] rdml_version = self._node.get('version') if rdml_version != '1.3': raise RdmlError('RDML version for migration has to be v1.3.') hint = "" hint2 = "" hint3 = "" hint4 = "" hint5 = "" hint6 = "" hint7 = "" hint8 = "" exp1 = _get_all_children(self._node, "experiment") for node1 in exp1: exp2 = _get_all_children(node1, "run") for node2 in exp2: exp3 = _get_all_children(node2, "react") for node3 in exp3: exp4 = _get_all_children(node3, "partitions") for node4 in exp4: hint = "Migration to v1.2 deleted react \"partitions\" elements." node3.remove(node4) # No data element, no react element in v 1.2 exp5 = _get_all_children(node3, "data") if len(exp5) == 0: hint = "Migration to v1.2 deleted run \"react\" elements." node2.remove(node3) exp4b = _get_all_children(node3, "data") for node4 in exp4b: exp5 = _get_all_children(node4, "ampEffMet") for node5 in exp5: hint2 = "Migration to v1.2 deleted react data \"ampEffMet\" elements." node4.remove(node5) exp5 = _get_all_children(node4, "N0") for node5 in exp5: hint3 = "Migration to v1.2 deleted react data \"N0\" elements." node4.remove(node5) exp5 = _get_all_children(node4, "ampEff") for node5 in exp5: hint4 = "Migration to v1.2 deleted react data \"ampEff\" elements." node4.remove(node5) exp5 = _get_all_children(node4, "ampEffSE") for node5 in exp5: hint5 = "Migration to v1.2 deleted react data \"ampEffSE\" elements." node4.remove(node5) exp5 = _get_all_children(node4, "corrF") for node5 in exp5: hint6 = "Migration to v1.2 deleted react data \"corrF\" elements." node4.remove(node5) exp5 = _get_all_children(node4, "meltTemp") for node5 in exp5: hint7 = "Migration to v1.2 deleted react data \"meltTemp\" elements." node4.remove(node5) exp5 = _get_all_children(node4, "note") for node5 in exp5: hint8 = "Migration to v1.2 deleted react data \"note\" elements." node4.remove(node5) if hint != "": ret.append(hint) if hint2 != "": ret.append(hint2) if hint3 != "": ret.append(hint3) if hint4 != "": ret.append(hint4) if hint5 != "": ret.append(hint5) if hint6 != "": ret.append(hint6) if hint7 != "": ret.append(hint7) if hint8 != "": ret.append(hint8) exp1 = _get_all_children(self._node, "sample") hint = "" hint2 = "" for node1 in exp1: exp2 = _get_all_children(node1, "type") if "targetId" in exp2[0].attrib: del exp2[0].attrib["targetId"] hint = "Migration to v1.2 deleted sample type \"targetId\" attribute." for elCount in range(1, len(exp2)): node1.remove(exp2[elCount]) hint2 = "Migration to v1.2 deleted sample \"type\" elements." if hint != "": ret.append(hint) if hint2 != "": ret.append(hint2) exp1 = _get_all_children(self._node, "target") hint = "" for node1 in exp1: exp2 = _get_all_children(node1, "meltingTemperature") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.2 deleted target \"meltingTemperature\" elements." if hint != "": ret.append(hint) exp1 = _get_all_children(self._node, "dye") hint = "" for node1 in exp1: exp2 = _get_all_children(node1, "dyeChemistry") for node2 in exp2: node1.remove(node2) hint = "Migration to v1.2 deleted dye \"dyeChemistry\" elements." if hint != "": ret.append(hint) self._node.attrib['version'] = "1.2" return ret def recreate_lost_ids(self): """Searches for lost ids and repairs them. Args: self: The class self parameter. Returns: A string with the modifications. """ mess = "" # Find lost dyes foundIds = {} allTar = _get_all_children(self._node, "target") for node in allTar: forId = _get_first_child(node, "dyeId") if forId is not None: foundIds[forId.attrib['id']] = 0 presentIds = [] exp = _get_all_children(self._node, "dye") for node in exp: presentIds.append(node.attrib['id']) for used_id in foundIds: if used_id not in presentIds: self.new_dye(id=used_id, newposition=0) mess += "Recreated new dye: " + used_id + "\n" # Find lost thermalCycCon foundIds = {} allSam = _get_all_children(self._node, "sample") for node in allSam: subNode = _get_first_child(node, "cdnaSynthesisMethod") if subNode is not None: forId = _get_first_child(node, "thermalCyclingConditions") if forId is not None: foundIds[forId.attrib['id']] = 0 allExp = _get_all_children(self._node, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: forId = _get_first_child(subNode, "thermalCyclingConditions") if forId is not None: foundIds[forId.attrib['id']] = 0 presentIds = [] exp = _get_all_children(self._node, "thermalCyclingConditions") for node in exp: presentIds.append(node.attrib['id']) for used_id in foundIds: if used_id not in presentIds: self.new_therm_cyc_cons(id=used_id, newposition=0) mess += "Recreated thermal cycling conditions: " + used_id + "\n" # Find lost experimenter foundIds = {} allTh = _get_all_children(self._node, "thermalCyclingConditions") for node in allTh: subNodes = _get_all_children(node, "experimenter") for subNode in subNodes: foundIds[subNode.attrib['id']] = 0 allExp = _get_all_children(self._node, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: lastNodes = _get_all_children(subNode, "experimenter") for lastNode in lastNodes: foundIds[lastNode.attrib['id']] = 0 presentIds = [] exp = _get_all_children(self._node, "experimenter") for node in exp: presentIds.append(node.attrib['id']) for used_id in foundIds: if used_id not in presentIds: self.new_experimenter(id=used_id, firstName="unknown first name", lastName="unknown last name", newposition=0) mess += "Recreated experimenter: " + used_id + "\n" # Find lost documentation foundIds = {} allSam = _get_all_children(self._node, "sample") for node in allSam: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: foundIds[subNode.attrib['id']] = 0 allTh = _get_all_children(self._node, "target") for node in allTh: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: foundIds[subNode.attrib['id']] = 0 allTh = _get_all_children(self._node, "thermalCyclingConditions") for node in allTh: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: foundIds[subNode.attrib['id']] = 0 allExp = _get_all_children(self._node, "experiment") for node in allExp: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: foundIds[subNode.attrib['id']] = 0 subNodes = _get_all_children(node, "run") for subNode in subNodes: lastNodes = _get_all_children(subNode, "documentation") for lastNode in lastNodes: foundIds[lastNode.attrib['id']] = 0 presentIds = [] exp = _get_all_children(self._node, "documentation") for node in exp: presentIds.append(node.attrib['id']) for used_id in foundIds: if used_id not in presentIds: self.new_documentation(id=used_id, newposition=0) mess += "Recreated documentation: " + used_id + "\n" # Find lost sample foundIds = {} allExp = _get_all_children(self._node, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: reactNodes = _get_all_children(subNode, "react") for reactNode in reactNodes: lastNodes = _get_all_children(reactNode, "sample") for lastNode in lastNodes: foundIds[lastNode.attrib['id']] = 0 presentIds = [] exp = _get_all_children(self._node, "sample") for node in exp: presentIds.append(node.attrib['id']) for used_id in foundIds: if used_id not in presentIds: self.new_sample(id=used_id, type="unkn", newposition=0) mess += "Recreated sample: " + used_id + "\n" # Find lost target foundIds = {} allExp = _get_all_children(self._node, "sample") for node in allExp: subNodes = _get_all_children(node, "type") for subNode in subNodes: if "targetId" in subNode.attrib: foundIds[subNode.attrib['targetId']] = 0 allExp = _get_all_children(self._node, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: reactNodes = _get_all_children(subNode, "react") for reactNode in reactNodes: dataNodes = _get_all_children(reactNode, "data") for dataNode in dataNodes: lastNodes = _get_all_children(dataNode, "tar") for lastNode in lastNodes: foundIds[lastNode.attrib['id']] = 0 partNodes = _get_all_children(reactNode, "partitions") for partNode in partNodes: dataNodes = _get_all_children(partNode, "data") for dataNode in dataNodes: lastNodes = _get_all_children(dataNode, "tar") for lastNode in lastNodes: foundIds[lastNode.attrib['id']] = 0 # Search in Table files if self._rdmlFilename is not None and self._rdmlFilename != "": if zipfile.is_zipfile(self._rdmlFilename): zf = zipfile.ZipFile(self._rdmlFilename, 'r') for item in zf.infolist(): if re.search("^partitions/", item.filename): fileContent = zf.read(item.filename).decode('utf-8') newlineFix = fileContent.replace("\r\n", "\n") tabLines = newlineFix.split("\n") header = tabLines[0].split("\t") for cell in header: if cell != "": foundIds[cell] = 0 zf.close() presentIds = [] exp = _get_all_children(self._node, "target") for node in exp: presentIds.append(node.attrib['id']) for used_id in foundIds: if used_id not in presentIds: self.new_target(id=used_id, type="toi", newposition=0) mess += "Recreated target: " + used_id + "\n" return mess def repair_rdml_file(self): """Searches for known errors and repairs them. Args: self: The class self parameter. Returns: A string with the modifications. """ mess = "" mess += self.fixExclFalse() mess += self.fixDuplicateReact() return mess def fixExclFalse(self): """Searches in experiment-run-react-data for excl=false and deletes the elements. Args: self: The class self parameter. Returns: A string with the modifications. """ mess = "" count = 0 allExp = _get_all_children(self._node, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: reactNodes = _get_all_children(subNode, "react") for reactNode in reactNodes: dataNodes = _get_all_children(reactNode, "data") for dataNode in dataNodes: lastNodes = _get_all_children(dataNode, "excl") for lastNode in lastNodes: if lastNode.text.lower() == "false": count += 1 dataNode.remove(lastNode) if count > 0: mess = "The element excl=false was removed " + str(count) + " times!\n" return mess def fixDuplicateReact(self): """Searches in experiment-run-react for duplicates and keeps only the first. Args: self: The class self parameter. Returns: A string with the modifications. """ mess = "" foundIds = {} count = 0 allExp = _get_all_children(self._node, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: reactNodes = _get_all_children(subNode, "react") for reactNode in reactNodes: tId = reactNode.attrib['id'] if tId not in foundIds: foundIds[tId] = 0 else: count += 1 subNode.remove(reactNode) if count > 0: mess = str(count) + " duplicate react elements were removed!\n" return mess def rdmlids(self): """Returns a list of all rdml id elements. Args: self: The class self parameter. Returns: A list of all rdml id elements. """ exp = _get_all_children(self._node, "id") ret = [] for node in exp: ret.append(Rdmlid(node)) return ret def new_rdmlid(self, publisher, serialNumber, MD5Hash=None, newposition=None): """Creates a new rdml id element. Args: self: The class self parameter. publisher: Publisher who created the serialNumber (required) serialNumber: Serial Number for this file provided by publisher (required) MD5Hash: A MD5 hash for this file (optional) newposition: The new position of the element in the list (optional) Returns: Nothing, changes self. """ new_node = et.Element("id") _add_new_subelement(new_node, "id", "publisher", publisher, False) _add_new_subelement(new_node, "id", "serialNumber", serialNumber, False) _add_new_subelement(new_node, "id", "MD5Hash", MD5Hash, True) place = _get_tag_pos(self._node, "id", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_rdmlid(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "id", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "id", None, oldposition) self._node.insert(pos, ele) def get_rdmlid(self, byposition=None): """Returns an experimenter element by position or id. Args: self: The class self parameter. byposition: Select the element by position in the list. Returns: The found element or None. """ return Rdmlid(_get_first_child_by_pos_or_id(self._node, "id", None, byposition)) def delete_rdmlid(self, byposition=None): """Deletes an experimenter element. Args: self: The class self parameter. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "id", None, byposition) self._node.remove(elem) def experimenters(self): """Returns a list of all experimenter elements. Args: self: The class self parameter. Returns: A list of all experimenter elements. """ exp = _get_all_children(self._node, "experimenter") ret = [] for node in exp: ret.append(Experimenter(node)) return ret def new_experimenter(self, id, firstName, lastName, email=None, labName=None, labAddress=None, newposition=None): """Creates a new experimenter element. Args: self: The class self parameter. id: Experimenter unique id firstName: Experimenters first name (required) lastName: Experimenters last name (required) email: Experimenters email (optional) labName: Experimenters lab name (optional) labAddress: Experimenters lab address (optional) newposition: Experimenters position in the list of experimenters (optional) Returns: Nothing, changes self. """ new_node = _create_new_element(self._node, "experimenter", id) _add_new_subelement(new_node, "experimenter", "firstName", firstName, False) _add_new_subelement(new_node, "experimenter", "lastName", lastName, False) _add_new_subelement(new_node, "experimenter", "email", email, True) _add_new_subelement(new_node, "experimenter", "labName", labName, True) _add_new_subelement(new_node, "experimenter", "labAddress", labAddress, True) place = _get_tag_pos(self._node, "experimenter", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_experimenter(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: Experimenter unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "experimenter", id, self.xmlkeys(), newposition) def get_experimenter(self, byid=None, byposition=None): """Returns an experimenter element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Experimenter(_get_first_child_by_pos_or_id(self._node, "experimenter", byid, byposition)) def delete_experimenter(self, byid=None, byposition=None): """Deletes an experimenter element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "experimenter", byid, byposition) self._node.remove(elem) def documentations(self): """Returns a list of all documentation elements. Args: self: The class self parameter. Returns: A list of all documentation elements. """ exp = _get_all_children(self._node, "documentation") ret = [] for node in exp: ret.append(Documentation(node)) return ret def new_documentation(self, id, text=None, newposition=None): """Creates a new documentation element. Args: self: The class self parameter. id: Documentation unique id text: Documentation descriptive test (optional) newposition: Experimenters position in the list of experimenters (optional) Returns: Nothing, changes self. """ new_node = _create_new_element(self._node, "documentation", id) _add_new_subelement(new_node, "documentation", "text", text, True) place = _get_tag_pos(self._node, "documentation", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_documentation(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: Documentation unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "documentation", id, self.xmlkeys(), newposition) def get_documentation(self, byid=None, byposition=None): """Returns an documentation element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Documentation(_get_first_child_by_pos_or_id(self._node, "documentation", byid, byposition)) def delete_documentation(self, byid=None, byposition=None): """Deletes an documentation element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "documentation", byid, byposition) self._node.remove(elem) def dyes(self): """Returns a list of all dye elements. Args: self: The class self parameter. Returns: A list of all dye elements. """ exp = _get_all_children(self._node, "dye") ret = [] for node in exp: ret.append(Dye(node)) return ret def new_dye(self, id, description=None, newposition=None): """Creates a new dye element. Args: self: The class self parameter. id: Dye unique id description: Dye descriptive test (optional) newposition: Dye position in the list of dyes (optional) Returns: Nothing, changes self. """ new_node = _create_new_element(self._node, "dye", id) _add_new_subelement(new_node, "dye", "description", description, True) place = _get_tag_pos(self._node, "dye", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_dye(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: Dye unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "dye", id, self.xmlkeys(), newposition) def get_dye(self, byid=None, byposition=None): """Returns an dye element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Dye(_get_first_child_by_pos_or_id(self._node, "dye", byid, byposition)) def delete_dye(self, byid=None, byposition=None): """Deletes an dye element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "dye", byid, byposition) self._node.remove(elem) def samples(self): """Returns a list of all sample elements. Args: self: The class self parameter. Returns: A list of all sample elements. """ exp = _get_all_children(self._node, "sample") ret = [] for node in exp: ret.append(Sample(node)) return ret def new_sample(self, id, type, targetId=None, newposition=None): """Creates a new sample element. Args: self: The class self parameter. id: Sample unique id (required) type: Sample type (required) targetId: The target linked to the type (makes sense in "pos" or "ntp" context) (optional) newposition: Experimenters position in the list of experimenters (optional) Returns: Nothing, changes self. """ if type not in ["unkn", "ntc", "nac", "std", "ntp", "nrt", "pos", "opt"]: raise RdmlError('Unknown or unsupported sample type value "' + type + '".') new_node = _create_new_element(self._node, "sample", id) typeEL = et.SubElement(new_node, "type") typeEL.text = type ver = self._node.get('version') if ver == "1.3": if targetId is not None: if not targetId == "": typeEL.attrib["targetId"] = targetId place = _get_tag_pos(self._node, "sample", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_sample(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: Sample unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "sample", id, self.xmlkeys(), newposition) def get_sample(self, byid=None, byposition=None): """Returns an sample element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Sample(_get_first_child_by_pos_or_id(self._node, "sample", byid, byposition)) def delete_sample(self, byid=None, byposition=None): """Deletes an sample element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "sample", byid, byposition) self._node.remove(elem) def targets(self): """Returns a list of all target elements. Args: self: The class self parameter. Returns: A list of all target elements. """ exp = _get_all_children(self._node, "target") ret = [] for node in exp: ret.append(Target(node, self._rdmlFilename)) return ret def new_target(self, id, type, newposition=None): """Creates a new target element. Args: self: The class self parameter. id: Target unique id (required) type: Target type (required) newposition: Targets position in the list of targets (optional) Returns: Nothing, changes self. """ if type not in ["ref", "toi"]: raise RdmlError('Unknown or unsupported target type value "' + type + '".') new_node = _create_new_element(self._node, "target", id) _add_new_subelement(new_node, "target", "type", type, False) place = _get_tag_pos(self._node, "target", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_target(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: Target unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "target", id, self.xmlkeys(), newposition) def get_target(self, byid=None, byposition=None): """Returns an target element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Target(_get_first_child_by_pos_or_id(self._node, "target", byid, byposition), self._rdmlFilename) def delete_target(self, byid=None, byposition=None): """Deletes an target element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "target", byid, byposition) self._node.remove(elem) def therm_cyc_cons(self): """Returns a list of all thermalCyclingConditions elements. Args: self: The class self parameter. Returns: A list of all target elements. """ exp = _get_all_children(self._node, "thermalCyclingConditions") ret = [] for node in exp: ret.append(Therm_cyc_cons(node)) return ret def new_therm_cyc_cons(self, id, newposition=None): """Creates a new thermalCyclingConditions element. Args: self: The class self parameter. id: ThermalCyclingConditions unique id (required) newposition: ThermalCyclingConditions position in the list of ThermalCyclingConditions (optional) Returns: Nothing, changes self. """ new_node = _create_new_element(self._node, "thermalCyclingConditions", id) step = et.SubElement(new_node, "step") et.SubElement(step, "nr").text = "1" et.SubElement(step, "lidOpen") place = _get_tag_pos(self._node, "thermalCyclingConditions", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_therm_cyc_cons(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: ThermalCyclingConditions unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "thermalCyclingConditions", id, self.xmlkeys(), newposition) def get_therm_cyc_cons(self, byid=None, byposition=None): """Returns an thermalCyclingConditions element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Therm_cyc_cons(_get_first_child_by_pos_or_id(self._node, "thermalCyclingConditions", byid, byposition)) def delete_therm_cyc_cons(self, byid=None, byposition=None): """Deletes an thermalCyclingConditions element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "thermalCyclingConditions", byid, byposition) self._node.remove(elem) def experiments(self): """Returns a list of all experiment elements. Args: self: The class self parameter. Returns: A list of all experiment elements. """ exp = _get_all_children(self._node, "experiment") ret = [] for node in exp: ret.append(Experiment(node, self._rdmlFilename)) return ret def new_experiment(self, id, newposition=None): """Creates a new experiment element. Args: self: The class self parameter. id: Experiment unique id (required) newposition: Experiment position in the list of experiments (optional) Returns: Nothing, changes self. """ new_node = _create_new_element(self._node, "experiment", id) place = _get_tag_pos(self._node, "experiment", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_experiment(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: Experiments unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "experiment", id, self.xmlkeys(), newposition) def get_experiment(self, byid=None, byposition=None): """Returns an experiment element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Experiment(_get_first_child_by_pos_or_id(self._node, "experiment", byid, byposition), self._rdmlFilename) def delete_experiment(self, byid=None, byposition=None): """Deletes an experiment element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "experiment", byid, byposition) experiment = Experiment(elem, self._rdmlFilename) # Required to delete digital files runs = _get_all_children(elem, "run") for node in runs: run = Run(node, self._rdmlFilename) experiment.delete_run(byid=run["id"]) # Now delete the experiment element self._node.remove(elem) def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ allRdmlids = self.rdmlids() rdmlids = [] for elem in allRdmlids: rdmlids.append(elem.tojson()) allExperimenters = self.experimenters() experimenters = [] for exp in allExperimenters: experimenters.append(exp.tojson()) allDocumentations = self.documentations() documentations = [] for exp in allDocumentations: documentations.append(exp.tojson()) allDyes = self.dyes() dyes = [] for exp in allDyes: dyes.append(exp.tojson()) allSamples = self.samples() samples = [] for exp in allSamples: samples.append(exp.tojson()) allTargets = self.targets() targets = [] for exp in allTargets: targets.append(exp.tojson()) allTherm_cyc_cons = self.therm_cyc_cons() therm_cyc_cons = [] for exp in allTherm_cyc_cons: therm_cyc_cons.append(exp.tojson()) allExperiments = self.experiments() experiments = [] for exp in allExperiments: experiments.append(exp.tojson()) data = { "rdml": { "version": self["version"], "dateMade": self["dateMade"], "dateUpdated": self["dateUpdated"], "ids": rdmlids, "experimenters": experimenters, "documentations": documentations, "dyes": dyes, "samples": samples, "targets": targets, "therm_cyc_cons": therm_cyc_cons, "experiments": experiments } } return data class Rdmlid: """RDML-Python library The rdml id element used to read and edit one experimenter. Attributes: _node: The rdml id node of the RDML XML object. """ def __init__(self, node): """Inits an rdml id instance. Args: self: The class self parameter. node: The experimenter node. Returns: No return value. Function may raise RdmlError if required. """ self._node = node def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the experimenter subelement Returns: A string of the data or None. """ if key in ["publisher", "serialNumber"]: return _get_first_child_text(self._node, key) if key in ["MD5Hash"]: var = _get_first_child_text(self._node, key) if var == "": return None else: return var raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the experimenter subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key in ["publisher", "serialNumber"]: return _change_subelement(self._node, key, self.xmlkeys(), value, False, "string") if key in ["MD5Hash"]: return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") raise KeyError def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["publisher", "serialNumber", "MD5Hash"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return self.keys() def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ data = { "publisher": _get_first_child_text(self._node, "publisher"), "serialNumber": _get_first_child_text(self._node, "serialNumber") } _add_first_child_to_dic(self._node, data, True, "MD5Hash") return data class Experimenter: """RDML-Python library The experimenter element used to read and edit one experimenter. Attributes: _node: The experimenter node of the RDML XML object. """ def __init__(self, node): """Inits an experimenter instance. Args: self: The class self parameter. node: The experimenter node. Returns: No return value. Function may raise RdmlError if required. """ self._node = node def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the experimenter subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key in ["firstName", "lastName"]: return _get_first_child_text(self._node, key) if key in ["email", "labName", "labAddress"]: var = _get_first_child_text(self._node, key) if var == "": return None else: return var raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the experimenter subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key == "id": self.change_id(value, merge_with_id=False) return if key in ["firstName", "lastName"]: return _change_subelement(self._node, key, self.xmlkeys(), value, False, "string") if key in ["email", "labName", "labAddress"]: return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") raise KeyError def change_id(self, value, merge_with_id=False): """Changes the value for the id. Args: self: The class self parameter. value: The new value for the id. merge_with_id: If True only allow a unique id, if False only rename its uses with existing id. Returns: No return value, changes self. Function may raise RdmlError if required. """ oldValue = self._node.get('id') if oldValue != value: par = self._node.getparent() if not _string_to_bool(merge_with_id, triple=False): _change_subelement(self._node, "id", self.xmlkeys(), value, False, "string") else: groupTag = self._node.tag.replace("{http://www.rdml.org}", "") if _check_unique_id(par, groupTag, value): raise RdmlError('The ' + groupTag + ' id "' + value + '" does not exist.') allTh = _get_all_children(par, "thermalCyclingConditions") for node in allTh: subNodes = _get_all_children(node, "experimenter") for subNode in subNodes: if subNode.attrib['id'] == oldValue: subNode.attrib['id'] = value allExp = _get_all_children(par, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: lastNodes = _get_all_children(subNode, "experimenter") for lastNode in lastNodes: if lastNode.attrib['id'] == oldValue: lastNode.attrib['id'] = value return def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["id", "firstName", "lastName", "email", "labName", "labAddress"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return self.keys() def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ data = { "id": self._node.get('id'), "firstName": _get_first_child_text(self._node, "firstName"), "lastName": _get_first_child_text(self._node, "lastName") } _add_first_child_to_dic(self._node, data, True, "email") _add_first_child_to_dic(self._node, data, True, "labName") _add_first_child_to_dic(self._node, data, True, "labAddress") return data class Documentation: """RDML-Python library The documentation element used to read and edit one documentation tag. Attributes: _node: The documentation node of the RDML XML object. """ def __init__(self, node): """Inits an documentation instance. Args: self: The class self parameter. node: The documentation node. Returns: No return value. Function may raise RdmlError if required. """ self._node = node def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the documentation subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key == "text": var = _get_first_child_text(self._node, key) if var == "": return None else: return var raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the documentation subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key == "id": self.change_id(value, merge_with_id=False) return if key == "text": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") raise KeyError def change_id(self, value, merge_with_id=False): """Changes the value for the id. Args: self: The class self parameter. value: The new value for the id. merge_with_id: If True only allow a unique id, if False only rename its uses with existing id. Returns: No return value, changes self. Function may raise RdmlError if required. """ oldValue = self._node.get('id') if oldValue != value: par = self._node.getparent() if not _string_to_bool(merge_with_id, triple=False): _change_subelement(self._node, "id", self.xmlkeys(), value, False, "string") else: groupTag = self._node.tag.replace("{http://www.rdml.org}", "") if _check_unique_id(par, groupTag, value): raise RdmlError('The ' + groupTag + ' id "' + value + '" does not exist.') allSam = _get_all_children(par, "sample") for node in allSam: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: if subNode.attrib['id'] == oldValue: subNode.attrib['id'] = value allTh = _get_all_children(par, "target") for node in allTh: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: if subNode.attrib['id'] == oldValue: subNode.attrib['id'] = value allTh = _get_all_children(par, "thermalCyclingConditions") for node in allTh: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: if subNode.attrib['id'] == oldValue: subNode.attrib['id'] = value allExp = _get_all_children(par, "experiment") for node in allExp: subNodes = _get_all_children(node, "documentation") for subNode in subNodes: if subNode.attrib['id'] == oldValue: subNode.attrib['id'] = value subNodes = _get_all_children(node, "run") for subNode in subNodes: lastNodes = _get_all_children(subNode, "documentation") for lastNode in lastNodes: if lastNode.attrib['id'] == oldValue: lastNode.attrib['id'] = value return def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["id", "text"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return self.keys() def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ data = { "id": self._node.get('id'), } _add_first_child_to_dic(self._node, data, True, "text") return data class Dye: """RDML-Python library The dye element used to read and edit one dye. Attributes: _node: The dye node of the RDML XML object. """ def __init__(self, node): """Inits an dye instance. Args: self: The class self parameter. node: The dye node. Returns: No return value. Function may raise RdmlError if required. """ self._node = node def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the dye subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key in ["description", "dyeChemistry"]: var = _get_first_child_text(self._node, key) if var == "": return None else: return var raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the dye subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key == "dyeChemistry": if value not in ["non-saturating DNA binding dye", "saturating DNA binding dye", "hybridization probe", "hydrolysis probe", "labelled forward primer", "labelled reverse primer", "DNA-zyme probe"]: raise RdmlError('Unknown or unsupported sample type value "' + value + '".') if key == "id": self.change_id(value, merge_with_id=False) return if key == "description": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") par = self._node.getparent() ver = par.get('version') if ver == "1.3": if key == "dyeChemistry": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") raise KeyError def change_id(self, value, merge_with_id=False): """Changes the value for the id. Args: self: The class self parameter. value: The new value for the id. merge_with_id: If True only allow a unique id, if False only rename its uses with existing id. Returns: No return value, changes self. Function may raise RdmlError if required. """ oldValue = self._node.get('id') if oldValue != value: par = self._node.getparent() if not _string_to_bool(merge_with_id, triple=False): _change_subelement(self._node, "id", self.xmlkeys(), value, False, "string") else: groupTag = self._node.tag.replace("{http://www.rdml.org}", "") if _check_unique_id(par, groupTag, value): raise RdmlError('The ' + groupTag + ' id "' + value + '" does not exist.') allTar = _get_all_children(par, "target") for node in allTar: forId = _get_first_child(node, "dyeId") if forId is not None: if forId.attrib['id'] == oldValue: forId.attrib['id'] = value return def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["id", "description", "dyeChemistry"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return self.keys() def tojson(self): """Returns a json of the RDML object. Args: self: The class self parameter. Returns: A json of the data. """ data = { "id": self._node.get('id'), } _add_first_child_to_dic(self._node, data, True, "description") _add_first_child_to_dic(self._node, data, True, "dyeChemistry") return data class Sample: """RDML-Python library The samples element used to read and edit one sample. Attributes: _node: The sample node of the RDML XML object. """ def __init__(self, node): """Inits an sample instance. Args: self: The class self parameter. node: The sample node. Returns: No return value. Function may raise RdmlError if required. """ self._node = node def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the sample subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key == "description": var = _get_first_child_text(self._node, key) if var == "": return None else: return var if key in ["interRunCalibrator", "calibratorSample"]: return _get_first_child_bool(self._node, key, triple=True) if key in ["cdnaSynthesisMethod_enzyme", "cdnaSynthesisMethod_primingMethod", "cdnaSynthesisMethod_dnaseTreatment", "cdnaSynthesisMethod_thermalCyclingConditions"]: ele = _get_first_child(self._node, "cdnaSynthesisMethod") if ele is None: return None if key == "cdnaSynthesisMethod_enzyme": return _get_first_child_text(ele, "enzyme") if key == "cdnaSynthesisMethod_primingMethod": return _get_first_child_text(ele, "primingMethod") if key == "cdnaSynthesisMethod_dnaseTreatment": return _get_first_child_text(ele, "dnaseTreatment") if key == "cdnaSynthesisMethod_thermalCyclingConditions": forId = _get_first_child(ele, "thermalCyclingConditions") if forId is not None: return forId.attrib['id'] else: return None raise RdmlError('Sample cdnaSynthesisMethod programming read error.') if key == "quantity": ele = _get_first_child(self._node, key) vdic = {} vdic["value"] = _get_first_child_text(ele, "value") vdic["unit"] = _get_first_child_text(ele, "unit") if len(vdic.keys()) != 0: return vdic else: return None par = self._node.getparent() ver = par.get('version') if ver == "1.1": if key in ["templateRNAQuality", "templateDNAQuality"]: ele = _get_first_child(self._node, key) vdic = {} vdic["method"] = _get_first_child_text(ele, "method") vdic["result"] = _get_first_child_text(ele, "result") if len(vdic.keys()) != 0: return vdic else: return None if key in ["templateRNAQuantity", "templateDNAQuantity"]: ele = _get_first_child(self._node, key) vdic = {} vdic["value"] = _get_first_child_text(ele, "value") vdic["unit"] = _get_first_child_text(ele, "unit") if len(vdic.keys()) != 0: return vdic else: return None if ver == "1.2" or ver == "1.3": if key == "templateQuantity": ele = _get_first_child(self._node, key) vdic = {} vdic["nucleotide"] = _get_first_child_text(ele, "nucleotide") vdic["conc"] = _get_first_child_text(ele, "conc") if len(vdic.keys()) != 0: return vdic else: return None raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the sample subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key == "id": self.change_id(value, merge_with_id=False) return if key == "description": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") if key in ["interRunCalibrator", "calibratorSample"]: return _change_subelement(self._node, key, self.xmlkeys(), value, True, "bool") if key in ["cdnaSynthesisMethod_enzyme", "cdnaSynthesisMethod_primingMethod", "cdnaSynthesisMethod_dnaseTreatment", "cdnaSynthesisMethod_thermalCyclingConditions"]: ele = _get_or_create_subelement(self._node, "cdnaSynthesisMethod", self.xmlkeys()) if key == "cdnaSynthesisMethod_enzyme": _change_subelement(ele, "enzyme", ["enzyme", "primingMethod", "dnaseTreatment", "thermalCyclingConditions"], value, True, "string") if key == "cdnaSynthesisMethod_primingMethod": if value not in ["", "oligo-dt", "random", "target-specific", "oligo-dt and random", "other"]: raise RdmlError('Unknown or unsupported sample ' + key + ' value "' + value + '".') _change_subelement(ele, "primingMethod", ["enzyme", "primingMethod", "dnaseTreatment", "thermalCyclingConditions"], value, True, "string") if key == "cdnaSynthesisMethod_dnaseTreatment": _change_subelement(ele, "dnaseTreatment", ["enzyme", "primingMethod", "dnaseTreatment", "thermalCyclingConditions"], value, True, "bool") if key == "cdnaSynthesisMethod_thermalCyclingConditions": forId = _get_or_create_subelement(ele, "thermalCyclingConditions", ["enzyme", "primingMethod", "dnaseTreatment", "thermalCyclingConditions"]) if value is not None and value != "": # We do not check that ID is valid to allow recreate_lost_ids() forId.attrib['id'] = value else: ele.remove(forId) _remove_irrelevant_subelement(self._node, "cdnaSynthesisMethod") return if key == "quantity": if value is None: return if "value" not in value or "unit" not in value: raise RdmlError('Sample ' + key + ' must have a dictionary with "value" and "unit" as value.') if value["unit"] not in ["", "cop", "fold", "dil", "ng", "nMol", "other"]: raise RdmlError('Unknown or unsupported sample ' + key + ' value "' + value + '".') ele = _get_or_create_subelement(self._node, key, self.xmlkeys()) _change_subelement(ele, "value", ["value", "unit"], value["value"], True, "float") if value["value"] != "": _change_subelement(ele, "unit", ["value", "unit"], value["unit"], True, "string") else: _change_subelement(ele, "unit", ["value", "unit"], "", True, "string") _remove_irrelevant_subelement(self._node, key) return par = self._node.getparent() ver = par.get('version') if ver == "1.1": if key in ["templateRNAQuality", "templateDNAQuality"]: if value is None: return if "method" not in value or "result" not in value: raise RdmlError('"' + key + '" must have a dictionary with "method" and "result" as value.') ele = _get_or_create_subelement(self._node, key, self.xmlkeys()) _change_subelement(ele, "method", ["method", "result"], value["method"], True, "string") _change_subelement(ele, "result", ["method", "result"], value["result"], True, "float") _remove_irrelevant_subelement(self._node, key) return if key in ["templateRNAQuantity", "templateDNAQuantity"]: if value is None: return if "value" not in value or "unit" not in value: raise RdmlError('Sample ' + key + ' must have a dictionary with "value" and "unit" as value.') if value["unit"] not in ["", "cop", "fold", "dil", "ng", "nMol", "other"]: raise RdmlError('Unknown or unsupported sample ' + key + ' value "' + value + '".') ele = _get_or_create_subelement(self._node, key, self.xmlkeys()) _change_subelement(ele, "value", ["value", "unit"], value["value"], True, "float") if value["value"] != "": _change_subelement(ele, "unit", ["value", "unit"], value["unit"], True, "string") else: _change_subelement(ele, "unit", ["value", "unit"], "", True, "string") _remove_irrelevant_subelement(self._node, key) return if ver == "1.2" or ver == "1.3": if key == "templateQuantity": if value is None: return if "nucleotide" not in value or "conc" not in value: raise RdmlError('Sample ' + key + ' must have a dictionary with "nucleotide" and "conc" as value.') if value["nucleotide"] not in ["", "DNA", "genomic DNA", "cDNA", "RNA"]: raise RdmlError('Unknown or unsupported sample ' + key + ' value "' + value + '".') ele = _get_or_create_subelement(self._node, key, self.xmlkeys()) _change_subelement(ele, "conc", ["conc", "nucleotide"], value["conc"], True, "float") if value["conc"] != "": _change_subelement(ele, "nucleotide", ["conc", "nucleotide"], value["nucleotide"], True, "string") else: _change_subelement(ele, "nucleotide", ["conc", "nucleotide"], "", True, "string") _remove_irrelevant_subelement(self._node, key) return raise KeyError def change_id(self, value, merge_with_id=False): """Changes the value for the id. Args: self: The class self parameter. value: The new value for the id. merge_with_id: If True only allow a unique id, if False only rename its uses with existing id. Returns: No return value, changes self. Function may raise RdmlError if required. """ oldValue = self._node.get('id') if oldValue != value: par = self._node.getparent() if not _string_to_bool(merge_with_id, triple=False): _change_subelement(self._node, "id", self.xmlkeys(), value, False, "string") else: groupTag = self._node.tag.replace("{http://www.rdml.org}", "") if _check_unique_id(par, groupTag, value): raise RdmlError('The ' + groupTag + ' id "' + value + '" does not exist.') allExp = _get_all_children(par, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: reactNodes = _get_all_children(subNode, "react") for reactNode in reactNodes: lastNodes = _get_all_children(reactNode, "sample") for lastNode in lastNodes: if lastNode.attrib['id'] == oldValue: lastNode.attrib['id'] = value return def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ par = self._node.getparent() ver = par.get('version') if ver == "1.1": return ["id", "description", "interRunCalibrator", "quantity", "calibratorSample", "cdnaSynthesisMethod_enzyme", "cdnaSynthesisMethod_primingMethod", "cdnaSynthesisMethod_dnaseTreatment", "cdnaSynthesisMethod_thermalCyclingConditions", "templateRNAQuantity", "templateRNAQuality", "templateDNAQuantity", "templateDNAQuality"] return ["id", "description", "annotation", "interRunCalibrator", "quantity", "calibratorSample", "cdnaSynthesisMethod_enzyme", "cdnaSynthesisMethod_primingMethod", "cdnaSynthesisMethod_dnaseTreatment", "cdnaSynthesisMethod_thermalCyclingConditions", "templateQuantity"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ par = self._node.getparent() ver = par.get('version') if ver == "1.1": return ["description", "documentation", "xRef", "type", "interRunCalibrator", "quantity", "calibratorSample", "cdnaSynthesisMethod", "templateRNAQuantity", "templateRNAQuality", "templateDNAQuantity", "templateDNAQuality"] return ["description", "documentation", "xRef", "annotation", "type", "interRunCalibrator", "quantity", "calibratorSample", "cdnaSynthesisMethod", "templateQuantity"] def types(self): """Returns a list of the types in the xml file. Args: self: The class self parameter. Returns: A list of dics with type and id strings. """ typesList = _get_all_children(self._node, "type") ret = [] for node in typesList: data = {} data["type"] = node.text if "targetId" in node.attrib: data["targetId"] = node.attrib["targetId"] else: data["targetId"] = "" ret.append(data) return ret def new_type(self, type, targetId=None, newposition=None): """Creates a new type element. Args: self: The class self parameter. type: The "unkn", "ntc", "nac", "std", "ntp", "nrt", "pos" or "opt" type of sample targetId: The target linked to the type (makes sense in "pos" or "ntp" context) newposition: The new position of the element Returns: Nothing, changes self. """ if type not in ["unkn", "ntc", "nac", "std", "ntp", "nrt", "pos", "opt"]: raise RdmlError('Unknown or unsupported sample type value "' + type + '".') new_node = et.Element("type") new_node.text = type par = self._node.getparent() ver = par.get('version') if ver == "1.3": if targetId is not None: if not targetId == "": new_node.attrib["targetId"] = targetId place = _get_tag_pos(self._node, "type", self.xmlkeys(), newposition) self._node.insert(place, new_node) def edit_type(self, type, oldposition, newposition=None, targetId=None): """Edits a type element. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element type: The "unkn", "ntc", "nac", "std", "ntp", "nrt", "pos" or "opt" type of sample targetId: The target linked to the type (makes sense in "pos" or "ntp" context) Returns: Nothing, changes self. """ if type not in ["unkn", "ntc", "nac", "std", "ntp", "nrt", "pos", "opt"]: raise RdmlError('Unknown or unsupported sample type value "' + type + '".') if oldposition is None: raise RdmlError('A oldposition is required to edit a type.') pos = _get_tag_pos(self._node, "type", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "type", None, oldposition) ele.text = type par = self._node.getparent() ver = par.get('version') if "targetId" in ele.attrib: del ele.attrib["targetId"] if ver == "1.3": if targetId is not None: if not targetId == "": ele.attrib["targetId"] = targetId self._node.insert(pos, ele) def move_type(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "type", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "type", None, oldposition) self._node.insert(pos, ele) def delete_type(self, byposition): """Deletes an type element. Args: self: The class self parameter. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ ls = self.types() if len(ls) < 2: return elem = _get_first_child_by_pos_or_id(self._node, "type", None, byposition) self._node.remove(elem) def xrefs(self): """Returns a list of the xrefs in the xml file. Args: self: The class self parameter. Returns: A list of dics with name and id strings. """ xref = _get_all_children(self._node, "xRef") ret = [] for node in xref: data = {} _add_first_child_to_dic(node, data, True, "name") _add_first_child_to_dic(node, data, True, "id") ret.append(data) return ret def new_xref(self, name=None, id=None, newposition=None): """Creates a new xrefs element. Args: self: The class self parameter. name: Publisher who created the xRef id: Serial Number for this sample provided by publisher newposition: The new position of the element Returns: Nothing, changes self. """ if name is None and id is None: raise RdmlError('Either name or id is required to create a xRef.') new_node = et.Element("xRef") _add_new_subelement(new_node, "xRef", "name", name, True) _add_new_subelement(new_node, "xRef", "id", id, True) place = _get_tag_pos(self._node, "xRef", self.xmlkeys(), newposition) self._node.insert(place, new_node) def edit_xref(self, oldposition, newposition=None, name=None, id=None): """Creates a new xrefs element. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element name: Publisher who created the xRef id: Serial Number for this sample provided by publisher Returns: Nothing, changes self. """ if oldposition is None: raise RdmlError('A oldposition is required to edit a xRef.') if (name is None or name == "") and (id is None or id == ""): self.delete_xref(oldposition) return pos = _get_tag_pos(self._node, "xRef", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "xRef", None, oldposition) _change_subelement(ele, "name", ["name", "id"], name, True, "string") _change_subelement(ele, "id", ["name", "id"], id, True, "string", id_as_element=True) self._node.insert(pos, ele) def move_xref(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "xRef", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "xRef", None, oldposition) self._node.insert(pos, ele) def delete_xref(self, byposition): """Deletes an experimenter element. Args: self: The class self parameter. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "xRef", None, byposition) self._node.remove(elem) def annotations(self): """Returns a list of the annotations in the xml file. Args: self: The class self parameter. Returns: A list of dics with property and value strings. """ par = self._node.getparent() ver = par.get('version') if ver == "1.1": return [] xref = _get_all_children(self._node, "annotation") ret = [] for node in xref: data = {} _add_first_child_to_dic(node, data, True, "property") _add_first_child_to_dic(node, data, True, "value") ret.append(data) return ret def new_annotation(self, property=None, value=None, newposition=None): """Creates a new annotation element. Args: self: The class self parameter. property: The property value: Its value newposition: The new position of the element Returns: Nothing, changes self. """ par = self._node.getparent() ver = par.get('version') if ver == "1.1": return if property is None or value is None: raise RdmlError('Property and value are required to create a annotation.') new_node = et.Element("annotation") _add_new_subelement(new_node, "annotation", "property", property, True) _add_new_subelement(new_node, "annotation", "value", value, True) place = _get_tag_pos(self._node, "annotation", self.xmlkeys(), newposition) self._node.insert(place, new_node) def edit_annotation(self, oldposition, newposition=None, property=None, value=None): """Edits an annotation element. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element property: The property value: Its value Returns: Nothing, changes self. """ par = self._node.getparent() ver = par.get('version') if ver == "1.1": return if oldposition is None: raise RdmlError('A oldposition is required to edit a annotation.') if (property is None or property == "") or (value is None or value == ""): self.delete_annotation(oldposition) return pos = _get_tag_pos(self._node, "annotation", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "annotation", None, oldposition) _change_subelement(ele, "property", ["property", "value"], property, True, "string") _change_subelement(ele, "value", ["property", "value"], value, True, "string") self._node.insert(pos, ele) def move_annotation(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ par = self._node.getparent() ver = par.get('version') if ver == "1.1": return pos = _get_tag_pos(self._node, "annotation", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "annotation", None, oldposition) self._node.insert(pos, ele) def delete_annotation(self, byposition): """Deletes an annotation element. Args: self: The class self parameter. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ par = self._node.getparent() ver = par.get('version') if ver == "1.1": return elem = _get_first_child_by_pos_or_id(self._node, "annotation", None, byposition) self._node.remove(elem) def documentation_ids(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return _get_all_children_id(self._node, "documentation") def update_documentation_ids(self, ids): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. ids: A dictionary with id and true/false pairs Returns: True if a change was made, else false. Function may raise RdmlError if required. """ old = self.documentation_ids() good_ids = _value_to_booldic(ids) mod = False for id, inc in good_ids.items(): if inc is True: if id not in old: new_node = _create_new_element(self._node, "documentation", id) place = _get_tag_pos(self._node, "documentation", self.xmlkeys(), 999999999) self._node.insert(place, new_node) mod = True else: if id in old: elem = _get_first_child_by_pos_or_id(self._node, "documentation", id, None) self._node.remove(elem) mod = True return mod def move_documentation(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "documentation", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "documentation", None, oldposition) self._node.insert(pos, ele) def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ par = self._node.getparent() ver = par.get('version') data = { "id": self._node.get('id'), } _add_first_child_to_dic(self._node, data, True, "description") data["documentations"] = self.documentation_ids() data["xRefs"] = self.xrefs() if ver == "1.2" or ver == "1.3": data["annotations"] = self.annotations() data["types"] = self.types() _add_first_child_to_dic(self._node, data, True, "interRunCalibrator") elem = _get_first_child(self._node, "quantity") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "value") _add_first_child_to_dic(elem, qdic, False, "unit") data["quantity"] = qdic _add_first_child_to_dic(self._node, data, True, "calibratorSample") elem = _get_first_child(self._node, "cdnaSynthesisMethod") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, True, "enzyme") _add_first_child_to_dic(elem, qdic, True, "primingMethod") _add_first_child_to_dic(elem, qdic, True, "dnaseTreatment") forId = _get_first_child(elem, "thermalCyclingConditions") if forId is not None: if forId.attrib['id'] != "": qdic["thermalCyclingConditions"] = forId.attrib['id'] if len(qdic.keys()) != 0: data["cdnaSynthesisMethod"] = qdic if ver == "1.1": elem = _get_first_child(self._node, "templateRNAQuantity") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "value") _add_first_child_to_dic(elem, qdic, False, "unit") data["templateRNAQuantity"] = qdic elem = _get_first_child(self._node, "templateRNAQuality") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "method") _add_first_child_to_dic(elem, qdic, False, "result") data["templateRNAQuality"] = qdic elem = _get_first_child(self._node, "templateDNAQuantity") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "value") _add_first_child_to_dic(elem, qdic, False, "unit") data["templateDNAQuantity"] = qdic elem = _get_first_child(self._node, "templateDNAQuality") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "method") _add_first_child_to_dic(elem, qdic, False, "result") data["templateDNAQuality"] = qdic if ver == "1.2" or ver == "1.3": elem = _get_first_child(self._node, "templateQuantity") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "nucleotide") _add_first_child_to_dic(elem, qdic, False, "conc") data["templateQuantity"] = qdic return data class Target: """RDML-Python library The target element used to read and edit one target. Attributes: _node: The target node of the RDML XML object. _rdmlFilename: The RDML filename """ def __init__(self, node, rdmlFilename): """Inits an target instance. Args: self: The class self parameter. node: The target node. rdmlFilename: The RDML filename. Returns: No return value. Function may raise RdmlError if required. """ self._node = node self._rdmlFilename = rdmlFilename def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the target subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key == "type": return _get_first_child_text(self._node, key) if key in ["description", "amplificationEfficiencyMethod", "amplificationEfficiency", "amplificationEfficiencySE", "meltingTemperature", "detectionLimit"]: var = _get_first_child_text(self._node, key) if var == "": return None else: return var if key == "dyeId": forId = _get_first_child(self._node, key) if forId is not None: return forId.attrib['id'] else: return None if key in ["sequences_forwardPrimer_threePrimeTag", "sequences_forwardPrimer_fivePrimeTag", "sequences_forwardPrimer_sequence", "sequences_reversePrimer_threePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_reversePrimer_sequence", "sequences_probe1_threePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe1_sequence", "sequences_probe2_threePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_probe2_sequence", "sequences_amplicon_threePrimeTag", "sequences_amplicon_fivePrimeTag", "sequences_amplicon_sequence"]: prim = _get_first_child(self._node, "sequences") if prim is None: return None sec = None if key in ["sequences_forwardPrimer_threePrimeTag", "sequences_forwardPrimer_fivePrimeTag", "sequences_forwardPrimer_sequence"]: sec = _get_first_child(prim, "forwardPrimer") if key in ["sequences_reversePrimer_threePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_reversePrimer_sequence"]: sec = _get_first_child(prim, "reversePrimer") if key in ["sequences_probe1_threePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe1_sequence"]: sec = _get_first_child(prim, "probe1") if key in ["sequences_probe2_threePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_probe2_sequence"]: sec = _get_first_child(prim, "probe2") if key in ["sequences_amplicon_threePrimeTag", "sequences_amplicon_fivePrimeTag", "sequences_amplicon_sequence"]: sec = _get_first_child(prim, "amplicon") if sec is None: return None if key in ["sequences_forwardPrimer_threePrimeTag", "sequences_reversePrimer_threePrimeTag", "sequences_probe1_threePrimeTag", "sequences_probe2_threePrimeTag", "sequences_amplicon_threePrimeTag"]: return _get_first_child_text(sec, "threePrimeTag") if key in ["sequences_forwardPrimer_fivePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_amplicon_fivePrimeTag"]: return _get_first_child_text(sec, "fivePrimeTag") if key in ["sequences_forwardPrimer_sequence", "sequences_reversePrimer_sequence", "sequences_probe1_sequence", "sequences_probe2_sequence", "sequences_amplicon_sequence"]: return _get_first_child_text(sec, "sequence") raise RdmlError('Target sequences programming read error.') if key in ["commercialAssay_company", "commercialAssay_orderNumber"]: prim = _get_first_child(self._node, "commercialAssay") if prim is None: return None if key == "commercialAssay_company": return _get_first_child_text(prim, "company") if key == "commercialAssay_orderNumber": return _get_first_child_text(prim, "orderNumber") par = self._node.getparent() ver = par.get('version') if ver == "1.2" or ver == "1.3": if key == "amplificationEfficiencySE": var = _get_first_child_text(self._node, key) if var == "": return None else: return var raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the target subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ par = self._node.getparent() ver = par.get('version') if key == "type": if value not in ["ref", "toi"]: raise RdmlError('Unknown or unsupported target type value "' + value + '".') if key == "id": self.change_id(value, merge_with_id=False) return if key == "type": return _change_subelement(self._node, key, self.xmlkeys(), value, False, "string") if key in ["description", "amplificationEfficiencyMethod"]: return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") if key in ["amplificationEfficiency", "detectionLimit"]: return _change_subelement(self._node, key, self.xmlkeys(), value, True, "float") if ver == "1.2" or ver == "1.3": if key == "amplificationEfficiencySE": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "float") if ver == "1.3": if key == "meltingTemperature": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "float") if key == "dyeId": forId = _get_or_create_subelement(self._node, "dyeId", self.xmlkeys()) if value is not None and value != "": # We do not check that ID is valid to allow recreate_lost_ids() forId.attrib['id'] = value else: self._node.remove(forId) return if key in ["sequences_forwardPrimer_threePrimeTag", "sequences_forwardPrimer_fivePrimeTag", "sequences_forwardPrimer_sequence", "sequences_reversePrimer_threePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_reversePrimer_sequence", "sequences_probe1_threePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe1_sequence", "sequences_probe2_threePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_probe2_sequence", "sequences_amplicon_threePrimeTag", "sequences_amplicon_fivePrimeTag", "sequences_amplicon_sequence"]: prim = _get_or_create_subelement(self._node, "sequences", self.xmlkeys()) sec = None if key in ["sequences_forwardPrimer_threePrimeTag", "sequences_forwardPrimer_fivePrimeTag", "sequences_forwardPrimer_sequence"]: sec = _get_or_create_subelement(prim, "forwardPrimer", ["forwardPrimer", "reversePrimer", "probe1", "probe2", "amplicon"]) if key in ["sequences_reversePrimer_threePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_reversePrimer_sequence"]: sec = _get_or_create_subelement(prim, "reversePrimer", ["forwardPrimer", "reversePrimer", "probe1", "probe2", "amplicon"]) if key in ["sequences_probe1_threePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe1_sequence"]: sec = _get_or_create_subelement(prim, "probe1", ["forwardPrimer", "reversePrimer", "probe1", "probe2", "amplicon"]) if key in ["sequences_probe2_threePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_probe2_sequence"]: sec = _get_or_create_subelement(prim, "probe2", ["forwardPrimer", "reversePrimer", "probe1", "probe2", "amplicon"]) if key in ["sequences_amplicon_threePrimeTag", "sequences_amplicon_fivePrimeTag", "sequences_amplicon_sequence"]: sec = _get_or_create_subelement(prim, "amplicon", ["forwardPrimer", "reversePrimer", "probe1", "probe2", "amplicon"]) if sec is None: return None if key in ["sequences_forwardPrimer_threePrimeTag", "sequences_reversePrimer_threePrimeTag", "sequences_probe1_threePrimeTag", "sequences_probe2_threePrimeTag", "sequences_amplicon_threePrimeTag"]: _change_subelement(sec, "threePrimeTag", ["threePrimeTag", "fivePrimeTag", "sequence"], value, True, "string") if key in ["sequences_forwardPrimer_fivePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_amplicon_fivePrimeTag"]: _change_subelement(sec, "fivePrimeTag", ["threePrimeTag", "fivePrimeTag", "sequence"], value, True, "string") if key in ["sequences_forwardPrimer_sequence", "sequences_reversePrimer_sequence", "sequences_probe1_sequence", "sequences_probe2_sequence", "sequences_amplicon_sequence"]: _change_subelement(sec, "sequence", ["threePrimeTag", "fivePrimeTag", "sequence"], value, True, "string") if key in ["sequences_forwardPrimer_threePrimeTag", "sequences_forwardPrimer_fivePrimeTag", "sequences_forwardPrimer_sequence"]: _remove_irrelevant_subelement(prim, "forwardPrimer") if key in ["sequences_reversePrimer_threePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_reversePrimer_sequence"]: _remove_irrelevant_subelement(prim, "reversePrimer") if key in ["sequences_probe1_threePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe1_sequence"]: _remove_irrelevant_subelement(prim, "probe1") if key in ["sequences_probe2_threePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_probe2_sequence"]: _remove_irrelevant_subelement(prim, "probe2") if key in ["sequences_amplicon_threePrimeTag", "sequences_amplicon_fivePrimeTag", "sequences_amplicon_sequence"]: _remove_irrelevant_subelement(prim, "amplicon") _remove_irrelevant_subelement(self._node, "sequences") return if key in ["commercialAssay_company", "commercialAssay_orderNumber"]: ele = _get_or_create_subelement(self._node, "commercialAssay", self.xmlkeys()) if key == "commercialAssay_company": _change_subelement(ele, "company", ["company", "orderNumber"], value, True, "string") if key == "commercialAssay_orderNumber": _change_subelement(ele, "orderNumber", ["company", "orderNumber"], value, True, "string") _remove_irrelevant_subelement(self._node, "commercialAssay") return par = self._node.getparent() ver = par.get('version') if ver == "1.2" or ver == "1.3": if key == "amplificationEfficiencySE": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "float") raise KeyError def change_id(self, value, merge_with_id=False): """Changes the value for the id. Args: self: The class self parameter. value: The new value for the id. merge_with_id: If True only allow a unique id, if False only rename its uses with existing id. Returns: No return value, changes self. Function may raise RdmlError if required. """ oldValue = self._node.get('id') if oldValue != value: par = self._node.getparent() if not _string_to_bool(merge_with_id, triple=False): _change_subelement(self._node, "id", self.xmlkeys(), value, False, "string") else: groupTag = self._node.tag.replace("{http://www.rdml.org}", "") if _check_unique_id(par, groupTag, value): raise RdmlError('The ' + groupTag + ' id "' + value + '" does not exist.') allExp = _get_all_children(par, "sample") for node in allExp: subNodes = _get_all_children(node, "type") for subNode in subNodes: if "targetId" in subNode.attrib: if subNode.attrib['targetId'] == oldValue: subNode.attrib['targetId'] = value allExp = _get_all_children(par, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: reactNodes = _get_all_children(subNode, "react") for reactNode in reactNodes: dataNodes = _get_all_children(reactNode, "data") for dataNode in dataNodes: lastNodes = _get_all_children(dataNode, "tar") for lastNode in lastNodes: if lastNode.attrib['id'] == oldValue: lastNode.attrib['id'] = value partit = _get_first_child(reactNode, "partitions") if partit is not None: digDataNodes = _get_all_children(partit, "data") for digDataNode in digDataNodes: lastNodes = _get_all_children(digDataNode, "tar") for lastNode in lastNodes: if lastNode.attrib['id'] == oldValue: lastNode.attrib['id'] = value # Search in Table files if self._rdmlFilename is not None and self._rdmlFilename != "": if zipfile.is_zipfile(self._rdmlFilename): fileList = [] tempName = "" flipFiles = False with zipfile.ZipFile(self._rdmlFilename, 'r') as RDMLin: for item in RDMLin.infolist(): if re.search("^partitions/", item.filename): fileContent = RDMLin.read(item.filename).decode('utf-8') newlineFix = fileContent.replace("\r\n", "\n") tabLines = newlineFix.split("\n") header = tabLines[0].split("\t") needRewrite = False for cell in header: if cell == oldValue: needRewrite = True if needRewrite: fileList.append(item.filename) if len(fileList) > 0: tempFolder, tempName = tempfile.mkstemp(dir=os.path.dirname(self._rdmlFilename)) os.close(tempFolder) flipFiles = True with zipfile.ZipFile(tempName, mode='w', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.comment = RDMLin.comment for item in RDMLin.infolist(): if item.filename not in fileList: RDMLout.writestr(item, RDMLin.read(item.filename)) else: fileContent = RDMLin.read(item.filename).decode('utf-8') newlineFix = fileContent.replace("\r\n", "\n") tabLines = newlineFix.split("\n") header = tabLines[0].split("\t") headerText = "" for cell in header: if cell == oldValue: headerText += value + "\t" else: headerText += cell + "\t" outFileStr = re.sub(r'\t$', '\n', headerText) for tabLine in tabLines[1:]: if tabLine != "": outFileStr += tabLine + "\n" RDMLout.writestr(item.filename, outFileStr) if flipFiles: os.remove(self._rdmlFilename) os.rename(tempName, self._rdmlFilename) return def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["id", "description", "type", "amplificationEfficiencyMethod", "amplificationEfficiency", "amplificationEfficiencySE", "meltingTemperature", "detectionLimit", "dyeId", "sequences_forwardPrimer_threePrimeTag", "sequences_forwardPrimer_fivePrimeTag", "sequences_forwardPrimer_sequence", "sequences_reversePrimer_threePrimeTag", "sequences_reversePrimer_fivePrimeTag", "sequences_reversePrimer_sequence", "sequences_probe1_threePrimeTag", "sequences_probe1_fivePrimeTag", "sequences_probe1_sequence", "sequences_probe2_threePrimeTag", "sequences_probe2_fivePrimeTag", "sequences_probe2_sequence", "sequences_amplicon_threePrimeTag", "sequences_amplicon_fivePrimeTag", "sequences_amplicon_sequence", "commercialAssay_company", "commercialAssay_orderNumber"] # Also change in LinRegPCR save RDML def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["description", "documentation", "xRef", "type", "amplificationEfficiencyMethod", "amplificationEfficiency", "amplificationEfficiencySE", "meltingTemperature", "detectionLimit", "dyeId", "sequences", "commercialAssay"] def xrefs(self): """Returns a list of the xrefs in the xml file. Args: self: The class self parameter. Returns: A list of dics with name and id strings. """ xref = _get_all_children(self._node, "xRef") ret = [] for node in xref: data = {} _add_first_child_to_dic(node, data, True, "name") _add_first_child_to_dic(node, data, True, "id") ret.append(data) return ret def new_xref(self, name=None, id=None, newposition=None): """Creates a new xrefs element. Args: self: The class self parameter. name: Publisher who created the xRef id: Serial Number for this target provided by publisher newposition: The new position of the element Returns: Nothing, changes self. """ if name is None and id is None: raise RdmlError('Either name or id is required to create a xRef.') new_node = et.Element("xRef") _add_new_subelement(new_node, "xRef", "name", name, True) _add_new_subelement(new_node, "xRef", "id", id, True) place = _get_tag_pos(self._node, "xRef", self.xmlkeys(), newposition) self._node.insert(place, new_node) def edit_xref(self, oldposition, newposition=None, name=None, id=None): """Creates a new xrefs element. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element name: Publisher who created the xRef id: Serial Number for this target provided by publisher Returns: Nothing, changes self. """ if oldposition is None: raise RdmlError('A oldposition is required to edit a xRef.') if (name is None or name == "") and (id is None or id == ""): self.delete_xref(oldposition) return pos = _get_tag_pos(self._node, "xRef", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "xRef", None, oldposition) _change_subelement(ele, "name", ["name", "id"], name, True, "string") _change_subelement(ele, "id", ["name", "id"], id, True, "string", id_as_element=True) self._node.insert(pos, ele) def move_xref(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "xRef", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "xRef", None, oldposition) self._node.insert(pos, ele) def delete_xref(self, byposition): """Deletes an experimenter element. Args: self: The class self parameter. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "xRef", None, byposition) self._node.remove(elem) def documentation_ids(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return _get_all_children_id(self._node, "documentation") def update_documentation_ids(self, ids): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. ids: A dictionary with id and true/false pairs Returns: True if a change was made, else false. Function may raise RdmlError if required. """ old = self.documentation_ids() good_ids = _value_to_booldic(ids) mod = False for id, inc in good_ids.items(): if inc is True: if id not in old: new_node = _create_new_element(self._node, "documentation", id) place = _get_tag_pos(self._node, "documentation", self.xmlkeys(), 999999999) self._node.insert(place, new_node) mod = True else: if id in old: elem = _get_first_child_by_pos_or_id(self._node, "documentation", id, None) self._node.remove(elem) mod = True return mod def move_documentation(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "documentation", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "documentation", None, oldposition) self._node.insert(pos, ele) def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ data = { "id": self._node.get('id'), } _add_first_child_to_dic(self._node, data, True, "description") data["documentations"] = self.documentation_ids() data["xRefs"] = self.xrefs() _add_first_child_to_dic(self._node, data, False, "type") _add_first_child_to_dic(self._node, data, True, "amplificationEfficiencyMethod") _add_first_child_to_dic(self._node, data, True, "amplificationEfficiency") _add_first_child_to_dic(self._node, data, True, "amplificationEfficiencySE") _add_first_child_to_dic(self._node, data, True, "meltingTemperature") _add_first_child_to_dic(self._node, data, True, "detectionLimit") forId = _get_first_child(self._node, "dyeId") if forId is not None: if forId.attrib['id'] != "": data["dyeId"] = forId.attrib['id'] elem = _get_first_child(self._node, "sequences") if elem is not None: qdic = {} sec = _get_first_child(elem, "forwardPrimer") if sec is not None: sdic = {} _add_first_child_to_dic(sec, sdic, True, "threePrimeTag") _add_first_child_to_dic(sec, sdic, True, "fivePrimeTag") _add_first_child_to_dic(sec, sdic, True, "sequence") if len(sdic.keys()) != 0: qdic["forwardPrimer"] = sdic sec = _get_first_child(elem, "reversePrimer") if sec is not None: sdic = {} _add_first_child_to_dic(sec, sdic, True, "threePrimeTag") _add_first_child_to_dic(sec, sdic, True, "fivePrimeTag") _add_first_child_to_dic(sec, sdic, True, "sequence") if len(sdic.keys()) != 0: qdic["reversePrimer"] = sdic sec = _get_first_child(elem, "probe1") if sec is not None: sdic = {} _add_first_child_to_dic(sec, sdic, True, "threePrimeTag") _add_first_child_to_dic(sec, sdic, True, "fivePrimeTag") _add_first_child_to_dic(sec, sdic, True, "sequence") if len(sdic.keys()) != 0: qdic["probe1"] = sdic sec = _get_first_child(elem, "probe2") if sec is not None: sdic = {} _add_first_child_to_dic(sec, sdic, True, "threePrimeTag") _add_first_child_to_dic(sec, sdic, True, "fivePrimeTag") _add_first_child_to_dic(sec, sdic, True, "sequence") if len(sdic.keys()) != 0: qdic["probe2"] = sdic sec = _get_first_child(elem, "amplicon") if sec is not None: sdic = {} _add_first_child_to_dic(sec, sdic, True, "threePrimeTag") _add_first_child_to_dic(sec, sdic, True, "fivePrimeTag") _add_first_child_to_dic(sec, sdic, True, "sequence") if len(sdic.keys()) != 0: qdic["amplicon"] = sdic if len(qdic.keys()) != 0: data["sequences"] = qdic elem = _get_first_child(self._node, "commercialAssay") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, True, "company") _add_first_child_to_dic(elem, qdic, True, "orderNumber") if len(qdic.keys()) != 0: data["commercialAssay"] = qdic return data class Therm_cyc_cons: """RDML-Python library The thermalCyclingConditions element used to read and edit one thermal Cycling Conditions. Attributes: _node: The thermalCyclingConditions node of the RDML XML object. """ def __init__(self, node): """Inits an thermalCyclingConditions instance. Args: self: The class self parameter. node: The thermalCyclingConditions node. Returns: No return value. Function may raise RdmlError if required. """ self._node = node def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the thermalCyclingConditions subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key in ["description", "lidTemperature"]: var = _get_first_child_text(self._node, key) if var == "": return None else: return var raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the thermalCyclingConditions subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key == "id": self.change_id(value, merge_with_id=False) return if key == "description": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") if key == "lidTemperature": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "float") raise KeyError def change_id(self, value, merge_with_id=False): """Changes the value for the id. Args: self: The class self parameter. value: The new value for the id. merge_with_id: If True only allow a unique id, if False only rename its uses with existing id. Returns: No return value, changes self. Function may raise RdmlError if required. """ oldValue = self._node.get('id') if oldValue != value: par = self._node.getparent() if not _string_to_bool(merge_with_id, triple=False): _change_subelement(self._node, "id", self.xmlkeys(), value, False, "string") else: groupTag = self._node.tag.replace("{http://www.rdml.org}", "") if _check_unique_id(par, groupTag, value): raise RdmlError('The ' + groupTag + ' id "' + value + '" does not exist.') allSam = _get_all_children(par, "sample") for node in allSam: subNode = _get_first_child(node, "cdnaSynthesisMethod") if subNode is not None: forId = _get_first_child(subNode, "thermalCyclingConditions") if forId is not None: if forId.attrib['id'] == oldValue: forId.attrib['id'] = value allExp = _get_all_children(par, "experiment") for node in allExp: subNodes = _get_all_children(node, "run") for subNode in subNodes: forId = _get_first_child(subNode, "thermalCyclingConditions") if forId is not None: if forId.attrib['id'] == oldValue: forId.attrib['id'] = value return def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["id", "description", "lidTemperature"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["description", "documentation", "lidTemperature", "experimenter", "step"] def documentation_ids(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return _get_all_children_id(self._node, "documentation") def update_documentation_ids(self, ids): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. ids: A dictionary with id and true/false pairs Returns: True if a change was made, else false. Function may raise RdmlError if required. """ old = self.documentation_ids() good_ids = _value_to_booldic(ids) mod = False for id, inc in good_ids.items(): if inc is True: if id not in old: new_node = _create_new_element(self._node, "documentation", id) place = _get_tag_pos(self._node, "documentation", self.xmlkeys(), 999999999) self._node.insert(place, new_node) mod = True else: if id in old: elem = _get_first_child_by_pos_or_id(self._node, "documentation", id, None) self._node.remove(elem) mod = True return mod def move_documentation(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "documentation", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "documentation", None, oldposition) self._node.insert(pos, ele) def experimenter_ids(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return _get_all_children_id(self._node, "experimenter") def update_experimenter_ids(self, ids): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. ids: A dictionary with id and true/false pairs Returns: True if a change was made, else false. Function may raise RdmlError if required. """ old = self.experimenter_ids() good_ids = _value_to_booldic(ids) mod = False for id, inc in good_ids.items(): if inc is True: if id not in old: new_node = _create_new_element(self._node, "experimenter", id) place = _get_tag_pos(self._node, "experimenter", self.xmlkeys(), 999999999) self._node.insert(place, new_node) mod = True else: if id in old: elem = _get_first_child_by_pos_or_id(self._node, "experimenter", id, None) self._node.remove(elem) mod = True return mod def move_experimenter(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "experimenter", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "experimenter", None, oldposition) self._node.insert(pos, ele) def steps(self): """Returns a list of all step elements. Args: self: The class self parameter. Returns: A list of all step elements. """ # The steps are sorted transiently to not modify the file in a read situation exp = _get_all_children(self._node, "step") srt_exp = sorted(exp, key=_get_step_sort_nr) ret = [] for node in srt_exp: ret.append(Step(node)) return ret def new_step_temperature(self, temperature, duration, temperatureChange=None, durationChange=None, measure=None, ramp=None, nr=None): """Creates a new step element. Args: self: The class self parameter. temperature: The temperature of the step in degrees Celsius (required) duration: The duration of this step in seconds (required) temperatureChange: The change of the temperature from one cycle to the next (optional) durationChange: The change of the duration from one cycle to the next (optional) measure: Indicates to make a measurement and store it as meltcurve or real-time data (optional) ramp: Limit temperature change from one step to the next in degrees Celsius per second (optional) nr: Step unique nr (optional) Returns: Nothing, changes self. """ if measure is not None and measure not in ["", "real time", "meltcurve"]: raise RdmlError('Unknown or unsupported step measure value: "' + measure + '".') nr = int(nr) count = _get_number_of_children(self._node, "step") new_node = et.Element("step") xml_temp_step = ["temperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] _add_new_subelement(new_node, "step", "nr", str(count + 1), False) subel = et.SubElement(new_node, "temperature") _change_subelement(subel, "temperature", xml_temp_step, temperature, False, "float") _change_subelement(subel, "duration", xml_temp_step, duration, False, "posint") _change_subelement(subel, "temperatureChange", xml_temp_step, temperatureChange, True, "float") _change_subelement(subel, "durationChange", xml_temp_step, durationChange, True, "int") _change_subelement(subel, "measure", xml_temp_step, measure, True, "string") _change_subelement(subel, "ramp", xml_temp_step, ramp, True, "float") place = _get_first_tag_pos(self._node, "step", self.xmlkeys()) + count self._node.insert(place, new_node) # Now move step at final position self.move_step(count + 1, nr) def new_step_gradient(self, highTemperature, lowTemperature, duration, temperatureChange=None, durationChange=None, measure=None, ramp=None, nr=None): """Creates a new step element. Args: self: The class self parameter. highTemperature: The high gradient temperature of the step in degrees Celsius (required) lowTemperature: The low gradient temperature of the step in degrees Celsius (required) duration: The duration of this step in seconds (required) temperatureChange: The change of the temperature from one cycle to the next (optional) durationChange: The change of the duration from one cycle to the next (optional) measure: Indicates to make a measurement and store it as meltcurve or real-time data (optional) ramp: Limit temperature change from one step to the next in degrees Celsius per second (optional) nr: Step unique nr (optional) Returns: Nothing, changes self. """ if measure is not None and measure not in ["", "real time", "meltcurve"]: raise RdmlError('Unknown or unsupported step measure value: "' + measure + '".') nr = int(nr) count = _get_number_of_children(self._node, "step") new_node = et.Element("step") xml_temp_step = ["highTemperature", "lowTemperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] _add_new_subelement(new_node, "step", "nr", str(count + 1), False) subel = et.SubElement(new_node, "gradient") _change_subelement(subel, "highTemperature", xml_temp_step, highTemperature, False, "float") _change_subelement(subel, "lowTemperature", xml_temp_step, lowTemperature, False, "float") _change_subelement(subel, "duration", xml_temp_step, duration, False, "posint") _change_subelement(subel, "temperatureChange", xml_temp_step, temperatureChange, True, "float") _change_subelement(subel, "durationChange", xml_temp_step, durationChange, True, "int") _change_subelement(subel, "measure", xml_temp_step, measure, True, "string") _change_subelement(subel, "ramp", xml_temp_step, ramp, True, "float") place = _get_first_tag_pos(self._node, "step", self.xmlkeys()) + count self._node.insert(place, new_node) # Now move step at final position self.move_step(count + 1, nr) def new_step_loop(self, goto, repeat, nr=None): """Creates a new step element. Args: self: The class self parameter. goto: The step nr to go back to (required) repeat: The number of times to go back to goto step, one less than cycles (optional) nr: Step unique nr (optional) Returns: Nothing, changes self. """ nr = int(nr) count = _get_number_of_children(self._node, "step") new_node = et.Element("step") xml_temp_step = ["goto", "repeat"] _add_new_subelement(new_node, "step", "nr", str(count + 1), False) subel = et.SubElement(new_node, "loop") _change_subelement(subel, "goto", xml_temp_step, goto, False, "posint") _change_subelement(subel, "repeat", xml_temp_step, repeat, False, "posint") place = _get_first_tag_pos(self._node, "step", self.xmlkeys()) + count self._node.insert(place, new_node) # Now move step at final position self.move_step(count + 1, nr) def new_step_pause(self, temperature, nr=None): """Creates a new step element. Args: self: The class self parameter. temperature: The temperature of the step in degrees Celsius (required) nr: Step unique nr (optional) Returns: Nothing, changes self. """ nr = int(nr) count = _get_number_of_children(self._node, "step") new_node = et.Element("step") xml_temp_step = ["temperature"] _add_new_subelement(new_node, "step", "nr", str(count + 1), False) subel = et.SubElement(new_node, "pause") _change_subelement(subel, "temperature", xml_temp_step, temperature, False, "float") place = _get_first_tag_pos(self._node, "step", self.xmlkeys()) + count self._node.insert(place, new_node) # Now move step at final position self.move_step(count + 1, nr) def new_step_lidOpen(self, nr=None): """Creates a new step element. Args: self: The class self parameter. nr: Step unique nr (optional) Returns: Nothing, changes self. """ nr = int(nr) count = _get_number_of_children(self._node, "step") new_node = et.Element("step") _add_new_subelement(new_node, "step", "nr", str(count + 1), False) et.SubElement(new_node, "lidOpen") place = _get_first_tag_pos(self._node, "step", self.xmlkeys()) + count self._node.insert(place, new_node) # Now move step at final position self.move_step(count + 1, nr) def cleanup_steps(self): """The steps may not be in a order that makes sense. This function fixes it. Args: self: The class self parameter. Returns: No return value, changes self. Function may raise RdmlError if required. """ # The steps in the xml may be not sorted by "nr", so sort first exp = _get_all_children(self._node, "step") srt_exp = sorted(exp, key=_get_step_sort_nr) i = 0 for node in srt_exp: if _get_step_sort_nr(node) != _get_step_sort_nr(exp[i]): pos = _get_first_tag_pos(self._node, "step", self.xmlkeys()) + i self._node.insert(pos, node) i += 1 # The steps in the xml may not have the correct numbering, so fix it exp = _get_all_children(self._node, "step") i = 1 for node in exp: if _get_step_sort_nr(node) != i: elem = _get_first_child(node, "nr") elem.text = str(i) i += 1 def move_step(self, oldnr, newnr): """Moves the element to the new position in the list. Args: self: The class self parameter. oldnr: The old position of the element newnr: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ # The steps in the xml may be not sorted well, so fix it self.cleanup_steps() # Change the nr _move_subelement_pos(self._node, "step", oldnr - 1, self.xmlkeys(), newnr - 1) # Fix the nr exp = _get_all_children(self._node, "step") i = 1 goto_mod = 0 goto_start = newnr goto_end = oldnr if oldnr > newnr: goto_mod = 1 if oldnr < newnr: goto_mod = -1 goto_start = oldnr goto_end = newnr for node in exp: if _get_step_sort_nr(node) != i: elem = _get_first_child(node, "nr") elem.text = str(i) # Fix the goto steps ele_type = _get_first_child(node, "loop") if ele_type is not None: ele_goto = _get_first_child(ele_type, "goto") if ele_goto is not None: jump_to = int(ele_goto.text) if goto_start <= jump_to < goto_end: ele_goto.text = str(jump_to + goto_mod) i += 1 def get_step(self, bystep): """Returns an sample element by position or id. Args: self: The class self parameter. bystep: Select the element by step nr in the list. Returns: The found element or None. """ return Step(_get_first_child_by_pos_or_id(self._node, "step", None, bystep - 1)) def delete_step(self, bystep=None): """Deletes an step element. Args: self: The class self parameter. bystep: Select the element by step nr in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "step", None, bystep - 1) self._node.remove(elem) self.cleanup_steps() # Fix the goto steps exp = _get_all_children(self._node, "step") for node in exp: ele_type = _get_first_child(node, "loop") if ele_type is not None: ele_goto = _get_first_child(ele_type, "goto") if ele_goto is not None: jump_to = int(ele_goto.text) if bystep < jump_to: ele_goto.text = str(jump_to - 1) def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ allSteps = self.steps() steps = [] for exp in allSteps: steps.append(exp.tojson()) data = { "id": self._node.get('id'), } _add_first_child_to_dic(self._node, data, True, "description") data["documentations"] = self.documentation_ids() _add_first_child_to_dic(self._node, data, True, "lidTemperature") data["experimenters"] = self.experimenter_ids() data["steps"] = steps return data class Step: """RDML-Python library The samples element used to read and edit one sample. Attributes: _node: The sample node of the RDML XML object. """ def __init__(self, node): """Inits an sample instance. Args: self: The class self parameter. node: The sample node. Returns: No return value. Function may raise RdmlError if required. """ self._node = node def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the sample subelement. Be aware that change of type deletes all entries except nr and description Returns: A string of the data or None. """ if key == "nr": return _get_first_child_text(self._node, key) if key == "description": var = _get_first_child_text(self._node, key) if var == "": return None else: return var ele_type = _get_first_child(self._node, "temperature") if ele_type is not None: if key == "type": return "temperature" if key in ["temperature", "duration"]: return _get_first_child_text(ele_type, key) if key in ["temperatureChange", "durationChange", "measure", "ramp"]: var = _get_first_child_text(ele_type, key) if var == "": return None else: return var ele_type = _get_first_child(self._node, "gradient") if ele_type is not None: if key == "type": return "gradient" if key in ["highTemperature", "lowTemperature", "duration"]: return _get_first_child_text(ele_type, key) if key in ["temperatureChange", "durationChange", "measure", "ramp"]: var = _get_first_child_text(ele_type, key) if var == "": return None else: return var ele_type = _get_first_child(self._node, "loop") if ele_type is not None: if key == "type": return "loop" if key in ["goto", "repeat"]: return _get_first_child_text(ele_type, key) ele_type = _get_first_child(self._node, "pause") if ele_type is not None: if key == "type": return "pause" if key == "temperature": return _get_first_child_text(ele_type, key) ele_type = _get_first_child(self._node, "lidOpen") if ele_type is not None: if key == "type": return "lidOpen" raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the sample subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key in ["nr", "type"]: raise RdmlError('"' + key + '" can not be set. Use thermal cycling conditions methods instead') if key == "description": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") ele_type = _get_first_child(self._node, "temperature") if ele_type is not None: xml_temp_step = ["temperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] if key == "temperature": return _change_subelement(ele_type, key, xml_temp_step, value, False, "float") if key == "duration": return _change_subelement(ele_type, key, xml_temp_step, value, False, "posint") if key in ["temperatureChange", "ramp"]: return _change_subelement(ele_type, key, xml_temp_step, value, True, "float") if key == "durationChange": return _change_subelement(ele_type, key, xml_temp_step, value, True, "int") if key == "measure": if value not in ["", "real time", "meltcurve"]: raise RdmlError('Unknown or unsupported step measure value: "' + value + '".') return _change_subelement(ele_type, key, xml_temp_step, value, True, "string") ele_type = _get_first_child(self._node, "gradient") if ele_type is not None: xml_temp_step = ["highTemperature", "lowTemperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] if key in ["highTemperature", "lowTemperature"]: return _change_subelement(ele_type, key, xml_temp_step, value, False, "float") if key == "duration": return _change_subelement(ele_type, key, xml_temp_step, value, False, "posint") if key in ["temperatureChange", "ramp"]: return _change_subelement(ele_type, key, xml_temp_step, value, True, "float") if key == "durationChange": return _change_subelement(ele_type, key, xml_temp_step, value, True, "int") if key == "measure": if value not in ["", "real time", "meltcurve"]: raise RdmlError('Unknown or unsupported step measure value: "' + value + '".') return _change_subelement(ele_type, key, xml_temp_step, value, True, "string") ele_type = _get_first_child(self._node, "loop") if ele_type is not None: xml_temp_step = ["goto", "repeat"] if key in xml_temp_step: return _change_subelement(ele_type, key, xml_temp_step, value, False, "posint") ele_type = _get_first_child(self._node, "pause") if ele_type is not None: xml_temp_step = ["temperature"] if key == "temperature": return _change_subelement(ele_type, key, xml_temp_step, value, False, "float") raise KeyError def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ ele_type = _get_first_child(self._node, "temperature") if ele_type is not None: return ["nr", "type", "description", "temperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] ele_type = _get_first_child(self._node, "gradient") if ele_type is not None: return ["nr", "type", "description", "highTemperature", "lowTemperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] ele_type = _get_first_child(self._node, "loop") if ele_type is not None: return ["nr", "type", "description", "goto", "repeat"] ele_type = _get_first_child(self._node, "pause") if ele_type is not None: return ["nr", "type", "description", "temperature"] ele_type = _get_first_child(self._node, "lidOpen") if ele_type is not None: return ["nr", "type", "description"] return [] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ ele_type = _get_first_child(self._node, "temperature") if ele_type is not None: return ["temperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] ele_type = _get_first_child(self._node, "gradient") if ele_type is not None: return ["highTemperature", "lowTemperature", "duration", "temperatureChange", "durationChange", "measure", "ramp"] ele_type = _get_first_child(self._node, "loop") if ele_type is not None: return ["goto", "repeat"] ele_type = _get_first_child(self._node, "pause") if ele_type is not None: return ["temperature"] ele_type = _get_first_child(self._node, "lidOpen") if ele_type is not None: return [] return [] def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ data = {} _add_first_child_to_dic(self._node, data, False, "nr") _add_first_child_to_dic(self._node, data, True, "description") elem = _get_first_child(self._node, "temperature") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "temperature") _add_first_child_to_dic(elem, qdic, False, "duration") _add_first_child_to_dic(elem, qdic, True, "temperatureChange") _add_first_child_to_dic(elem, qdic, True, "durationChange") _add_first_child_to_dic(elem, qdic, True, "measure") _add_first_child_to_dic(elem, qdic, True, "ramp") data["temperature"] = qdic elem = _get_first_child(self._node, "gradient") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "highTemperature") _add_first_child_to_dic(elem, qdic, False, "lowTemperature") _add_first_child_to_dic(elem, qdic, False, "duration") _add_first_child_to_dic(elem, qdic, True, "temperatureChange") _add_first_child_to_dic(elem, qdic, True, "durationChange") _add_first_child_to_dic(elem, qdic, True, "measure") _add_first_child_to_dic(elem, qdic, True, "ramp") data["gradient"] = qdic elem = _get_first_child(self._node, "loop") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "goto") _add_first_child_to_dic(elem, qdic, False, "repeat") data["loop"] = qdic elem = _get_first_child(self._node, "pause") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "temperature") data["pause"] = qdic elem = _get_first_child(self._node, "lidOpen") if elem is not None: data["lidOpen"] = "lidOpen" return data class Experiment: """RDML-Python library The target element used to read and edit one experiment. Attributes: _node: The target node of the RDML XML object. _rdmlFilename: The RDML filename """ def __init__(self, node, rdmlFilename): """Inits an experiment instance. Args: self: The class self parameter. node: The experiment node. rdmlFilename: The RDML filename. Returns: No return value. Function may raise RdmlError if required. """ self._node = node self._rdmlFilename = rdmlFilename def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the experiment subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key == "description": var = _get_first_child_text(self._node, key) if var == "": return None else: return var raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the target subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key == "id": return _change_subelement(self._node, key, self.xmlkeys(), value, False, "string") if key == "description": return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") raise KeyError def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["id", "description"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["description", "documentation", "run"] def documentation_ids(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return _get_all_children_id(self._node, "documentation") def update_documentation_ids(self, ids): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. ids: A dictionary with id and true/false pairs Returns: True if a change was made, else false. Function may raise RdmlError if required. """ old = self.documentation_ids() good_ids = _value_to_booldic(ids) mod = False for id, inc in good_ids.items(): if inc is True: if id not in old: new_node = _create_new_element(self._node, "documentation", id) place = _get_tag_pos(self._node, "documentation", self.xmlkeys(), 999999999) self._node.insert(place, new_node) mod = True else: if id in old: elem = _get_first_child_by_pos_or_id(self._node, "documentation", id, None) self._node.remove(elem) mod = True return mod def move_documentation(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "documentation", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "documentation", None, oldposition) self._node.insert(pos, ele) def runs(self): """Returns a list of all run elements. Args: self: The class self parameter. Returns: A list of all run elements. """ exp = _get_all_children(self._node, "run") ret = [] for node in exp: ret.append(Run(node, self._rdmlFilename)) return ret def new_run(self, id, newposition=None): """Creates a new run element. Args: self: The class self parameter. id: Run unique id (required) newposition: Run position in the list of experiments (optional) Returns: Nothing, changes self. """ new_node = _create_new_element(self._node, "run", id) place = _get_tag_pos(self._node, "run", self.xmlkeys(), newposition) self._node.insert(place, new_node) def move_run(self, id, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. id: Run unique id newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ _move_subelement(self._node, "run", id, self.xmlkeys(), newposition) def get_run(self, byid=None, byposition=None): """Returns an run element by position or id. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: The found element or None. """ return Run(_get_first_child_by_pos_or_id(self._node, "run", byid, byposition), self._rdmlFilename) def delete_run(self, byid=None, byposition=None): """Deletes an run element. Args: self: The class self parameter. byid: Select the element by the element id. byposition: Select the element by position in the list. Returns: Nothing, changes self. """ elem = _get_first_child_by_pos_or_id(self._node, "run", byid, byposition) # Delete in Table files fileList = [] exp = _get_all_children(elem, "react") for node in exp: partit = _get_first_child(node, "partitions") if partit is not None: finalFileName = "partitions/" + _get_first_child_text(partit, "endPtTable") if finalFileName != "partitions/": fileList.append(finalFileName) if len(fileList) > 0: if self._rdmlFilename is not None and self._rdmlFilename != "": if zipfile.is_zipfile(self._rdmlFilename): with zipfile.ZipFile(self._rdmlFilename, 'r') as RDMLin: tempFolder, tempName = tempfile.mkstemp(dir=os.path.dirname(self._rdmlFilename)) os.close(tempFolder) with zipfile.ZipFile(tempName, mode='w', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.comment = RDMLin.comment for item in RDMLin.infolist(): if item.filename not in fileList: RDMLout.writestr(item, RDMLin.read(item.filename)) os.remove(self._rdmlFilename) os.rename(tempName, self._rdmlFilename) # Delete the node self._node.remove(elem) def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ allRuns = self.runs() runs = [] for exp in allRuns: runs.append(exp.tojson()) data = { "id": self._node.get('id'), } _add_first_child_to_dic(self._node, data, True, "description") data["documentations"] = self.documentation_ids() data["runs"] = runs return data class Run: """RDML-Python library The run element used to read and edit one run. Attributes: _node: The run node of the RDML XML object. _rdmlFilename: The RDML filename. """ def __init__(self, node, rdmlFilename): """Inits an run instance. Args: self: The class self parameter. node: The sample node. rdmlFilename: The RDML filename. Returns: No return value. Function may raise RdmlError if required. """ self._node = node self._rdmlFilename = rdmlFilename def __getitem__(self, key): """Returns the value for the key. Args: self: The class self parameter. key: The key of the run subelement Returns: A string of the data or None. """ if key == "id": return self._node.get('id') if key in ["description", "instrument", "backgroundDeterminationMethod", "cqDetectionMethod", "runDate"]: var = _get_first_child_text(self._node, key) if var == "": return None else: return var if key == "thermalCyclingConditions": forId = _get_first_child(self._node, "thermalCyclingConditions") if forId is not None: return forId.attrib['id'] else: return None if key in ["dataCollectionSoftware_name", "dataCollectionSoftware_version"]: ele = _get_first_child(self._node, "dataCollectionSoftware") if ele is None: return None if key == "dataCollectionSoftware_name": return _get_first_child_text(ele, "name") if key == "dataCollectionSoftware_version": return _get_first_child_text(ele, "version") raise RdmlError('Run dataCollectionSoftware programming read error.') if key in ["pcrFormat_rows", "pcrFormat_columns", "pcrFormat_rowLabel", "pcrFormat_columnLabel"]: ele = _get_first_child(self._node, "pcrFormat") if ele is None: return None if key == "pcrFormat_rows": return _get_first_child_text(ele, "rows") if key == "pcrFormat_columns": return _get_first_child_text(ele, "columns") if key == "pcrFormat_rowLabel": return _get_first_child_text(ele, "rowLabel") if key == "pcrFormat_columnLabel": return _get_first_child_text(ele, "columnLabel") raise RdmlError('Run pcrFormat programming read error.') raise KeyError def __setitem__(self, key, value): """Changes the value for the key. Args: self: The class self parameter. key: The key of the run subelement value: The new value for the key Returns: No return value, changes self. Function may raise RdmlError if required. """ if key == "cqDetectionMethod": if value not in ["", "automated threshold and baseline settings", "manual threshold and baseline settings", "second derivative maximum", "other"]: raise RdmlError('Unknown or unsupported run cqDetectionMethod value "' + value + '".') if key in ["pcrFormat_rowLabel", "pcrFormat_columnLabel"]: if value not in ["ABC", "123", "A1a1"]: raise RdmlError('Unknown or unsupported run ' + key + ' value "' + value + '".') if key == "id": return _change_subelement(self._node, key, self.xmlkeys(), value, False, "string") if key in ["description", "instrument", "backgroundDeterminationMethod", "cqDetectionMethod", "runDate"]: return _change_subelement(self._node, key, self.xmlkeys(), value, True, "string") if key == "thermalCyclingConditions": forId = _get_or_create_subelement(self._node, "thermalCyclingConditions", self.xmlkeys()) if value is not None and value != "": # We do not check that ID is valid to allow recreate_lost_ids() forId.attrib['id'] = value else: self._node.remove(forId) return if key in ["dataCollectionSoftware_name", "dataCollectionSoftware_version"]: ele = _get_or_create_subelement(self._node, "dataCollectionSoftware", self.xmlkeys()) if key == "dataCollectionSoftware_name": _change_subelement(ele, "name", ["name", "version"], value, True, "string") if key == "dataCollectionSoftware_version": _change_subelement(ele, "version", ["name", "version"], value, True, "string") _remove_irrelevant_subelement(self._node, "dataCollectionSoftware") return if key in ["pcrFormat_rows", "pcrFormat_columns", "pcrFormat_rowLabel", "pcrFormat_columnLabel"]: ele = _get_or_create_subelement(self._node, "pcrFormat", self.xmlkeys()) if key == "pcrFormat_rows": _change_subelement(ele, "rows", ["rows", "columns", "rowLabel", "columnLabel"], value, True, "string") if key == "pcrFormat_columns": _change_subelement(ele, "columns", ["rows", "columns", "rowLabel", "columnLabel"], value, True, "string") if key == "pcrFormat_rowLabel": _change_subelement(ele, "rowLabel", ["rows", "columns", "rowLabel", "columnLabel"], value, True, "string") if key == "pcrFormat_columnLabel": _change_subelement(ele, "columnLabel", ["rows", "columns", "rowLabel", "columnLabel"], value, True, "string") _remove_irrelevant_subelement(self._node, "pcrFormat") return raise KeyError def keys(self): """Returns a list of the keys. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["id", "description", "instrument", "dataCollectionSoftware_name", "dataCollectionSoftware_version", "backgroundDeterminationMethod", "cqDetectionMethod", "thermalCyclingConditions", "pcrFormat_rows", "pcrFormat_columns", "pcrFormat_rowLabel", "pcrFormat_columnLabel", "runDate", "react"] def xmlkeys(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return ["description", "documentation", "experimenter", "instrument", "dataCollectionSoftware", "backgroundDeterminationMethod", "cqDetectionMethod", "thermalCyclingConditions", "pcrFormat", "runDate", "react"] def documentation_ids(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return _get_all_children_id(self._node, "documentation") def update_documentation_ids(self, ids): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. ids: A dictionary with id and true/false pairs Returns: True if a change was made, else false. Function may raise RdmlError if required. """ old = self.documentation_ids() good_ids = _value_to_booldic(ids) mod = False for id, inc in good_ids.items(): if inc is True: if id not in old: new_node = _create_new_element(self._node, "documentation", id) place = _get_tag_pos(self._node, "documentation", self.xmlkeys(), 999999999) self._node.insert(place, new_node) mod = True else: if id in old: elem = _get_first_child_by_pos_or_id(self._node, "documentation", id, None) self._node.remove(elem) mod = True return mod def move_documentation(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "documentation", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "documentation", None, oldposition) self._node.insert(pos, ele) def experimenter_ids(self): """Returns a list of the keys in the xml file. Args: self: The class self parameter. Returns: A list of the key strings. """ return _get_all_children_id(self._node, "experimenter") def update_experimenter_ids(self, ids): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. ids: A dictionary with id and true/false pairs Returns: True if a change was made, else false. Function may raise RdmlError if required. """ old = self.experimenter_ids() good_ids = _value_to_booldic(ids) mod = False for id, inc in good_ids.items(): if inc is True: if id not in old: new_node = _create_new_element(self._node, "experimenter", id) place = _get_tag_pos(self._node, "experimenter", self.xmlkeys(), 999999999) self._node.insert(place, new_node) mod = True else: if id in old: elem = _get_first_child_by_pos_or_id(self._node, "experimenter", id, None) self._node.remove(elem) mod = True return mod def move_experimenter(self, oldposition, newposition): """Moves the element to the new position in the list. Args: self: The class self parameter. oldposition: The old position of the element newposition: The new position of the element Returns: No return value, changes self. Function may raise RdmlError if required. """ pos = _get_tag_pos(self._node, "experimenter", self.xmlkeys(), newposition) ele = _get_first_child_by_pos_or_id(self._node, "experimenter", None, oldposition) self._node.insert(pos, ele) def tojson(self): """Returns a json of the RDML object without fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ data = { "id": self._node.get('id'), } _add_first_child_to_dic(self._node, data, True, "description") data["documentations"] = self.documentation_ids() data["experimenters"] = self.experimenter_ids() _add_first_child_to_dic(self._node, data, True, "instrument") elem = _get_first_child(self._node, "dataCollectionSoftware") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, True, "name") _add_first_child_to_dic(elem, qdic, True, "version") if len(qdic.keys()) != 0: data["dataCollectionSoftware"] = qdic _add_first_child_to_dic(self._node, data, True, "backgroundDeterminationMethod") _add_first_child_to_dic(self._node, data, True, "cqDetectionMethod") forId = _get_first_child(self._node, "thermalCyclingConditions") if forId is not None: if forId.attrib['id'] != "": data["thermalCyclingConditions"] = forId.attrib['id'] elem = _get_first_child(self._node, "pcrFormat") if elem is not None: qdic = {} _add_first_child_to_dic(elem, qdic, False, "rows") _add_first_child_to_dic(elem, qdic, False, "columns") _add_first_child_to_dic(elem, qdic, False, "rowLabel") _add_first_child_to_dic(elem, qdic, False, "columnLabel") data["pcrFormat"] = qdic _add_first_child_to_dic(self._node, data, True, "runDate") data["react"] = _get_number_of_children(self._node, "react") return data def export_table(self, dMode): """Returns a tab seperated table file with the react fluorescence data. Args: self: The class self parameter. dMode: amp for amplification data, melt for meltcurve data Returns: A string with the data. """ samTypeLookup = {} tarTypeLookup = {} tarDyeLookup = {} data = "" # Get the information for the lookup dictionaries pExp = self._node.getparent() pRoot = pExp.getparent() samples = _get_all_children(pRoot, "sample") for sample in samples: if sample.attrib['id'] != "": samId = sample.attrib['id'] forType = _get_first_child_text(sample, "type") if forType != "": samTypeLookup[samId] = forType targets = _get_all_children(pRoot, "target") for target in targets: if target.attrib['id'] != "": tarId = target.attrib['id'] forType = _get_first_child_text(target, "type") if forType != "": tarTypeLookup[tarId] = forType forId = _get_first_child(target, "dyeId") if forId is not None: if forId.attrib['id'] != "": tarDyeLookup[tarId] = forId.attrib['id'] # Now create the header line data += "Well\tSample\tSample Type\tTarget\tTarget Type\tDye\t" reacts = _get_all_children(self._node, "react") if len(reacts) < 1: return "" react_datas = _get_all_children(reacts[0], "data") if len(react_datas) < 1: return "" headArr = [] if dMode == "amp": adps = _get_all_children(react_datas[0], "adp") for adp in adps: headArr.append(_get_first_child_text(adp, "cyc")) headArr = sorted(headArr, key=int) else: mdps = _get_all_children(react_datas[0], "mdp") for mdp in mdps: headArr.append(_get_first_child_text(mdp, "tmp")) headArr = sorted(headArr, key=float, reverse=True) for hElem in headArr: data += hElem + "\t" data += '\n' # Now create the data lines reacts = _get_all_children(self._node, "react") wellData = [] for react in reacts: reactId = react.get('id') dataSample = reactId + '\t' react_sample = "No Sample" react_sample_type = "No Sample Type" forId = _get_first_child(react, "sample") if forId is not None: if forId.attrib['id'] != "": react_sample = forId.attrib['id'] react_sample_type = samTypeLookup[react_sample] dataSample += react_sample + '\t' + react_sample_type react_datas = _get_all_children(react, "data") for react_data in react_datas: dataLine = dataSample react_target = "No Target" react_target_type = "No Target Type" react_target_dye = "No Dye" forId = _get_first_child(react_data, "tar") if forId is not None: if forId.attrib['id'] != "": react_target = forId.attrib['id'] react_target_type = tarTypeLookup[react_target] react_target_dye = tarDyeLookup[react_target] dataLine += "\t" + react_target + '\t' + react_target_type + '\t' + react_target_dye fluorList = [] if dMode == "amp": adps = _get_all_children(react_data, "adp") for adp in adps: cyc = _get_first_child_text(adp, "cyc") fluor = _get_first_child_text(adp, "fluor") fluorList.append([cyc, fluor]) fluorList = sorted(fluorList, key=_sort_list_int) else: mdps = _get_all_children(react_data, "mdp") for mdp in mdps: tmp = _get_first_child_text(mdp, "tmp") fluor = _get_first_child_text(mdp, "fluor") fluorList.append([tmp, fluor]) fluorList = sorted(fluorList, key=_sort_list_float) for hElem in fluorList: dataLine += "\t" + hElem[1] dataLine += '\n' wellData.append([reactId, dataLine]) wellData = sorted(wellData, key=_sort_list_int) for hElem in wellData: data += hElem[1] return data def import_table(self, rootEl, filename, dMode): """Imports data from a tab seperated table file with react fluorescence data. Args: self: The class self parameter. rootEl: The rdml root element. filename: The tab file to open. dMode: amp for amplification data, melt for meltcurve data. Returns: A string with the modifications made. """ ret = "" with open(filename, "r") as tfile: fileContent = tfile.read() newlineFix = fileContent.replace("\r\n", "\n") tabLines = newlineFix.split("\n") head = tabLines[0].split("\t") if (head[0] != "Well" or head[1] != "Sample" or head[2] != "Sample Type" or head[3] != "Target" or head[4] != "Target Type" or head[5] != "Dye"): raise RdmlError('The tab-format is not valid, essential columns are missing.') # Get the information for the lookup dictionaries samTypeLookup = {} tarTypeLookup = {} dyeLookup = {} samples = _get_all_children(rootEl._node, "sample") for sample in samples: if sample.attrib['id'] != "": samId = sample.attrib['id'] forType = _get_first_child_text(sample, "type") if forType != "": samTypeLookup[samId] = forType targets = _get_all_children(rootEl._node, "target") for target in targets: if target.attrib['id'] != "": tarId = target.attrib['id'] forType = _get_first_child_text(target, "type") if forType != "": tarTypeLookup[tarId] = forType forId = _get_first_child(target, "dyeId") if forId is not None and forId.attrib['id'] != "": dyeLookup[forId.attrib['id']] = 1 # Process the lines for tabLine in tabLines[1:]: sLin = tabLine.split("\t") if len(sLin) < 7 or sLin[1] == "" or sLin[2] == "" or sLin[3] == "" or sLin[4] == "" or sLin[5] == "": continue if sLin[1] not in samTypeLookup: rootEl.new_sample(sLin[1], sLin[2]) samTypeLookup[sLin[1]] = sLin[2] ret += "Created sample \"" + sLin[1] + "\" with type \"" + sLin[2] + "\"\n" if sLin[3] not in tarTypeLookup: if sLin[5] not in dyeLookup: rootEl.new_dye(sLin[5]) dyeLookup[sLin[5]] = 1 ret += "Created dye \"" + sLin[5] + "\"\n" rootEl.new_target(sLin[3], sLin[4]) elem = rootEl.get_target(byid=sLin[3]) elem["dyeId"] = sLin[5] tarTypeLookup[sLin[3]] = sLin[4] ret += "Created " + sLin[3] + " with type \"" + sLin[4] + "\" and dye \"" + sLin[5] + "\"\n" react = None data = None # Get the position number if required wellPos = sLin[0] if re.search(r"\D\d+", sLin[0]): old_letter = ord(re.sub(r"\d", "", sLin[0]).upper()) - ord("A") old_nr = int(re.sub(r"\D", "", sLin[0])) newId = old_nr + old_letter * int(self["pcrFormat_columns"]) wellPos = str(newId) if re.search(r"\D\d+\D\d+", sLin[0]): old_left = re.sub(r"\D\d+$", "", sLin[0]) old_left_letter = ord(re.sub(r"\d", "", old_left).upper()) - ord("A") old_left_nr = int(re.sub(r"\D", "", old_left)) - 1 old_right = re.sub(r"^\D\d+", "", sLin[0]) old_right_letter = ord(re.sub(r"\d", "", old_right).upper()) - ord("A") old_right_nr = int(re.sub(r"\D", "", old_right)) newId = old_left_nr * 8 + old_right_nr + old_left_letter * 768 + old_right_letter * 96 wellPos = str(newId) exp = _get_all_children(self._node, "react") for node in exp: if wellPos == node.attrib['id']: react = node forId = _get_first_child_text(react, "sample") if forId and forId != "" and forId.attrib['id'] != sLin[1]: ret += "Missmatch: Well " + wellPos + " (" + sLin[0] + ") has sample \"" + forId.attrib['id'] + \ "\" in RDML file and sample \"" + sLin[1] + "\" in tab file.\n" break if react is None: new_node = et.Element("react", id=wellPos) place = _get_tag_pos(self._node, "react", self.xmlkeys(), 9999999) self._node.insert(place, new_node) react = new_node new_node = et.Element("sample", id=sLin[1]) react.insert(0, new_node) exp = _get_all_children(react, "data") for node in exp: forId = _get_first_child(node, "tar") if forId is not None and forId.attrib['id'] == sLin[3]: data = node break if data is None: new_node = et.Element("data") place = _get_tag_pos(react, "data", ["sample", "data", "partitions"], 9999999) react.insert(place, new_node) data = new_node new_node = et.Element("tar", id=sLin[3]) place = _get_tag_pos(data, "tar", _getXMLDataType(), 9999999) data.insert(place, new_node) if dMode == "amp": presentAmp = _get_first_child(data, "adp") if presentAmp is not None: ret += "Well " + wellPos + " (" + sLin[0] + ") with sample \"" + sLin[1] + " and target \"" + \ sLin[3] + "\" has already amplification data, no data were added.\n" else: colCount = 6 for col in sLin[6:]: new_node = et.Element("adp") place = _get_tag_pos(data, "adp", _getXMLDataType(), 9999999) data.insert(place, new_node) new_sub = et.Element("cyc") new_sub.text = head[colCount] place = _get_tag_pos(new_node, "cyc", ["cyc", "tmp", "fluor"], 9999999) new_node.insert(place, new_sub) new_sub = et.Element("fluor") new_sub.text = col place = _get_tag_pos(new_node, "fluor", ["cyc", "tmp", "fluor"], 9999999) new_node.insert(place, new_sub) colCount += 1 if dMode == "melt": presentAmp = _get_first_child(data, "mdp") if presentAmp is not None: ret += "Well " + wellPos + " (" + sLin[0] + ") with sample \"" + sLin[1] + " and target \"" + \ sLin[3] + "\" has already melting data, no data were added.\n" else: colCount = 6 for col in sLin[6:]: new_node = et.Element("mdp") place = _get_tag_pos(data, "mdp", _getXMLDataType(), 9999999) data.insert(place, new_node) new_sub = et.Element("tmp") new_sub.text = head[colCount] place = _get_tag_pos(new_node, "tmp", ["tmp", "fluor"], 9999999) new_node.insert(place, new_sub) new_sub = et.Element("fluor") new_sub.text = col place = _get_tag_pos(new_node, "fluor", ["tmp", "fluor"], 9999999) new_node.insert(place, new_sub) colCount += 1 return ret def import_digital_data(self, rootEl, fileformat, filename, filelist, ignoreCh=""): """Imports data from a tab seperated table file with digital PCR overview data. Args: self: The class self parameter. rootEl: The rdml root element. fileformat: The format of the files (RDML, BioRad). filename: The tab overvie file to open (recommended but optional). filelist: A list of tab files with fluorescence data (optional, works without filename). Returns: A string with the modifications made. """ tempList = re.split(r"\D+", ignoreCh) ignoreList = [] for posNum in tempList: if re.search(r"\d", posNum): ignoreList.append(int(posNum)) ret = "" wellNames = [] uniqueFileNames = [] if filelist is None: filelist = [] # Get the information for the lookup dictionaries samTypeLookup = {} tarTypeLookup = {} dyeLookup = {} headerLookup = {} fileLookup = {} fileNameSuggLookup = {} samples = _get_all_children(rootEl._node, "sample") for sample in samples: if sample.attrib['id'] != "": samId = sample.attrib['id'] forType = _get_first_child_text(sample, "type") if forType != "": samTypeLookup[samId] = forType targets = _get_all_children(rootEl._node, "target") for target in targets: if target.attrib['id'] != "": tarId = target.attrib['id'] forType = _get_first_child_text(target, "type") if forType != "": tarTypeLookup[tarId] = forType dyes = _get_all_children(rootEl._node, "dye") for dye in dyes: if dye.attrib['id'] != "": dyeLookup[dye.attrib['id']] = 1 # Work the overview file if filename is not None: with open(filename, newline='') as tfile: # add encoding='utf-8' ? posCount = 0 posWell = 0 posSample = -1 posSampleType = -1 posDye = -1 posDyeCh2 = -1 posDyeCh3 = -1 posTarget = -1 posTargetCh2 = -1 posTargetCh3 = -1 posTargetType = -1 posCopConc = -1 posPositives = -1 posNegatives = -1 posCopConcCh2 = -1 posPositivesCh2 = -1 posNegativesCh2 = -1 posCopConcCh3 = -1 posPositivesCh3 = -1 posNegativesCh3 = -1 posUndefined = -1 posExcluded = -1 posVolume = -1 posFilename = -1 countUpTarget = 1 if fileformat == "RDML": tabLines = list(csv.reader(tfile, delimiter='\t')) for hInfo in tabLines[0]: if hInfo == "Sample": posSample = posCount if hInfo == "SampleType": posSampleType = posCount if hInfo == "Target": posTarget = posCount if hInfo == "TargetType": posTargetType = posCount if hInfo == "Dye": posDye = posCount if hInfo == "Copies": posCopConc = posCount if hInfo == "Positives": posPositives = posCount if hInfo == "Negatives": posNegatives = posCount if hInfo == "Undefined": posUndefined = posCount if hInfo == "Excluded": posExcluded = posCount if hInfo == "Volume": posVolume = posCount if hInfo == "FileName": posFilename = posCount posCount += 1 elif fileformat == "Bio-Rad": tabLines = list(csv.reader(tfile, delimiter=',')) for hInfo in tabLines[0]: if hInfo == "Sample": posSample = posCount if hInfo in ["TargetType", "TypeAssay"]: posDye = posCount if hInfo in ["Target", "Assay"]: posTarget = posCount if hInfo == "CopiesPer20uLWell": posCopConc = posCount if hInfo == "Positives": posPositives = posCount if hInfo == "Negatives": posNegatives = posCount posCount += 1 elif fileformat == "Stilla": posWell = 1 tabLines = list(csv.reader(tfile, delimiter=',')) for hInfo in tabLines[0]: hInfo = re.sub(r"^ +", '', hInfo) if hInfo == "SampleName": posSample = posCount # This is a hack of the format to allow specification of targets if hInfo == "Blue_Channel_Target": posTarget = posCount if hInfo == "Green_Channel_Target": posTargetCh2 = posCount if hInfo == "Red_Channel_Target": posTargetCh3 = posCount # End of hack if hInfo == "Blue_Channel_Concentration": posCopConc = posCount if hInfo == "Blue_Channel_NumberOfPositiveDroplets": posPositives = posCount if hInfo == "Blue_Channel_NumberOfNegativeDroplets": posNegatives = posCount if hInfo == "Green_Channel_Concentration": posCopConcCh2 = posCount if hInfo == "Green_Channel_NumberOfPositiveDroplets": posPositivesCh2 = posCount if hInfo == "Green_Channel_NumberOfNegativeDroplets": posNegativesCh2 = posCount if hInfo == "Red_Channel_Concentration": posCopConcCh3 = posCount if hInfo == "Red_Channel_NumberOfPositiveDroplets": posPositivesCh3 = posCount if hInfo == "Red_Channel_NumberOfNegativeDroplets": posNegativesCh3 = posCount posCount += 1 else: raise RdmlError('Unknown digital file format.') if posSample == -1: raise RdmlError('The overview tab-format is not valid, sample columns are missing.') if posDye == -1 and fileformat != "Stilla": raise RdmlError('The overview tab-format is not valid, dye / channel columns are missing.') if posTarget == -1 and fileformat != "Stilla": raise RdmlError('The overview tab-format is not valid, target columns are missing.') if posPositives == -1: raise RdmlError('The overview tab-format is not valid, positives columns are missing.') if posNegatives == -1: raise RdmlError('The overview tab-format is not valid, negatives columns are missing.') # Process the lines for rowNr in range(1, len(tabLines)): emptyLine = True if len(tabLines[rowNr]) < 7: continue for colNr in range(0, len(tabLines[rowNr])): if tabLines[rowNr][colNr] != "": emptyLine = False tabLines[rowNr][colNr] = re.sub(r'^ +', '', tabLines[rowNr][colNr]) tabLines[rowNr][colNr] = re.sub(r' +$', '', tabLines[rowNr][colNr]) if emptyLine is True: continue sLin = tabLines[rowNr] if sLin[posSample] not in samTypeLookup: posSampleTypeName = "unkn" if posSampleType != -1: posSampleTypeName = sLin[posSampleType] rootEl.new_sample(sLin[posSample], posSampleTypeName) samTypeLookup[sLin[posSample]] = posSampleTypeName ret += "Created sample \"" + sLin[posSample] + "\" with type \"" + posSampleTypeName + "\"\n" # Fix well position wellPos = re.sub(r"\"", "", sLin[posWell]) if fileformat == "Stilla": wellPos = re.sub(r'^\d+-', '', wellPos) # Create nonexisting targets and dyes if fileformat == "Stilla": if 1 not in ignoreList: if posTarget > -1: crTarName = sLin[posTarget] else: crTarName = " Target " + str(countUpTarget) + " Ch1" countUpTarget += 1 chan = "Ch1" if crTarName not in tarTypeLookup: if chan not in dyeLookup: rootEl.new_dye(chan) dyeLookup[chan] = 1 ret += "Created dye \"" + chan + "\"\n" rootEl.new_target(crTarName, "toi") elem = rootEl.get_target(byid=crTarName) elem["dyeId"] = chan tarTypeLookup[crTarName] = "toi" ret += "Created " + crTarName + " with type \"toi\" and dye \"" + chan + "\"\n" if wellPos.upper() not in headerLookup: headerLookup[wellPos.upper()] = {} headerLookup[wellPos.upper()][chan] = crTarName if 2 not in ignoreList: if posTargetCh2 > -1: crTarName = sLin[posTargetCh2] else: crTarName = " Target " + str(countUpTarget) + " Ch2" countUpTarget += 1 chan = "Ch2" if crTarName not in tarTypeLookup: if chan not in dyeLookup: rootEl.new_dye(chan) dyeLookup[chan] = 1 ret += "Created dye \"" + chan + "\"\n" rootEl.new_target(crTarName, "toi") elem = rootEl.get_target(byid=crTarName) elem["dyeId"] = chan tarTypeLookup[crTarName] = "toi" ret += "Created " + crTarName + " with type \"toi\" and dye \"" + chan + "\"\n" if wellPos.upper() not in headerLookup: headerLookup[wellPos.upper()] = {} headerLookup[wellPos.upper()][chan] = crTarName if 3 not in ignoreList: if posTargetCh3 > -1: crTarName = sLin[posTargetCh3] else: crTarName = " Target " + str(countUpTarget) + " Ch3" countUpTarget += 1 chan = "Ch3" if crTarName not in tarTypeLookup: if chan not in dyeLookup: rootEl.new_dye(chan) dyeLookup[chan] = 1 ret += "Created dye \"" + chan + "\"\n" rootEl.new_target(crTarName, "toi") elem = rootEl.get_target(byid=crTarName) elem["dyeId"] = chan tarTypeLookup[crTarName] = "toi" ret += "Created " + crTarName + " with type \"toi\" and dye \"" + chan + "\"\n" if wellPos.upper() not in headerLookup: headerLookup[wellPos.upper()] = {} headerLookup[wellPos.upper()][chan] = crTarName else: if fileformat == "Bio-Rad": posDyeName = sLin[posDye][:3] else: posDyeName = sLin[posDye] if posTarget > -1 and int(re.sub(r"\D", "", posDyeName)) not in ignoreList: if sLin[posTarget] not in tarTypeLookup: if posDyeName not in dyeLookup: rootEl.new_dye(posDyeName) dyeLookup[posDyeName] = 1 ret += "Created dye \"" + posDyeName + "\"\n" posTargetTypeName = "toi" if posTargetType != -1: posTargetTypeName = sLin[posTargetType] rootEl.new_target(sLin[posTarget], posTargetTypeName) elem = rootEl.get_target(byid=sLin[posTarget]) elem["dyeId"] = posDyeName tarTypeLookup[sLin[posTarget]] = posTargetTypeName ret += "Created " + sLin[posTarget] + " with type \"" + posTargetTypeName + "\" and dye \"" + posDyeName + "\"\n" if wellPos.upper() not in headerLookup: headerLookup[wellPos.upper()] = {} headerLookup[wellPos.upper()][posDyeName] = sLin[posTarget] if posFilename != -1 and sLin[posFilename] != "": fileNameSuggLookup[wellPos.upper()] = sLin[posFilename] react = None partit = None data = None # Get the position number if required wellPosStore = wellPos if re.search(r"\D\d+", wellPos): old_letter = ord(re.sub(r"\d", "", wellPos.upper())) - ord("A") old_nr = int(re.sub(r"\D", "", wellPos)) newId = old_nr + old_letter * int(self["pcrFormat_columns"]) wellPos = str(newId) exp = _get_all_children(self._node, "react") for node in exp: if wellPos == node.attrib['id']: react = node forId = _get_first_child_text(react, "sample") if forId and forId != "" and forId.attrib['id'] != sLin[posSample]: ret += "Missmatch: Well " + wellPos + " (" + sLin[posWell] + ") has sample \"" + forId.attrib['id'] + \ "\" in RDML file and sample \"" + sLin[posSample] + "\" in tab file.\n" break if react is None: new_node = et.Element("react", id=wellPos) place = _get_tag_pos(self._node, "react", self.xmlkeys(), 9999999) self._node.insert(place, new_node) react = new_node new_node = et.Element("sample", id=sLin[posSample]) react.insert(0, new_node) partit = _get_first_child(react, "partitions") if partit is None: new_node = et.Element("partitions") place = _get_tag_pos(react, "partitions", ["sample", "data", "partitions"], 9999999) react.insert(place, new_node) partit = new_node new_node = et.Element("volume") if fileformat == "RDML": new_node.text = sLin[posVolume] elif fileformat == "Bio-Rad": new_node.text = "0.85" elif fileformat == "Stilla": new_node.text = "0.59" else: new_node.text = "0.70" place = _get_tag_pos(partit, "volume", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) if fileformat == "Stilla": exp = _get_all_children(partit, "data") for i in range(1, 4): if i in ignoreList: continue data = None posDyeName = "Ch" + str(i) stillaTarget = headerLookup[wellPosStore.upper()][posDyeName] stillaConc = "0" stillaPos = "0" stillaNeg = "0" if i == 1: stillaConc = sLin[posCopConc] stillaPos = sLin[posPositives] stillaNeg = sLin[posNegatives] if i == 2: stillaConc = sLin[posCopConcCh2] stillaPos = sLin[posPositivesCh2] stillaNeg = sLin[posNegativesCh2] if i == 3: stillaConc = sLin[posCopConcCh3] stillaPos = sLin[posPositivesCh3] stillaNeg = sLin[posNegativesCh3] if re.search(r"\.", stillaConc): stillaConc = re.sub(r"0+$", "", stillaConc) stillaConc = re.sub(r"\.$", ".0", stillaConc) for node in exp: forId = _get_first_child(node, "tar") if forId is not None and forId.attrib['id'] == stillaTarget: data = node break if data is None: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) data = new_node new_node = et.Element("tar", id=stillaTarget) place = _get_tag_pos(data, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) new_node = et.Element("pos") new_node.text = stillaPos place = _get_tag_pos(data, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) new_node = et.Element("neg") new_node.text = stillaNeg place = _get_tag_pos(data, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) new_node = et.Element("conc") new_node.text = stillaConc place = _get_tag_pos(data, "conc", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) else: exp = _get_all_children(partit, "data") for node in exp: forId = _get_first_child(node, "tar") if forId is not None and forId.attrib['id'] == sLin[posTarget]: data = node break if data is None: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) data = new_node new_node = et.Element("tar", id=sLin[posTarget]) place = _get_tag_pos(data, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) new_node = et.Element("pos") new_node.text = sLin[posPositives] place = _get_tag_pos(data, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) new_node = et.Element("neg") new_node.text = sLin[posNegatives] place = _get_tag_pos(data, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) if posUndefined != -1 and sLin[posUndefined] != "": new_node = et.Element("undef") new_node.text = sLin[posUndefined] place = _get_tag_pos(data, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) if posExcluded != -1 and sLin[posExcluded] != "": new_node = et.Element("excl") new_node.text = sLin[posExcluded] place = _get_tag_pos(data, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) if posCopConc != -1: new_node = et.Element("conc") if int(sLin[posPositives]) == 0: new_node.text = "0" else: if fileformat == "RDML": new_node.text = sLin[posCopConc] elif fileformat == "Bio-Rad": new_node.text = str(float(sLin[posCopConc])/20) else: new_node.text = sLin[posCopConc] place = _get_tag_pos(data, "conc", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) # Read the raw data files # Extract the well position from file names constNameChars = 0 if len(filelist) > 0: charStopCount = False for i in range(len(filelist[0])): currChar = None if charStopCount is False: for wellFileName in filelist: if currChar is None: currChar = wellFileName[i] else: if currChar != wellFileName[i]: charStopCount = True if charStopCount is False: constNameChars = i + 1 for wellFileName in filelist: currName = wellFileName[constNameChars:].upper() currName = currName.replace(".CSV", "") currName = currName.replace(".TSV", "") currName = currName.replace("_AMPLITUDE", "") currName = currName.replace("_COMPENSATEDDATA", "") currName = currName.replace("_RAWDATA", "") currName = re.sub(r"^\d+_", "", currName) wellNames.append(currName) fileLookup[currName] = wellFileName # Propose a filename for raw data runId = self._node.get('id') runFix = re.sub(r"[^A-Za-z0-9]", "", runId) experimentId = self._node.getparent().get('id') experimentFix = re.sub(r"[^A-Za-z0-9]", "", experimentId) propFileName = "partitions/" + experimentFix + "_" + runFix # Get the used unique file names if zipfile.is_zipfile(self._rdmlFilename): with zipfile.ZipFile(self._rdmlFilename, 'r') as rdmlObj: # Get list of files names in rdml zip allRDMLfiles = rdmlObj.namelist() for ele in allRDMLfiles: if re.search("^partitions/", ele): uniqueFileNames.append(ele.lower()) # Now process the files warnVolume = "" for well in wellNames: outTabFile = "" keepCh1 = False keepCh2 = False keepCh3 = False header = "" react = None partit = None dataCh1 = None dataCh2 = None dataCh3 = None wellPos = well if re.search(r"\D\d+", well): old_letter = ord(re.sub(r"\d", "", well).upper()) - ord("A") old_nr = int(re.sub(r"\D", "", well)) newId = old_nr + old_letter * int(self["pcrFormat_columns"]) wellPos = str(newId) exp = _get_all_children(self._node, "react") for node in exp: if wellPos == node.attrib['id']: react = node break if react is None: sampleName = "Sample in " + well if sampleName not in samTypeLookup: rootEl.new_sample(sampleName, "unkn") samTypeLookup[sampleName] = "unkn" ret += "Created sample \"" + sampleName + "\" with type \"" + "unkn" + "\"\n" new_node = et.Element("react", id=wellPos) place = _get_tag_pos(self._node, "react", self.xmlkeys(), 9999999) self._node.insert(place, new_node) react = new_node new_node = et.Element("sample", id=sampleName) react.insert(0, new_node) partit = _get_first_child(react, "partitions") if partit is None: new_node = et.Element("partitions") place = _get_tag_pos(react, "partitions", ["sample", "data", "partitions"], 9999999) react.insert(place, new_node) partit = new_node new_node = et.Element("volume") if fileformat == "RDML": new_node.text = "0.7" warnVolume = "No information on partition volume given, used 0.7." elif fileformat == "Bio-Rad": new_node.text = "0.85" elif fileformat == "Stilla": new_node.text = "0.59" else: new_node.text = "0.85" place = _get_tag_pos(partit, "volume", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) if wellPos in fileNameSuggLookup: finalFileName = "partitions/" + fileNameSuggLookup[wellPos] else: finalFileName = "partitions/" + _get_first_child_text(partit, "endPtTable") if finalFileName == "partitions/": finalFileName = propFileName + "_" + wellPos + "_" + well + ".tsv" triesCount = 0 if finalFileName.lower() in uniqueFileNames: while triesCount < 100: finalFileName = propFileName + "_" + wellPos + "_" + well + "_" + str(triesCount) + ".tsv" if finalFileName.lower() not in uniqueFileNames: uniqueFileNames.append(finalFileName.lower()) break # print(finalFileName, flush=True) with open(fileLookup[well], newline='') as wellfile: # add encoding='utf-8' ? if fileformat == "RDML": wellLines = list(csv.reader(wellfile, delimiter='\t')) wellFileContent = wellfile.read() _writeFileInRDML(self._rdmlFilename, finalFileName, wellFileContent) delElem = _get_first_child(partit, "endPtTable") if delElem is not None: partit.remove(delElem) new_node = et.Element("endPtTable") new_node.text = re.sub(r'^partitions/', '', finalFileName) place = _get_tag_pos(partit, "endPtTable", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) header = wellLines[0] for col in range(0, len(header), 2): cPos = 0 cNeg = 0 cUndef = 0 cExcl = 0 if header[col] != "": targetName = header[col] if targetName not in tarTypeLookup: dye = "Ch" + str(int((col + 1) / 2)) if dye not in dyeLookup: rootEl.new_dye(dye) dyeLookup[dye] = 1 ret += "Created dye \"" + dye + "\"\n" rootEl.new_target(targetName, "toi") elem = rootEl.get_target(byid=targetName) elem["dyeId"] = dye tarTypeLookup[targetName] = "toi" ret += "Created target " + targetName + " with type \"" + "toi" + "\" and dye \"" + dye + "\"\n" for line in wellLines[1:]: splitLine = line.split("\t") if len(splitLine) - 1 < col + 1: continue if splitLine[col + 1] == "p": cPos += 1 if splitLine[col + 1] == "n": cNeg += 1 if splitLine[col + 1] == "u": cUndef += 1 if splitLine[col + 1] == "e": cExcl += 1 data = None exp = _get_all_children(partit, "data") for node in exp: forId = _get_first_child(node, "tar") if forId is not None and forId.attrib['id'] == targetName: data = node if data is None: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) data = new_node new_node = et.Element("tar", id=targetName) place = _get_tag_pos(data, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) delElem = _get_first_child(partit, "pos") if delElem is not None: data.remove(delElem) new_node = et.Element("pos") new_node.text = str(cPos) place = _get_tag_pos(data, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) delElem = _get_first_child(partit, "neg") if delElem is not None: data.remove(delElem) new_node = et.Element("neg") new_node.text = str(cNeg) place = _get_tag_pos(data, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) delElem = _get_first_child(partit, "undef") if delElem is not None: data.remove(delElem) if cExcl > 0: new_node = et.Element("undef") new_node.text = str(cUndef) place = _get_tag_pos(data, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) delElem = _get_first_child(partit, "excl") if delElem is not None: data.remove(delElem) if cExcl > 0: new_node = et.Element("excl") new_node.text = str(cExcl) place = _get_tag_pos(data, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) data.insert(place, new_node) elif fileformat == "Bio-Rad": wellLines = list(csv.reader(wellfile, delimiter=',')) ch1Pos = "0" ch1Neg = "0" ch1sum = 0 ch2Pos = "0" ch2Neg = "0" ch2sum = 0 if well in headerLookup: if "Ch1" in headerLookup[well] and 1 not in ignoreList: keepCh1 = True header += headerLookup[well]["Ch1"] + "\t" + headerLookup[well]["Ch1"] + "\t" if "Ch2" in headerLookup[well] and 2 not in ignoreList: keepCh2 = True header += headerLookup[well]["Ch2"] + "\t" + headerLookup[well]["Ch2"] + "\t" outTabFile += re.sub(r'\t$', '\n', header) else: headerLookup[well] = {} dyes = ["Ch1", "Ch2"] if len(wellLines) > 1: ch1Pos = "" ch1Neg = "" ch2Pos = "" ch2Neg = "" if re.search(r"\d", wellLines[1][0]) and 1 not in ignoreList: keepCh1 = True if len(wellLines[1]) > 1 and re.search(r"\d", wellLines[1][1]) and 2 not in ignoreList: keepCh2 = True for dye in dyes: if dye not in dyeLookup: rootEl.new_dye(dye) dyeLookup[dye] = 1 ret += "Created dye \"" + dye + "\"\n" dyeCount = 0 for dye in dyes: dyeCount += 1 targetName = "Target in " + well + " " + dye if targetName not in tarTypeLookup: rootEl.new_target(targetName, "toi") elem = rootEl.get_target(byid=targetName) elem["dyeId"] = dye tarTypeLookup[targetName] = "toi" ret += "Created target " + targetName + " with type \"" + "toi" + "\" and dye \"" + dye + "\"\n" headerLookup[well][dye] = targetName if (dyeCount == 1 and keepCh1) or (dyeCount == 2 and keepCh2): header += targetName + "\t" + targetName + "\t" outTabFile += re.sub(r'\t$', '\n', header) if keepCh1 or keepCh2: exp = _get_all_children(partit, "data") for node in exp: forId = _get_first_child(node, "tar") if keepCh1 and forId is not None and forId.attrib['id'] == headerLookup[well]["Ch1"]: dataCh1 = node ch1Pos = _get_first_child_text(dataCh1, "pos") ch1Neg = _get_first_child_text(dataCh1, "neg") ch1sum += int(ch1Pos) + int(ch1Neg) if keepCh2 and forId is not None and forId.attrib['id'] == headerLookup[well]["Ch2"]: dataCh2 = node ch2Pos = _get_first_child_text(dataCh2, "pos") ch2Neg = _get_first_child_text(dataCh2, "neg") ch2sum += int(ch2Pos) + int(ch2Neg) if dataCh1 is None and keepCh1: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) dataCh1 = new_node new_node = et.Element("tar", id=headerLookup[well]["Ch1"]) place = _get_tag_pos(dataCh1, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) ch1Pos = "" ch1Neg = "" ch1sum = 2 if dataCh2 is None and keepCh2: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) dataCh2 = new_node new_node = et.Element("tar", id=headerLookup[well]["Ch2"]) place = _get_tag_pos(dataCh2, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) ch2Pos = "" ch2Neg = "" ch2sum = 2 if dataCh1 is None and dataCh2 is None: continue if ch1sum < 1 and ch2sum < 1: continue if ch1Pos == "" and ch1Neg == "" and ch2Pos == "" and ch2Neg == "": countPart = 0 for splitLine in wellLines[1:]: if len(splitLine[0]) < 2: continue if keepCh1: outTabFile += splitLine[0] + "\t" + "u" if keepCh2: if keepCh1: outTabFile += "\t" outTabFile += splitLine[1] + "\t" + "u\n" else: outTabFile += "\n" countPart += 1 if keepCh1: new_node = et.Element("pos") new_node.text = "0" place = _get_tag_pos(dataCh1, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) new_node = et.Element("neg") new_node.text = "0" place = _get_tag_pos(dataCh1, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) new_node = et.Element("undef") new_node.text = str(countPart) place = _get_tag_pos(dataCh1, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) if keepCh2: new_node = et.Element("pos") new_node.text = "0" place = _get_tag_pos(dataCh2, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) new_node = et.Element("neg") new_node.text = "0" place = _get_tag_pos(dataCh2, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) new_node = et.Element("undef") new_node.text = str(countPart) place = _get_tag_pos(dataCh2, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) else: ch1Arr = [] ch2Arr = [] ch1Cut = 0 ch2Cut = 0 for splitLine in wellLines[1:]: if len(splitLine) < 2: continue if keepCh1: ch1Arr.append(float(splitLine[0])) if keepCh2: ch2Arr.append(float(splitLine[1])) if keepCh1: ch1Arr.sort() if 0 < int(ch1Neg) <= len(ch1Arr): ch1Cut = ch1Arr[int(ch1Neg) - 1] if keepCh2: ch2Arr.sort() if 0 < int(ch2Neg) <= len(ch2Arr): ch2Cut = ch2Arr[int(ch2Neg) - 1] for splitLine in wellLines[1:]: if len(splitLine) < 2: continue if keepCh1: outTabFile += splitLine[0] + "\t" if float(splitLine[0]) > ch1Cut: outTabFile += "p" else: outTabFile += "n" if keepCh2: if keepCh1: outTabFile += "\t" outTabFile += splitLine[1] + "\t" if float(splitLine[1]) > ch2Cut: outTabFile += "p\n" else: outTabFile += "n\n" else: outTabFile += "\n" _writeFileInRDML(self._rdmlFilename, finalFileName, outTabFile) new_node = et.Element("endPtTable") new_node.text = re.sub(r'^partitions/', '', finalFileName) place = _get_tag_pos(partit, "endPtTable", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) else: react.remove(partit) elif fileformat == "Stilla": wellLines = list(csv.reader(wellfile, delimiter=',')) ch1Pos = "0" ch1Neg = "0" ch1sum = 0 ch2Pos = "0" ch2Neg = "0" ch2sum = 0 ch3Pos = "0" ch3Neg = "0" ch3sum = 0 if well in headerLookup: if "Ch1" in headerLookup[well] and 1 not in ignoreList: keepCh1 = True header += headerLookup[well]["Ch1"] + "\t" + headerLookup[well]["Ch1"] + "\t" if "Ch2" in headerLookup[well] and 2 not in ignoreList: keepCh2 = True header += headerLookup[well]["Ch2"] + "\t" + headerLookup[well]["Ch2"] + "\t" if "Ch3" in headerLookup[well] and 3 not in ignoreList: keepCh3 = True header += headerLookup[well]["Ch3"] + "\t" + headerLookup[well]["Ch3"] + "\t" outTabFile += re.sub(r'\t$', '\n', header) else: headerLookup[well] = {} dyes = ["Ch1", "Ch2", "Ch3"] if len(wellLines) > 1: ch1Pos = "" ch1Neg = "" ch2Pos = "" ch2Neg = "" ch3Pos = "" ch3Neg = "" if re.search(r"\d", wellLines[1][0]) and 1 not in ignoreList: keepCh1 = True if len(wellLines[1]) > 1 and re.search(r"\d", wellLines[1][1]) and 2 not in ignoreList: keepCh2 = True if len(wellLines[1]) > 2 and re.search(r"\d", wellLines[1][2]) and 3 not in ignoreList: keepCh3 = True for dye in dyes: if dye not in dyeLookup: rootEl.new_dye(dye) dyeLookup[dye] = 1 ret += "Created dye \"" + dye + "\"\n" dyeCount = 0 for dye in dyes: dyeCount += 1 targetName = "Target in " + well + " " + dye if targetName not in tarTypeLookup: rootEl.new_target(targetName, "toi") elem = rootEl.get_target(byid=targetName) elem["dyeId"] = dye tarTypeLookup[targetName] = "toi" ret += "Created target " + targetName + " with type \"" + "toi" + "\" and dye \"" + dye + "\"\n" if (dyeCount == 1 and keepCh1) or (dyeCount == 2 and keepCh2) or (dyeCount == 3 and keepCh3): headerLookup[well][dye] = targetName header += targetName + "\t" + targetName + "\t" outTabFile += re.sub(r'\t$', '\n', header) if keepCh1 or keepCh2 or keepCh3: exp = _get_all_children(partit, "data") for node in exp: forId = _get_first_child(node, "tar") if keepCh1 and forId is not None and forId.attrib['id'] == headerLookup[well]["Ch1"]: dataCh1 = node ch1Pos = _get_first_child_text(dataCh1, "pos") ch1Neg = _get_first_child_text(dataCh1, "neg") ch1sum += int(ch1Pos) + int(ch1Neg) if keepCh2 and forId is not None and forId.attrib['id'] == headerLookup[well]["Ch2"]: dataCh2 = node ch2Pos = _get_first_child_text(dataCh2, "pos") ch2Neg = _get_first_child_text(dataCh2, "neg") ch2sum += int(ch2Pos) + int(ch2Neg) if keepCh3 and forId is not None and forId.attrib['id'] == headerLookup[well]["Ch3"]: dataCh3 = node ch3Pos = _get_first_child_text(dataCh3, "pos") ch3Neg = _get_first_child_text(dataCh3, "neg") ch3sum += int(ch3Pos) + int(ch3Neg) if dataCh1 is None and keepCh1: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) dataCh1 = new_node new_node = et.Element("tar", id=headerLookup[well]["Ch1"]) place = _get_tag_pos(dataCh1, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) ch1Pos = "" ch1Neg = "" ch1sum = 2 if dataCh2 is None and keepCh2: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) dataCh2 = new_node new_node = et.Element("tar", id=headerLookup[well]["Ch2"]) place = _get_tag_pos(dataCh2, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) ch2Pos = "" ch2Neg = "" ch2sum = 2 if dataCh3 is None and keepCh3: new_node = et.Element("data") place = _get_tag_pos(partit, "data", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) dataCh3 = new_node new_node = et.Element("tar", id=headerLookup[well]["Ch3"]) place = _get_tag_pos(dataCh3, "tar", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh3.insert(place, new_node) ch3Pos = "" ch3Neg = "" ch3sum = 2 if dataCh1 is None and dataCh2 is None and dataCh3 is None: continue if ch1sum < 1 and ch2sum < 1 and ch3sum < 1: continue if ch1Pos == "" and ch1Neg == "" and ch2Pos == "" and ch2Neg == "" and ch3Pos == "" and ch3Neg == "": countPart = 0 for splitLine in wellLines[1:]: if len(splitLine[0]) < 2: continue if keepCh1: outTabFile += splitLine[0] + "\t" + "u" if keepCh2: if keepCh1: outTabFile += "\t" outTabFile += splitLine[1] + "\t" + "u" if keepCh3: if keepCh1 or keepCh2: outTabFile += "\t" outTabFile += splitLine[2] + "\t" + "u\n" else: outTabFile += "\n" countPart += 1 if keepCh1: new_node = et.Element("pos") new_node.text = "0" place = _get_tag_pos(dataCh1, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) new_node = et.Element("neg") new_node.text = "0" place = _get_tag_pos(dataCh1, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) new_node = et.Element("undef") new_node.text = str(countPart) place = _get_tag_pos(dataCh1, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh1.insert(place, new_node) if keepCh2: new_node = et.Element("pos") new_node.text = "0" place = _get_tag_pos(dataCh2, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) new_node = et.Element("neg") new_node.text = "0" place = _get_tag_pos(dataCh2, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) new_node = et.Element("undef") new_node.text = str(countPart) place = _get_tag_pos(dataCh2, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh2.insert(place, new_node) if keepCh3: new_node = et.Element("pos") new_node.text = "0" place = _get_tag_pos(dataCh3, "pos", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh3.insert(place, new_node) new_node = et.Element("neg") new_node.text = "0" place = _get_tag_pos(dataCh3, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh3.insert(place, new_node) new_node = et.Element("undef") new_node.text = str(countPart) place = _get_tag_pos(dataCh3, "neg", ["tar", "pos", "neg", "undef", "excl", "conc"], 9999999) dataCh3.insert(place, new_node) else: ch1Arr = [] ch2Arr = [] ch3Arr = [] ch1Cut = 0 ch2Cut = 0 ch3Cut = 0 for splitLine in wellLines[1:]: if len(splitLine) < 3: continue if keepCh1: ch1Arr.append(float(splitLine[0])) if keepCh2: ch2Arr.append(float(splitLine[1])) if keepCh3: ch3Arr.append(float(splitLine[2])) if keepCh1: ch1Arr.sort() if 0 < int(ch1Neg) <= len(ch1Arr): ch1Cut = ch1Arr[int(ch1Neg) - 1] if keepCh2: ch2Arr.sort() if 0 < int(ch2Neg) <= len(ch2Arr): ch2Cut = ch2Arr[int(ch2Neg) - 1] if keepCh3: ch3Arr.sort() if 0 < int(ch3Neg) <= len(ch3Arr): ch3Cut = ch3Arr[int(ch3Neg) - 1] for splitLine in wellLines[1:]: if len(splitLine) < 2: continue if keepCh1: outTabFile += splitLine[0] + "\t" if float(splitLine[0]) > ch1Cut: outTabFile += "p" else: outTabFile += "n" if keepCh2: if keepCh1: outTabFile += "\t" outTabFile += splitLine[1] + "\t" if float(splitLine[1]) > ch2Cut: outTabFile += "p" else: outTabFile += "n" if keepCh3: if keepCh1 or keepCh2: outTabFile += "\t" outTabFile += splitLine[2] + "\t" if float(splitLine[2]) > ch3Cut: outTabFile += "p\n" else: outTabFile += "n\n" else: outTabFile += "\n" _writeFileInRDML(self._rdmlFilename, finalFileName, outTabFile) new_node = et.Element("endPtTable") new_node.text = re.sub(r'^partitions/', '', finalFileName) place = _get_tag_pos(partit, "endPtTable", ["volume", "endPtTable", "data"], 9999999) partit.insert(place, new_node) else: react.remove(partit) ret += warnVolume return ret def get_digital_overview_data(self, rootEl): """Provides the digital overview data in tab seperated format. Args: self: The class self parameter. rootEl: The rdml root element. Returns: A string with the overview data table. """ # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ret = "Pos\tWell\tSample\tSampleType\tTarget\tTargetType\tDye\tCopies\tPositives\tNegatives\tUndefined\tExcluded\tVolume\tFileName\n" tabLines = [] # Fill the lookup dics samTypeLookup = {} tarTypeLookup = {} tarDyeLookup = {} samples = _get_all_children(rootEl._node, "sample") for sample in samples: if sample.attrib['id'] != "": samId = sample.attrib['id'] forType = _get_first_child_text(sample, "type") if forType != "": samTypeLookup[samId] = forType targets = _get_all_children(rootEl._node, "target") for target in targets: if target.attrib['id'] != "": tarId = target.attrib['id'] forType = _get_first_child_text(target, "type") if forType != "": tarTypeLookup[tarId] = forType forId = _get_first_child(target, "dyeId") if forId is not None and forId.attrib['id'] != "": tarDyeLookup[tarId] = forId.attrib['id'] reacts = _get_all_children(self._node, "react") for react in reacts: pPos = react.attrib['id'] posId = int(react.attrib['id']) pIdNumber = posId % int(self["pcrFormat_columns"]) pIdLetter = chr(ord("A") + int(posId / int(self["pcrFormat_columns"]))) pWell = pIdLetter + str(pIdNumber) pSample = "" pSampleType = "" pFileName = "" forId = _get_first_child(react, "sample") if forId is not None: if forId.attrib['id'] != "": pSample = forId.attrib['id'] pSampleType = samTypeLookup[forId.attrib['id']] partit = _get_first_child(react, "partitions") if partit is not None: endPtTable = _get_first_child_text(partit, "endPtTable") if endPtTable != "": pFileName = endPtTable pVolume = _get_first_child_text(partit, "volume") partit_datas = _get_all_children(partit, "data") for partit_data in partit_datas: pTarget = "" pTargetType = "" pDye = "" forId = _get_first_child(partit_data, "tar") if forId is not None: if forId.attrib['id'] != "": pTarget = forId.attrib['id'] pTargetType = tarTypeLookup[pTarget] pDye = tarDyeLookup[pTarget] pCopies = _get_first_child_text(partit_data, "conc") pPositives = _get_first_child_text(partit_data, "pos") pNegatives = _get_first_child_text(partit_data, "neg") pUnknown = _get_first_child_text(partit_data, "undef") pExcluded = _get_first_child_text(partit_data, "excl") retLine = pPos + "\t" retLine += pWell + "\t" retLine += pSample + "\t" retLine += pSampleType + "\t" retLine += pTarget + "\t" retLine += pTargetType + "\t" retLine += pDye + "\t" retLine += pCopies + "\t" retLine += pPositives + "\t" retLine += pNegatives + "\t" retLine += pUnknown + "\t" retLine += pExcluded + "\t" retLine += pVolume + "\t" retLine += pFileName + "\n" tabLines.append(retLine) tabLines.sort(key=_sort_list_digital_PCR) for tLine in tabLines: ret += tLine return ret def get_digital_raw_data(self, reactPos): """Provides the digital of a react in tab seperated format. Args: self: The class self parameter. reactPos: The react id to get the digital raw data from Returns: A string with the raw data table. """ react = None retVal = "" # Get the position number if required wellPos = str(reactPos) if re.search(r"\D\d+", wellPos): old_letter = ord(re.sub(r"\d", "", wellPos.upper())) - ord("A") old_nr = int(re.sub(r"\D", "", wellPos)) newId = old_nr + old_letter * int(self["pcrFormat_columns"]) wellPos = str(newId) exp = _get_all_children(self._node, "react") for node in exp: if wellPos == node.attrib['id']: react = node break if react is None: return "" partit = _get_first_child(react, "partitions") if partit is None: return "" finalFileName = "partitions/" + _get_first_child_text(partit, "endPtTable") if finalFileName == "partitions/": return "" if zipfile.is_zipfile(self._rdmlFilename): zf = zipfile.ZipFile(self._rdmlFilename, 'r') try: retVal = zf.read(finalFileName).decode('utf-8') except KeyError: raise RdmlError('No ' + finalFileName + ' in compressed RDML file found.') finally: zf.close() return retVal def getreactjson(self): """Returns a json of the react data including fluorescence data. Args: self: The class self parameter. Returns: A json of the data. """ all_data = {} data = [] reacts = _get_all_children(self._node, "react") adp_cyc_max = 0.0 adp_fluor_min = 99999999 adp_fluor_max = 0.0 mdp_tmp_min = 120.0 mdp_tmp_max = 0.0 mdp_fluor_min = 99999999 mdp_fluor_max = 0.0 max_data = 0 max_partition_data = 0 anyCorrections = 0 for react in reacts: react_json = { "id": react.get('id'), } forId = _get_first_child(react, "sample") if forId is not None: if forId.attrib['id'] != "": react_json["sample"] = forId.attrib['id'] react_datas = _get_all_children(react, "data") max_data = max(max_data, len(react_datas)) react_datas_json = [] for react_data in react_datas: in_react = {} forId = _get_first_child(react_data, "tar") if forId is not None: if forId.attrib['id'] != "": in_react["tar"] = forId.attrib['id'] _add_first_child_to_dic(react_data, in_react, True, "cq") _add_first_child_to_dic(react_data, in_react, True, "N0") _add_first_child_to_dic(react_data, in_react, True, "ampEffMet") _add_first_child_to_dic(react_data, in_react, True, "ampEff") _add_first_child_to_dic(react_data, in_react, True, "ampEffSE") _add_first_child_to_dic(react_data, in_react, True, "corrF") # Calculate the correction factors calcCorr = _get_first_child_text(react_data, "corrF") calcCq = _get_first_child_text(react_data, "cq") calcN0 = _get_first_child_text(react_data, "N0") calcEff = _get_first_child_text(react_data, "ampEff") in_react["corrCq"] = "" in_react["corrN0"] = "" if not calcCorr == "": calcCorr = float(calcCorr) if not np.isnan(calcCorr): if 0.0 < calcCorr < 1.0: if calcEff == "": calcEff = 2.0 else: calcEff = float(calcEff) if not np.isnan(calcEff): if 0.0 < calcEff < 3.0: if not calcCq == "": calcCq = float(calcCq) if not np.isnan(calcCq): if calcCq > 0.0: finalCq = calcCq - np.log10(calcCorr) / np.log10(calcEff) in_react["corrCq"] = "{:.3f}".format(finalCq) anyCorrections = 1 else: in_react["corrCq"] = "-1.0" if not calcN0 == "": calcN0 = float(calcN0) if not np.isnan(calcN0): if calcCq > 0.0: finalN0 = calcCorr * calcN0 in_react["corrN0"] = "{:.2e}".format(finalN0) anyCorrections = 1 else: in_react["corrN0"] = "-1.0" if calcCorr == 0.0: if not calcCq == "": in_react["corrCq"] = "" if not calcN0 == "": in_react["corrN0"] = 0.0 if calcCorr == 1.0: if not calcCq == "": in_react["corrCq"] = calcCq if not calcN0 == "": in_react["corrN0"] = calcN0 _add_first_child_to_dic(react_data, in_react, True, "meltTemp") _add_first_child_to_dic(react_data, in_react, True, "excl") _add_first_child_to_dic(react_data, in_react, True, "note") _add_first_child_to_dic(react_data, in_react, True, "endPt") _add_first_child_to_dic(react_data, in_react, True, "bgFluor") _add_first_child_to_dic(react_data, in_react, True, "bgFluorSlp") _add_first_child_to_dic(react_data, in_react, True, "quantFluor") adps = _get_all_children(react_data, "adp") adps_json = [] for adp in adps: cyc = _get_first_child_text(adp, "cyc") fluor = _get_first_child_text(adp, "fluor") adp_cyc_max = max(adp_cyc_max, float(cyc)) adp_fluor_min = min(adp_fluor_min, float(fluor)) adp_fluor_max = max(adp_fluor_max, float(fluor)) in_adp = [cyc, fluor, _get_first_child_text(adp, "tmp")] adps_json.append(in_adp) in_react["adps"] = adps_json mdps = _get_all_children(react_data, "mdp") mdps_json = [] for mdp in mdps: tmp = _get_first_child_text(mdp, "tmp") fluor = _get_first_child_text(mdp, "fluor") mdp_tmp_min = min(mdp_tmp_min, float(tmp)) mdp_tmp_max = max(mdp_tmp_max, float(tmp)) mdp_fluor_min = min(mdp_fluor_min, float(fluor)) mdp_fluor_max = max(mdp_fluor_max, float(fluor)) in_mdp = [tmp, fluor] mdps_json.append(in_mdp) in_react["mdps"] = mdps_json react_datas_json.append(in_react) react_json["datas"] = react_datas_json partit = _get_first_child(react, "partitions") if partit is not None: in_partitions = {} endPtTable = _get_first_child_text(partit, "endPtTable") if endPtTable != "": in_partitions["endPtTable"] = endPtTable partit_datas = _get_all_children(partit, "data") max_partition_data = max(max_partition_data, len(partit_datas)) partit_datas_json = [] for partit_data in partit_datas: in_partit = {} forId = _get_first_child(partit_data, "tar") if forId is not None: if forId.attrib['id'] != "": in_partit["tar"] = forId.attrib['id'] _add_first_child_to_dic(partit_data, in_partit, False, "pos") _add_first_child_to_dic(partit_data, in_partit, False, "neg") _add_first_child_to_dic(partit_data, in_partit, True, "undef") _add_first_child_to_dic(partit_data, in_partit, True, "excl") _add_first_child_to_dic(partit_data, in_partit, True, "conc") partit_datas_json.append(in_partit) in_partitions["datas"] = partit_datas_json react_json["partitions"] = in_partitions data.append(react_json) all_data["reacts"] = data all_data["adp_cyc_max"] = adp_cyc_max all_data["anyCalcCorrections"] = anyCorrections all_data["adp_fluor_min"] = adp_fluor_min all_data["adp_fluor_max"] = adp_fluor_max all_data["mdp_tmp_min"] = mdp_tmp_min all_data["mdp_tmp_max"] = mdp_tmp_max all_data["mdp_fluor_min"] = mdp_fluor_min all_data["mdp_fluor_max"] = mdp_fluor_max all_data["max_data_len"] = max_data all_data["max_partition_data_len"] = max_partition_data return all_data def setExclNote(self, vReact, vTar, vExcl, vNote): """Saves the note and excl string for one react/data combination. Args: self: The class self parameter. vReact: The reaction id. vTar: The target id. vExcl: The exclusion string to save. vNote: The note string to save. Returns: Nothing, updates RDML data. """ expParent = self._node.getparent() rootPar = expParent.getparent() ver = rootPar.get('version') dataXMLelements = _getXMLDataType() reacts = _get_all_children(self._node, "react") for react in reacts: if int(react.get('id')) == int(vReact): react_datas = _get_all_children(react, "data") for react_data in react_datas: forId = _get_first_child(react_data, "tar") if forId is not None: if forId.attrib['id'] == vTar: _change_subelement(react_data, "excl", dataXMLelements, vExcl, True, "string") if ver == "1.3": _change_subelement(react_data, "note", dataXMLelements, vNote, True, "string") return def webAppLinRegPCR(self, pcrEfficiencyExl=0.05, updateRDML=False, excludeNoPlateau=True, excludeEfficiency="outlier"): """Performs LinRegPCR on the run. Modifies the cq values and returns a json with additional data. Args: self: The class self parameter. pcrEfficiencyExl: Exclude samples with an efficiency outside the given range (0.05). updateRDML: If true, update the RDML data with the calculated values. excludeNoPlateau: If true, samples without plateau are excluded from mean PCR efficiency calculation. excludeEfficiency: Choose "outlier", "mean", "include" to exclude based on indiv PCR eff. Returns: A dictionary with the resulting data, presence and format depending on input. rawData: A 2d array with the raw fluorescence values baselineCorrectedData: A 2d array with the baseline corrected raw fluorescence values resultsList: A 2d array object. resultsCSV: A csv string. """ allData = self.getreactjson() res = self.linRegPCR(pcrEfficiencyExl=pcrEfficiencyExl, updateRDML=updateRDML, excludeNoPlateau=excludeNoPlateau, excludeEfficiency=excludeEfficiency, saveRaw=False, saveBaslineCorr=True, saveResultsList=True, saveResultsCSV=False, verbose=False) if "baselineCorrectedData" in res: bas_cyc_max = len(res["baselineCorrectedData"][0]) - 5 bas_fluor_min = 99999999 bas_fluor_max = 0.0 for row in range(1, len(res["baselineCorrectedData"])): bass_json = [] for col in range(5, len(res["baselineCorrectedData"][row])): cyc = res["baselineCorrectedData"][0][col] fluor = res["baselineCorrectedData"][row][col] if not (np.isnan(fluor) or fluor <= 0.0): bas_fluor_min = min(bas_fluor_min, float(fluor)) bas_fluor_max = max(bas_fluor_max, float(fluor)) in_bas = [cyc, fluor, ""] bass_json.append(in_bas) # Fixme do not loop over all, use sorted data and clever moving for react in allData["reacts"]: if react["id"] == res["baselineCorrectedData"][row][0]: for data in react["datas"]: if data["tar"] == res["baselineCorrectedData"][row][3]: data["bass"] = list(bass_json) allData["bas_cyc_max"] = bas_cyc_max allData["bas_fluor_min"] = bas_fluor_min allData["bas_fluor_max"] = bas_fluor_max if "resultsList" in res: header = res["resultsList"].pop(0) resList = sorted(res["resultsList"], key=_sort_list_int) for rRow in range(0, len(resList)): for rCol in range(0, len(resList[rRow])): if isinstance(resList[rRow][rCol], np.float64) and np.isnan(resList[rRow][rCol]): resList[rRow][rCol] = "" if isinstance(resList[rRow][rCol], float) and math.isnan(resList[rRow][rCol]): resList[rRow][rCol] = "" allData["LinRegPCR_Result_Table"] = json.dumps([header] + resList, cls=NpEncoder) if "noRawData" in res: allData["error"] = res["noRawData"] return allData def linRegPCR(self, pcrEfficiencyExl=0.05, updateRDML=False, excludeNoPlateau=True, excludeEfficiency="outlier", commaConv=False, ignoreExclusion=False, saveRaw=False, saveBaslineCorr=False, saveResultsList=False, saveResultsCSV=False, timeRun=False, verbose=False): """Performs LinRegPCR on the run. Modifies the cq values and returns a json with additional data. Args: self: The class self parameter. pcrEfficiencyExl: Exclude samples with an efficiency outside the given range (0.05). updateRDML: If true, update the RDML data with the calculated values. excludeNoPlateau: If true, samples without plateau are excluded from mean PCR efficiency calculation. excludeEfficiency: Choose "outlier", "mean", "include" to exclude based on indiv PCR eff. commaConv: If true, convert comma separator to dot. ignoreExclusion: If true, ignore the RDML exclusion strings. saveRaw: If true, no raw values are given in the returned data saveBaslineCorr: If true, no baseline corrected values are given in the returned data saveResultsList: If true, return a 2d array object. saveResultsCSV: If true, return a csv string. timeRun: If true, print runtime for baseline and total. verbose: If true, comment every performed step. Returns: A dictionary with the resulting data, presence and format depending on input. rawData: A 2d array with the raw fluorescence values baselineCorrectedData: A 2d array with the baseline corrected raw fluorescence values resultsList: A 2d array object. resultsCSV: A csv string. """ expParent = self._node.getparent() rootPar = expParent.getparent() dataVersion = rootPar.get('version') if dataVersion == "1.0": raise RdmlError('LinRegPCR requires RDML version > 1.0.') ############################## # Collect the data in arrays # ############################## # res is a 2 dimensional array accessed only by # variables, so columns might be added here header = [["id", # 0 "well", # 1 "sample", # 2 "sample type", # 3 "sample nucleotide", # 4 "target", # 5 "target chemistry", # 6 "excluded", # 7 "note", # 8 "baseline", # 9 "lower limit", # 10 "upper limit", # 11 "common threshold", # 12 "group threshold", # 13 "n in log phase", # 14 "last log cycle", # 15 "n included", # 16 "log lin cycle", # 17 "log lin fluorescence", # 18 "indiv PCR eff", # 19 "R2", # 20 "N0 (indiv eff - for debug use)", # 21 "Cq (indiv eff - for debug use)", # 22 "Cq with group threshold (indiv eff - for debug use)", # 23 "mean PCR eff", # 24 "standard error of the mean PCR eff", # 25 "N0 (mean eff)", # 26 "Cq (mean eff)", # 27 "mean PCR eff - no plateau", # 28 "standard error of the mean PCR eff - no plateau", # 29 "N0 (mean eff) - no plateau", # 30 "Cq (mean eff) - no plateau", # 31 "mean PCR eff - mean efficiency", # 32 "standard error of the mean PCR eff - mean efficiency", # 33 "N0 (mean eff) - mean efficiency", # 34 "Cq (mean eff) - mean efficiency", # 35 "mean PCR eff - no plateau - mean efficiency", # 36 "standard error of the mean PCR eff - no plateau - mean efficiency", # 37 "N0 (mean eff) - no plateau - mean efficiency", # 38 "Cq (mean eff) - no plateau - mean efficiency", # 39 "mean PCR eff - stat efficiency", # 40 "standard error of the mean PCR eff - stat efficiency", # 41 "N0 (mean eff) - stat efficiency", # 42 "Cq (mean eff) - stat efficiency", # 43 "mean PCR eff - no plateau - stat efficiency", # 44 "standard error of the stat PCR eff - no plateau - stat efficiency", # 45 "N0 (mean eff) - no plateau - stat efficiency", # 46 "Cq (mean eff) - no plateau - stat efficiency", # 47 "amplification", # 48 "baseline error", # 49 "plateau", # 50 "noisy sample", # 51 "PCR efficiency outside mean rage", # 52 "PCR efficiency outside mean rage - no plateau", # 53 "PCR efficiency outlier", # 54 "PCR efficiency outlier - no plateau", # 55 "short log lin phase", # 56 "Cq is shifting", # 57 "too low Cq eff", # 58 "too low Cq N0", # 59 "used for W-o-L setting"]] # 60 rar_id = 0 rar_well = 1 rar_sample = 2 rar_sample_type = 3 rar_sample_nucleotide = 4 rar_tar = 5 rar_tar_chemistry = 6 rar_excl = 7 rar_note = 8 rar_baseline = 9 rar_lower_limit = 10 rar_upper_limit = 11 rar_threshold_common = 12 rar_threshold_group = 13 rar_n_log = 14 rar_stop_log = 15 rar_n_included = 16 rar_log_lin_cycle = 17 rar_log_lin_fluorescence = 18 rar_indiv_PCR_eff = 19 rar_R2 = 20 rar_N0_indiv_eff = 21 rar_Cq_common = 22 rar_Cq_grp = 23 rar_meanEff_Skip = 24 rar_stdEff_Skip = 25 rar_meanN0_Skip = 26 rar_Cq_Skip = 27 rar_meanEff_Skip_Plat = 28 rar_stdEff_Skip_Plat = 29 rar_meanN0_Skip_Plat = 30 rar_Cq_Skip_Plat = 31 rar_meanEff_Skip_Mean = 32 rar_stdEff_Skip_Mean = 33 rar_meanN0_Skip_Mean = 34 rar_Cq_Skip_Mean = 35 rar_meanEff_Skip_Plat_Mean = 36 rar_stdEff_Skip_Plat_Mean = 37 rar_meanN0_Skip_Plat_Mean = 38 rar_Cq_Skip_Plat_Mean = 39 rar_meanEff_Skip_Out = 40 rar_stdEff_Skip_Out = 41 rar_meanN0_Skip_Out = 42 rar_Cq_Skip_Out = 43 rar_meanEff_Skip_Plat_Out = 44 rar_stdEff_Skip_Plat_Out = 45 rar_meanN0_Skip_Plat_Out = 46 rar_Cq_Skip_Plat_Out = 47 rar_amplification = 48 rar_baseline_error = 49 rar_plateau = 50 rar_noisy_sample = 51 rar_effOutlier_Skip_Mean = 52 rar_effOutlier_Skip_Plat_Mean = 53 rar_effOutlier_Skip_Out = 54 rar_effOutlier_Skip_Plat_Out = 55 rar_shortLogLinPhase = 56 rar_CqIsShifting = 57 rar_tooLowCqEff = 58 rar_tooLowCqN0 = 59 rar_isUsedInWoL = 60 res = [] finalData = {} adp_cyc_max = 0 pcrEfficiencyExl = float(pcrEfficiencyExl) if excludeEfficiency not in ["outlier", "mean", "include"]: excludeEfficiency = "outlier" reacts = _get_all_children(self._node, "react") # First get the max number of cycles and create the numpy array for react in reacts: react_datas = _get_all_children(react, "data") for react_data in react_datas: adps = _get_all_children(react_data, "adp") for adp in adps: cyc = _get_first_child_text(adp, "cyc") adp_cyc_max = max(adp_cyc_max, float(cyc)) adp_cyc_max = math.ceil(adp_cyc_max) # spFl is the shape for all fluorescence numpy data arrays spFl = (len(reacts), int(adp_cyc_max)) rawFluor = np.zeros(spFl, dtype=np.float64) rawFluor[rawFluor <= 0.00000001] = np.nan # Create a matrix with the cycle for each rawFluor value vecCycles = np.tile(np.arange(1, (spFl[1] + 1), dtype=np.int64), (spFl[0], 1)) # Initialization of the vecNoAmplification vector vecExcludedByUser = np.zeros(spFl[0], dtype=np.bool_) rdmlElemData = [] # Now process the data for numpy and create results array rowCount = 0 for react in reacts: posId = react.get('id') pIdNumber = (int(posId) - 1) % int(self["pcrFormat_columns"]) + 1 pIdLetter = chr(ord("A") + int((int(posId) - 1) / int(self["pcrFormat_columns"]))) pWell = pIdLetter + str(pIdNumber) sample = "" forId = _get_first_child(react, "sample") if forId is not None: if forId.attrib['id'] != "": sample = forId.attrib['id'] react_datas = _get_all_children(react, "data") for react_data in react_datas: forId = _get_first_child(react_data, "tar") target = "" if forId is not None: if forId.attrib['id'] != "": target = forId.attrib['id'] if ignoreExclusion: excl = "" else: excl = _get_first_child_text(react_data, "excl") excl = _cleanErrorString(excl, "amp") excl = re.sub(r'^;|;$', '', excl) if not excl == "": vecExcludedByUser[rowCount] = True noteVal = _get_first_child_text(react_data, "note") noteVal = _cleanErrorString(noteVal, "amp") noteVal = re.sub(r'^;|;$', '', noteVal) rdmlElemData.append(react_data) res.append([posId, pWell, sample, "", "", target, "", excl, noteVal, "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) # Must match header length adps = _get_all_children(react_data, "adp") for adp in adps: cyc = int(math.ceil(float(_get_first_child_text(adp, "cyc")))) - 1 fluor = _get_first_child_text(adp, "fluor") if commaConv: noDot = fluor.replace(".", "") fluor = noDot.replace(",", ".") rawFluor[rowCount, cyc] = float(fluor) rowCount += 1 # Look up sample and target information parExp = self._node.getparent() parRoot = parExp.getparent() dicLU_dyes = {} luDyes = _get_all_children(parRoot, "dye") for lu_dye in luDyes: lu_chemistry = _get_first_child_text(lu_dye, "dyeChemistry") if lu_chemistry == "": lu_chemistry = "non-saturating DNA binding dye" if lu_dye.attrib['id'] != "": dicLU_dyes[lu_dye.attrib['id']] = lu_chemistry dicLU_targets = {} luTargets = _get_all_children(parRoot, "target") for lu_target in luTargets: forId = _get_first_child(lu_target, "dyeId") lu_dyeId = "" if forId is not None: if forId.attrib['id'] != "": lu_dyeId = forId.attrib['id'] if lu_dyeId == "" or lu_dyeId not in dicLU_dyes: dicLU_targets[lu_target.attrib['id']] = "non-saturating DNA binding dye" if lu_target.attrib['id'] != "": dicLU_targets[lu_target.attrib['id']] = dicLU_dyes[lu_dyeId] dicLU_samSpecType = {} dicLU_samGenType = {} dicLU_samNucl = {} luSamples = _get_all_children(parRoot, "sample") for lu_sample in luSamples: lu_Nucl = "" forUnit = _get_first_child(lu_sample, "templateQuantity") if forUnit is not None: lu_Nucl = _get_first_child_text(forUnit, "nucleotide") if lu_Nucl == "": lu_Nucl = "cDNA" if lu_sample.attrib['id'] != "": dicLU_TypeData = {} typesList = _get_all_children(lu_sample, "type") for node in typesList: if "targetId" in node.attrib: dicLU_TypeData[node.attrib["targetId"]] = node.text else: dicLU_samGenType[lu_sample.attrib['id']] = node.text dicLU_samSpecType[lu_sample.attrib['id']] = dicLU_TypeData dicLU_samNucl[lu_sample.attrib['id']] = lu_Nucl # Update the table with dictionary help for oRow in range(0, spFl[0]): if res[oRow][rar_sample] != "": # Try to get specific type information else general else "unkn" if res[oRow][rar_tar] in dicLU_samSpecType[res[oRow][rar_sample]]: res[oRow][rar_sample_type] = dicLU_samSpecType[res[oRow][rar_sample]][res[oRow][rar_tar]] elif res[oRow][rar_sample] in dicLU_samGenType: res[oRow][rar_sample_type] = dicLU_samGenType[res[oRow][rar_sample]] else: res[oRow][rar_sample_type] = "unkn" res[oRow][rar_sample_nucleotide] = dicLU_samNucl[res[oRow][rar_sample]] if res[oRow][rar_tar] != "": res[oRow][rar_tar_chemistry] = dicLU_targets[res[oRow][rar_tar]] if saveRaw: rawTable = [[header[0][rar_id], header[0][rar_well], header[0][rar_sample], header[0][rar_tar], header[0][rar_excl]]] for oCol in range(0, spFl[1]): rawTable[0].append(oCol + 1) for oRow in range(0, spFl[0]): rawTable.append([res[oRow][rar_id], res[oRow][rar_well], res[oRow][rar_sample], res[oRow][rar_tar], res[oRow][rar_excl]]) for oCol in range(0, spFl[1]): rawTable[oRow + 1].append(float(rawFluor[oRow, oCol])) finalData["rawData"] = rawTable # Count the targets and create the target variables # Position 0 is for the general over all window without targets vecTarget = np.zeros(spFl[0], dtype=np.int64) vecTarget[vecTarget <= 0] = -1 targetsCount = 1 tarWinLookup = {} for oRow in range(0, spFl[0]): if res[oRow][rar_tar] not in tarWinLookup: tarWinLookup[res[oRow][rar_tar]] = targetsCount targetsCount += 1 vecTarget[oRow] = tarWinLookup[res[oRow][rar_tar]] upWin = np.zeros(targetsCount, dtype=np.float64) lowWin = np.zeros(targetsCount, dtype=np.float64) threshold = np.ones(targetsCount, dtype=np.float64) # Initialization of the error vectors vecNoAmplification = np.zeros(spFl[0], dtype=np.bool_) vecBaselineError = np.zeros(spFl[0], dtype=np.bool_) vecNoPlateau = np.zeros(spFl[0], dtype=np.bool_) vecNoisySample = np.zeros(spFl[0], dtype=np.bool_) vecSkipSample = np.zeros(spFl[0], dtype=np.bool_) vecShortLogLin = np.zeros(spFl[0], dtype=np.bool_) vecCtIsShifting = np.zeros(spFl[0], dtype=np.bool_) vecIsUsedInWoL = np.zeros(spFl[0], dtype=np.bool_) vecEffOutlier_Skip_Mean = np.zeros(spFl[0], dtype=np.bool_) vecEffOutlier_Skip_Plat_Mean = np.zeros(spFl[0], dtype=np.bool_) vecEffOutlier_Skip_Out = np.zeros(spFl[0], dtype=np.bool_) vecEffOutlier_Skip_Plat_Out = np.zeros(spFl[0], dtype=np.bool_) vecTooLowCqEff = np.zeros(spFl[0], dtype=np.bool_) vecTooLowCqN0 = np.zeros(spFl[0], dtype=np.bool_) # Start and stop cycles of the log lin phase stopCyc = np.zeros(spFl[0], dtype=np.int64) startCyc = np.zeros(spFl[0], dtype=np.int64) startCycFix = np.zeros(spFl[0], dtype=np.int64) # Initialization of the PCR efficiency vectors pcrEff = np.ones(spFl[0], dtype=np.float64) nNulls = np.ones(spFl[0], dtype=np.float64) nInclu = np.zeros(spFl[0], dtype=np.int64) correl = np.zeros(spFl[0], dtype=np.float64) meanEff_Skip = np.zeros(spFl[0], dtype=np.float64) meanEff_Skip_Plat = np.zeros(spFl[0], dtype=np.float64) meanEff_Skip_Mean = np.zeros(spFl[0], dtype=np.float64) meanEff_Skip_Plat_Mean = np.zeros(spFl[0], dtype=np.float64) meanEff_Skip_Out = np.zeros(spFl[0], dtype=np.float64) meanEff_Skip_Plat_Out = np.zeros(spFl[0], dtype=np.float64) stdEff_Skip = np.zeros(spFl[0], dtype=np.float64) stdEff_Skip_Plat = np.zeros(spFl[0], dtype=np.float64) stdEff_Skip_Mean = np.zeros(spFl[0], dtype=np.float64) stdEff_Skip_Plat_Mean = np.zeros(spFl[0], dtype=np.float64) stdEff_Skip_Out = np.zeros(spFl[0], dtype=np.float64) stdEff_Skip_Plat_Out = np.zeros(spFl[0], dtype=np.float64) indMeanX = np.zeros(spFl[0], dtype=np.float64) indMeanY = np.zeros(spFl[0], dtype=np.float64) indivCq = np.zeros(spFl[0], dtype=np.float64) indivCq_Grp = np.zeros(spFl[0], dtype=np.float64) meanNnull_Skip = np.zeros(spFl[0], dtype=np.float64) meanNnull_Skip_Plat = np.zeros(spFl[0], dtype=np.float64) meanNnull_Skip_Mean = np.zeros(spFl[0], dtype=np.float64) meanNnull_Skip_Plat_Mean = np.zeros(spFl[0], dtype=np.float64) meanNnull_Skip_Out = np.zeros(spFl[0], dtype=np.float64) meanNnull_Skip_Plat_Out = np.zeros(spFl[0], dtype=np.float64) meanCq_Skip =
np.zeros(spFl[0], dtype=np.float64)
numpy.zeros
import numpy as np from scipy.constants import pi from numpy.fft import fftshift from scipy.fftpack import fft, ifft from six.moves import builtins from cython_files.cython_integrand import * import sys assert_allclose = np.testing.assert_allclose import numba complex128 = numba.complex128 vectorize = numba.vectorize autojit, jit = numba.autojit, numba.jit cfunc = numba.cfunc generated_jit = numba.generated_jit guvectorize = numba.guvectorize # Pass through the @profile decorator if line profiler (kernprof) is not in use # Thanks Paul! try: builtins.profile except AttributeError: def profile(func): return func from time import time import pickle #@profile class Integrator(object): def __init__(self, int_fwm): if int_fwm.nm == 1: self.RK45mm = self.RK45CK_nm1 elif int_fwm.nm == 2: self.RK45mm = self.RK45CK_nm2 else: sys.exit('Too many modes!!') return None def RK45CK_nm1(self, dAdzmm, u1, dz, M1, M2, Q, tsh, dt, hf, w_tiled, gam_no_aeff): """ Propagates the nonlinear operator for 1 step using a 5th order Runge Kutta method use: [A delta] = RK5mm(u1, dz) where u1 is the initial time vector hf is the Fourier transform of the Raman nonlinear response time dz is the step over which to propagate in output: A is new time vector delta is the norm of the maximum estimated error between a 5th order and a 4th order integration """ (u1, Q, tsh, dt, hf, w_tiled,gam_no_aeff) A1 = dz*dAdzmm(u1, Q, tsh, dt, hf, w_tiled,gam_no_aeff) u2 = A2_temp(u1, A1) A2 = dz*dAdzmm(u1, Q, tsh, dt, hf, w_tiled,gam_no_aeff) u3 = A3_temp(u1, A1,A2) A3 = dz*dAdzmm(u1, Q, tsh, dt, hf, w_tiled,gam_no_aeff) u4 = A4_temp(u1, A1, A2, A3) A4 = dz*dAdzmm(u1, Q, tsh, dt, hf, w_tiled,gam_no_aeff) u5 = A5_temp(u1, A1, A2, A3, A4) A5 = dz*dAdzmm(u1, Q, tsh, dt, hf, w_tiled,gam_no_aeff) u6 = A6_temp(u1, A1, A2, A3, A4, A5) A6 = dz*dAdzmm(u1, Q, tsh, dt, hf, w_tiled,gam_no_aeff) A = A_temp(u1, A1, A3, A4, A6) # Fifth order accuracy Afourth = Afourth_temp(u1, A1, A3, A4,A5, A6) # Fourth order accuracy delta = np.linalg.norm(A - Afourth,2, axis = 1).max() return A, delta def RK45CK_nm2(self, dAdzmm, u1, dz, M1, M2,Q, tsh, dt, hf, w_tiled, gam_no_aeff): """ Propagates the nonlinear operator for 1 step using a 5th order Runge Kutta method use: [A delta] = RK5mm(u1, dz) where u1 is the initial time vector hf is the Fourier transform of the Raman nonlinear response time dz is the step over which to propagate in output: A is new time vector delta is the norm of the maximum estimated error between a 5th order and a 4th order integration """ A1 = dz*dAdzmm(u1,u1.conj(), M1, M2, Q, tsh, dt, hf, w_tiled, gam_no_aeff) u2 = A2_temp(u1, A1) A2 = dz*dAdzmm(u2,u2.conj(), M1, M2, Q, tsh, dt, hf, w_tiled, gam_no_aeff) u3 = A3_temp(u1, A1,A2) A3 = dz*dAdzmm(u3,u3.conj(), M1, M2, Q, tsh, dt, hf, w_tiled, gam_no_aeff) u4 = A4_temp(u1, A1, A2, A3) A4 = dz*dAdzmm(u4,u4.conj(), M1, M2, Q, tsh, dt, hf, w_tiled, gam_no_aeff) u5 = A5_temp(u1, A1, A2, A3, A4) A5 = dz*dAdzmm(u5,u5.conj(), M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) u6 = A6_temp(u1, A1, A2, A3, A4, A5) A6 = dz*dAdzmm(u6,u6.conj(), M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) A = A_temp(u1, A1, A3, A4, A6) # Fifth order accuracy Afourth = Afourth_temp(u1, A1, A3, A4,A5, A6) # Fourth order accuracy delta = np.linalg.norm(A - Afourth,2, axis = 1).max() return A, delta trgt = 'cpu' #trgt = 'parallel' #trgt = 'cuda' @jit(nopython=True,nogil = True) def Afourth_temp(u1, A1, A3, A4, A5, A6): return u1 + (2825./27648)*A1 + (18575./48384)*A3 + (13525./55296) * \ A4 + (277./14336)*A5 + (1./4)*A6 @jit(nopython=True,nogil = True) def A_temp(u1, A1, A3, A4, A6): return u1 + (37./378)*A1 + (250./621)*A3 + (125./594) * \ A4 + (512./1771)*A6 @jit(nopython=True,nogil = True) def A2_temp(u1, A1): return u1 + (1./5)*A1 @jit(nopython=True,nogil = True) def A3_temp(u1, A1, A2): return u1 + (3./40)*A1 + (9./40)*A2 @jit(nopython=True,nogil = True) def A4_temp(u1, A1, A2, A3): return u1 + (3./10)*A1 - (9./10)*A2 + (6./5)*A3 @jit(nopython=True,nogil = True) def A5_temp(u1, A1, A2, A3, A4): return u1 - (11./54)*A1 + (5./2)*A2 - (70./27)*A3 + (35./27)*A4 @jit(nopython=True,nogil = True) def A6_temp(u1, A1, A2, A3, A4, A5): return u1 + (1631./55296)*A1 + (175./512)*A2 + (575./13824)*A3 +\ (44275./110592)*A4 + (253./4096)*A5 """--------------------------Two modes-------------------------------------""" #@jit(nogil = True) def dAdzmm_roff_s0_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = uabs_nm2(u0,u0_conj,M2) N = nonlin_kerr_nm2(M1, Q, u0, M3) N *= gam_no_aeff return N #@jit(nogil = True) def dAdzmm_roff_s1_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = uabs_nm2(u0,u0_conj,M2) N = nonlin_kerr_nm2(M1, Q, u0, M3) N = gam_no_aeff * (N + tsh*ifft(w_tiled * fft(N))) return N def dAdzmm_ron_s0_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled, gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = uabs_nm2(u0,u0_conj,M2) M4 = dt*fftshift(ifft(fft(M3)*hf), axes = -1) # creates matrix M4 N = nonlin_ram_nm2(M1, Q, u0, M3, M4) N *= gam_no_aeff return N def dAdzmm_ron_s1_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = uabs_nm2(u0,u0_conj,M2) M4 = dt*fftshift(ifft(multi(fft(M3),hf)), axes = -1) # creates matrix M4 N = nonlin_ram_nm2(M1, Q, u0, M3, M4) N = gam_no_aeff * (N + tsh*ifft(multi(w_tiled,fft(N)))) return N @guvectorize(['void(complex128[:,:],complex128[:,:], int64[:,:], complex128[:,:])'],\ '(n,m),(n,m),(o,l)->(l,m)',target = trgt) def uabs_nm2(u0,u0_conj,M2,M3): for ii in range(M2.shape[1]): M3[ii,:] = u0[M2[0,ii],:]*u0_conj[M2[1,ii],:] @guvectorize(['void(int64[:,:], complex128[:,:], complex128[:,:],\ complex128[:,:], complex128[:,:], complex128[:,:])'],\ '(w,a),(i,a),(m,n),(l,n),(l,n)->(m,n)',target = trgt) def nonlin_ram_nm2(M1, Q, u0, M3, M4, N): N[:,:] = 0 for ii in range(M1.shape[1]): N[M1[0,ii],:] += u0[M1[1,ii],:]*(0.82*(2*Q[0,ii] + Q[1,ii]) \ *M3[M1[4,ii],:] + \ 0.54*Q[0,ii]*M4[M1[4,ii],:]) @guvectorize(['void(int64[:,:], complex128[:,:], complex128[:,:],\ complex128[:,:], complex128[:,:])'],\ '(w,a),(i,a),(m,n),(l,n)->(m,n)',target = trgt) def nonlin_kerr_nm2(M1, Q, u0, M3, N): N[:,:] = 0 for ii in range(M1.shape[1]): N[M1[0,ii],:] += 0.82*(2*Q[0,ii] + Q[1,ii]) \ *u0[M1[1,ii],:]*M3[M1[4,ii],:] """------------------------------------------------------------------------""" """-----------------------------One mode-----------------------------------""" #@jit(nogil = True) def dAdzmm_roff_s0_nm1(u0, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = u0.real**2 + u0.imag**2 #M3 = uabs_nm1(u0.real, u0.imag) N = nonlin_kerr_nm1(Q, u0, M3) N *= gam_no_aeff return N #@jit(nogil = True) def dAdzmm_roff_s1_nm1(u0, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = u0.real**2 + u0.imag**2 #M3 = uabs_nm1(u0.real, u0.imag) N = nonlin_kerr_nm1(Q, u0, M3) N = gam_no_aeff * (N + tsh*ifft(w_tiled * fft(N))) return N def dAdzmm_ron_s0_nm1(u0, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = u0.real**2 + u0.imag**2 #M3 = uabs_nm1(u0.real, u0.imag) M4 = dt*fftshift(ifft(fft(M3)*hf), axes = -1) # creates matrix M4 N = nonlin_ram_nm1(Q, u0, M3, M4) N *= gam_no_aeff return N def dAdzmm_ron_s1_nm1(u0, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ calculates the nonlinear operator for a given field u0 use: dA = dAdzmm(u0) """ M3 = u0.real**2 + u0.imag**2 M3 = uabs_nm1(u0.real, u0.imag) M4 = dt *fftshift(ifft(fft(M3)*hf), axes = -1) N = nonlin_ram_nm1(Q, u0, M3, M4) N = gam_no_aeff * (N + tsh*ifft(w_tiled * fft(N))) return N @vectorize(['float64(float64, float64)'], target=trgt) def uabs_nm1(u0r, u0i): return u0r**2 + u0i**2 @vectorize(['complex128(complex128, complex128, float64, complex128)'], target=trgt) def nonlin_ram_nm1(Q, u0, M3, temp): return Q*u0*(0.82*M3 + 0.18*temp) @vectorize(['complex128(complex128, complex128, float64)'], target=trgt) def nonlin_kerr_nm1(Q, u0, M3): return 0.82*Q*u0*M3 """------------------------------------------------------------------------""" @jit(nopython=True,nogil = True) def multi(a,b): return a * b class Integrand(object): def __init__(self,nm,ram, ss, cython = True, timing = False): print('number of modes: ', nm) if nm == 2: if cython: if ss == 0 and ram == 'off': self.dAdzmm = dAdzmm_roff_s0_cython_nm2 elif ss == 0 and ram == 'on': self.dAdzmm = dAdzmm_ron_s0_cython_nm2 elif ss == 1 and ram == 'off': self.dAdzmm = dAdzmm_roff_s1_cython_nm2 else: self.dAdzmm = dAdzmm_ron_s1_cython_nm2 else: if ss == 0 and ram == 'off': self.dAdzmm = dAdzmm_roff_s0_nm2 elif ss == 0 and ram == 'on': self.dAdzmm = dAdzmm_ron_s0_nm2 elif ss == 1 and ram == 'off': self.dAdzmm = dAdzmm_roff_s1_nm2 else: self.dAdzmm = dAdzmm_ron_s1_nm2 if timing: self.dAdzmm = self.timer_nm2 elif nm ==1: if cython: if ss == 0 and ram == 'off': self.dAdzmm = dAdzmm_roff_s0_cython_nm1 elif ss == 0 and ram == 'on': self.dAdzmm = dAdzmm_ron_s0_cython_nm1 elif ss == 1 and ram == 'off': self.dAdzmm = dAdzmm_roff_s1_cython_nm1 else: self.dAdzmm = dAdzmm_ron_s1_cython_nm1 else: if ss == 0 and ram == 'off': self.dAdzmm = dAdzmm_roff_s0_nm1 elif ss == 0 and ram == 'on': self.dAdzmm = dAdzmm_ron_s0_nm1 elif ss == 1 and ram == 'off': self.dAdzmm = dAdzmm_roff_s1_nm1 else: self.dAdzmm = dAdzmm_ron_s1_nm1 if timing: self.dAdzmm = self.timer_nm1 else: sys.exit('Too many modes!!!') def timer_nm2(self,u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff): """ Times the functions of python, cython etc. """ dt1, dt2, dt3, dt4, dt5, dt6, dt7, dt8 = [], [], [], [],\ [], [], [], [] NN = 100 for i in range(NN): '------No ram, no ss--------' t = time() N1 = dAdzmm_roff_s0_cython_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt1.append(time() - t) t = time() N2 = dAdzmm_roff_s0_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt2.append(time() - t) assert_allclose(N1, N2) '------ ram, no ss--------' t = time() N1 = dAdzmm_ron_s0_cython_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt3.append(time() - t) t = time() N2 = dAdzmm_ron_s0_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt4.append(time() - t) assert_allclose(N1, N2) '------ no ram, ss--------' t = time() N1 = dAdzmm_roff_s1_cython_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt5.append(time() - t) t = time() N2 = dAdzmm_roff_s1_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt6.append(time() - t) assert_allclose(N1, N2) '------ ram, ss--------' t = time() N1 = dAdzmm_ron_s1_cython_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt7.append(time() - t) t = time() N2 = dAdzmm_ron_s1_nm2(u0,u0_conj, M1, M2, Q, tsh, dt, hf, w_tiled,gam_no_aeff) dt8.append(time() - t) assert_allclose(N1, N2) print('cython_ram(off)_s0: {} +/- {}'.format(np.average(dt1),np.std(dt1))) print('python_ram(off)_s0: {} +/- {}'.format(np.average(dt2),np.std(dt2))) print('Cython is {} times faster'.format(np.average(dt2)/np.average(dt1))) print('--------------------------------------------------------') print('cython_ram(on)_s0: {} +/- {}'.format(np.average(dt3),np.std(dt3))) print('python_ram(on)_s0: {} +/- {}'.format(np.average(dt4),np.std(dt4))) print('Cython is {} times faster'.format(
np.average(dt4)
numpy.average
import os import time import numpy as np import sys from utils import * from NeuralNet import NeuralNet from .ChessNNet import ChessNNet as onnet sys.path.append('..') args = TrainingConfig({ 'lr': 0.005, 'dropout': 0.2, 'epochs': 14, 'batch_size': 16, 'cuda': True, 'num_channels': 256, }) class NNetWrapper(NeuralNet): def __init__(self, game): self.nnet = onnet(game, args) self.board_x, self.board_y = game.getBoardSize() self.action_size = game.getActionSize() def train(self, examples): """ examples: list of examples, each example is of form (board, pi, v) """ input_boards, target_pis, target_vs = list(zip(*examples)) input_boards =
np.asarray(input_boards)
numpy.asarray
#!/usr/bin/env python3 import cv2 import numpy as np import pybullet as p import tensorflow as tf def normalize(angle): """ Normalize the angle to [-pi, pi] :param float angle: input angle to be normalized :return float: normalized angle """ quaternion = p.getQuaternionFromEuler(np.array([0, 0, angle])) euler = p.getEulerFromQuaternion(quaternion) return euler[2] def calc_odometry(old_pose, new_pose): """ Calculate the odometry between two poses :param ndarray old_pose: pose1 (x, y, theta) :param ndarray new_pose: pose2 (x, y, theta) :return ndarray: odometry (odom_x, odom_y, odom_th) """ x1, y1, th1 = old_pose x2, y2, th2 = new_pose abs_x = (x2 - x1) abs_y = (y2 - y1) th1 = normalize(th1) sin = np.sin(th1) cos = np.cos(th1) th2 = normalize(th2) odom_th = normalize(th2 - th1) odom_x = cos * abs_x + sin * abs_y odom_y = cos * abs_y - sin * abs_x odometry = np.array([odom_x, odom_y, odom_th]) return odometry def calc_velocity_commands(old_pose, new_pose, dt=0.1): """ Calculate the velocity model command between two poses :param ndarray old_pose: pose1 (x, y, theta) :param ndarray new_pose: pose2 (x, y, theta) :param float dt: time interval :return ndarray: velocity command (linear_vel, angular_vel, final_rotation) """ x1, y1, th1 = old_pose x2, y2, th2 = new_pose if x1==x2 and y1==y2: # only angular motion linear_velocity = 0 angular_velocity = 0 elif x1!=x2 and np.tan(th1) == np.tan( (y1-y2)/(x1-x2) ): # only linear motion linear_velocity = (x2-x1)/dt angular_velocity = 0 else: # both linear + angular motion mu = 0.5 * ( ((x1-x2)*np.cos(th1) + (y1-y2)*np.sin(th1)) / ((y1-y2)*np.cos(th1) - (x1-x2)*np.sin(th1)) ) x_c = (x1+x2) * 0.5 + mu * (y1-y2) y_c = (y1+y2) * 0.5 - mu * (x1-x2) r_c = np.sqrt( (x1-x_c)**2 + (y1-y_c)**2 ) delta_th = np.arctan2(y2-y_c, x2-x_c) - np.arctan2(y1-y_c, x1-x_c) angular_velocity = delta_th/dt # HACK: to handle unambiguous postive/negative quadrants if np.arctan2(y1-y_c, x1-x_c) < 0: linear_velocity = angular_velocity * r_c else: linear_velocity = -angular_velocity * r_c final_rotation = (th2-th1)/dt - angular_velocity return np.array([linear_velocity, angular_velocity, final_rotation]) def sample_motion_odometry(old_pose, odometry): """ Sample new pose based on give pose and odometry :param ndarray old_pose: given pose (x, y, theta) :param ndarray odometry: given odometry (odom_x, odom_y, odom_th) :return ndarray: new pose (x, y, theta) """ x1, y1, th1 = old_pose odom_x, odom_y, odom_th = odometry th1 = normalize(th1) sin = np.sin(th1) cos = np.cos(th1) x2 = x1 + (cos * odom_x - sin * odom_y) y2 = y1 + (sin * odom_x + cos * odom_y) th2 = normalize(th1 + odom_th) new_pose = np.array([x2, y2, th2]) return new_pose def sample_motion_velocity(old_pose, velocity, dt=0.1): """ Sample new pose based on give pose and velocity commands :param ndarray old_pose: given pose (x, y, theta) :param ndarray velocity: velocity model (linear_vel, angular_vel, final_rotation) :param float dt: time interval :return ndarray: new pose (x, y, theta) """ x1, y1, th1 = old_pose linear_vel, angular_vel, final_rotation = velocity if angular_vel == 0: x2 = x1 + linear_vel*dt y2 = y1 else: r = linear_vel/angular_vel x2 = x1 - r*np.sin(th1) + r*np.sin(th1 + angular_vel*dt) y2 = y1 + r*np.cos(th1) - r*np.cos(th1 + angular_vel*dt) th2 = th1 + angular_vel*dt + final_rotation*dt new_pose = np.array([x2, y2, th2]) return new_pose def decode_image(img, resize=None): """ Decode image :param img: image encoded as a png in a string :param resize: tuple of width, height, new size of image (optional) :return np.ndarray: image (k, H, W, 1) """ # TODO # img = cv2.imdecode(img, -1) if resize is not None: img = cv2.resize(img, resize) return img def process_raw_map(image): """ Decode and normalize image :param image: floor map image as ndarray (H, W) :return np.ndarray: image (H, W, 1) white: empty space, black: occupied space """ assert np.min(image)>=0. and np.max(image)>=1. and np.max(image)<=255. image = normalize_map(np.atleast_3d(image.astype(np.float32))) assert np.min(image)>=0. and np.max(image)<=2. return image def normalize_map(x): """ Normalize map input :param x: map input (H, W, ch) :return np.ndarray: normalized map (H, W, ch) """ # rescale to [0, 2], later zero padding will produce equivalent obstacle return x * (2.0 / 255.0) def normalize_observation(x): """ Normalize observation input: an rgb image or a depth image :param x: observation input (56, 56, ch) :return np.ndarray: normalized observation (56, 56, ch) """ # resale to [-1, 1] if x.ndim == 2 or x.shape[2] == 1: # depth return x * (2.0 / 100.0) - 1.0 else: # rgb return x * (2.0 / 255.0) - 1.0 def denormalize_observation(x): """ Denormalize observation input to store efficiently :param x: observation input (B, 56, 56, ch) :return np.ndarray: denormalized observation (B, 56, 56, ch) """ # resale to [0, 255] if x.ndim == 2 or x.shape[-1] == 1: # depth x = (x + 1.0) * (100.0 / 2.0) else: # rgb x = (x + 1.0) * (255.0 / 2.0) return x.astype(np.int32) def process_raw_image(image, resize=(56, 56)): """ Decode and normalize image :param image: image encoded as a png (H, W, ch) :param resize: resize image (new_H, new_W) :return np.ndarray: images (new_H, new_W, ch) normalized for training """ # assert np.min(image)>=0. and np.max(image)>=1. and np.max(image)<=255. image = decode_image(image, resize) image = normalize_observation(np.atleast_3d(image.astype(np.float32))) assert np.min(image)>=-1. and np.max(image)<=1. return image def get_discrete_action(max_lin_vel, max_ang_vel): """ Get manual keyboard action :return int: discrete action for moving forward/backward/left/right """ key = input('Enter Key: ') # default stay still if key == 'w': # forward action = np.array([max_lin_vel, 0.]) elif key == 's': # backward action = np.array([-max_lin_vel, 0.]) elif key == 'd': # right action = np.array([0., -max_ang_vel]) elif key == 'a': # left action = np.array([0., max_ang_vel]) else: # do nothing action = np.array([0., 0.]) return action # def transform_position(position, map_shape, map_pixel_in_meters): # """ # Transform position from 2D co-ordinate space to pixel space # :param ndarray position: [x, y] in co-ordinate space # :param tuple map_shape: [height, width, channel] of the map the co-ordinated need to be transformed # :param float map_pixel_in_meters: The width (and height) of a pixel of the map in meters # :return ndarray: position [x, y] in pixel space of map # """ # x, y = position # height, width, channel = map_shape # # x = (x / map_pixel_in_meters) + width / 2 # y = (y / map_pixel_in_meters) + height / 2 # # return np.array([x, y]) # def inv_transform_pose(pose, map_shape, map_pixel_in_meters): # """ # Transform pose from pixel space to 2D co-ordinate space # :param ndarray pose: [x, y, theta] in pixel space of map # :param tuple map_shape: [height, width, channel] of the map the co-ordinated need to be transformed # :param float map_pixel_in_meters: The width (and height) of a pixel of the map in meters # :return ndarray: pose [x, y, theta] in co-ordinate space # """ # x, y, theta = pose # height, width, channel = map_shape # # x = (x - width / 2) * map_pixel_in_meters # y = (y - height / 2) * map_pixel_in_meters # # return np.array([x, y, theta]) def obstacle_avoidance(state, max_lin_vel, max_ang_vel): """ Choose action by avoiding obstances which highest preference to move forward """ assert list(state.shape) == [4] left, left_front, right_front, right = state # obstacle (not)present area if not left_front and not right_front: # move forward action = np.array([max_lin_vel, 0.]) elif not left or not left_front: # turn left action = np.array([0., max_ang_vel]) elif not right or not right_front: # turn right action = np.array([0., -max_ang_vel]) else: # backward action = np.array([-max_lin_vel, np.random.uniform(low=-max_ang_vel, high=max_ang_vel)]) return action def gather_episode_stats(env, params, sample_particles=False): """ Run the gym environment and collect the required stats :param env: igibson env instance :param params: parsed parameters :param sample_particles: whether or not to sample particles :return dict: episode stats data containing: odometry, true poses, observation, particles, particles weights, floor map """ agent = params.agent trajlen = params.trajlen max_lin_vel = params.max_lin_vel max_ang_vel = params.max_ang_vel assert agent in ['manual_agent', 'avoid_agent', 'rnd_agent'] odometry = [] true_poses = [] rgb_observation = [] depth_observation = [] occupancy_grid_observation = [] obs = env.reset() # observations are not processed # process [0, 1] ->[0, 255] -> [-1, +1] range rgb = process_raw_image(obs['rgb_obs']*255, resize=(56, 56)) rgb_observation.append(rgb) # process [0, 1] ->[0, 100] -> [-1, +1] range depth = process_raw_image(obs['depth_obs']*100, resize=(56, 56)) depth_observation.append(depth) # process [0, 0.5, 1] occupancy_grid = np.atleast_3d(decode_image(obs['occupancy_grid'], resize=(56, 56)).astype(np.float32)) occupancy_grid_observation.append(occupancy_grid) scene_id = env.config.get('scene_id') floor_num = env.task.floor_num floor_map, _ = env.get_floor_map() # already processed obstacle_map, _ = env.get_obstacle_map() # already processed assert list(floor_map.shape) == list(obstacle_map.shape) old_pose = env.get_robot_pose(env.robots[0].calc_state(), floor_map.shape) assert list(old_pose.shape) == [3] true_poses.append(old_pose) for _ in range(trajlen - 1): if agent == 'manual_agent': action = get_discrete_action(max_lin_vel, max_ang_vel) else: action = obstacle_avoidance(obs['obstacle_obs'], max_lin_vel, max_ang_vel) # take action and get new observation obs, reward, done, _ = env.step(action) # process [0, 1] ->[0, 255] -> [-1, +1] range rgb = process_raw_image(obs['rgb_obs']*255, resize=(56, 56)) rgb_observation.append(rgb) # process [0, 1] ->[0, 100] -> [-1, +1] range depth = process_raw_image(obs['depth_obs']*100, resize=(56, 56)) depth_observation.append(depth) # process [0, 0.5, 1] occupancy_grid = np.atleast_3d(decode_image(obs['occupancy_grid'], resize=(56, 56)).astype(np.float32)) occupancy_grid_observation.append(occupancy_grid) left, left_front, right_front, right = obs['obstacle_obs'] # obstacle (not)present # get new robot state after taking action new_pose = env.get_robot_pose(env.robots[0].calc_state(), floor_map.shape) assert list(new_pose.shape) == [3] true_poses.append(new_pose) # calculate actual odometry b/w old pose and new pose odom = calc_odometry(old_pose, new_pose) assert list(odom.shape) == [3] odometry.append(odom) old_pose = new_pose # end of episode odom = calc_odometry(old_pose, new_pose) odometry.append(odom) if sample_particles: num_particles = params.num_particles particles_cov = params.init_particles_cov particles_distr = params.init_particles_distr # sample random particles and corresponding weights init_particles = env.get_random_particles(num_particles, particles_distr, true_poses[0], particles_cov).squeeze( axis=0) init_particle_weights = np.full((num_particles,), (1. / num_particles)) assert list(init_particles.shape) == [num_particles, 3] assert list(init_particle_weights.shape) == [num_particles] else: init_particles = None init_particle_weights = None episode_data = { 'scene_id': scene_id, # str 'floor_num': floor_num, # int 'floor_map': floor_map, # (height, width, 1) 'obstacle_map': obstacle_map, # (height, width, 1) 'odometry': np.stack(odometry), # (trajlen, 3) 'true_states': np.stack(true_poses), # (trajlen, 3) 'rgb_observation': np.stack(rgb_observation), # (trajlen, height, width, 3) 'depth_observation': np.stack(depth_observation), # (trajlen, height, width, 1) 'occupancy_grid': np.stack(occupancy_grid_observation), # (trajlen, height, width, 1) 'init_particles': init_particles, # (num_particles, 3) 'init_particle_weights': init_particle_weights, # (num_particles,) } return episode_data def get_batch_data(env, params): """ Gather batch of episode stats :param env: igibson env instance :param params: parsed parameters :return dict: episode stats data containing: odometry, true poses, observation, particles, particles weights, floor map """ trajlen = params.trajlen batch_size = params.batch_size map_size = params.global_map_size num_particles = params.num_particles odometry = [] floor_map = [] obstacle_map = [] observation = [] true_states = [] init_particles = [] init_particle_weights = [] for _ in range(batch_size): episode_data = gather_episode_stats(env, params, sample_particles=True) odometry.append(episode_data['odometry']) floor_map.append(episode_data['floor_map']) obstacle_map.append(episode_data['obstacle_map']) true_states.append(episode_data['true_states']) observation.append(episode_data['observation']) init_particles.append(episode_data['init_particles']) init_particle_weights.append(episode_data['init_particle_weights']) batch_data = {} batch_data['odometry'] = np.stack(odometry) batch_data['floor_map'] = np.stack(floor_map) batch_data['obstacle_map'] = np.stack(obstacle_map) batch_data['true_states'] = np.stack(true_states) batch_data['observation'] = np.stack(observation) batch_data['init_particles'] = np.stack(init_particles) batch_data['init_particle_weights'] =
np.stack(init_particle_weights)
numpy.stack
""" Attitude discipline for CADRE. """ from six.moves import range import numpy as np from openmdao.api import ExplicitComponent from CADRE.kinematics import computepositionrotd, computepositionrotdjacobian class Attitude_Angular(ExplicitComponent): """ Calculates angular velocity vector from the satellite's orientation matrix and its derivative. """ def __init__(self, n=2): super(Attitude_Angular, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('O_BI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from body-fixed frame to Earth-centered ' 'inertial frame over time') self.add_input('Odot_BI', np.zeros((n, 3, 3)), units=None, desc='First derivative of O_BI over time') # Outputs self.add_output('w_B', np.zeros((n, 3)), units='1/s', desc='Angular velocity vector in body-fixed frame over time') self.dw_dOdot = np.zeros((n, 3, 3, 3)) self.dw_dO = np.zeros((n, 3, 3, 3)) row = np.array([1, 1, 1, 2, 2, 2, 0, 0, 0]) col = np.array([6, 7, 8, 0, 1, 2, 3, 4, 5]) rows = np.tile(row, n) + np.repeat(3*np.arange(n), 9) cols = np.tile(col, n) + np.repeat(9*np.arange(n), 9) self.declare_partials('w_B', 'O_BI', rows=rows, cols=cols) self.dw_dOdot = np.zeros((n, 3, 3, 3)) self.dw_dO =
np.zeros((n, 3, 3, 3))
numpy.zeros
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import pytest import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.neural_network import flexible_shape_utils from coremltools.models.utils import macos_version, is_macos np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: # check if shape has 0 valued dimension if np.prod(np_preds.shape) == 0 and np.prod(coreml_preds.shape) == 0: return True return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) try: prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) finally: # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(not is_macos() or macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) self.assertEquals(len(input_dim), builder._get_rank('output')) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) for output_ in output_names: self.assertEqual(len(input_dim), builder._get_rank(output_)) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(
np.arange(4, dtype=np.float32)
numpy.arange
import numpy as np def get_data(model_type, TRAIN, words, EMB, enforce_gen, n_side_pixl): import numpy as np EMBEDDINGS, OBJ_ctr_sd_enf_gen = {}, [] # 0. Get dictionary of ALL our embedding words EMB_dict = build_emb_dict(words, EMB) # 1. Get the RELEVANT training instances (filtering for 'predicates' and 'complete_only' variables) OBJ_ctr_sd, rel_ids, TRAIN_relevant = get_TRAIN_relevant(TRAIN, words) # 2. get dictionaries WORDLISTS (INDICES for the embedding layer!) EMBEDDINGS['obj_list'] = list(set(TRAIN_relevant['obj'])) EMBEDDINGS['subj_list'] = list(set(TRAIN_relevant['subj'])) EMBEDDINGS['pred_list'] = list(set(TRAIN_relevant['rel'])) allwords = np.concatenate((EMBEDDINGS['subj_list'], EMBEDDINGS['pred_list'], EMBEDDINGS['obj_list']), axis=0) EMBEDDINGS['allwords_list'] = list( set(allwords)) # IMPORTANT: The order of this list is what prevails later on as index for embeddings # 3. Get INITIALIZATION embeddings EMBEDDINGS['subj_EMB'] = wordlist2emb_matrix(EMBEDDINGS['subj_list'], EMB_dict) EMBEDDINGS['pred_EMB'] = wordlist2emb_matrix(EMBEDDINGS['pred_list'], EMB_dict) EMBEDDINGS['obj_EMB'] = wordlist2emb_matrix(EMBEDDINGS['obj_list'], EMB_dict) EMBEDDINGS['allwords_EMB'] = wordlist2emb_matrix(EMBEDDINGS['allwords_list'],EMB_dict) # 3.1. Get RANDOM embeddings (of the size of allwords_EMB) EMBEDDINGS['allwords_EMB_rnd'] = get_random_EMB(EMBEDDINGS['allwords_EMB']) EMBEDDINGS['subj_EMB_rnd'] = get_random_EMB(EMBEDDINGS['subj_EMB']) EMBEDDINGS['pred_EMB_rnd'] = get_random_EMB(EMBEDDINGS['pred_EMB']) EMBEDDINGS['obj_EMB_rnd'] = get_random_EMB(EMBEDDINGS['obj_EMB']) # 3.2. get ONE-HOT embeddings: EMBEDDINGS['subj_EMB_onehot'] = np.identity(len(EMBEDDINGS['subj_list'])) EMBEDDINGS['pred_EMB_onehot'] = np.identity(len(EMBEDDINGS['pred_list'])) EMBEDDINGS['obj_EMB_onehot'] = np.identity(len(EMBEDDINGS['obj_list'])) EMBEDDINGS['allwords_EMB_onehot'] = np.identity(len(EMBEDDINGS['allwords_list'])) # 4. Get X data (i.e., get the SEQUENCES of INDICES for the embedding layer) X, X_extra, y, y_pixl, X_extra_enf_gen, X_enf_gen, y_enf_gen, y_enf_gen_pixl, \ idx_IN_X_and_y, idx_enf_gen = relevant_instances2X_and_y(model_type, TRAIN_relevant, EMBEDDINGS, enforce_gen, n_side_pixl) # 5. Get the OBJ_ctr_sd_enf_gen that we need for some performance measures! if enforce_gen['eval'] is not None: OBJ_ctr_sd_enf_gen = OBJ_ctr_sd[idx_enf_gen] # 6. Finally, if we have REDUCED the X and y data by ENFORCING generalization (excluding instances) we have to reduce OBJ_ctr_sd and TRAIN_relevant accordingly if enforce_gen['eval'] is not None: for key in TRAIN_relevant: TRAIN_relevant[key] =
np.array(TRAIN_relevant[key])
numpy.array
# Create simulated exponential decay data # Radioactive decay from __future__ import division import numpy as np import numpy.random def CreateSimulatedData(N0, tau): tstart = 2.0 t =
np.arange(tstart, 8.7*tau, 7.0)
numpy.arange
from __future__ import division, print_function, absolute_import import numpy as np from .B_monomer import B, dB_dxhi00, d2B_dxhi00, d3B_dxhi00 from .a1s_monomer import a1s, da1s_dxhi00, d2a1s_dxhi00, d3a1s_dxhi00 def a1sB(xhi00, xhix, xhix_vec, xm, Ikl, Jkl, cictes, a1vdw, a1vdw_cte): a1 = a1s(xhi00, xhix_vec, xm, cictes, a1vdw) b = B(xhi00, xhix, xm, Ikl, Jkl, a1vdw_cte) return a1 + b def da1sB_dxhi00(xhi00, xhix, xhix_vec, xm, Ikl, Jkl, cictes, a1vdw, a1vdw_cte, dxhix_dxhi00): a1, da1 = da1s_dxhi00(xhi00, xhix_vec, xm, cictes, a1vdw, dxhix_dxhi00) b, db = dB_dxhi00(xhi00, xhix, xm, Ikl, Jkl, a1vdw_cte, dxhix_dxhi00) return a1 + b, da1 + db def d2a1sB_dxhi00(xhi00, xhix, xhix_vec, xm, Ikl, Jkl, cictes, a1vdw, a1vdw_cte, dxhix_dxhi00): a1, da1, d2a1 = d2a1s_dxhi00(xhi00, xhix_vec, xm, cictes, a1vdw, dxhix_dxhi00) b, db, d2b = d2B_dxhi00(xhi00, xhix, xm, Ikl, Jkl, a1vdw_cte, dxhix_dxhi00) return a1 + b, da1 + db, d2a1 + d2b def d3a1sB_dxhi00(xhi00, xhix, xhix_vec, xm, Ikl, Jkl, cictes, a1vdw, a1vdw_cte, dxhix_dxhi00): a1, da1, d2a1, d3a1 = d3a1s_dxhi00(xhi00, xhix_vec, xm, cictes, a1vdw, dxhix_dxhi00) b, db, d2b, d3b = d3B_dxhi00(xhi00, xhix, xm, Ikl, Jkl, a1vdw_cte, dxhix_dxhi00) return a1 + b, da1 + db, d2a1 + d2b, d3a1 + d3b def a1sB_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl): # la_kl, lr_kl, la_kl2, lr_kl2, lar_kl = lambdaskl cctes_lakl, cctes_lrkl, cctes_2lakl, cctes_2lrkl, cctes_larkl = ccteskl a1vdw_lakl, a1vdw_lrkl, a1vdw_2lakl, a1vdw_2lrkl, a1vdw_larkl = a1vdwkl I_lakl, I_lrkl, I_2lakl, I_2lrkl, I_larkl = I_lambdaskl J_lakl, J_lrkl, J_2lakl, J_2lrkl, J_larkl = J_lambdaskl a1sb_a = a1sB(xhi00, xhix, xhix_vec, xs_m, I_lakl, J_lakl, cctes_lakl, a1vdw_lakl, a1vdw_ctekl) a1sb_r = a1sB(xhi00, xhix, xhix_vec, xs_m, I_lrkl, J_lrkl, cctes_lrkl, a1vdw_lrkl, a1vdw_ctekl) a1sb_2a = a1sB(xhi00, xhix, xhix_vec, xs_m, I_2lakl, J_2lakl, cctes_2lakl, a1vdw_2lakl, a1vdw_ctekl) a1sb_2r = a1sB(xhi00, xhix, xhix_vec, xs_m, I_2lrkl, J_2lrkl, cctes_2lrkl, a1vdw_2lrkl, a1vdw_ctekl) a1sb_ar = a1sB(xhi00, xhix, xhix_vec, xs_m, I_larkl, J_larkl, cctes_larkl, a1vdw_larkl, a1vdw_ctekl) a1sb_a1 = np.array([a1sb_a, a1sb_r]) a1sb_a2 = np.array([a1sb_2a, a1sb_ar, a1sb_2r]) return a1sb_a1, a1sb_a2 def da1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00): # la_kl, lr_kl, la_kl2, lr_kl2, lar_kl = lambdaskl cctes_lakl, cctes_lrkl, cctes_2lakl, cctes_2lrkl, cctes_larkl = ccteskl a1vdw_lakl, a1vdw_lrkl, a1vdw_2lakl, a1vdw_2lrkl, a1vdw_larkl = a1vdwkl I_lakl, I_lrkl, I_2lakl, I_2lrkl, I_larkl = I_lambdaskl J_lakl, J_lrkl, J_2lakl, J_2lrkl, J_larkl = J_lambdaskl a1sb_a, da1sb_a = da1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_lakl, J_lakl, cctes_lakl, a1vdw_lakl, a1vdw_ctekl, dxhix_dxhi00) a1sb_r, da1sb_r = da1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_lrkl, J_lrkl, cctes_lrkl, a1vdw_lrkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_2a, da1sb_2a = da1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_2lakl, J_2lakl, cctes_2lakl, a1vdw_2lakl, a1vdw_ctekl, dxhix_dxhi00) a1sb_2r, da1sb_2r = da1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_2lrkl, J_2lrkl, cctes_2lrkl, a1vdw_2lrkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_ar, da1sb_ar = da1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_larkl, J_larkl, cctes_larkl, a1vdw_larkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_a1 = np.array([[a1sb_a, a1sb_r], [da1sb_a, da1sb_r]]) a1sb_a2 = np.array([[a1sb_2a, a1sb_ar, a1sb_2r], [da1sb_2a, da1sb_ar, da1sb_2r]]) return a1sb_a1, a1sb_a2 def d2a1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00): # la_kl, lr_kl, la_kl2, lr_kl2, lar_kl = lambdaskl cctes_lakl, cctes_lrkl, cctes_2lakl, cctes_2lrkl, cctes_larkl = ccteskl a1vdw_lakl, a1vdw_lrkl, a1vdw_2lakl, a1vdw_2lrkl, a1vdw_larkl = a1vdwkl I_lakl, I_lrkl, I_2lakl, I_2lrkl, I_larkl = I_lambdaskl J_lakl, J_lrkl, J_2lakl, J_2lrkl, J_larkl = J_lambdaskl out_la = d2a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_lakl, J_lakl, cctes_lakl, a1vdw_lakl, a1vdw_ctekl, dxhix_dxhi00) a1sb_a, da1sb_a, d2a1sb_a = out_la out_lr = d2a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_lrkl, J_lrkl, cctes_lrkl, a1vdw_lrkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_r, da1sb_r, d2a1sb_r = out_lr out_2la = d2a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_2lakl, J_2lakl, cctes_2lakl, a1vdw_2lakl, a1vdw_ctekl, dxhix_dxhi00) a1sb_2a, da1sb_2a, d2a1sb_2a = out_2la out_2lr = d2a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_2lrkl, J_2lrkl, cctes_2lrkl, a1vdw_2lrkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_2r, da1sb_2r, d2a1sb_2r = out_2lr out_lar = d2a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_larkl, J_larkl, cctes_larkl, a1vdw_larkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_ar, da1sb_ar, d2a1sb_ar = out_lar a1sb_a1 = np.array([[a1sb_a, a1sb_r], [da1sb_a, da1sb_r], [d2a1sb_a, d2a1sb_r]]) a1sb_a2 = np.array([[a1sb_2a, a1sb_ar, a1sb_2r], [da1sb_2a, da1sb_ar, da1sb_2r], [d2a1sb_2a, d2a1sb_ar, d2a1sb_2r]]) return a1sb_a1, a1sb_a2 def d3a1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00): cctes_lakl, cctes_lrkl, cctes_2lakl, cctes_2lrkl, cctes_larkl = ccteskl a1vdw_lakl, a1vdw_lrkl, a1vdw_2lakl, a1vdw_2lrkl, a1vdw_larkl = a1vdwkl I_lakl, I_lrkl, I_2lakl, I_2lrkl, I_larkl = I_lambdaskl J_lakl, J_lrkl, J_2lakl, J_2lrkl, J_larkl = J_lambdaskl out_la = d3a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_lakl, J_lakl, cctes_lakl, a1vdw_lakl, a1vdw_ctekl, dxhix_dxhi00) a1sb_a, da1sb_a, d2a1sb_a, d3a1sb_a = out_la out_lr = d3a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_lrkl, J_lrkl, cctes_lrkl, a1vdw_lrkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_r, da1sb_r, d2a1sb_r, d3a1sb_r = out_lr out_2la = d3a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_2lakl, J_2lakl, cctes_2lakl, a1vdw_2lakl, a1vdw_ctekl, dxhix_dxhi00) a1sb_2a, da1sb_2a, d2a1sb_2a, d3a1sb_2a = out_2la out_2lr = d3a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_2lrkl, J_2lrkl, cctes_2lrkl, a1vdw_2lrkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_2r, da1sb_2r, d2a1sb_2r, d3a1sb_2r = out_2lr out_lar = d3a1sB_dxhi00(xhi00, xhix, xhix_vec, xs_m, I_larkl, J_larkl, cctes_larkl, a1vdw_larkl, a1vdw_ctekl, dxhix_dxhi00) a1sb_ar, da1sb_ar, d2a1sb_ar, d3a1sb_ar = out_lar a1sb_a1 = np.array([[a1sb_a, a1sb_r], [da1sb_a, da1sb_r], [d2a1sb_a, d2a1sb_r], [d3a1sb_a, d3a1sb_r]]) a1sb_a2 = np.array([[a1sb_2a, a1sb_ar, a1sb_2r], [da1sb_2a, da1sb_ar, da1sb_2r], [d2a1sb_2a, d2a1sb_ar, d2a1sb_2r], [d3a1sb_2a, d3a1sb_ar, d3a1sb_2r]]) return a1sb_a1, a1sb_a2 def x0lambda_evalm(x0, laij, lrij, larij): x0la = x0**laij x0lr = x0**lrij x02la = x0**(2*laij) x02lr = x0**(2*lrij) x0lar = x0**larij # To be used for a1 and a2 in monomer term x0_a1 = np.array([x0la, -x0lr]) x0_a2 = np.array([x02la, -2*x0lar, x02lr]) return x0_a1, x0_a2 def x0lambda_evalc(x0, la, lr, lar): x0la = x0**la x0lr = x0**lr x02la = x0**(2*la) x02lr = x0**(2*lr) x0lar = x0**lar # To be used for a1 and a2 in monomer term x0_a1 = np.array([x0la, -x0lr]) x0_a2 =
np.array([x02la, -2*x0lar, x02lr])
numpy.array
from __future__ import division import os import numpy as np import torch import torch.nn.parallel import torch.optim import torch.utils.data import torchvision.transforms as transforms from PIL import Image from torch.utils.data.dataset import Dataset from .registry import DATASETS @DATASETS.register_module class AttrDataset(Dataset): CLASSES = None def __init__(self, img_path, img_file, label_file, cate_file, bbox_file, landmark_file, img_size, idx2id=None): self.img_path = img_path normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.transform = transforms.Compose([ transforms.RandomResizedCrop(img_size[0]), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) # read img names fp = open(img_file, 'r') self.img_list = [x.strip() for x in fp] # read attribute labels and category annotations self.labels =
np.loadtxt(label_file, dtype=np.float32)
numpy.loadtxt
# -*- coding: utf-8 -*- """ Created on Mon Apr 2 11:19:50 2018 @author: mayank """ import numpy as np from sklearn.model_selection import StratifiedKFold from sklearn.metrics.pairwise import linear_kernel,rbf_kernel,manhattan_distances,polynomial_kernel,sigmoid_kernel,cosine_similarity,laplacian_kernel,paired_euclidean_distances,pairwise_distances from sklearn.kernel_approximation import RBFSampler, Nystroem from sklearn.utils import resample from numpy.matlib import repmat from sklearn.neighbors import NearestNeighbors from sklearn.cluster import MiniBatchKMeans from sklearn.decomposition import IncrementalPCA from numpy.linalg import eigh from sklearn.preprocessing import OneHotEncoder from sparse import COO from scipy.sparse import csr_matrix, lil_matrix from scipy.sparse import issparse from scipy.sparse import hstack #%% class utils: # def __init__(self): # return None def add_bias(self,xTrain): """ Adds bias to the data Parameters: ----------- xTrain: 2D numpy ndarray/csr_matrix of shape (n_samples, n_features) Returns: -------- xTrain: 2D numpy ndarray/csr_matrix of shape (n_samples, n_features + 1) """ N = xTrain.shape[0] if(xTrain.size!=0): if(issparse(xTrain)==True): xTrain = csr_matrix(hstack([xTrain,np.ones((N,1))])) else: xTrain=np.hstack((xTrain,np.ones((N,1)))) return xTrain def logsig(self,x): return 1 / (1 + np.exp(-x)) def saturate_fcn1(self,x,a = 2): y = np.zeros(x.shape) idx1 = (x <= a)*(x >=-a) idx2 = x > a idx3 = x < -a y[idx1] = x[idx1]/(2*a) + 1.0/2.0 y[idx2] = 1 y[idx3] = 0 return y def standardize(self,xTrain,centering): """ Transform the data so that each column has zero mean and unit standard deviation Parameters: ----------- xTrain: 2D numpy ndarray of shape (n_samples, n_features) centering: bool, whether to perform standardization, if False, it returns me = np.zeros((xTrain.shape[1],)) and std_dev = np.ones((xTrain.shape[1],)) Returns: -------- xTrain: 2D numpy ndarray of shape (n_samples, n_features) me: mean of the columns std_dev: standard deviation of the columns """ if(centering == True): me=np.mean(xTrain,axis=0) std_dev=np.std(xTrain,axis=0) else: me = np.zeros((xTrain.shape[1],)) std_dev = np.ones((xTrain.shape[1],)) #remove columns with zero std idx=(std_dev!=0.0) # print(idx.shape) xTrain[:,idx]=(xTrain[:,idx]-me[idx])/std_dev[idx] return xTrain,me,std_dev def divide_into_batches_stratified(self,yTrain,batch_sz): """ Divides the data into batches such that each batch contains similar proportion of labels in it Parameters: ---------- yTrain: np.ndarray labels for the datset of shape (n_samples, ) Returns: -------- idx_batches: list index of yTrain in each batch sample_weights: np.ndarray of size (n_samples,) weights for each sample in batch = 1/#class_j num_batches: int number of batches formed """ #data should be of the form samples X features N=yTrain.shape[0] num_batches=int(np.ceil(N/batch_sz)) sample_weights=list() numClasses=np.unique(yTrain).size idx_batches=list() skf=StratifiedKFold(n_splits=num_batches, random_state=1, shuffle=True) j=0 for train_index, test_index in skf.split(np.zeros(N), yTrain): idx_batches.append(test_index) class_weights=np.zeros((numClasses,)) sample_weights1=np.zeros((test_index.shape[0],)) temp=yTrain[test_index,] for i in range(numClasses): idx1=(temp==i) class_weights[i]=1.0/(np.sum(idx1)+1e-09)#/idx.shape[0] sample_weights1[idx1]=class_weights[i] sample_weights.append(sample_weights1) j+=1 return idx_batches,sample_weights,num_batches def margin_kernel(self, X1, kernel_type = 'linear', gamma =1.0): """ Forms the kernel matrix using the samples X1 Parameters: ---------- X1: np.ndarray data (n_samples,n_features) to form a kernel of shape (n_samples,n_samples) kernel_type : str type of kernel to be used gamma: float kernel parameter Returns: ------- X: np.ndarray the kernel of shape (n_samples,n_samples) """ if(kernel_type == 'linear'): X = linear_kernel(X1,X1) elif(kernel_type == 'rbf'): X = rbf_kernel(X1,X1,gamma) elif(kernel_type == 'tanh'): X = sigmoid_kernel(X1,X1,-gamma) elif(kernel_type == 'sin'): # X = np.sin(gamma*manhattan_distances(X1,X1)) X = np.sin(gamma*pairwise_distances(X1,X1)**2) elif(kernel_type =='TL1'): X = np.maximum(0,gamma - manhattan_distances(X1,X1)) else: print('no kernel_type, returning None') return None return X def kernel_transform(self, X1, X2 = None, kernel_type = 'linear_primal', n_components = 100, gamma = 1.0): """ Forms the kernel matrix using the samples X1 Parameters: ---------- X1: np.ndarray data (n_samples1,n_features) to form a kernel of shape (n_samples1,n_samples1) X2: np.ndarray data (n_samples2,n_features) to form a kernel of shape (n_samples1,n_samples2) kernel_type : str type of kernel to be used gamma: float kernel parameter Returns: ------- X: np.ndarray the kernel of shape (n_samples,n_samples) """ if(kernel_type == 'linear'): X = linear_kernel(X1,X2) elif(kernel_type == 'rbf'): X = rbf_kernel(X1,X2,gamma) elif(kernel_type == 'tanh'): X = sigmoid_kernel(X1,X2,-gamma) elif(kernel_type == 'sin'): # X = np.sin(gamma*manhattan_distances(X1,X2)) X = np.sin(gamma*pairwise_distances(X1,X2)**2) elif(kernel_type =='TL1'): X = np.maximum(0,gamma - manhattan_distances(X1,X2)) elif(kernel_type == 'rff_primal'): rbf_feature = RBFSampler(gamma=gamma, random_state=1, n_components = n_components) X = rbf_feature.fit_transform(X1) elif(kernel_type == 'nystrom_primal'): #cannot have n_components more than n_samples1 if(n_components > X1.shape[0]): raise ValueError('n_samples should be greater than n_components') rbf_feature = Nystroem(gamma=gamma, random_state=1, n_components = n_components) X = rbf_feature.fit_transform(X1) elif(kernel_type == 'linear_primal'): X = X1 else: print('No kernel_type passed: using linear primal solver') X = X1 return X def generate_samples(self,X_orig,old_imbalance_ratio,new_imbalance_ratio): """ Generates samples based on new imbalance ratio, such that new imbalanced ratio is achieved Parameters: ---------- X_orig: np.array (n_samples , n_features) data matrix old_imbalance_ratio: float old imbalance ratio in the samples new_imbalance_ratio: float new imbalance ratio in the samples Returns: ------- X_orig: np.array (n_samples , n_features) data matrix X1: 2D np.array newly generated samples of shape (int((new_imbalance_ratio/old_imbalance_ratio)*n_samples - n_samples), n_features ) """ N=X_orig.shape[0] M=X_orig.shape[1] neighbors_thresh=10 if (new_imbalance_ratio < old_imbalance_ratio): raise ValueError('new ratio should be greater than old ratio') new_samples=int((new_imbalance_ratio/old_imbalance_ratio)*N - N) #each point must generate these many samples new_samples_per_point_orig=new_imbalance_ratio/old_imbalance_ratio - 1 new_samples_per_point=int(new_imbalance_ratio/old_imbalance_ratio - 1) #check if the number of samples each point has to generate is > 1 X1=np.zeros((0,M)) if(new_samples_per_point_orig>0 and new_samples_per_point_orig<=1): idx_samples=resample(np.arange(0,N), n_samples=int(N*new_samples_per_point_orig), random_state=1,replace=False) X=X_orig[idx_samples,] new_samples_per_point=1 N=X.shape[0] else: X=X_orig if(N==1): X1=repmat(X,new_samples,1) elif(N>1): if(N<=neighbors_thresh): n_neighbors=int(N/2) else: n_neighbors=neighbors_thresh nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree').fit(X) for i in range(N): #for each point find its n_neighbors nearest neighbors inds=nbrs.kneighbors(X[i,:].reshape(1,-1), n_neighbors, return_distance=False) temp_data=X[inds[0],:] std=np.std(temp_data,axis=0) me=np.mean(temp_data,axis=0) np.random.seed(i) x_temp=me + std*np.random.randn(new_samples_per_point,M) X1=np.append(X1,x_temp,axis=0) return X_orig, X1 def upsample(self,X,Y,new_imbalance_ratio): """ Upsamples the data based on label array, for classification only Parameters: ---------- X: np.array (n_samples, n_features) 2D data matrix Y: np.array (n_samples, ) label array, takes values between [0, numClasses-1] new_imbalance_ratio: float new imbalance ratio in the data, takes values between [0.5,1] Returns: ------- X3: np.array (n_samples1, n_features) new balanced 2D data matrix Y3: np.array (n_samples1, ) new balanced label array """ #xTrain: samples X features #yTrain : samples, #for classification only numClasses=np.unique(Y).size class_samples=np.zeros((numClasses,)) X3=np.zeros((0,X.shape[1])) Y3=np.zeros((0,)) #first find the samples per class per class for i in range(numClasses): idx1=(Y==i) class_samples[i]=np.sum(idx1) max_samples=np.max(class_samples) # new_imbalance_ratio=0.5 # if(upsample_type==1): old_imbalance_ratio_thresh=0.5 # else: # old_imbalance_ratio_thresh=1 for i in range(numClasses): idx1=(Y==i) old_imbalance_ratio=class_samples[i]/max_samples X1=X[idx1,:] Y1=Y[idx1,] if(idx1.size==1): X1=np.reshape(X1,(1,X.shape[1])) if(old_imbalance_ratio<=old_imbalance_ratio_thresh and class_samples[i]!=0): X1,X2=self.generate_samples(X1,old_imbalance_ratio,new_imbalance_ratio) new_samples=X2.shape[0] Y2=np.ones((new_samples,)) Y2=Y2*Y1[0,] #append original and generated samples X3=np.append(X3,X1,axis=0) X3=np.append(X3,X2,axis=0) Y3=np.append(Y3,Y1,axis=0) Y3=np.append(Y3,Y2,axis=0) else: #append original samples only X3=np.append(X3,X1,axis=0) Y3=np.append(Y3,Y1,axis=0) Y3=np.array(Y3,dtype=np.int32) return X3,Y3 def kmeans_select(self,X,represent_points,do_pca=False): """ Takes in data and number of prototype vectors and returns the indices of the prototype vectors. The prototype vectors are selected based on the farthest distance from the kmeans centers Parameters ---------- X: np.ndarray shape = n_samples, n_features represent_points: int number of prototype vectors to return do_pca: boolean whether to perform incremental pca for dimensionality reduction before selecting prototype vectors Returns ------- sv: list list of the prototype vector indices from the data array given by X """ # do_pca = self.do_pca_in_selection N = X.shape[0] if(do_pca == True): if(X.shape[1]>50): n_components = 50 ipca = IncrementalPCA(n_components=n_components, batch_size=np.min([128,X.shape[0]])) X = ipca.fit_transform(X) kmeans = MiniBatchKMeans(n_clusters=represent_points, batch_size=np.min([128,X.shape[0]]),random_state=0).fit(X) centers = kmeans.cluster_centers_ labels = kmeans.labels_ sv= [] unique_labels = np.unique(labels).size all_ind = np.arange(N) for j in range(unique_labels): X1 = X[labels == j,:] all_ind_temp = all_ind[labels==j] tempK = pairwise_distances(X1,np.reshape(centers[j,:],(1,X1.shape[1])))**2 inds = np.argmax(tempK,axis=0) sv.append(all_ind_temp[inds[0]]) return sv def renyi_select(self,X,represent_points,do_pca=False): """ Takes in data and number of prototype vectors and returns the indices of the prototype vectors. The prototype vectors are selected based on maximization of quadratic renyi entropy, which can be written in terms of log sum exp which is a tightly bounded by max operator. Now for rbf kernel, the max_{ij}(-\|x_i-x_j\|^2) is equivalent to min_{ij}(\|x_i-x_j\|^2). Parameters ---------- X: np.ndarray shape = n_samples, n_features represent_points: int number of prototype vectors to return do_pca: boolean whether to perform incremental pca for dimensionality reduction before selecting prototype vectors Returns ------- sv: list list of the prototype vector indices from the data array given by X """ # do_pca = self.do_pca_in_selection N= X.shape[0] capacity=represent_points selectionset=set([]) set_full=set(list(range(N))) np.random.seed(1) if(len(selectionset)==0): selectionset = np.random.permutation(N) sv = list(selectionset)[0:capacity] else: extrainputs = represent_points - len(selectionset) leftindices =list(set_full.difference(selectionset)) info = np.random.permutation(len(leftindices)) info = info[1:extrainputs] sv = selectionset.append(leftindices[info]) if(do_pca == True): if(X.shape[1]>50): #takes more time n_components = 50 ipca = IncrementalPCA(n_components=n_components, batch_size=np.min([128,X.shape[0]])) X = ipca.fit_transform(X) svX = X[sv,:] min_info = np.zeros((capacity,2)) KsV = pairwise_distances(svX,svX)**2 #this is fast KsV[KsV==0] = np.inf min_info[:,1] = np.min(KsV,axis=1) min_info[:,0] = np.arange(capacity) minimum = np.min(min_info[:,1]) counter = 0 for i in range(N): # find for which data the value is minimum replace = np.argmin(min_info[:,1]) ids = int(min_info[min_info[:,0]==replace,0]) #Subtract from totalcrit once for row tempminimum = minimum - min_info[ids,1] #Try to evaluate kernel function tempsvX = np.zeros(svX.shape) tempsvX[:] = svX[:] inputX = X[i,:] tempsvX[replace,:] = inputX tempK = pairwise_distances(tempsvX,np.reshape(inputX,(1,X.shape[1])))**2 #this is fast tempK[tempK==0] = np.inf distance_eval = np.min(tempK) tempminimum = tempminimum + distance_eval if (minimum < tempminimum): minimum = tempminimum min_info[ids,1] = distance_eval svX[:] = tempsvX[:] sv[ids] = i counter +=1 return sv def subset_selection(self,X,Y, n_components , PV_scheme , problem_type,do_pca=False): """ Takes in data matrix and label matrix and generates the subset (list) of shape n_components based on the problem type (classification or regression), prototype vector (PV) selection scheme Parameters: ---------- X: np.array (n_samples, n_features) data matrix Y: np.array (n_samples) label matrix (continuous or discrete) PV_scheme: str prototype vector selection scheme ('renyi' or 'kmeans') problem_type: str type of the problem ('classification' or 'regression') Returns: -------- subset: list the index of the prototype vectors selected """ N = X.shape[0] if(problem_type == 'regression'): if(PV_scheme == 'renyi'): subset = self.renyi_select(X,n_components,do_pca) elif(PV_scheme == 'kmeans'): subset = self.kmeans_select(X,n_components,do_pca) else: raise ValueError('Select PV_scheme between renyi and kmeans') else: numClasses = np.unique(Y).size all_samples = np.arange(N) subset=[] subset_per_class = np.zeros((numClasses,)) class_dist = np.zeros((numClasses,)) for i in range(numClasses): class_dist[i] = np.sum(Y == i) subset_per_class[i] = int(np.ceil((class_dist[i]/N)*n_components)) for i in range(numClasses): xTrain = X[Y == i,] samples_in_class = all_samples[Y == i] if(PV_scheme == 'renyi'): subset1 = self.renyi_select(xTrain,int(subset_per_class[i]),do_pca) elif(PV_scheme == 'kmeans'): subset1 = self.kmeans_select(xTrain,int(subset_per_class[i]),do_pca) else: raise ValueError('Select PV_scheme between renyi and kmeans') temp=list(samples_in_class[subset1]) subset.extend(temp) return subset def matrix_decomposition(self, X): """ Finds the matrices consisting of positive and negative parts of kernel matrix X Parameters: ---------- X: n_samples X n_samples Returns: -------- K_plus: kernel corresponding to +ve part K_minus: kernel corresponding to -ve part """ [D,U]=
eigh(X)
numpy.linalg.eigh
#!/usr/bin/env python3 """ Requires: python-mnist numpy sklearn """ import sys sys.path.insert(0, 'src/') import mnist import numpy as np from numpy.linalg import norm as l21_norm from sklearn.metrics.cluster import normalized_mutual_info_score as nmi import os np.random.seed(int(os.environ.get('seed', '42'))) print('Using seed:', os.environ.get('seed', '42')) epsilon = 0.03 gamma = .1 / 30 / epsilon # np.random.seed(42) # Download t10k_* from http://yann.lecun.com/exdb/mnist/ # Change to directory containing unzipped MNIST data mndata = mnist.MNIST('data/MNIST-10K/') def welsch_func(x): result = (1 - np.exp(- epsilon * x ** 2)) / epsilon return result from basics.ours._numba import E, solve_U, update_V def target(U, V, X): return E(U, V, X, gamma, epsilon) def NMI(U): return nmi(labels, np.argmax(U, axis=1)) if __name__ == '__main__': images, labels = mndata.load_testing() ndim = 784 N = size = len(labels) C = 10 X = np.array(images).reshape((size, ndim)) / 255 t = 0 V = np.random.random((C, ndim)) U = np.ones((size, C)) * .1 / (C - 1) for i in range(size): xi = np.repeat(X[i, :].reshape((1, ndim)), C, axis=0) U[i, np.argmin(l21_norm(xi - V, axis=1))] = .9 S =
np.ones((size, C))
numpy.ones
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.models.rgb.transfer_functions.itur_bt_1886` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from colour.models.rgb.transfer_functions import (eotf_inverse_BT1886, eotf_BT1886) from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = ['TestEotf_inverse_BT1886', 'TestEotf_BT1886'] class TestEotf_inverse_BT1886(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_1886.\ eotf_inverse_BT1886` definition unit tests methods. """ def test_eotf_inverse_BT1886(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_1886.\ eotf_inverse_BT1886` definition. """ self.assertAlmostEqual(eotf_inverse_BT1886(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_inverse_BT1886(0.016317514686316), 0.18, places=7) self.assertAlmostEqual(eotf_inverse_BT1886(1.0), 1.0, places=7) def test_n_dimensional_eotf_inverse_BT1886(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_1886.\ eotf_inverse_BT1886` definition n-dimensional arrays support. """ L = 0.016317514686316 V = eotf_inverse_BT1886(L) L = np.tile(L, 6) V = np.tile(V, 6) np.testing.assert_almost_equal(eotf_inverse_BT1886(L), V, decimal=7) L = np.reshape(L, (2, 3)) V =
np.reshape(V, (2, 3))
numpy.reshape
""" 2D MOT2016 Evaluation Toolkit An python reimplementation of toolkit in 2DMOT16(https://motchallenge.net/data/MOT16/) This file lists the matching algorithms. 1. clear_mot_hungarian: Compute CLEAR_MOT metrics - Bernardin, Keni, and <NAME>. "Evaluating multiple object tracking performance: the CLEAR MOT metrics." Journal on Image and Video Processing 2008 (2008): 1. 2. idmeasures: Compute MTMC metrics - Ristani, Ergys, et al. "Performance measures and a data set for multi-target, multi-camera tracking." European Conference on Computer Vision. Springer, Cham, 2016. usage: python evaluate_tracking.py --bm Whether to evaluate multiple files(benchmarks) --seqmap [filename] List of sequences to be evaluated --track [dirname] Tracking results directory: default path -- [dirname]/[seqname]/res.txt --gt [dirname] Groundtruth directory: default path -- [dirname]/[seqname]/gt.txt (C) <NAME>(<EMAIL>), 2020-10 """ import sys import numpy as np # from sklearn.evaluate_utils.linear_assignment_ import linear_assignment from scipy.optimize import linear_sum_assignment as linear_assignment from MOTEvaluate.evaluate_utils.bbox import bbox_overlap from easydict import EasyDict as edict VERBOSE = False def clear_mot_metrics(resDB, gtDB, iou_thresh): """ compute CLEAR_MOT and other metrics [recall, precision, FAR, GT, MT, PT, ML, false positives, false negatives, id switches, FRA, MOTA, MOTP, MOTAL] @res: results @gt: fround truth """ # result and gt frame inds(start from 1) res_frames = np.unique(resDB[:, 0]) gt_frames =
np.unique(gtDB[:, 0])
numpy.unique
from utils import read_pair as rp import numpy as np from scipy.linalg import cho_solve, cholesky from utils import downscale as ds from utils import lukas_kanade as lk from utils import se3 import warnings import gc warnings.filterwarnings('ignore') def pgo(pair_path=None, absolute_poses=None, kf_index=None, loop_closure=False, loop_pairs=None, level=4, r_p_list=[], s_m_list=[], lambd=0.1): pose_num = len(absolute_poses) if loop_closure: loop_num = len(loop_pairs) else: loop_num = 0 loop_ind = 0 b_k = np.zeros(6 * pose_num) # b_k vector h_k = np.zeros([6 * pose_num, 6 * pose_num]) # H_k matrix residual = np.zeros([pose_num + loop_num, 6]) # residual vector relative_pose_list = r_p_list sigma_matrix_list = s_m_list for ind in np.arange(pose_num - 1 + loop_num): if ind >= pose_num - 1: # add loop closure manually at the end of the trajectory by observing overlap loop_pair = loop_pairs[loop_ind] loop_ind += 1 first_pose_ind = loop_pair[0] second_pose_ind = loop_pair[1] ref_frame = kf_index[first_pose_ind] cur_frame = kf_index[second_pose_ind] first_pose = absolute_poses[first_pose_ind] second_pose = absolute_poses[second_pose_ind] else: first_pose_ind = ind second_pose_ind = ind + 1 ref_frame = kf_index[first_pose_ind] cur_frame = kf_index[second_pose_ind] first_pose = absolute_poses[first_pose_ind] second_pose = absolute_poses[second_pose_ind] # calculate the pose difference between keyframes pair pose_diff = np.linalg.inv(second_pose) @ first_pose # create relative pose constraint between keyframes pair through direct image alignment in the first pgo iter if len(relative_pose_list) < ind + 1: image1, depth1, _ = rp.read_pair(pair_path, ref_frame) image2, depth2, _ = rp.read_pair(pair_path, cur_frame) relative_pose, sigma_matrix = create_relative_pose_constraint(image1, depth1, image2, depth2, level, se3.se3Log(pose_diff)) relative_pose_list.append(relative_pose) sigma_matrix_list.append(sigma_matrix) else: relative_pose = relative_pose_list[ind] sigma_matrix = sigma_matrix_list[ind] # convert twist coordinate to 4*4 transformation matrix relative_pose = se3.se3Exp(relative_pose) # calculate relative pose residual between this key-frame pair resid = se3.se3Log(np.linalg.inv(relative_pose) @ pose_diff) # print(resid) # stack residual vector residual[ind + 1] = resid # calculate jacobian matrix jacobian = calculatejacobian(pose_num, first_pose, second_pose, relative_pose, first_pose_ind, second_pose_ind, resid) # accumulate b_k and h_k for gauss newton step b_k += jacobian.T @ sigma_matrix @ resid h_k += jacobian.T @ sigma_matrix @ jacobian # print('keyframes pair:{}'.format(ind + 1)) # add another term for first pose in b_k and h_k resid_0 = se3.se3Log(absolute_poses[0]) residual[0] = resid_0 jaco_0 = calculate_jaco_single_frame(pose_num, absolute_poses[0], resid_0) sigma_matrix = np.identity(6) * 1e6 b_k += jaco_0.T @ sigma_matrix @ resid_0 h_k += jaco_0.T @ sigma_matrix @ jaco_0 residual = residual.reshape(-1) # update all key frame poses with Levenberg-Marquardt method # upd = - np.linalg.inv(h_k + lambd * np.diag(np.diag(h_k))) @ b_k # with gauss newton method # upd = - np.linalg.inv(h_k) @ b_k # use cholesky factorization to solve the linear system -h_k * upd = b_k c = cholesky(h_k) upd = - cho_solve((c, False), b_k) upd = upd.reshape(-1, 6) for jj in range(pose_num): absolute_poses[jj] = se3.se3Exp(upd[jj]) @ absolute_poses[jj] residual_after_update = calculate_residual(absolute_poses, relative_pose_list, loop_pairs, loop_num) return absolute_poses, residual, relative_pose_list, sigma_matrix_list, residual_after_update def calculate_residual(absolute_poses, relative_poses, loop_pairs, loop_num): pose_num = len(absolute_poses) loop_ind = 0 residual = np.zeros([pose_num + loop_num, 6]) for ind in range(pose_num - 1 + loop_num): if ind >= pose_num - 1: # add loop closure manually at the end of the trajectory by observing overlap loop_pair = loop_pairs[loop_ind] loop_ind += 1 first_pose_ind = loop_pair[0] second_pose_ind = loop_pair[1] first_pose = absolute_poses[first_pose_ind] second_pose = absolute_poses[second_pose_ind] else: first_pose_ind = ind second_pose_ind = ind + 1 first_pose = absolute_poses[first_pose_ind] second_pose = absolute_poses[second_pose_ind] # calculate the pose difference between keyframes pair pose_diff = np.linalg.inv(second_pose) @ first_pose relative_pose = se3.se3Exp(relative_poses[ind]) residual[ind + 1] = se3.se3Log(np.linalg.inv(relative_pose) @ pose_diff) residual[0] = se3.se3Log(absolute_poses[0]) residual = residual.reshape(-1) return residual def calculate_jaco_single_frame(pose_num, absolute_pose, resid): jacobian = np.zeros([6, 6 * pose_num]) for j in range(6): epsVec = np.zeros(6) eps = 1e-6 epsVec[j] = eps # multiply pose increment from left onto the absolute poses first_pose_eps = se3.se3Exp(epsVec) @ absolute_pose resid_eps = se3.se3Log(first_pose_eps) # calculate jacobian at first and second pose position jacobian[:, j] = (resid_eps - resid) / eps return jacobian def pgo_with_auto_loop_closure(pair_path=None, absolute_poses=None, kf_index=None, loop_pairs=None, level=4, r_p_list=[], s_m_list=[], lambd=0.1): pose_num = len(absolute_poses) pair_num = len(loop_pairs) b_k = np.zeros(6 * pose_num) # b_k vector h_k = np.zeros([6 * pose_num, 6 * pose_num]) # H_k matrix residual = np.zeros([pair_num + 1, 6]) # residual vector relative_pose_list = r_p_list sigma_matrix_list = s_m_list for i in np.arange(pair_num): ref_frame = loop_pairs[i][0] cur_frame = loop_pairs[i][1] first_pose_ind = np.where(kf_index == ref_frame)[0][0] second_pose_ind = np.where(kf_index == cur_frame)[0][0] first_pose = absolute_poses[first_pose_ind] second_pose = absolute_poses[second_pose_ind] image1, depth1, _ = rp.read_pair(pair_path, ref_frame) image2, depth2, _ = rp.read_pair(pair_path, cur_frame) # calculate the pose difference between keyframes pair pose_diff = np.linalg.inv(second_pose) @ first_pose # create relative pose constraint between keyframes pair through direct image alignment in the first pgo iter if len(relative_pose_list) < i + 1: image1, depth1, _ = rp.read_pair(pair_path, ref_frame) image2, depth2, _ = rp.read_pair(pair_path, cur_frame) relative_pose, sigma_matrix = create_relative_pose_constraint(image1, depth1, image2, depth2, level, se3.se3Log(pose_diff)) relative_pose_list.append(relative_pose) sigma_matrix_list.append(sigma_matrix) else: relative_pose = relative_pose_list[i] sigma_matrix = sigma_matrix_list[i] # convert twist coordinate to 4*4 transformation matrix relative_pose = se3.se3Exp(relative_pose) # calculate relative pose residual between this key-frame pair resid = se3.se3Log(np.linalg.inv(relative_pose) @ pose_diff) # stack residual vector residual[i + 1] = resid # calculate jacobian matrix jacobian = calculatejacobian(pose_num, first_pose, second_pose, relative_pose, first_pose_ind, second_pose_ind, resid) # accumulate b_k and h_k for gauss newton step b_k += jacobian.T @ sigma_matrix @ resid h_k += jacobian.T @ sigma_matrix @ jacobian # print('keyframes pair:{}'.format(i + 1)) print(i , np.all(np.linalg.eigvals(h_k) > 0)) gc.collect() # add another term for first pose in b_k and h_k resid_0 = se3.se3Log(absolute_poses[0]) residual[0] = resid_0 jaco_0 = calculate_jaco_single_frame(pose_num, absolute_poses[0], resid_0) sigma_matrix = np.identity(6) * 1e6 b_k += jaco_0.T @ sigma_matrix @ resid_0 h_k += jaco_0.T @ sigma_matrix @ jaco_0 # update all key frame poses # upd = - np.linalg.inv(h_k) @ b_k # use gauss-newton # use cholesky factorization to solve the linear system H x = b c = cholesky(h_k + lambd * np.diag(np.diag(h_k))) # use <NAME> upd = - cho_solve((c, False), b_k) upd = upd.reshape(-1, 6) for jj in range(pose_num): absolute_poses[jj] = se3.se3Exp(upd[jj]) @ absolute_poses[jj] residual = residual.reshape(-1) residual_after_update = calculate_residual_with_auto_lc(absolute_poses, relative_pose_list, loop_pairs, kf_index) return absolute_poses, residual, relative_pose_list, sigma_matrix_list, residual_after_update def calculate_residual_with_auto_lc(absolute_poses, relative_poses, loop_pairs, kf_index): pair_num = len(loop_pairs) residual = np.zeros([pair_num + 1, 6]) # residual vector for i in np.arange(pair_num): ref_frame = loop_pairs[i][0] cur_frame = loop_pairs[i][1] first_pose_ind = np.where(kf_index == ref_frame)[0][0] second_pose_ind = np.where(kf_index == cur_frame)[0][0] first_pose = absolute_poses[first_pose_ind] second_pose = absolute_poses[second_pose_ind] # calculate the pose difference between keyframes pair pose_diff = np.linalg.inv(second_pose) @ first_pose relative_pose = se3.se3Exp(relative_poses[i]) residual[i + 1] = se3.se3Log(np.linalg.inv(relative_pose) @ pose_diff) residual[0] = se3.se3Log(absolute_poses[0]) residual = residual.reshape(-1) return residual def create_relative_pose_constraint(image1, depth1, image2, depth2, level, initial_rela_pose): # camera calibration matrix fx = 520.9 # focal length x fy = 521.0 # focal length y cx = 325.1 # optical center x cy = 249.7 # optical center y K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]]) use_hubernorm = 1 norm_param = 0.2 # perform level times down_sampling and display the downscaled image Id = image1 Dd = depth1 Kd = K for i in range(level): Id, Dd, Kd = ds.downscale(Id, Dd, Kd) Iref = Id Dref = Dd Id = image2 Dd = depth2 Kd = K for i in range(level): Id, Dd, Kd = ds.downscale(Id, Dd, Kd) # do direct image alignment between this key-frame pair xi = initial_rela_pose relative_pose, sigma_matrix = lk.do_alignment(Iref, Dref, Kd, Id, Dd, xi, norm_param, use_hubernorm) return relative_pose, sigma_matrix def calculatejacobian(pose_num, first_pose, second_pose, relative_pose, first_pose_ind, second_pose_ind, resid): jacobian = np.zeros([6, 6 * pose_num]) for j in range(6): epsVec = np.zeros(6) eps = 1e-6 epsVec[j] = eps # multiply pose increment from left onto the absolute poses first_pose_eps = se3.se3Exp(epsVec) @ first_pose second_pose_eps = se3.se3Exp(epsVec) @ second_pose # calculate new pose difference after eps pose increment and new relative pose residual # first key frame, fix second_pose pose_diff_eps = np.linalg.inv(second_pose) @ first_pose_eps resid_first_eps = se3.se3Log(np.linalg.inv(relative_pose) @ pose_diff_eps) # second key frame, fix first pose pose_diff_eps = np.linalg.inv(second_pose_eps) @ first_pose resid_second_eps = se3.se3Log(
np.linalg.inv(relative_pose)
numpy.linalg.inv
def cvar(x, f, ys, alpha): ''' Returns CVaR of a decision x. f is the objective function which is a parameter of both x and a random scenario y. ys is a list of scenarios. alpha is the parameter giving the degree of risk-aversion. ''' import numpy as np fvals = [f(x, y) for y in ys] fvals.sort() return np.mean(fvals[:int(alpha*len(ys))]) def var(x, f, ys, alpha): ''' Returns the value at risk of decision x. ''' fvals = [f(x, y) for y in ys] fvals.sort() return fvals[int(alpha*len(ys))-1] def rascal(x0, tau0, K, FO, LO, ys, f, M, alpha, u): ''' Stochastic Frank-Wolfe algorithm. x0: initial point in R^n K: number of iterations FO: stochastic first-order oracle (returns unbiased estimate of gradient) LO: linear optimization oracle over the feasible set ys: list or array of scenarios, such that any entry can be passed to f f: objective function f(x, y) M: upper bound on the value of f alpha: CVaR parameter u: smoothing parameter ''' import numpy as np x = np.array(x0) tau = tau0 #tie breaker random noise r = np.random.random((len(ys))) * 0.00001 all_x = [] for k in range(K): print(k) all_x.append(x.copy()) #compute gradient with respect to x grad = smooth_grad(x, tau, ys, f, FO, r, u, alpha) #update x v = LO(grad) x = x + (1./K)*v #update tau fvals = np.array([f(x,y) + r[j] for j,y in enumerate(ys)]) tau = smooth_tau(fvals, alpha, u) return x, all_x def smooth_grad(x, tau, ys, f, FO, r, u, alpha): ''' Computes smoothed estimate of gradient at x. See rascal for parameters. ''' import numpy as np fvals = np.array([f(x, y) for y in ys]) if u > 0: interval_length = tau + u - fvals interval_length = np.maximum(interval_length, 0) interval_length = np.minimum(interval_length, u) interval_length /= u else: interval_length = np.zeros((len(ys))) interval_length[fvals <= tau] = 1 grad = np.zeros(len(x)) for i,y in enumerate(ys): if fvals[i] <= tau + u: grad += interval_length[i] * FO(x, y) return 1./(u * alpha * len(ys)) * grad def smooth_tau(fvals, alpha, u): ''' Computes optimal value of tau over smoothed interval of size u via binary search. ''' upper = fvals.max() lower = fvals.min() tau = (upper - lower)/2 while upper - lower > 0.001: if smooth_fraction_under(fvals, tau, u) > alpha: upper = tau else: lower = tau tau = (upper + lower)/2 return tau def smooth_fraction_under(fvals, tau, u): ''' Helper function for smooth_tau ''' import numpy as np if u > 0: interval_length = tau + u - fvals interval_length = np.maximum(interval_length, 0) interval_length = np.minimum(interval_length, u) interval_length /= u else: interval_length = np.zeros((len(fvals))) interval_length[fvals <= tau] = 1 return interval_length.mean() def sfw(x0, K, FO, LO, ys): ''' Stochastic Frank-Wolfe algorithm for maximizing the expected value of f(x,y) x0: initial point in R^n K: number of iterations FO: stochastic first-order oracle (returns unbiased estimate of gradient) LO: linear optimization oracle over the feasible set ys: list or array of scenarios, such that any entry can be passed to f ''' import numpy as np x =
np.array(x0)
numpy.array
# Vendor import numpy as np # Project from tasks.Task import Task class TaskListSearch(Task): """ [ListSearch] Given a pointer to the head of a linked list and a value `v` to find return a pointer to the first node on the list with the value `v`. The list is placed in memory in the same way as in the task ListK. We fill empty memory with “trash” values to prevent the network from “cheating” and just iterating over the whole memory. """ def create(self) -> (np.ndarray, np.ndarray, np.ndarray): list_size = int((self.max_int - 2) / 2) list_elements = np.random.randint(0, self.max_int, size=(self.batch_size, list_size)) lists_elements_permutations = np.stack([np.random.permutation(list_size) for _ in range(self.batch_size)], axis=0) init_mem = np.zeros((self.batch_size, self.max_int), dtype=np.int32) # Create for each example the list for example in range(self.batch_size): for j, permidx in enumerate(lists_elements_permutations[example]): next_element_pointer = np.where(lists_elements_permutations[example] == permidx + 1)[0] if permidx == 0: # If the node is the first than set the pointer in the first memory position init_mem[example, 0] = 2 + 2 * j init_mem[example, 2 + (2 * j)] = \ -1.0 if len(next_element_pointer) == 0 else 2 + (2 * next_element_pointer[0]) # Set the pointer to the next list node init_mem[example, 2 + (2 * j) + 1] = list_elements[example, j] # Set the value of the list node init_mem[:, 1] = list_elements[:, 0] # Set the elements to search in the list if self.max_int % 2 != 0: init_mem[:, -1] = -1 out_mem = init_mem.copy() for example in range(self.batch_size): found = False pointer = out_mem[example, 0] while not found and pointer != -1: if out_mem[example, pointer + 1] == out_mem[example, 1]: out_mem[example, 0] = pointer found = True else: pointer = out_mem[example, pointer] cost_mask =
np.zeros((self.batch_size, self.max_int), dtype=np.int8)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 5 17:55:12 2018 @author: jsevillamol """ import logging, time from datetime import timedelta import math import threading import tables import pandas as pd import numpy as np from tensorflow.keras.utils import Sequence, to_categorical from ctalearn.data.image_mapping import ImageMapper from ctalearn.data.data_processing import DataProcessor class DataManager(): """ Manages access to the datafiles :method get_train_val_gen: :method get_pred_gen: """ def __init__(self, file_list_fn, image_mapping_config = {}, preprocessing_config = {}, selected_tel_types=['LST'], data_type='array', img_size=(120,120), channels=['image_charge'], min_triggers_per_event=1 ): """ :param file_list_fn: path to .txt file which lists paths to all .h5 files containing data :param imageMapper_config = {} :param dataProcessor_config = {} :param img_shape: :param channels: :param selected_tel_types: """ logging.info('initializing DataManager...') t_start = time.time() # Set class fields self._selected_tel_types = selected_tel_types self._data_type = data_type self._img_size = img_size self._channels = channels self._min_triggers_per_event = min_triggers_per_event self._keep_telescope_position = False #TODO choose better name self._classes = list(PARTICLE_ID_TO_CLASS_NAME.values()) self._class_name_to_class_label = {'proton':0, 'gamma':1} #TODO fix hardcoding # Load files self._load_files_(file_list_fn) # Create a common index of events self._load_dataset_info_() # Compute dataset statistics self.dataset_metadata = self._compute_dataset_metadata() # Load telescope array info self.tel_array_metadata = self._compute_telescope_array_metadata() # Initialize ImageMapper and DataProcessor self._imageMapper = ImageMapper(**image_mapping_config) self._dataProcessor = DataProcessor(dataset_metadata = self.dataset_metadata, **preprocessing_config) # Logging end of initialization t_end = time.time() t_delta = timedelta(seconds=t_end - t_start) logging.info('DataManager initialized') logging.info(f"Time elapsed during DataManager initialization: {t_delta}") def _load_files_(self, file_list_fn): """ Loads the .hdf5 files containing the data :param file_list_fn: filename of the .txt file containing the paths of the .h5 datafiles """ # Load file list data_files = [] with open(file_list_fn) as file_list: aux = [line.strip() for line in file_list] # Filter empty and commented lines data_files = [line for line in aux if line and line[0] != '#'] # Load data files self.files = {filename: self.__synchronized_open_file(filename, mode='r') for filename in data_files} @staticmethod def __synchronized_open_file(*args, **kwargs): with threading.Lock() as lock: return tables.open_file(*args, **kwargs) @staticmethod def __synchronized_close_file(self, *args, **kwargs): with threading.Lock() as lock: return self.close(*args, **kwargs) def _load_dataset_info_(self): """ Creates two pandas dataframes indexing all events from all files and the images from the selected telescope types that pass the specified filters :returns image_index: :returns event_index: """ image_index = [] event_index = [] for fn in self.files: datafile = self.files[fn] # All events in the same file have the same particle type particle_type = datafile.root._v_attrs.particle_type class_name = PARTICLE_ID_TO_CLASS_NAME[particle_type] # Each row of each datafile is a different event for row in datafile.root.Event_Info.iterrows(): # skip the row if the event associated does not pass the filter if not self._filter_event(fn, row): continue event_img_idxs = [] for tel_type in self._selected_tel_types: try: img_rows_tel = row[tel_type + '_indices'] except KeyError: logging.warning(f"No such telescope {tel_type} in file {fn}") continue img_idxs = [] for img_row in img_rows_tel: # If the image was not triggered or does not pass the filter if img_row == 0 or not self._filter_img(fn, tel_type, img_row): if self._keep_telescope_position: img_idxs.append(-1) continue # Compute image statistics record = datafile.root._f_get_child(tel_type)[img_row] energy_trace = record['image_charge'] min_energy = np.min(energy_trace) max_energy = np.max(energy_trace) total_energy = np.sum(energy_trace) img_idxs.append(len(image_index)) image_index.append({ 'filename': fn, 'tel_type': tel_type, 'img_row': img_row, 'event_index': len(event_index), 'class_name': class_name, 'min_energy': min_energy, 'max_energy': max_energy, 'total_energy' : total_energy }) # Add global image indices to the event indices event_img_idxs += img_idxs # If there is at least one non-dummy image associated to this event # add it to the event index if len([idx for idx in event_img_idxs if idx != -1]) >= self._min_triggers_per_event: event_index.append({ 'filename': fn, 'image_indices': event_img_idxs, 'class_name': class_name }) # Create pandas dataframes self._image_index_df = pd.DataFrame(image_index) self._event_index_df = pd.DataFrame(event_index) def _filter_event(self, fn, event_row): """ Returns True if the event passes the specified filters """ return True #TODO implement event filter def _filter_img(self, fn, tel_type, img_row): """ Returns True if the image passes the specified filters """ # if the img_row == 0 then the telescope did not trigger, # so there is no such image if img_row == 0: return False return True #TODO def _compute_dataset_metadata(self, selected_indices=None): """ Computes some handy data of the chosen indices of the dataset :param event_indices: indices of the rows to be used to compute the metadata if None, the whole dataset is used This allows us to compute metadata for the train / val sets :return metadata: container object whose fields store information about the dataset """ if selected_indices is not None and self._data_type == 'array': # Select chosen rows of event and image index event_index_df = self._event_index_df.iloc[selected_indices] image_indices = event_index_df.image_indices.sum() image_index_df = self._image_index_df.iloc[image_indices] elif selected_indices is not None and self._data_type == 'single_tel': image_index_df = self._image_index_df.iloc[selected_indices] event_index_df = self._event_index_df else: # Use the whole dataset event_index_df = self._event_index_df image_index_df = self._image_index_df # Create a empty object to store the data metadata = type('', (), {})() # Event metadata metadata.n_events_per_class = event_index_df.groupby(['class_name']).size() metadata.max_seq_length = event_index_df.image_indices.map(len).max() # Image metadata metadata.n_images_per_telescope = image_index_df.groupby(['tel_type']).size() metadata.n_images_per_class = image_index_df.groupby(['class_name']).size() metadata.image_charge_min = image_index_df.min_energy.min() metadata.image_charge_max = image_index_df.min_energy.max() # Class weights if self._data_type == 'array': count_by_class = metadata.n_events_per_class elif self._data_type == 'single_tel': count_by_class = metadata.n_images_per_class total = count_by_class.sum() metadata.class_weight = \ {self._class_name_to_class_label[class_name]: count_by_class[class_name] / total for class_name in count_by_class.keys()} return metadata def _compute_telescope_array_metadata(self): # Create empty object to hold the relevant information tel_array_metadata = type('', (), {})() tel_array_metadata.n_telescopes_per_type = {} tel_array_metadata.max_telescope_position = [0,0,0] # all files contain the same array information f = next(iter(self.files.values())) for row in f.root.Array_Info.iterrows(): tel_type = row['tel_type'] if tel_type not in tel_array_metadata.n_telescopes_per_type: tel_array_metadata.n_telescopes_per_type[tel_type] = 0 tel_array_metadata.n_telescopes_per_type[tel_type] += 1 tel_pos = row['tel_x'], row['tel_y'], row['tel_z'] for i in range(3): if tel_array_metadata.max_telescope_position[i] < tel_pos[i]: tel_array_metadata.max_telescope_position[i] = tel_pos[i] return tel_array_metadata ################################### # EVENT AND IMAGE GETTERS ################################### def _get_batch(self, batch_idxs): """ Returns the data and labels associated to an example :param example_id: unique identifier of an example :returns data: :returns labels: """ if self._data_type == 'array': # Get and stack img data, padding shorter sequences with 0 values events = [self._get_event_imgs(example_idx) for example_idx in batch_idxs] data = self._dataProcessor.preprocess_event_batch(events) elif self._data_type == 'single_tel': imgs = [self._get_image(img_id) for img_id in batch_idxs] data = np.stack(imgs) # Get and stack labels labels = [self._get_labels(example_idx) for example_idx in batch_idxs] labels = np.stack(labels) return data, labels def _get_event_imgs(self, event_id): """ Returns the imgs associated to an event :param event_id: unique identifier of an event in the dataset :return imgs: numpy array of shape (n_triggers, width, heigth, n_channels) """ # get indices of images associated to this event img_idxs = self._event_index_df.at[event_id, 'image_indices'] # get images imgs = [self._get_image(img_id) for img_id in img_idxs] # Preprocess event imgs = self._dataProcessor.preprocess_event(imgs) return imgs def _get_image(self, img_id): """ Loads and prepares an image for Keras consumption :param img_id: id of the image in the global image index """ # If the image has index -1 it is replaced by dummy data if img_id == -1: output_shape = self._img_size + (len(self._channels),) return np.zeros(output_shape) # load vector trace trace = self._load_trace(img_id) # tranform vector data to 2D img tel_type = self._image_index_df.at[img_id, 'tel_type'] img = self._imageMapper.vector2image(trace, tel_type) # preprocess img img = self._dataProcessor.preprocess_img(img, self._img_size) return img def _load_trace(self, img_id): """ Loads a vector trace from the .hdf5 datafiles :param fn: filename of datafile containing the trace of a img :param tel_type: type of telescope of image :param idx: row where the trace is stored :returns: np array of shape (n_pix, n_channels) """ # retrieve index data fn = self._image_index_df.at[img_id, 'filename'] tel_type = self._image_index_df.at[img_id, 'tel_type'] img_idx = self._image_index_df.at[img_id, 'img_row' ] # retrieve image entry f = self.files[fn] record = f.root._f_get_child(tel_type)[img_idx] # Load channels shape = (record['image_charge'].shape[0] + 1, len(self._channels)) trace =
np.empty(shape, dtype=np.float32)
numpy.empty
""" test_distance.py Tests distance module. Copyright 2018 Spectre Team Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from unittest.mock import patch import numpy as np import spdivik.distance as dist class IntradistanceCall(NotImplementedError): pass class InterdistanceCall(NotImplementedError): pass class DummyDistanceMetric(dist.DistanceMetric): def _intradistance(self, *_): raise IntradistanceCall(self._intradistance.__name__) def _interdistance(self, *_): raise InterdistanceCall(self._interdistance.__name__) # noinspection PyCallingNonCallable class DistanceMetricTest(unittest.TestCase): def setUp(self): self.metric = DummyDistanceMetric() self.first = np.array([[1], [2], [3]]) self.second = np.array([[4], [5]]) def test_throws_when_input_is_not_an_array(self): with self.assertRaises(ValueError): self.metric([[1]], np.array([[1]])) with self.assertRaises(ValueError): self.metric(np.array([[1]]), [[1]]) def test_throws_when_input_is_not_2D(self): with self.assertRaises(ValueError): self.metric(np.array([1]), np.array([[1]])) with self.assertRaises(ValueError): self.metric(
np.array([[1]])
numpy.array
from torch.utils.data import Dataset from utils import read_pfm import os import numpy as np import cv2 from PIL import Image import torch from torchvision import transforms as T import torchvision.transforms.functional as F def colorjitter(img, factor): # brightness_factor,contrast_factor,saturation_factor,hue_factor # img = F.adjust_brightness(img, factor[0]) # img = F.adjust_contrast(img, factor[1]) img = F.adjust_saturation(img, factor[2]) img = F.adjust_hue(img, factor[3]-1.0) return img class MVSDatasetDTU(Dataset): def __init__(self, root_dir, split, n_views=3, levels=1, img_wh=None, downSample=1.0, max_len=-1): """ img_wh should be set to a tuple ex: (1152, 864) to enable test mode! """ self.root_dir = root_dir self.split = split assert self.split in ['train', 'val', 'test'], \ 'split must be either "train", "val" or "test"!' self.img_wh = img_wh self.downSample = downSample self.scale_factor = 1.0 / 200 self.max_len = max_len if img_wh is not None: assert img_wh[0] % 32 == 0 and img_wh[1] % 32 == 0, \ 'img_wh must both be multiples of 32!' self.build_metas() self.n_views = n_views self.levels = levels # FPN levels self.build_proj_mats() self.define_transforms() print(f'==> image down scale: {self.downSample}') def define_transforms(self): self.transform = T.Compose([T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def build_metas(self): self.metas = [] with open(f'configs/lists/dtu_{self.split}_all.txt') as f: self.scans = [line.rstrip() for line in f.readlines()] # light conditions 0-6 for training # light condition 3 for testing (the brightest?) light_idxs = [3] if 'train' != self.split else range(7) self.id_list = [] for scan in self.scans: with open(f'configs/dtu_pairs.txt') as f: num_viewpoint = int(f.readline()) # viewpoints (49) for _ in range(num_viewpoint): ref_view = int(f.readline().rstrip()) src_views = [int(x) for x in f.readline().rstrip().split()[1::2]] for light_idx in light_idxs: self.metas += [(scan, light_idx, ref_view, src_views)] self.id_list.append([ref_view] + src_views) self.id_list = np.unique(self.id_list) self.build_remap() def build_proj_mats(self): proj_mats, intrinsics, world2cams, cam2worlds = [], [], [], [] for vid in self.id_list: proj_mat_filename = os.path.join(self.root_dir, f'Cameras/train/{vid:08d}_cam.txt') intrinsic, extrinsic, near_far = self.read_cam_file(proj_mat_filename) intrinsic[:2] *= 4 extrinsic[:3, 3] *= self.scale_factor intrinsic[:2] = intrinsic[:2] * self.downSample intrinsics += [intrinsic.copy()] # multiply intrinsics and extrinsics to get projection matrix proj_mat_l = np.eye(4) intrinsic[:2] = intrinsic[:2] / 4 proj_mat_l[:3, :4] = intrinsic @ extrinsic[:3, :4] proj_mats += [(proj_mat_l, near_far)] world2cams += [extrinsic] cam2worlds += [np.linalg.inv(extrinsic)] self.proj_mats, self.intrinsics = np.stack(proj_mats), np.stack(intrinsics) self.world2cams, self.cam2worlds = np.stack(world2cams), np.stack(cam2worlds) def read_cam_file(self, filename): with open(filename) as f: lines = [line.rstrip() for line in f.readlines()] # extrinsics: line [1,5), 4x4 matrix extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ') extrinsics = extrinsics.reshape((4, 4)) # intrinsics: line [7-10), 3x3 matrix intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ') intrinsics = intrinsics.reshape((3, 3)) # depth_min & depth_interval: line 11 depth_min = float(lines[11].split()[0]) * self.scale_factor depth_max = depth_min + float(lines[11].split()[1]) * 192 * self.scale_factor self.depth_interval = float(lines[11].split()[1]) return intrinsics, extrinsics, [depth_min, depth_max] def read_depth(self, filename): depth_h = np.array(read_pfm(filename)[0], dtype=np.float32) # (800, 800) depth_h = cv2.resize(depth_h, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_NEAREST) # (600, 800) depth_h = depth_h[44:556, 80:720] # (512, 640) depth_h = cv2.resize(depth_h, None, fx=self.downSample, fy=self.downSample, interpolation=cv2.INTER_NEAREST) # !!!!!!!!!!!!!!!!!!!!!!!!! depth = cv2.resize(depth_h, None, fx=1.0 / 4, fy=1.0 / 4, interpolation=cv2.INTER_NEAREST) # !!!!!!!!!!!!!!!!!!!!!!!!! mask = depth > 0 return depth, mask, depth_h def build_remap(self): self.remap = np.zeros(np.max(self.id_list) + 1).astype('int') for i, item in enumerate(self.id_list): self.remap[item] = i def __len__(self): return len(self.metas) if self.max_len <= 0 else self.max_len def __getitem__(self, idx): sample = {} scan, light_idx, target_view, src_views = self.metas[idx] if self.split=='train': ids = torch.randperm(5)[:3] view_ids = [src_views[i] for i in ids] + [target_view] else: view_ids = [src_views[i] for i in range(3)] + [target_view] affine_mat, affine_mat_inv = [], [] imgs, depths_h = [], [] proj_mats, intrinsics, w2cs, c2ws, near_fars = [], [], [], [], [] # record proj mats between views for i, vid in enumerate(view_ids): # NOTE that the id in image file names is from 1 to 49 (not 0~48) img_filename = os.path.join(self.root_dir, f'Rectified/{scan}_train/rect_{vid + 1:03d}_{light_idx}_r5000.png') depth_filename = os.path.join(self.root_dir, f'Depths/{scan}/depth_map_{vid:04d}.pfm') img = Image.open(img_filename) img_wh = np.round(np.array(img.size) * self.downSample).astype('int') img = img.resize(img_wh, Image.BILINEAR) img = self.transform(img) imgs += [img] index_mat = self.remap[vid] proj_mat_ls, near_far = self.proj_mats[index_mat] intrinsics.append(self.intrinsics[index_mat]) w2cs.append(self.world2cams[index_mat]) c2ws.append(self.cam2worlds[index_mat]) affine_mat.append(proj_mat_ls) affine_mat_inv.append(np.linalg.inv(proj_mat_ls)) if i == 0: # reference view ref_proj_inv = np.linalg.inv(proj_mat_ls) proj_mats += [np.eye(4)] else: proj_mats += [proj_mat_ls @ ref_proj_inv] if os.path.exists(depth_filename): depth, mask, depth_h = self.read_depth(depth_filename) depth_h *= self.scale_factor depths_h.append(depth_h) else: depths_h.append(np.zeros((1, 1))) near_fars.append(near_far) imgs = torch.stack(imgs).float() # if self.split == 'train': # imgs = colorjitter(imgs, 1.0+(torch.rand((4,))*2-1.0)*0.5) # imgs = F.normalize(imgs,mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) depths_h = np.stack(depths_h) proj_mats = np.stack(proj_mats)[:, :3] affine_mat, affine_mat_inv = np.stack(affine_mat), np.stack(affine_mat_inv) intrinsics, w2cs, c2ws, near_fars =
np.stack(intrinsics)
numpy.stack
from __future__ import print_function from utilities import nifty, block_matrix, math_utils # standard library imports from sys import exit from time import time # third party import networkx as nx from collections import OrderedDict, defaultdict from numpy.linalg import multi_dot import numpy as np np.set_printoptions(precision=4, suppress=True) # local application imports try: from .internal_coordinates import InternalCoordinates from .primitive_internals import PrimitiveInternalCoordinates from .topology import Topology from .slots import * except: from internal_coordinates import InternalCoordinates from primitive_internals import PrimitiveInternalCoordinates from topology import Topology from slots import * class DelocalizedInternalCoordinates(InternalCoordinates): def __init__(self, options ): super(DelocalizedInternalCoordinates, self).__init__(options) # Cache some useful attributes self.options = options constraints = options['constraints'] cvals = options['cVals'] self.atoms = options['atoms'] self.natoms = len(self.atoms) # The DLC contains an instance of primitive internal coordinates. if self.options['primitives'] is None: print(" making primitives ") t1 = time() self.Prims = PrimitiveInternalCoordinates(options.copy()) dt = time() - t1 print(" Time to make prims %.3f" % dt) self.options['primitives'] = self.Prims else: print(" setting primitives from options!") # print(" warning: not sure if a deep copy prims") # self.Prims=self.options['primitives'] t0 = time() self.Prims = PrimitiveInternalCoordinates.copy(self.options['primitives']) print(" num of primitives {}".format(len(self.Prims.Internals))) dt = time() - t0 print(" Time to copy prims %.3f" % dt) self.Prims.clearCache() # print "in constructor",len(self.Prims.Internals) xyz = options['xyz'] xyz = xyz.flatten() connect = options['connect'] addcart = options['addcart'] addtr = options['addtr'] if addtr: if connect: raise RuntimeError(" Intermolecular displacements are defined by translation and rotations! \ Don't add connect!") elif addcart: if connect: raise RuntimeError(" Intermolecular displacements are defined by cartesians! \ Don't add connect!") else: pass self.build_dlc(xyz) # print("vecs after build") # print(self.Vecs) def clearCache(self): super(DelocalizedInternalCoordinates, self).clearCache() self.Prims.clearCache() def __repr__(self): return self.Prims.__repr__() def update(self, other): return self.Prims.update(other.Prims) def join(self, other): return self.Prims.join(other.Prims) def copy(self, xyz): return type(self)(self.options.copy().set_values({'xyz': xyz})) def addConstraint(self, cPrim, cVal, xyz): self.Prims.addConstraint(cPrim, cVal, xyz) def getConstraints_from(self, other): self.Prims.getConstraints_from(other.Prims) def haveConstraints(self): return len(self.Prims.cPrims) > 0 def getConstraintViolation(self, xyz): return self.Prims.getConstraintViolation(xyz) def printConstraints(self, xyz, thre=1e-5): self.Prims.printConstraints(xyz, thre=thre) def getConstraintTargetVals(self): return self.Prims.getConstraintTargetVals() def augmentGH(self, xyz, G, H): """ Add extra dimensions to the gradient and Hessian corresponding to the constrained degrees of freedom. The Hessian becomes: H c cT 0 where the elements of cT are the first derivatives of the constraint function (typically a single primitive minus a constant) with respect to the DLCs. Since we picked a DLC to represent the constraint (cProj), we only set one element in each row of cT to be nonzero. Because cProj = a_i * Prim_i + a_j * Prim_j, we have d(Prim_c)/d(cProj) = 1.0/a_c where "c" is the index of the primitive being constrained. The extended elements of the Gradient are equal to the constraint violation. Parameters ---------- xyz : np.ndarray Flat array containing Cartesian coordinates in atomic units G : np.ndarray Flat array containing internal coordinate gradient H : np.ndarray Square array containing internal coordinate Hessian Returns ------- GC : np.ndarray Flat array containing gradient extended by constraint violations HC : np.ndarray Square matrix extended by partial derivatives d(Prim)/d(cProj) """ # Number of internals (elements of G) ni = len(G) # Number of constraints nc = len(self.Prims.cPrims) # Total dimension nt = ni+nc # Lower block of the augmented Hessian cT = np.zeros((nc, ni), dtype=float) c0 = np.zeros(nc, dtype=float) for ic, c in enumerate(self.Prims.cPrims): # Look up the index of the primitive that is being constrained iPrim = self.Prims.Internals.index(c) # The DLC corresponding to the constrained primitive (a.k.a. cProj) is self.Vecs[self.cDLC[ic]]. # For a differential change in the DLC, the primitive that we are constraining changes by: cT[ic, self.cDLC[ic]] = 1.0/self.Vecs[iPrim, self.cDLC[ic]] # Calculate the further change needed in this constrained variable c0[ic] = self.Prims.cVals[ic] - c.value(xyz) if c.isPeriodic: Plus2Pi = c0[ic] + 2*np.pi Minus2Pi = c0[ic] - 2*np.pi if np.abs(c0[ic]) > np.abs(Plus2Pi): c0[ic] = Plus2Pi if np.abs(c0[ic]) > np.abs(Minus2Pi): c0[ic] = Minus2Pi # Construct augmented Hessian HC = np.zeros((nt, nt), dtype=float) HC[0:ni, 0:ni] = H[:, :] HC[ni:nt, 0:ni] = cT[:, :] HC[0:ni, ni:nt] = cT.T[:, :] # Construct augmented gradient GC = np.zeros(nt, dtype=float) GC[0:ni] = G[:] GC[ni:nt] = -c0[:] return GC, HC def applyConstraints(self, xyz): """ Pass in Cartesian coordinates and return new coordinates that satisfy the constraints exactly. This is not used in the current constrained optimization code that uses Lagrange multipliers instead. """ xyz1 = xyz.copy() niter = 0 while True: dQ = np.zeros(len(self.Internals), dtype=float) for ic, c in enumerate(self.Prims.cPrims): # Look up the index of the primitive that is being constrained iPrim = self.Prims.Internals.index(c) # Look up the index of the DLC that corresponds to the constraint iDLC = self.cDLC[ic] # Calculate the further change needed in this constrained variable dQ[iDLC] = (self.Prims.cVals[ic] - c.value(xyz1))/self.Vecs[iPrim, iDLC] if c.isPeriodic: Plus2Pi = dQ[iDLC] + 2*np.pi Minus2Pi = dQ[iDLC] - 2*np.pi if np.abs(dQ[iDLC]) > np.abs(Plus2Pi): dQ[iDLC] = Plus2Pi if np.abs(dQ[iDLC]) > np.abs(Minus2Pi): dQ[iDLC] = Minus2Pi # print "applyConstraints calling newCartesian (%i), |dQ| = %.3e" % (niter, np.linalg.norm(dQ)) xyz2 = self.newCartesian(xyz1, dQ, verbose=False) if np.linalg.norm(dQ) < 1e-6: return xyz2 if niter > 1 and np.linalg.norm(dQ) > np.linalg.norm(dQ0): # logger.warning("\x1b[1;93mWarning: Failed to apply Constraint\x1b[0m") return xyz1 xyz1 = xyz2.copy() niter += 1 dQ0 = dQ.copy() def newCartesian_withConstraint(self, xyz, dQ, thre=0.1, verbose=False): xyz2 = self.newCartesian(xyz, dQ, verbose) constraintSmall = len(self.Prims.cPrims) > 0 for ic, c in enumerate(self.Prims.cPrims): w = c.w if type(c) in [RotationA, RotationB, RotationC] else 1.0 current = c.value(xyz)/w reference = self.Prims.cVals[ic]/w diff = (current - reference) if np.abs(diff-2*np.pi) < np.abs(diff): diff -= 2*np.pi if np.abs(diff+2*np.pi) < np.abs(diff): diff += 2*np.pi if np.abs(diff) > thre: constraintSmall = False if constraintSmall: xyz2 = self.applyConstraints(xyz2) return xyz2 def wilsonB(self, xyz): Bp = self.Prims.wilsonB(xyz) return block_matrix.dot(block_matrix.transpose(self.Vecs), Bp) #def calcGrad(self, xyz, gradx): # #q0 = self.calculate(xyz) # Ginv = self.GInverse(xyz) # Bmat = self.wilsonB(xyz) # if self.frozen_atoms is not None: # for a in [3*i for i in self.frozen_atoms]: # gradx[a:a+3,0]=0. # # Internal coordinate gradient # # Gq = np.matrix(Ginv)*np.matrix(Bmat)*np.matrix(gradx) # nifty.click() # #Gq = multi_dot([Ginv, Bmat, gradx]) # Bg = block_matrix.dot(Bmat,gradx) # Gq = block_matrix.dot( Ginv, Bg) # #print("time to do block mult %.3f" % nifty.click()) # #Gq = np.dot(np.multiply(np.diag(Ginv)[:,None],Bmat),gradx) # #print("time to do efficient mult %.3f" % nifty.click()) # return Gq def calcGradProj(self, xyz, gradx): """ Project out the components of the internal coordinate gradient along the constrained degrees of freedom. This is used to calculate the convergence criteria for constrained optimizations. Parameters ---------- xyz : np.ndarray Flat array containing Cartesian coordinates in atomic units gradx : np.ndarray Flat array containing gradient in Cartesian coordinates """ if len(self.Prims.cPrims) == 0: return gradx q0 = self.calculate(xyz) Ginv = self.GInverse(xyz) Bmat = self.wilsonB(xyz) # Internal coordinate gradient # Gq = np.matrix(Ginv)*np.matrix(Bmat)*np.matrix(gradx).T Gq = multi_dot([Ginv, Bmat, gradx.T]) Gqc = np.array(Gq).flatten() # Remove the directions that are along the DLCs that we are constraining for i in self.cDLC: Gqc[i] = 0.0 # Gxc = np.array(np.matrix(Bmat.T)*np.matrix(Gqc).T).flatten() Gxc = multi_dot([Bmat.T, Gqc.T]).flatten() return Gxc def build_dlc(self, xyz, C=None): """ Build the delocalized internal coordinates (DLCs) which are linear combinations of the primitive internal coordinates. Each DLC is stored as a column in self.Vecs. In short, each DLC is an eigenvector of the G-matrix, and the number of nonzero eigenvalues of G should be equal to 3*N. After creating the DLCs, we construct special ones corresponding to primitive coordinates that are constrained (cProj). These are placed in the front (i.e. left) of the list of DLCs, and then we perform a Gram-Schmidt orthogonalization. This function is called at the end of __init__ after the coordinate system is already specified (including which primitives are constraints). Parameters ---------- xyz : np.ndarray Flat array containing Cartesian coordinates in atomic units C : np.ndarray Float array containing difference in primitive coordinates """ nifty.click() # print(" Beginning to build G Matrix") G = self.Prims.GMatrix(xyz) # in primitive coords time_G = nifty.click() # print(" Timings: Build G: %.3f " % (time_G)) tmpvecs = [] for A in G.matlist: L, Q = np.linalg.eigh(A) LargeVals = 0 LargeIdx = [] for ival, value in enumerate(L): # print("val=%.4f" %value,end=' ') if np.abs(value) > 1e-6: LargeVals += 1 LargeIdx.append(ival) # print('\n') # print("LargeVals %i" % LargeVals) tmpvecs.append(Q[:, LargeIdx]) self.Vecs = block_matrix(tmpvecs) # print(" shape of DLC") # print(self.Vecs.shape) time_eig = nifty.click() print(" Timings: Build G: %.3f Eig: %.3f" % (time_G, time_eig)) self.Internals = ["DLC %i" % (i+1) for i in range(self.Vecs.shape[1])] # Vecs has number of rows equal to the number of primitives, and # number of columns equal to the number of delocalized internal coordinates. if self.haveConstraints(): assert cVec is None, "can't have vector constraint and cprim." cVec = self.form_cVec_from_cPrims() if C is not None: # orthogonalize if (C[:] == 0.).all(): raise RuntimeError Cn = math_utils.orthogonalize(C) # transform C into basis of DLC # CRA 3/2019 NOT SURE WHY THIS IS DONE # couldn't Cn just be used? cVecs = block_matrix.dot(block_matrix.dot(self.Vecs, block_matrix.transpose(self.Vecs)), Cn) # normalize C_U try: # print(cVecs.T) cVecs = math_utils.orthogonalize(cVecs) except: print(cVecs) print("error forming cVec") exit(-1) # project constraints into vectors self.Vecs = block_matrix.project_constraint(self.Vecs, cVecs) # print(" shape of DLC") # print(self.Vecs.shape) return self.Vecs def build_dlc_conjugate(self, xyz, C=None): """ Build the delocalized internal coordinates (DLCs) which are linear combinations of the primitive internal coordinates. Each DLC is stored as a column in self.Vecs. In short, each DLC is an eigenvector of the G-matrix, and the number of nonzero eigenvalues of G should be equal to 3*N. After creating the DLCs, we construct special ones corresponding to primitive coordinates that are constrained (cProj). These are placed in the front (i.e. left) of the list of DLCs, and then we perform a Gram-Schmidt orthogonalization. This function is called at the end of __init__ after the coordinate system is already specified (including which primitives are constraints). Parameters ---------- xyz : np.ndarray Flat array containing Cartesian coordinates in atomic units C : np.ndarray Float array containing difference in primitive coordinates """ print(" starting to build G prim") nifty.click() G = self.Prims.GMatrix(xyz) # in primitive coords time_G = nifty.click() print(" Timings: Build G: %.3f " % (time_G)) tmpvecs = [] for A in G.matlist: L, Q = np.linalg.eigh(A) LargeVals = 0 LargeIdx = [] for ival, value in enumerate(L): # print("val=%.4f" %value,end=' ') if np.abs(value) > 1e-6: LargeVals += 1 LargeIdx.append(ival) # print("LargeVals %i" % LargeVals) tmpvecs.append(Q[:, LargeIdx]) self.Vecs = block_matrix(tmpvecs) time_eig = nifty.click() # print(" Timings: Build G: %.3f Eig: %.3f" % (time_G, time_eig)) self.Internals = ["DLC %i" % (i+1) for i in range(len(LargeIdx))] # Vecs has number of rows equal to the number of primitives, and # number of columns equal to the number of delocalized internal coordinates. # if self.haveConstraints(): # assert cVec is None, "can't have vector constraint and cprim." # cVec = self.form_cVec_from_cPrims() # TODO use block diagonal if C is not None: # orthogonalize if (C[:] == 0.).all(): raise RuntimeError G = block_matrix.full_matrix(self.Prims.GMatrix(xyz)) Cn = math_utils.conjugate_orthogonalize(C, G) # transform C into basis of DLC # CRA 3/2019 NOT SURE WHY THIS IS DONE # couldn't Cn just be used? cVecs = block_matrix.dot(block_matrix.dot(self.Vecs, block_matrix.transpose(self.Vecs)), Cn) # normalize C_U try: cVecs = math_utils.conjugate_orthogonalize(cVecs, G) except: print(cVecs) print("error forming cVec") exit(-1) # project constraints into vectors self.Vecs = block_matrix.project_conjugate_constraint(self.Vecs, cVecs, G) return def build_dlc_0(self, xyz): """ Build the delocalized internal coordinates (DLCs) which are linear combinations of the primitive internal coordinates. Each DLC is stored as a column in self.Vecs. In short, each DLC is an eigenvector of the G-matrix, and the number of nonzero eigenvalues of G should be equal to 3*N. After creating the DLCs, we construct special ones corresponding to primitive coordinates that are constrained (cProj). These are placed in the front (i.e. left) of the list of DLCs, and then we perform a Gram-Schmidt orthogonalization. This function is called at the end of __init__ after the coordinate system is already specified (including which primitives are constraints). Parameters ---------- xyz : np.ndarray Flat array containing Cartesian coordinates in atomic units """ # Perform singular value decomposition nifty.click() G = self.Prims.GMatrix(xyz) # Manipulate G-Matrix to increase weight of constrained coordinates if self.haveConstraints(): for ic, c in enumerate(self.Prims.cPrims): iPrim = self.Prims.Internals.index(c) G[:, iPrim] *= 1.0 G[iPrim, :] *= 1.0 ncon = len(self.Prims.cPrims) # Water Dimer: 100.0, no check -> -151.1892668451 time_G = nifty.click() L, Q = np.linalg.eigh(G) time_eig = nifty.click() # print "Build G: %.3f Eig: %.3f" % (time_G, time_eig) LargeVals = 0 LargeIdx = [] for ival, value in enumerate(L): # print ival, value if np.abs(value) > 1e-6: LargeVals += 1 LargeIdx.append(ival) Expect = 3*self.na # print "%i atoms (expect %i coordinates); %i/%i singular values are > 1e-6" % (self.na, Expect, LargeVals, len(L)) # if LargeVals <= Expect: self.Vecs = Q[:, LargeIdx] # Vecs has number of rows equal to the number of primitives, and # number of columns equal to the number of delocalized internal coordinates. if self.haveConstraints(): nifty.click() # print "Projecting out constraints...", V = [] for ic, c in enumerate(self.Prims.cPrims): # Look up the index of the primitive that is being constrained iPrim = self.Prims.Internals.index(c) # Pick a row out of the eigenvector space. This is a linear combination of the DLCs. cVec = self.Vecs[iPrim, :] cVec = np.array(cVec) cVec /= np.linalg.norm(cVec) # This is a "new DLC" that corresponds to the primitive that we are constraining cProj = np.dot(self.Vecs, cVec.T) cProj /= np.linalg.norm(cProj) V.append(np.array(cProj).flatten()) # print c, cProj[iPrim] # V contains the constraint vectors on the left, and the original DLCs on the right V = np.hstack((np.array(V).T, np.array(self.Vecs))) # Apply Gram-Schmidt to V, and produce U. # The Gram-Schmidt process should produce a number of orthogonal DLCs equal to the original number thre = 1e-6 while True: U = [] for iv in range(V.shape[1]): v = V[:, iv].flatten() U.append(v.copy()) for ui in U[:-1]: U[-1] -= ui * np.dot(ui, v) if np.linalg.norm(U[-1]) < thre: U = U[:-1] continue U[-1] /= np.linalg.norm(U[-1]) if len(U) > self.Vecs.shape[1]: thre *= 10 elif len(U) == self.Vecs.shape[1]: break elif len(U) < self.Vecs.shape[1]: raise RuntimeError('Gram-Schmidt orthogonalization has failed (expect %i length %i)' % (self.Vecs.shape[1], len(U))) # print "Gram-Schmidt completed with thre=%.0e" % thre self.Vecs = np.array(U).T # Constrained DLCs are on the left of self.Vecs. self.cDLC = [i for i in range(len(self.Prims.cPrims))] # Now self.Internals is no longer a list of InternalCoordinate objects but only a list of strings. # We do not create objects for individual DLCs but self.Internals = ["Constraint-DLC" if i < ncon else "DLC" + " %i" % (i+1) for i in range(self.Vecs.shape[1])] def build_dlc_1(self, xyz): """ Build the delocalized internal coordinates (DLCs) which are linear combinations of the primitive internal coordinates. Each DLC is stored as a column in self.Vecs. After some thought, build_dlc_0 did not implement constraint satisfaction in the most correct way. Constraint satisfaction was rather slow and the --enforce 0.1 may be passed to improve performance. Rethinking how the G matrix is constructed provides a more fundamental solution. In the new approach implemented here, constrained primitive ICs (PICs) are first set aside from the rest of the PICs. Next, a G-matrix is constructed from the rest of the PICs and diagonalized to form DLCs, called "residual" DLCs. The union of the cPICs and rDLCs forms a generalized set of DLCs, but the cPICs are not orthogonal to each other or to the rDLCs. A set of orthogonal DLCs is constructed by carrying out Gram-Schmidt on the generalized set. Orthogonalization is carried out on the cPICs in order. Next, orthogonalization is carried out on the rDLCs using a greedy algorithm that carries out projection for each cPIC, then keeps the one with the largest remaining norm. This way we avoid keeping rDLCs that are almost redundant with the cPICs. The longest projected rDLC is added to the set and continued until the expected number is reached. One special note in orthogonalization is that the "overlap" between internal coordinates corresponds to the G matrix element. Thus, for DLCs that's a linear combination of PICs, then the overlap is given by: v_i * B * B^T * v_j = v_i * G * v_j Notes on usage: 1) When this is activated, constraints tend to be satisfied very rapidly even if the current coordinates are very far from the constraint values, leading to possible blowing up of the energies. In augment_GH, maximum steps in constrained degrees of freedom are restricted to 0.1 a.u./radian for this reason. 2) Although the performance of this method is generally superior to the old method, the old method with --enforce 0.1 is more extensively tested and recommended. Thus, this method isn't enabled by default but provided as an optional feature. Parameters ---------- xyz : np.ndarray Flat array containing Cartesian coordinates in atomic units """ nifty.click() G = self.Prims.GMatrix(xyz) nprim = len(self.Prims.Internals) cPrimIdx = [] if self.haveConstraints(): for ic, c in enumerate(self.Prims.cPrims): iPrim = self.Prims.Internals.index(c) cPrimIdx.append(iPrim) ncon = len(self.Prims.cPrims) if cPrimIdx != list(range(ncon)): raise RuntimeError("The constraint primitives should be at the start of the list") # Form a sub-G-matrix that doesn't include the constrained primitives and diagonalize it to form DLCs. Gsub = G[ncon:, ncon:] time_G = nifty.click() L, Q = np.linalg.eigh(Gsub) # Sort eigenvalues and eigenvectors in descending order (for cleanliness) L = L[::-1] Q = Q[:, ::-1] time_eig = click() # print "Build G: %.3f Eig: %.3f" % (time_G, time_eig) # Figure out which eigenvectors from the G submatrix to include LargeVals = 0 LargeIdx = [] GEigThre = 1e-6 for ival, value in enumerate(L): if np.abs(value) > GEigThre: LargeVals += 1 LargeIdx.append(ival) # This is the number of nonredundant DLCs that we expect to have at the end Expect = np.sum(np.linalg.eigh(G)[0] > 1e-6) if (ncon + len(LargeIdx)) < Expect: raise RuntimeError("Expected at least %i delocalized coordinates, but got only %i" % (Expect, ncon + len(LargeIdx))) # print("%i atoms (expect %i coordinates); %i/%i singular values are > 1e-6" % (self.na, Expect, LargeVals, len(L))) # Create "generalized" DLCs where the first six columns are the constrained primitive ICs # and the other columns are the DLCs formed from the rest self.Vecs = np.zeros((nprim, ncon+LargeVals), dtype=float) for i in range(ncon): self.Vecs[i, i] = 1.0 self.Vecs[ncon:, ncon:ncon+LargeVals] = Q[:, LargeIdx] # Perform Gram-Schmidt orthogonalization def ov(vi, vj): return multi_dot([vi, G, vj]) if self.haveConstraints(): nifty.click() V = self.Vecs.copy() nv = V.shape[1] Vnorms = np.array([np.sqrt(ov(V[:, ic], V[:, ic])) for ic in range(nv)]) # U holds the Gram-Schmidt orthogonalized DLCs U = np.zeros((V.shape[0], Expect), dtype=float) Unorms = np.zeros(Expect, dtype=float) for ic in range(ncon): # At the top of the loop, V columns are orthogonal to U columns up to ic. # Copy V column corresponding to the next constraint to U. U[:, ic] = V[:, ic].copy() ui = U[:, ic] Unorms[ic] = np.sqrt(ov(ui, ui)) if Unorms[ic]/Vnorms[ic] < 0.1: print("Constraint %i is almost redundant; after projection norm is %.3f of original\n" % (ic, Unorms[ic]/Vnorms[ic])) # Project out newest U column from all remaining V columns. for jc in range(ic+1, nv): vj = V[:, jc] vj -= ui * ov(ui, vj)/Unorms[ic]**2 for ic in range(ncon, Expect): # Pick out the V column with the largest norm norms = np.array([np.sqrt(ov(V[:, jc], V[:, jc])) for jc in range(ncon, nv)]) imax = ncon+np.argmax(norms) # Add this column to U U[:, ic] = V[:, imax].copy() ui = U[:, ic] Unorms[ic] = np.sqrt(ov(ui, ui)) # Project out the newest U column from all V columns for jc in range(ncon, nv): V[:, jc] -= ui * ov(ui, V[:, jc])/Unorms[ic]**2 # self.Vecs contains the linear combination coefficients that are our new DLCs self.Vecs = U.copy() # Constrained DLCs are on the left of self.Vecs. self.cDLC = [i for i in range(len(self.Prims.cPrims))] self.Internals = ["Constraint" if i < ncon else "DLC" + " %i" % (i+1) for i in range(self.Vecs.shape[1])] # # LPW: Coefficients of DLC's are in each column and DLCs corresponding to constraints should basically be like (0 1 0 0 0 ..) # pmat2d(self.Vecs, format='f', precision=2) # B = self.Prims.wilsonB(xyz) # Bdlc = np.einsum('ji,jk->ik', self.Vecs, B) # Gdlc = np.dot(Bdlc, Bdlc.T) # # Expect to see a diagonal matrix here # print("Gdlc") # pmat2d(Gdlc, format='e', precision=2) # # Expect to see "large" eigenvalues here (no less than 0.1 ideally) # print("L, Q") # L, Q = np.linalg.eigh(Gdlc) # print(L) def form_cVec_from_cPrims(self): """ forms the constraint vector from self.cPrim -- not used in GSM""" # CRA 3/2019 warning: # I'm not sure how this works!!! # multiple constraints appears to be problematic!!! self.cDLC = [i for i in range(len(self.Prims.cPrims))] # print "Projecting out constraints...", # V=[] for ic, c in enumerate(self.Prims.cPrims): # Look up the index of the primitive that is being constrained iPrim = self.Prims.Internals.index(c) # Pick a row out of the eigenvector space. This is a linear combination of the DLCs. cVec = self.Vecs[iPrim, :] cVec = np.array(cVec) cVec /= np.linalg.norm(cVec) # This is a "new DLC" that corresponds to the primitive that we are constraining cProj = np.dot(self.Vecs, cVec.T) cProj /=
np.linalg.norm(cProj)
numpy.linalg.norm
import pickle import copy import utiltools.thirdparty.o3dhelper as o3dh import utiltools.robotmath as rm import utiltools.thirdparty.p3dhelper as p3dh import numpy as np import environment.collisionmodel as cm class Locator(object): def __init__(self, directory=None, standtype = "light"): """ standtype could be normal, light, ... :param directory: :param standtype: """ if standtype is "normal": tsfilename = "tubestand.stl" tspcdfilename = "tubestandtemplatepcd.pkl" # down x, right y tubeholecenters = [] for x in [-38,-19,0,19,38]: tubeholecenters.append([]) for y in [-81, -63, -45, -27, -9, 9, 27, 45, 63, 81]: tubeholecenters[-1].append([x,y]) self.tubeholecenters = np.array(tubeholecenters) self.tubeholesize = np.array([15, 16]) self.tubestandsize = np.array([96, 192]) elif standtype is "light": tsfilename = "tubestand_light.stl" tspcdfilename = "tubestand_light_templatepcd.pkl" tubeholecenters = [] for x in [-36, -18, 0, 18, 36]: tubeholecenters.append([]) for y in [-83.25, -64.75, -46.25, -27.75, -9.25, 9.25, 27.75, 46.25, 64.75, 83.25]: tubeholecenters[-1].append([x, y]) self.tubeholecenters = np.array(tubeholecenters) self.tubeholesize = np.array([17, 16.5]) self.tubestandsize = np.array([97, 191]) self.__directory = directory if directory is None: self.bgdepth = pickle.load(open("./databackground/bgdepth.pkl", "rb")) self.bgpcd = pickle.load(open("./databackground/bgpcd.pkl", "rb")) self.sensorhomomat = pickle.load(open("./datacalibration/calibmat.pkl", "rb")) self.tstpcdnp = pickle.load(open("./dataobjtemplate/"+tspcdfilename, "rb"))# tstpcd, tube stand template self.tubestandcm = cm.CollisionModel("./objects/"+tsfilename) self.tubebigcm = cm.CollisionModel("./objects/tubebig_capped.stl", type="cylinder", expand_radius=0) self.tubesmallcm = cm.CollisionModel("./objects/tubesmall_capped.stl", type="cylinder", expand_radius=0) else: self.bgdepth = pickle.load(open(directory+"/databackground/bgdepth.pkl", "rb")) self.bgpcd = pickle.load(open(directory+"/databackground/bgpcd.pkl", "rb")) self.sensorhomomat = pickle.load(open(directory+"/datacalibration/calibmat.pkl", "rb")) self.tstpcdnp = pickle.load(open(directory+"/dataobjtemplate/"+tspcdfilename, "rb"))# tstpcd, tube stand template self.tubestandcm = cm.CollisionModel(directory+"/objects/"+tsfilename) self.tubebigcm = cm.CollisionModel(directory +"/objects/tubebig_capped.stl", type="cylinder", expand_radius=0) self.tubesmallcm = cm.CollisionModel(directory +"/objects/tubesmall_capped.stl", type="cylinder", expand_radius=0) # for compatibility with locatorfixed self.tubestandhomomat = None def findtubestand_matchonobb(self, tgtpcdnp, toggledebug=False): """ match self.tstpcd from tgtpcdnp using the initilization by findtubestand_obb :param tgtpcdnp: :param toggledebug: :return: author: weiwei date:20191229osaka """ # toggle the following command to crop the point cloud # tgtpcdnp = tgtpcdnp[np.logical_and(tgtpcdnp[:,2]>40, tgtpcdnp[:,2]<60)] # 20200425 cluster is further included pcdarraylist, _ = o3dh.cluster_pcd(tgtpcdnp) tgtpcdnp = max(pcdarraylist, key = lambda x:len(x)) # for pcdarray in pcdarraylist: # rgb = np.random.rand(3) # rgba = np.array([rgb[0], rgb[1], rgb[2], 1]) # pcdnp = p3dh.genpointcloudnodepath(pcdarray, pntsize=5, colors=rgba) # pcdnp.reparentTo(base.render) # break # base.run() inithomomat = self.findtubestand_obb(tgtpcdnp, toggledebug) inlinnerrmse, homomat = o3dh.registration_icp_ptpt(self.tstpcdnp, tgtpcdnp, inithomomat, maxcorrdist=5, toggledebug=toggledebug) inithomomatflipped = copy.deepcopy(inithomomat) inithomomatflipped[:3,0] = -inithomomatflipped[:3,0] inithomomatflipped[:3,1] = -inithomomatflipped[:3,1] inlinnerrmseflipped, homomatflipped = o3dh.registration_icp_ptpt(self.tstpcdnp, tgtpcdnp, inithomomatflipped, maxcorrdist=5, toggledebug=toggledebug) print(inlinnerrmse, inlinnerrmseflipped) if inlinnerrmseflipped < inlinnerrmse: homomat = homomatflipped # for compatibility with locactorfixed self.tubestandhomomat = homomat return copy.deepcopy(homomat) def findtubestand_match(self, tgtpcdnp, toggledebug = False): """ match self.tstpcd from tgtpcdnp NOTE: tgtpcdnp must be in global frame, use getglobalpcd to convert if local :param tgtpcdnp: :return: author: weiwei date: 20191229osaka """ _, homomat = o3dh.registration_ptpln(self.tstpcdnp, tgtpcdnp, downsampling_voxelsize=5, toggledebug=toggledebug) return copy.deepcopy(homomat) def findtubestand_obb(self, tgtpcdnp, toggledebug = False): """ match self.tstpcd from tgtpcdnp NOTE: tgtpcdnp must be in global frame, use getglobalpcd to convert if local :param tgtpcdnp: :return: author: weiwei date: 20191229osaka """ # clustering has been included # removing outlier is not longer needed, 20200425 # tgtpcdnp = o3dh.removeoutlier(tgtpcdnp, nb_points=20, radius=10) tgtpcdnp2d = tgtpcdnp[:,:2] # TODO clip using sensor z ca = np.cov(tgtpcdnp2d, y=None, rowvar=0, bias=1) v, vect = np.linalg.eig(ca) tvect = np.transpose(vect) # use the inverse of the eigenvectors as a rotation matrix and # rotate the points so they align with the x and y axes ar = np.dot(tgtpcdnp2d, np.linalg.inv(tvect)) # get the minimum and maximum x and y mina = np.min(ar, axis=0) maxa = np.max(ar, axis=0) diff = (maxa - mina) * 0.5 # the center is just half way between the min and max xy center = mina + diff # get the 4 corners by subtracting and adding half the bounding boxes height and width to the center corners = np.array([center + [-diff[0], -diff[1]], center + [diff[0], -diff[1]], center + [diff[0], diff[1]], center + [-diff[0], diff[1]], center + [-diff[0], -diff[1]]]) # use the the eigenvectors as a rotation matrix and # rotate the corners and the centerback corners = np.dot(corners, tvect) center = np.dot(center, tvect) if toggledebug: import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(111) ax.scatter(tgtpcdnp2d[:, 0], tgtpcdnp2d[:, 1]) ax.scatter([center[0]], [center[1]]) ax.plot(corners[:, 0], corners[:, 1], '-') plt.axis('equal') plt.show() axind = np.argsort(v) homomat = np.eye(4) homomat[:3,axind[0]] = np.array([vect[0,0], vect[1,0], 0]) homomat[:3,axind[1]] = np.array([vect[0,1], vect[1,1], 0]) homomat[:3,2] = np.array([0,0,1]) if np.cross(homomat[:3,0], homomat[:3,1])[2] < -.5: homomat[:3,1] = -homomat[:3,1] homomat[:3, 3] = np.array([center[0], center[1], -15]) return homomat def _crop_pcd_overahole(self, tgtpcd_intsframe, holecenter_x, holecenter_y, crop_ratio = .9, crop_height = 70): """ crop the point cloud over a hole in the tubestand frame :param tgtpcd_intsframe: :param holecenter_x, holecenter_y: :param crop_ratio: :param crop_height: :return: author: weiwei date: 20200318 """ # squeeze the hole size by half, make it a bit smaller than a half tmppcd = tgtpcd_intsframe[tgtpcd_intsframe[:, 0] < (holecenter_x + self.tubeholesize[0]*crop_ratio/2)] tmppcd = tmppcd[tmppcd[:, 0] > (holecenter_x - self.tubeholesize[0]*crop_ratio/2)] tmppcd = tmppcd[tmppcd[:, 1] < (holecenter_y + self.tubeholesize[1]*crop_ratio/2)] tmppcd = tmppcd[tmppcd[:, 1] > (holecenter_y - self.tubeholesize[1]*crop_ratio/2)] tmppcd = tmppcd[tmppcd[:, 2] > crop_height] return tmppcd def findtubes(self, tubestand_homomat, tgtpcdnp, toggledebug=False): """ :param tgtpcdnp: :return: author: weiwei date: 20200317 """ elearray = np.zeros((5, 10)) eleconfidencearray = np.zeros((5, 10)) tgtpcdnp = o3dh.remove_outlier(tgtpcdnp, downsampling_voxelsize=None, nb_points=90, radius=5) # transform back to the local frame of the tubestand tgtpcdnp_normalized = rm.homotransformpointarray(rm.homoinverse(tubestand_homomat), tgtpcdnp) if toggledebug: cm.CollisionModel(tgtpcdnp_normalized).reparentTo(base.render) tscm2 = copy.deepcopy(self.tubestandcm) tscm2.reparentTo(base.render) for i in range(5): for j in range(10): holepos = self.tubeholecenters[i][j] tmppcd = self._crop_pcd_overahole(tgtpcdnp_normalized, holepos[0], holepos[1]) if len(tmppcd) > 50: if toggledebug: print("------more than 50 raw points, start a new test------") tmppcdover100 = tmppcd[tmppcd[:, 2] > 100] tmppcdbelow90 = tmppcd[tmppcd[:, 2] < 90] tmppcdlist = [tmppcdover100, tmppcdbelow90] if toggledebug: print("rotate around...") rejflaglist = [False, False] allminstdlist = [[], []] newtmppcdlist = [None, None] minstdlist = [None, None] for k in range(2): if toggledebug: print("checking over 100 and below 90, now: ", j) if len(tmppcdlist[k]) < 10: rejflaglist[k] = True continue for angle in np.linspace(0, 180, 10): tmphomomat = np.eye(4) tmphomomat[:3, :3] = rm.rodrigues(tubestand_homomat[:3, 2], angle) newtmppcdlist[k] = rm.homotransformpointarray(tmphomomat, tmppcdlist[k]) minstdlist[k] = np.min(np.std(newtmppcdlist[k][:, :2], axis=0)) if toggledebug: print(minstdlist[k]) allminstdlist[k].append(minstdlist[k]) if minstdlist[k] < 1.5: rejflaglist[k] = True if toggledebug: print("rotate round done") print("minstd ", np.min(np.asarray(allminstdlist[k]))) if all(item for item in rejflaglist): continue elif all(not item for item in rejflaglist): print("CANNOT tell if the tube is big or small") raise ValueError() else: tmppcd = tmppcdbelow90 if rejflaglist[0] else tmppcdover100 candidatetype = 2 if rejflaglist[0] else 1 tmpangles = np.arctan2(tmppcd[:, 1], tmppcd[:, 0]) tmpangles[tmpangles < 0] = 360 + tmpangles[tmpangles < 0] if toggledebug: print(np.std(tmpangles)) print("ACCEPTED! ID: ", i, j) elearray[i][j] = candidatetype eleconfidencearray[i][j] = 1 if toggledebug: # normalized objnp = p3dh.genpointcloudnodepath(tmppcd, pntsize=5) rgb = np.random.rand(3) objnp.setColor(rgb[0], rgb[1], rgb[2], 1) objnp.reparentTo(base.render) stick = p3dh.gendumbbell(spos=np.array([holepos[0], holepos[1], 10]), epos=np.array([holepos[0], holepos[1], 60])) stick.setColor(rgb[0], rgb[1], rgb[2], 1) stick.reparentTo(base.render) # original tmppcd_tr = rm.homotransformpointarray(tubestand_homomat, tmppcd) objnp_tr = p3dh.genpointcloudnodepath(tmppcd_tr, pntsize=5) objnp_tr.setColor(rgb[0], rgb[1], rgb[2], 1) objnp_tr.reparentTo(base.render) spos_tr = rm.homotransformpoint(tubestand_homomat, np.array([holepos[0], holepos[1], 0])) stick_tr = p3dh.gendumbbell(spos=np.array([spos_tr[0], spos_tr[1], 10]), epos=np.array([spos_tr[0], spos_tr[1], 60])) stick_tr.setColor(rgb[0], rgb[1], rgb[2], 1) stick_tr.reparentTo(base.render) # box normalized center, bounds = rm.getaabb(tmppcd) boxextent = np.array( [bounds[0, 1] - bounds[0, 0], bounds[1, 1] - bounds[1, 0], bounds[2, 1] - bounds[2, 0]]) boxhomomat = np.eye(4) boxhomomat[:3, 3] = center box = p3dh.genbox(extent=boxextent, homomat=boxhomomat, rgba=np.array([rgb[0], rgb[1], rgb[2], .3])) box.reparentTo(base.render) # box original center_r = rm.homotransformpoint(tubestand_homomat, center) boxhomomat_tr = copy.deepcopy(tubestand_homomat) boxhomomat_tr[:3, 3] = center_r box_tr = p3dh.genbox(extent=boxextent, homomat=boxhomomat_tr, rgba=np.array([rgb[0], rgb[1], rgb[2], .3])) box_tr.reparentTo(base.render) if toggledebug: print("------the new test is done------") return elearray, eleconfidencearray def capturecorrectedpcd(self, pxc, ncapturetimes = 1): """ capture a poind cloud and transform it from its sensor frame to global frame :param pcdnp: :return: author: weiwei date: 20200108 """ objpcdmerged = None for i in range(ncapturetimes): pxc.triggerframe() fgdepth = pxc.getdepthimg() fgpcd = pxc.getpcd() substracteddepth = self.bgdepth - fgdepth substracteddepth = substracteddepth.clip(50, 300) substracteddepth[substracteddepth == 50] = 0 substracteddepth[substracteddepth == 300] = 0 tempdepth = substracteddepth.flatten() objpcd = fgpcd[np.nonzero(tempdepth)] objpcd = self.getcorrectedpcd(objpcd) if objpcdmerged is None: objpcdmerged = objpcd else: objpcdmerged = np.vstack((objpcdmerged, objpcd)) # further crop x objpcdmerged = objpcdmerged[objpcdmerged[:,0]>200] return objpcdmerged def getcorrectedpcd(self, pcdarray): """ convert a poind cloud from its sensor frame to global frame :param pcdarray: :return: author: weiwei date: 20191229osaka """ return rm.homotransformpointarray(self.sensorhomomat, pcdarray) def gentubestand(self, homomat): """ :param homomat: :return: author: weiwei date: 20191229osaka """ tubestandcm = copy.deepcopy(self.tubestandcm) tubestandcm.set_homomat(homomat) tubestandcm.setColor(0,.5,.7,1) return tubestandcm def gentubeandstandboxcm(self, homomat, wrapheight = 120, rgba = np.array([.5, .5, .5, .3])): """ gen a solid box to wrap both a stand and the tubes in it :param homomat: :return: author: weiwei date: 20191229osaka """ homomat_copy = copy.deepcopy(homomat) homomat_copy[:3, 3] = homomat_copy[:3, 3] + homomat_copy[:3,2]* wrapheight/2 tubeandstandboxcm = cm.CollisionModel(p3dh.genbox(np.array([self.tubestandsize[0], self.tubestandsize[1], 120]), homomat_copy)) tubeandstandboxcm.setColor(rgba[0], rgba[1], rgba[2], rgba[3]) return tubeandstandboxcm def gentubes(self, elearray, tubestand_homomat, eleconfidencearray=None, alpha=.3): """ :param elearray: :param tubestand_homomat: :param eleconfidencearray: None by default :param alpha: only works when eleconfidencearray is None, it renders the array transparently :return: author: weiwei date: 20191229osaka """ if eleconfidencearray is None: eleconfidencearray =
np.ones_like(elearray)
numpy.ones_like
import matplotlib.pyplot as plt import numpy as np def read_file(path): dt = [] lf = open(path, 'r+', encoding='utf-8') lines = lf.readlines() for line in lines: dt.append(line.strip()) return dt def analysis(): labels = read_file(path='./labels_mmodel1.txt') predictions = read_file(path='./predicteds_mmodel1.txt') ss = {} wf = open('./compares.txt', 'w', encoding='utf-8') for i in range(len(labels)): lb = labels[i].split(' ') pd = predictions[i].split(' ') for j in range(len(lb)): try: s1 = lb[j] except IndexError: s1 = 'null' try: s2 = pd[j] except IndexError: s2 = 'null' if s1 != s2: wf.writelines(s1 + ' - ' + s2 + '\n') wf.close() return None def plot(): peoples = ["DTM1", "DTM2", "DTM3"] cers = [10.79, 4.51, 9.14] wers = [25.96, 12.62, 23.19] sers = [26.30, 12.97, 23.97] index =
np.arange(3)
numpy.arange
from __future__ import absolute_import, division, print_function, unicode_literals from mxnet import init, gluon from mxnet.gluon import nn import numpy as np import unittest from art.classifiers import MXClassifier from art.utils import load_mnist NB_TRAIN = 1000 NB_TEST = 20 class TestMXClassifier(unittest.TestCase): def setUp(self): # Get MNIST (x_train, y_train), (x_test, y_test), _, _ = load_mnist() x_train, y_train = x_train[:NB_TRAIN], y_train[:NB_TRAIN] x_test, y_test = x_test[:NB_TEST], y_test[:NB_TEST] x_train = np.swapaxes(x_train, 1, 3) x_test = np.swapaxes(x_test, 1, 3) self._mnist = (x_train, y_train), (x_test, y_test) # Create a simple CNN - this one comes from the Gluon tutorial net = nn.Sequential() with net.name_scope(): net.add( nn.Conv2D(channels=6, kernel_size=5, activation='relu'), nn.MaxPool2D(pool_size=2, strides=2), nn.Conv2D(channels=16, kernel_size=3, activation='relu'), nn.MaxPool2D(pool_size=2, strides=2), nn.Flatten(), nn.Dense(120, activation="relu"), nn.Dense(84, activation="relu"), nn.Dense(10) ) net.initialize(init=init.Xavier()) # Create optimizer self._model = net self._trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1}) def test_fit_predict(self): (x_train, y_train), (x_test, y_test) = self._mnist # Fit classifier classifier = MXClassifier((0, 1), self._model, (1, 28, 28), 10, self._trainer) classifier.fit(x_train, y_train, batch_size=128, nb_epochs=2) preds = classifier.predict(x_test) acc = np.sum(np.argmax(preds, axis=1) == np.argmax(y_test, axis=1)) / len(y_test) print("\nAccuracy: %.2f%%" % (acc * 100)) self.assertGreater(acc, 0.1) def test_nb_classes(self): classifier = MXClassifier((0, 1), self._model, (1, 28, 28), 10, self._trainer) self.assertEqual(classifier.nb_classes, 10) def test_input_shape(self): classifier = MXClassifier((0, 1), self._model, (1, 28, 28), 10, self._trainer) self.assertEqual(classifier.input_shape, (1, 28, 28)) # def test_class_gradient(self): # # Get MNIST # (_, _), (x_test, _) = self._mnist # # # Create classifier # classifier = MXClassifier((0, 1), self._model, (1, 28, 28), 10, self._trainer) # grads = classifier.class_gradient(x_test) # # self.assertTrue(np.array(grads.shape == (NB_TEST, 10, 1, 28, 28)).all()) # self.assertTrue(np.sum(grads) != 0) def test_loss_gradient(self): # Get MNIST (_, _), (x_test, y_test) = self._mnist # Create classifier classifier = MXClassifier((0, 1), self._model, (1, 28, 28), 10, self._trainer) grads = classifier.loss_gradient(x_test, y_test) self.assertTrue(
np.array(grads.shape == (NB_TEST, 1, 28, 28))
numpy.array
import datetime import numpy as np import pandas as pd import xarray as xr import primap2 # noqa: F401 from primap2 import ureg def minimal_ds(): """A valid, minimal dataset.""" time = pd.date_range("2000-01-01", "2020-01-01", freq="AS") area_iso3 = np.array(["COL", "ARG", "MEX", "BOL"]) # seed the rng with a constant to achieve predictable "randomness" rng = np.random.default_rng(1) minimal = xr.Dataset( { ent: xr.DataArray( data=rng.random((len(time), len(area_iso3), 1)), coords={ "time": time, "area (ISO3)": area_iso3, "source": ["RAND2020"], }, dims=["time", "area (ISO3)", "source"], attrs={"units": f"{ent} Gg / year", "entity": ent}, ) for ent in ("CO2", "SF6", "CH4") }, attrs={"area": "area (ISO3)"}, ).pr.quantify() with ureg.context("SARGWP100"): minimal["SF6 (SARGWP100)"] = minimal["SF6"].pint.to("CO2 Gg / year") minimal["SF6 (SARGWP100)"].attrs["gwp_context"] = "SARGWP100" return minimal COORDS = { "time": pd.date_range("2000-01-01", "2020-01-01", freq="AS"), "area (ISO3)": np.array(["COL", "ARG", "MEX", "BOL"]), "category (IPCC 2006)": np.array(["0", "1", "2", "3", "4", "5", "1.A", "1.B"]), "animal (FAOSTAT)": np.array(["cow", "swine", "goat"]), "product (FAOSTAT)":
np.array(["milk", "meat"])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
import numpy as np import random import matplotlib.pyplot as plt class ECGDataset: def __init__(self, file_path): """ :rtype: ECGDataset :param file_path: A file containing a numpy array with electrode data. """ # Load data and create electrode index mapping self.file_path = file_path self.data = np.load(self.file_path) * 0.000625 self.mapping = np.arange(0, len(self.data), 1) # Remove redundant electrodes (corners) self.data = np.delete(self.data, [0, 7, 127, 120], axis=0) self.mapping = np.delete(self.mapping, [0, 7, 127, 120], axis=0) # Declare peaks variable. self.peaks = None def invert(dataset): # Multiply by -1 to invert data dataset.data = dataset.data * -1 return dataset def zoom(dataset, time_range): # Loop through all electrodes # and slice on x-axis to create zoom effect res = [] for count in range((len(dataset.data))): res.append(dataset.data[count][time_range[0]: time_range[1]]) dataset.data = np.array(res) return dataset def sample(dataset, size=0.1): # Generate random indices based on input size # and use those indices to get a sample of the dataset. s_indices = random.sample(range(0, len(dataset.data)), int(size * len(dataset.data))) dataset.mapping = dataset.mapping[s_indices] dataset.data = dataset.data[s_indices] if dataset.peaks is not None: dataset.peaks = dataset.peaks[s_indices] return dataset def slice_d(dataset, start, end): # Slice the mapping and the electrode data from start to end dataset.mapping = dataset.mapping[start: end] dataset.data = dataset.data[start: end] if dataset.peaks is not None: dataset.peaks = dataset.peaks[start: end] return dataset def index(dataset, idx=None): # Select a single electrode from the dataset if not idx: # If index is not specified, choose a random electrode idx = dataset.mapping[random.randint(0, len(dataset.data))] else: idx = np.where(dataset.mapping == idx)[0][0] dataset.mapping = np.array([dataset.mapping[idx]]) dataset.data = np.array([dataset.data[idx]]) if dataset.peaks is not None: dataset.peaks =
np.array([dataset.peaks[idx]])
numpy.array
from scvelo.plotting.docs import doc_scatter, doc_params from scvelo.plotting.utils import * from inspect import signature import matplotlib.pyplot as pl import numpy as np import pandas as pd @doc_params(scatter=doc_scatter) def scatter( adata=None, basis=None, x=None, y=None, vkey=None, color=None, use_raw=None, layer=None, color_map=None, colorbar=None, palette=None, size=None, alpha=None, linewidth=None, linecolor=None, perc=None, groups=None, sort_order=True, components=None, projection=None, legend_loc=None, legend_loc_lines=None, legend_fontsize=None, legend_fontweight=None, legend_fontoutline=None, xlabel=None, ylabel=None, title=None, fontsize=None, figsize=None, xlim=None, ylim=None, add_density=None, add_assignments=None, add_linfit=None, add_polyfit=None, add_rug=None, add_text=None, add_text_pos=None, add_quiver=None, quiver_size=None, add_outline=None, outline_width=None, outline_color=None, n_convolve=None, smooth=None, rescale_color=None, color_gradients=None, dpi=None, frameon=None, zorder=None, ncols=None, nrows=None, wspace=None, hspace=None, show=None, save=None, ax=None, **kwargs, ): """\ Scatter plot along observations or variables axes. Arguments --------- adata: :class:`~anndata.AnnData` Annotated data matrix. x: `str`, `np.ndarray` or `None` (default: `None`) x coordinate y: `str`, `np.ndarray` or `None` (default: `None`) y coordinate {scatter} Returns ------- If `show==False` a `matplotlib.Axis` """ if adata is None and (x is not None and y is not None): adata = AnnData(np.stack([x, y]).T) # restore old conventions add_assignments = kwargs.pop("show_assignments", add_assignments) add_linfit = kwargs.pop("show_linear_fit", add_linfit) add_polyfit = kwargs.pop("show_polyfit", add_polyfit) add_density = kwargs.pop("show_density", add_density) add_rug = kwargs.pop("rug", add_rug) basis = kwargs.pop("var_names", basis) # keys for figures (fkeys) and multiple plots (mkeys) fkeys = ["adata", "show", "save", "groups", "ncols", "nrows", "wspace", "hspace"] fkeys += ["ax", "kwargs"] mkeys = ["color", "layer", "basis", "components", "x", "y", "xlabel", "ylabel"] mkeys += ["title", "color_map", "add_text"] scatter_kwargs = {"show": False, "save": False} for key in signature(scatter).parameters: if key not in mkeys + fkeys: scatter_kwargs[key] = eval(key) mkwargs = {} for key in mkeys: # mkwargs[key] = key for key in mkeys mkwargs[key] = eval("{0}[0] if is_list({0}) else {0}".format(key)) # use c & color and cmap & color_map interchangeably, # and plot each group separately if groups is 'all' if "c" in kwargs: color = kwargs.pop("c") if "cmap" in kwargs: color_map = kwargs.pop("cmap") if "rasterized" not in kwargs: kwargs["rasterized"] = settings._vector_friendly if isinstance(color_map, (list, tuple)) and all( [is_color_like(c) or c == "transparent" for c in color_map] ): color_map = rgb_custom_colormap(colors=color_map) if isinstance(groups, str) and groups == "all": if color is None: color = default_color(adata) if is_categorical(adata, color): vc = adata.obs[color].value_counts() groups = [[c] for c in vc[vc > 0].index] if isinstance(add_text, (list, tuple, np.ndarray, np.record)): add_text = list(np.array(add_text, dtype=str)) # create list of each mkey and check if all bases are valid. color, layer, components = to_list(color), to_list(layer), to_list(components) x, y, basis = to_list(x), to_list(y), to_valid_bases_list(adata, basis) # get multikey (with more than one element) multikeys = eval(f"[{','.join(mkeys)}]") if is_list_of_list(groups): multikeys.append(groups) key_lengths = np.array([len(key) if is_list(key) else 1 for key in multikeys]) multikey = ( multikeys[np.where(key_lengths > 1)[0][0]] if np.max(key_lengths) > 1 else None ) # gridspec frame for plotting multiple keys (mkeys: list or tuple) if multikey is not None: if np.sum(key_lengths > 1) == 1 and is_list_of_str(multikey): multikey = unique(multikey) # take unique set if no more than one multikey if len(multikey) > 20: raise ValueError("Please restrict the passed list to max 20 elements.") if ax is not None: logg.warn("Cannot specify `ax` when plotting multiple panels.") if is_list(title): title *= int(np.ceil(len(multikey) / len(title))) if nrows is None: ncols = len(multikey) if ncols is None else min(len(multikey), ncols) nrows = int(np.ceil(len(multikey) / ncols)) else: ncols = int(np.ceil(len(multikey) / nrows)) if not frameon: lloc, llines = "legend_loc", "legend_loc_lines" if lloc in scatter_kwargs and scatter_kwargs[lloc] is None: scatter_kwargs[lloc] = "none" if llines in scatter_kwargs and scatter_kwargs[llines] is None: scatter_kwargs[llines] = "none" grid_figsize, dpi = get_figure_params(figsize, dpi, ncols) grid_figsize = (grid_figsize[0] * ncols, grid_figsize[1] * nrows) fig = pl.figure(None, grid_figsize, dpi=dpi) hspace = 0.3 if hspace is None else hspace gspec = pl.GridSpec(nrows, ncols, fig, hspace=hspace, wspace=wspace) ax = [] for i, gs in enumerate(gspec): if i < len(multikey): g = groups[i * (len(groups) > i)] if is_list_of_list(groups) else groups multi_kwargs = {"groups": g} for key in mkeys: # multi_kwargs[key] = key[i] if is multikey else key multi_kwargs[key] = eval( "{0}[i * (len({0}) > i)] if is_list({0}) else {0}".format(key) ) ax.append( scatter( adata, ax=pl.subplot(gs), **multi_kwargs, **scatter_kwargs, **kwargs, ) ) if not frameon and isinstance(ylabel, str): set_label(xlabel, ylabel, fontsize, ax=ax[0], fontweight="bold") savefig_or_show(dpi=dpi, save=save, show=show) if show is False: return ax else: # make sure that there are no more lists, e.g. ['clusters'] becomes 'clusters' color_map = to_val(color_map) color, layer, basis = to_val(color), to_val(layer), to_val(basis) x, y, components = to_val(x), to_val(y), to_val(components) xlabel, ylabel, title = to_val(xlabel), to_val(ylabel), to_val(title) # multiple plots within one ax for comma-separated y or layers (string). if any([isinstance(key, str) and "," in key for key in [y, layer]]): # comma split y, layer, color = [ [k.strip() for k in key.split(",")] if isinstance(key, str) and "," in key else to_list(key) for key in [y, layer, color] ] multikey = y if len(y) > 1 else layer if len(layer) > 1 else None if multikey is not None: for i, mi in enumerate(multikey): ax = scatter( adata, x=x, y=y[i * (len(y) > i)], color=color[i * (len(color) > i)], layer=layer[i * (len(layer) > i)], basis=basis, components=components, groups=groups, xlabel=xlabel, ylabel="expression" if ylabel is None else ylabel, color_map=color_map, title=y[i * (len(y) > i)] if title is None else title, ax=ax, **scatter_kwargs, ) if legend_loc is None: legend_loc = "best" if legend_loc and legend_loc != "none": multikey = [key.replace("Ms", "spliced") for key in multikey] multikey = [key.replace("Mu", "unspliced") for key in multikey] ax.legend(multikey, fontsize=legend_fontsize, loc=legend_loc) savefig_or_show(dpi=dpi, save=save, show=show) if show is False: return ax elif color_gradients is not None and color_gradients is not False: vals, names, color, scatter_kwargs = gets_vals_from_color_gradients( adata, color, **scatter_kwargs ) cols = zip(adata.obs[color].cat.categories, adata.uns[f"{color}_colors"]) c_colors = {cat: col for (cat, col) in cols} mkwargs.pop("color") ax = scatter( adata, color="grey", ax=ax, **mkwargs, **get_kwargs(scatter_kwargs, {"alpha": 0.05}), ) # background ax = scatter( adata, color=color, ax=ax, **mkwargs, **get_kwargs(scatter_kwargs, {"s": 0}), ) # set legend sorted_idx = np.argsort(vals, 1)[:, ::-1][:, :2] for id0 in range(len(names)): for id1 in range(id0 + 1, len(names)): cmap = rgb_custom_colormap( [c_colors[names[id0]], "white", c_colors[names[id1]]], alpha=[1, 0, 1], ) mkwargs.update({"color_map": cmap}) c_vals = np.array(vals[:, id1] - vals[:, id0]).flatten() c_bool = np.array([id0 in c and id1 in c for c in sorted_idx]) if np.sum(c_bool) > 1: _adata = adata[c_bool] if np.sum(~c_bool) > 0 else adata mkwargs["color"] = c_vals[c_bool] ax = scatter( _adata, ax=ax, **mkwargs, **scatter_kwargs, **kwargs ) savefig_or_show(dpi=dpi, save=save, show=show) if show is False: return ax # actual scatter plot else: # set color, color_map, edgecolor, basis, linewidth, frameon, use_raw if color is None: color = default_color(adata, add_outline) if "cmap" not in kwargs: kwargs["cmap"] = ( default_color_map(adata, color) if color_map is None else color_map ) if "s" not in kwargs: kwargs["s"] = default_size(adata) if size is None else size if "edgecolor" not in kwargs: kwargs["edgecolor"] = "none" is_embedding = ((x is None) | (y is None)) and basis not in adata.var_names if basis is None and is_embedding: basis = default_basis(adata) if linewidth is None: linewidth = 1 if linecolor is None: linecolor = "k" if frameon is None: frameon = True if not is_embedding else settings._frameon if isinstance(groups, str): groups = [groups] if use_raw is None and basis not in adata.var_names: use_raw = layer is None and adata.raw is not None if projection == "3d": from mpl_toolkits.mplot3d import Axes3D ax, show = get_ax(ax, show, figsize, dpi, projection) # phase portrait: get x and y from .layers (e.g. spliced vs. unspliced) # NOTE(Haotian): true phase portrait plot here if basis in adata.var_names: if title is None: title = basis if x is None and y is None: x = default_xkey(adata, use_raw=use_raw) y = default_ykey(adata, use_raw=use_raw) elif x is None or y is None: raise ValueError("Both x and y have to specified.") if isinstance(x, str) and isinstance(y, str): layers_keys = list(adata.layers.keys()) + ["X"] if any([key not in layers_keys for key in [x, y]]): raise ValueError("Could not find x or y in layers.") if xlabel is None: xlabel = x if ylabel is None: ylabel = y # NOTE(Haotian): the data to plot is retrieved here x = get_obs_vector(adata, basis, layer=x, use_raw=use_raw) y = get_obs_vector(adata, basis, layer=y, use_raw=use_raw) if legend_loc is None: legend_loc = "none" if use_raw and perc is not None: ub = np.percentile(x, 99.9 if not isinstance(perc, int) else perc) ax.set_xlim(right=ub * 1.05) ub = np.percentile(y, 99.9 if not isinstance(perc, int) else perc) ax.set_ylim(top=ub * 1.05) # velocity model fits (full dynamics and steady-state ratios) if any(["gamma" in key or "alpha" in key for key in adata.var.keys()]): plot_velocity_fits( adata, basis, vkey, use_raw, linewidth, linecolor, legend_loc_lines, legend_fontsize, add_assignments, ax=ax, ) # embedding: set x and y to embedding coordinates elif is_embedding: X_emb = adata.obsm[f"X_{basis}"][:, get_components(components, basis)] x, y = X_emb[:, 0], X_emb[:, 1] # todo: 3d plotting # z = X_emb[:, 2] if projection == "3d" and X_emb.shape[1] > 2 else None elif isinstance(x, str) and isinstance(y, str): var_names = ( adata.raw.var_names if use_raw and adata.raw is not None else adata.var_names ) if layer is None: layer = default_xkey(adata, use_raw=use_raw) x_keys = list(adata.obs.keys()) + list(adata.layers.keys()) is_timeseries = y in var_names and x in x_keys if xlabel is None: xlabel = x if ylabel is None: ylabel = layer if is_timeseries else y if title is None: title = y if is_timeseries else color if legend_loc is None: legend_loc = "none" # gene trend: x and y as gene along obs/layers (e.g. pseudotime) if is_timeseries: x = ( adata.obs[x] if x in adata.obs.keys() else adata.obs_vector(y, layer=x) ) y = get_obs_vector(adata, basis=y, layer=layer, use_raw=use_raw) # get x and y from var_names, var or obs else: if x in var_names and y in var_names: if layer in adata.layers.keys(): x = adata.obs_vector(x, layer=layer) y = adata.obs_vector(y, layer=layer) else: data = adata.raw if use_raw else adata x, y = data.obs_vector(x), data.obs_vector(y) elif x in adata.var.keys() and y in adata.var.keys(): x, y = adata.var[x], adata.var[y] elif x in adata.obs.keys() and y in adata.obs.keys(): x, y = adata.obs[x], adata.obs[y] elif np.any( [var_key in x or var_key in y for var_key in adata.var.keys()] ): var_keys = [ k for k in adata.var.keys() if not isinstance(adata.var[k][0], str) ] var = adata.var[var_keys] x = var.astype(np.float32).eval(x) y = var.astype(np.float32).eval(y) elif np.any( [obs_key in x or obs_key in y for obs_key in adata.obs.keys()] ): obs_keys = [ k for k in adata.obs.keys() if not isinstance(adata.obs[k][0], str) ] obs = adata.obs[obs_keys] x = obs.astype(np.float32).eval(x) y = obs.astype(np.float32).eval(y) else: raise ValueError( "x or y is invalid! pass valid observation or a gene name" ) x, y = make_dense(x).flatten(), make_dense(y).flatten() # convolve along x axes (e.g. pseudotime) if n_convolve is not None: vec_conv = np.ones(n_convolve) / n_convolve y[np.argsort(x)] = np.convolve(y[np.argsort(x)], vec_conv, mode="same") # if color is set to a cell index, plot that cell on top if is_int(color) or is_list_of_int(color) and len(color) != len(x): color = np.array(np.isin(np.arange(len(x)), color), dtype=bool) size = kwargs["s"] * 2 if
np.sum(color)
numpy.sum
import matplotlib matplotlib.use('tkagg') import matplotlib.pyplot as plt import sys import os import pickle import seaborn as sns import scipy.stats as ss import numpy as np import core_compute as cc import core_plot as cp from scipy.integrate import simps, cumtrapz def deb_Cp(theta, T): T = np.array(T) T[T < 1e-70] = 1e-70 # ub: array of upper bounds for integral TT = np.array(theta)[..., None] / \ np.array(T)[None, ...] # nx: number of steps in x integration nx = 100 # x: array for variable of integration # integration will be performed along # last axis of array x = np.ones(list(TT.shape)+[nx]) * \ np.linspace(0, 1, nx)[None, ...] x *= x*TT[..., None] R = 8.314459848 # J/mol*K expx = np.exp(x) # if any elements of expx are infinite or equal to 1, # replace them with zero. This doesn't change the result # of the integration and avoids numerical issues expx[expx > 1e100] = 0 expx[expx - 1 < 1e-100] = 0 # perform integration over # the equispace data points along the last # axis of the arrays integrand = (x**4)*expx / (expx-1.)**2 integral = simps(y=integrand, x=x, axis=-1) return np.squeeze(9*R*((1/TT)**3)*integral) def feval_Cp(param, T): theta = param[..., 0] a_2 = param[..., 1] a_3 = param[..., 2] a_4 = param[..., 3] a_5 = param[..., 4] # R = 8.314459848 # J/mol*K # frac = theta/T # expf = np.exp(frac) # lowT = 3*R*(frac**2)*(expf/(expf-1)**2) lowT = deb_Cp(theta, T) A = lowT + a_2*T + a_3*T**2 + a_4*T**3 + \ a_5*T**4 return A def feval_Cp_plt(param, T, deb): # theta = param[..., 0, None] a_2 = param[..., 1, None] a_3 = param[..., 2, None] a_4 = param[..., 3, None] a_5 = param[..., 4, None] """Cp for alpha phase""" # R = 8.314459848 # J/mol*K # frac = theta/T # expf = np.exp(frac) # lowT = 3*R*(frac**2)*(expf/(expf-1)**2) lowT = deb A = lowT + a_2*T + a_3*T**2 + a_4*T**3 + \ a_5*T**4 return A def feval_H(param, T): theta = param[..., 0, None] a_2 = param[..., 1, None] a_3 = param[..., 2, None] a_4 = param[..., 3, None] a_5 = param[..., 4, None] """compute the enthalpy for the alpha phase""" # R = 8.314459848 # J/mol*K # lowT = 3*R*theta/(np.exp(theta/T)-1.) # add on 298.15K to T so that H_298.15 = 0 is enforced T_ = np.array(list(T) + [298.15]) T = np.atleast_1d(T) T_ = np.atleast_1d(T_) thetam = np.mean(theta) # first create equispaced temps at which to eval Cp T_v1 = np.linspace(1e-10, thetam/8, 30)[:-1] T_v2 = np.linspace(thetam/8, 3*thetam, 50)[:-1] T_v3 = np.linspace(3*thetam, 2100, 20) T_v = np.concatenate([T_v1, T_v2, T_v3]) # evaluate Debye-Cp term at equispaced points DebCp_v = deb_Cp(theta, T_v) # evaluate Debye-Cp term at actual temps DebCp = deb_Cp(theta, T_) # array for H-Debye terms DebH = np.zeros((theta.size, T_.size)) # split it up by each temp for ii in range(T_.size): # identify number of Temps in T_v less than actual # temp idx = np.sum(T_v < T_[ii]) T__ = np.zeros((idx+1)) T__[:idx+1] = T_v[:idx+1] DebCp_ = np.zeros((theta.size, idx+1)) DebCp_[..., :idx+1] = DebCp_v[..., :idx+1] # last temp and Cp are for the actual temp # of interest T__[-1] = T_[ii] DebCp_[..., -1] = DebCp[..., ii] # perform numerical integration DebH_ = np.squeeze(simps(y=DebCp_, x=T__, axis=-1)) DebH[:, ii] = DebH_ # we subtract debH at 298.15K from debH at all other temps lowT =
np.squeeze(DebH[..., :-1])
numpy.squeeze
# python simulation of draw.sv import numpy as np def get_model_matrix(angle, scale, x, y, z): R = np.array([[np.cos(angle), 0, np.sin(angle), 0], [0, 1, 0, 0], [-1*np.sin(angle), 0,
np.cos(angle)
numpy.cos
# -*- coding: utf-8 -*- import math import os from collections import defaultdict from pprint import pprint import numpy as np from tqdm import tqdm from configs import total_info from utils.misc import get_gt_pre_with_name, get_name_with_group_list, make_dir from utils.recorders import ( CurveDrawer, MetricExcelRecorder, MetricRecorder, TxtRecorder, ) """ Include: Fm Curve/PR Curves/MAE/(max/mean/weighted) Fmeasure/Smeasure/Emeasure NOTE: * Our method automatically calculates the intersection of `pre` and `gt`. But it needs to have uniform naming rules for `pre` and `gt`. """ def group_names(names: list) -> dict: grouped_name_list = defaultdict(list) for name in names: group_name, file_name = name.split("/") grouped_name_list[group_name].append(file_name) return grouped_name_list def mean_all_group_metrics(group_metric_recorder: dict): recorder = defaultdict(list) for group_name, metrics in group_metric_recorder.items(): for metric_name, metric_array in metrics.items(): recorder[metric_name].append(metric_array) results = {k: np.mean(np.vstack(v), axis=0) for k, v in recorder.items()} return results def cal_all_metrics(): """ Save the results of all models on different datasets in a `npy` file in the form of a dictionary. { dataset1:{ method1:[(ps, rs), fs], method2:[(ps, rs), fs], ..... }, dataset2:{ method1:[(ps, rs), fs], method2:[(ps, rs), fs], ..... }, .... } """ qualitative_results = defaultdict(dict) # Two curve metrics quantitative_results = defaultdict(dict) # Six numerical metrics txt_recoder = TxtRecorder( txt_path=cfg["record_path"], resume=cfg["resume_record"], max_method_name_width=max([len(x) for x in cfg["drawing_info"].keys()]), # 显示完整名字 # max_method_name_width=10, # 指定长度 ) excel_recorder = MetricExcelRecorder( xlsx_path=cfg["xlsx_path"], sheet_name=data_type, row_header=["methods"], dataset_names=sorted(list(cfg["dataset_info"].keys())), metric_names=["sm", "wfm", "mae", "adpf", "avgf", "maxf", "adpe", "avge", "maxe"], ) for dataset_name, dataset_path in cfg["dataset_info"].items(): if dataset_name in cfg["skipped_names"]: print(f" ++>> {dataset_name} will be skipped.") continue txt_recoder.add_row(row_name="Dataset", row_data=dataset_name, row_start_str="\n") # 获取真值图片信息 gt_info = dataset_path["mask"] gt_root = gt_info["path"] gt_ext = gt_info["suffix"] # 真值名字列表 gt_index_file = dataset_path.get("index_file") if gt_index_file: gt_name_list = get_name_with_group_list(data_path=gt_index_file, file_ext=gt_ext) else: gt_name_list = get_name_with_group_list(data_path=gt_root, file_ext=gt_ext) assert len(gt_name_list) > 0, "there is not ground truth." # ==>> test the intersection between pre and gt for each method <<== for method_name, method_info in cfg["drawing_info"].items(): method_root = method_info["path_dict"] method_dataset_info = method_root.get(dataset_name, None) if method_dataset_info is None: print(f" ==>> {method_name} does not have results on {dataset_name} <<== ") continue # 预测结果存放路径下的图片文件名字列表和扩展名称 pre_ext = method_dataset_info["suffix"] pre_root = method_dataset_info["path"] pre_name_list = get_name_with_group_list(data_path=pre_root, file_ext=pre_ext) # get the intersection eval_name_list = sorted(list(set(gt_name_list).intersection(set(pre_name_list)))) if len(eval_name_list) == 0: print(f" ==>> {method_name} does not have results on {dataset_name} <<== ") continue grouped_name_list = group_names(names=eval_name_list) print( f" ==>> It is evaluating {method_name} with" f" {len(eval_name_list)} images and {len(grouped_name_list)} groups" f" (G:{len(gt_name_list)},P:{len(pre_name_list)}) images <<== " ) total_metric_recorder = {} inter_group_bar = tqdm( grouped_name_list.items(), total=len(grouped_name_list), leave=False, ncols=119 ) for group_name, names_in_group in inter_group_bar: inter_group_bar.set_description(f"({dataset_name}) group => {group_name}") metric_recoder = MetricRecorder() intra_group_bar = tqdm( names_in_group, total=len(names_in_group), leave=False, ncols=119 ) for img_name in intra_group_bar: intra_group_bar.set_description(f"processing => {img_name}") img_name = "/".join([group_name, img_name]) gt, pre = get_gt_pre_with_name( gt_root=gt_root, pre_root=pre_root, img_name=img_name, pre_ext=pre_ext, gt_ext=gt_ext, to_normalize=False, ) metric_recoder.update(pre=pre, gt=gt) total_metric_recorder[group_name] = metric_recoder.show(bit_num=None) # 保留原始数据每组的结果 all_results = mean_all_group_metrics(group_metric_recorder=total_metric_recorder) all_results["meanFm"] = all_results["fm"].mean() all_results["maxFm"] = all_results["fm"].max() all_results["meanEm"] = all_results["em"].mean() all_results["maxEm"] = all_results["em"].max() all_results = {k: v.round(cfg["bit_num"]) for k, v in all_results.items()} method_curve = { "prs": (np.flip(all_results["p"]), np.flip(all_results["r"])), "fm":
np.flip(all_results["fm"])
numpy.flip
# External import math import numpy import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable from matplotlib.offsetbox import AnchoredText # Local from .utils import gaussian_fit, freq_content plt.style.use('seaborn') plt.rc('font', size=15) plt.rc('axes', labelsize=15) plt.rc('legend', fontsize=15) plt.rc('xtick', labelsize=15) plt.rc('ytick', labelsize=15) def full_fiber(data): # Initialize the figure fig,ax = plt.subplots(figsize=(9,6)) ax.grid(False) # Plot original image plt.imshow(abs(numpy.array(data).T),extent=[0,data.shape[0],data.shape[1]/500,0],cmap='inferno',aspect='auto',norm=LogNorm()) ax.axvline(4650,color='cyan',lw=3) ax.axvline(4850,color='cyan',lw=3) ax.axvline(5500,color='yellow',lw=3) ax.axvline(6000,color='yellow',lw=3) ax.xaxis.set_ticks_position('top') ax.xaxis.set_label_position('top') plt.xlabel('Channels',labelpad=10) plt.ylabel('Time [second]') plt.colorbar(pad=0.02,orientation="horizontal").set_label('DAS units (proportional to strain rate)') plt.tight_layout() plt.savefig('abs_data.png') plt.show() plt.close() def regions(data1,data2): # Initialize figure fig,ax = plt.subplots(1,2,figsize=(18,5.5)) # Plot coherent surface wave patterns im = ax[0].imshow(data1,extent=[0,data1.shape[1],200,0],cmap='seismic',aspect='auto',vmin=-1000,vmax=1000,interpolation='bicubic') ax[0].xaxis.set_ticks_position('top') ax[0].xaxis.set_label_position('top') ax[0].set_xlabel('Samples',labelpad=10) ax[0].set_ylabel('Channels') # Display colorbar divider = make_axes_locatable(ax[0]) cax = divider.append_axes('bottom', size='5%', pad=0.05) plt.colorbar(im, pad=0.02, cax=cax, orientation='horizontal').set_label('Raw measurement amplitude') # Plot non-coherent signals im = ax[1].imshow(data2,extent=[0,data2.shape[1],200,0],cmap='seismic',aspect='auto',vmin=-1000,vmax=1000,interpolation='bicubic') ax[1].xaxis.set_ticks_position('top') ax[1].xaxis.set_label_position('top') ax[1].set_xlabel('Samples',labelpad=10) ax[1].set_ylabel('Channels') # Display colorbar divider = make_axes_locatable(ax[1]) cax = divider.append_axes('bottom', size='5%', pad=0.05) plt.colorbar(im, pad=0.02, cax=cax, orientation='horizontal').set_label('Raw measurement amplitude') # Save and show figure plt.tight_layout() plt.savefig('raw_data.pdf') plt.show() plt.close() def plot_dist(data,bins=400,xlim=[-1000,1000]): fig,ax = plt.subplots(2,1,figsize=(9,8),sharey=True,sharex=True) for i,order in enumerate([1,2]): hist = ax[i].hist(data.reshape(numpy.prod(data.shape)),bins=bins,range=xlim,color='white',histtype='stepfilled',edgecolor='black',lw=0.5) # Fit double gaussian x = numpy.array([0.5 * (hist[1][i] + hist[1][i+1]) for i in range(len(hist[1])-1)]) y = hist[0] x, y, chisq, aic, popt = gaussian_fit(x,y,order) if order==1: ax[i].plot(x, y[0], lw=2,label='Single-gaussian fit\n$\chi^2_\mathrm{red}=$%.1e / $\mathrm{AIC}=%i$\n$\mu=%.2f, \sigma=%.3f$'%(chisq,aic,popt[1],abs(popt[2]))) if order==2: ax[i].plot(x, y[0], lw=2,label='Double-gaussian fit\n$\chi^2_\mathrm{red}=$%.1e / $\mathrm{AIC}=%i$'%(chisq,aic)) # Plot first gaussian # y = gauss_single(x, *popt[:3]) ax[i].plot(x, y[1], lw=2,label=r'$\mu=%.2f, \sigma=%.3f$'%(popt[1],abs(popt[2]))) # Plot second gaussian # y = gauss_single(x, *popt[3:]) ax[i].plot(x, y[2], lw=2,label=r'$\mu=%.2f, \sigma=%.3f$'%(popt[4],abs(popt[5]))) ax[i].ticklabel_format(axis="y", style="sci", scilimits=(0,0)) ax[i].set_xlim(-1000,1000) ax[i].legend(loc='upper left') ax[i].set_ylabel('Density') plt.xlabel('Raw measurement amplitude') plt.tight_layout() plt.savefig('distribution.pdf') def plot_freq_content(data,img_size=200,sample_rate=500): plt.rc('font', size=12) plt.rc('axes', labelsize=12) plt.rc('legend', fontsize=12) plt.rc('xtick', labelsize=12) plt.rc('ytick', labelsize=12) fig,ax = plt.subplots(4,4,figsize=(12,12)) for n,img in enumerate(data): ffts, freqs, avg_fft = freq_content(img,img_size,sample_rate) img_max = abs(img).max() # Show larger image ax[0][n].imshow(img,cmap='seismic',extent=[0,img_size,img_size,0],vmin=-img_max,vmax=img_max,interpolation='bicubic') ax[0][n].set_xlabel('Sample') if n==0: ax[0][n].set_ylabel('Channel') # Plotting data distribution ax[1][n].hist(img.reshape(numpy.prod(img.shape)),bins=50) at = AnchoredText('$\sigma=%i$'%numpy.std(img),prop=dict(size=12),loc='upper left') ax[1][n].add_artist(at) ax[1][n].set_xlabel('Strain Measurement') if n==0: ax[1][n].set_ylabel('Density') # D2 and plot FFT for each channel ax[2][n].imshow(ffts,extent=[0,sample_rate//2,img.shape[0],0],aspect='auto',norm=LogNorm(vmin=ffts.min(),vmax=ffts.max()),cmap='jet') ax[2][n].set_xlabel('Frequency (Hz)') if n==0: ax[2][n].set_ylabel('Channels')\ # Plot average amplitude for each frequency ax[3][n].plot(freqs,avg_fft) ax[3][n].set_xlabel('Frequency (Hz)') ax[3][n].set_xlim(0,sample_rate//2) ax[3][n].axvline(40,ls='--',color='black',lw=1.3) ax[3][n].set_ylabel('Average Spectral Amplitude') plt.tight_layout(h_pad=0,w_pad=0) plt.savefig('signal_types.pdf') plt.show() def latent_plot(models,loader): fig, ax = plt.subplots(3,2,figsize=(10,12),sharex=True,sharey=True) for n,(i,j) in enumerate([[0,0],[0,1],[1,0],[1,1],[2,0],[2,1]]): model_epoch = models[n] model_epoch.eval() for batch_idx, (data,target) in enumerate(loader): data = data.float() z, recon_batch, mu, logvar = model_epoch(data.view(-1,
numpy.prod(data.shape[-2:])
numpy.prod
__authors__ = ["<NAME> - ESRF ISDD Advanced Analysis and Modelling"] __license__ = "MIT" __date__ = "30-08-2018" """ Wiggler code: computes wiggler radiation distributions and samples rays according to them. Fully replaces and upgrades the shadow3 wiggler model. The radiation is calculating using sr-xraylib """ import numpy from srxraylib.util.inverse_method_sampler import Sampler1D from srxraylib.sources.srfunc import wiggler_trajectory, wiggler_spectrum, wiggler_cdf, sync_f import scipy from scipy.interpolate import interp1d import scipy.constants as codata from shadow4.sources.s4_electron_beam import S4ElectronBeam from shadow4.sources.s4_light_source import S4LightSource from shadow4.sources.wiggler.s4_wiggler import S4Wiggler from shadow4.beam.beam import Beam # This is similar to sync_f in srxraylib but faster def sync_f_sigma_and_pi(rAngle, rEnergy): r""" angular dependency of synchrotron radiation emission NAME: sync_f_sigma_and_pi PURPOSE: Calculates the function used for calculating the angular dependence of synchrotron radiation. CATEGORY: Mathematics. CALLING SEQUENCE: Result = sync_f_sigma_and_pi(rAngle,rEnergy) INPUTS: rAngle: (array) the reduced angle, i.e., angle[rads]*Gamma. It can be a scalar or a vector. rEnergy: (scalar) a value for the reduced photon energy, i.e., energy/critical_energy. KEYWORD PARAMETERS: OUTPUTS: returns the value of the sync_f for sigma and pi polarizations The result is an array of the same dimension as rAngle. PROCEDURE: The number of emitted photons versus vertical angle Psi is proportional to sync_f, which value is given by the formulas in the references. References: <NAME>, "Spectra and optics of synchrotron radiation" BNL 50522 report (1976) <NAME> and <NAME>, Synchrotron Radiation, Akademik-Verlag, Berlin, 1968 OUTPUTS: returns the value of the sync_f function PROCEDURE: Uses BeselK() function MODIFICATION HISTORY: Written by: <NAME>, <EMAIL>, 2002-05-23 2002-07-12 <EMAIL> adds circular polarization term for wavelength integrated spectrum (S&T formula 5.25) 2012-02-08 <EMAIL>: python version 2019-10-31 <EMAIL> speed-up changes for shadow4 """ # # ; For 11 in Pag 6 in Green 1975 # ji = numpy.sqrt((1.0 + rAngle**2)**3) * rEnergy / 2.0 efe_sigma = scipy.special.kv(2.0 / 3.0, ji) * (1.0 + rAngle**2) efe_pi = rAngle * scipy.special.kv(1.0 / 3.0, ji) / numpy.sqrt(1.0 + rAngle ** 2) * (1.0 + rAngle ** 2) return efe_sigma**2,efe_pi**2 class S4WigglerLightSource(S4LightSource): def __init__(self, name="Undefined", electron_beam=None, magnetic_structure=None): super().__init__(name, electron_beam=electron_beam if not electron_beam is None else S4ElectronBeam(), magnetic_structure=magnetic_structure if not magnetic_structure is None else S4Wiggler()) # results of calculations self.__result_trajectory = None self.__result_parameters = None self.__result_cdf = None def get_trajectory(self): return self.__result_trajectory, self.__result_parameters def __calculate_radiation(self): wiggler = self.get_magnetic_structure() electron_beam = self.get_electron_beam() if wiggler._magnetic_field_periodic == 1: (traj, pars) = wiggler_trajectory(b_from=0, inData="", nPer=wiggler.number_of_periods(), nTrajPoints=wiggler._NG_J, ener_gev=electron_beam._energy_in_GeV, per=wiggler.period_length(), kValue=wiggler.K_vertical(), trajFile="",) elif wiggler._magnetic_field_periodic == 0: print(">>>>>>>>>>>>>>>>>>>>>>", "shift_x_flag = ",wiggler._shift_x_flag, "shift_x_value = ",wiggler._shift_x_value, "shift_betax_flag = ",wiggler._shift_betax_flag, "shift_betax_value = ",wiggler._shift_betax_value ) (traj, pars) = wiggler_trajectory(b_from=1, inData=wiggler._file_with_magnetic_field, nPer=1, nTrajPoints=wiggler._NG_J, ener_gev=electron_beam._energy_in_GeV, # per=self.syned_wiggler.period_length(), # kValue=self.syned_wiggler.K_vertical(), trajFile="", shift_x_flag = wiggler._shift_x_flag , shift_x_value = wiggler._shift_x_value , shift_betax_flag = wiggler._shift_betax_flag , shift_betax_value = wiggler._shift_betax_value,) self.__result_trajectory = traj self.__result_parameters = pars # print(">>>>>>>>>> traj pars: ",traj.shape,pars) # # plot(traj[1, :], traj[0, :], xtitle="Y", ytitle="X") # plot(traj[1, :], traj[3, :], xtitle="Y", ytitle="BetaX") # plot(traj[1, :], traj[6, :], xtitle="Y", ytitle="Curvature") # plot(traj[1, :], traj[7, :], xtitle="Y", ytitle="B") # traj[0,ii] = yx[i] # traj[1,ii] = yy[i]+j * per - start_len # traj[2,ii] = 0.0 # traj[3,ii] = betax[i] # traj[4,ii] = betay[i] # traj[5,ii] = 0.0 # traj[6,ii] = curv[i] # traj[7,ii] = bz[i] # # calculate cdf and write file for Shadow/Source # print(">>>>>>>>>>>>>>>>>>>> wiggler._EMIN,wiggler._EMAX,wiggler._NG_E",wiggler._EMIN,wiggler._EMAX,wiggler._NG_E) self.__result_cdf = wiggler_cdf(self.__result_trajectory, enerMin=wiggler._EMIN, enerMax=wiggler._EMAX, enerPoints=wiggler._NG_E, outFile="tmp.cdf", elliptical=False) def __calculate_rays(self,user_unit_to_m=1.0,F_COHER=0,NRAYS=5000,SEED=123456,EPSI_DX=0.0,EPSI_DZ=0.0, psi_interval_in_units_one_over_gamma=None, psi_interval_number_of_points=1001, verbose=True): """ compute the rays in SHADOW matrix (shape (npoints,18) ) :param F_COHER: set this flag for coherent beam :param user_unit_to_m: default 1.0 (m) :return: rays, a numpy.array((npoits,18)) """ if self.__result_cdf is None: self.__calculate_radiation() if verbose: print(">>> Results of calculate_radiation") print(">>> trajectory.shape: ", self.__result_trajectory.shape) print(">>> cdf: ", self.__result_cdf.keys()) wiggler = self.get_magnetic_structure() syned_electron_beam = self.get_electron_beam() sampled_photon_energy,sampled_theta,sampled_phi = self._sample_photon_energy_theta_and_phi(NRAYS) if verbose: print(">>> sampled sampled_photon_energy,sampled_theta,sampled_phi: ",sampled_photon_energy,sampled_theta,sampled_phi) if SEED != 0: numpy.random.seed(SEED) sigmas = syned_electron_beam.get_sigmas_all() rays = numpy.zeros((NRAYS,18)) # # sample sizes (cols 1-3) # # if wiggler._FLAG_EMITTANCE: if numpy.array(numpy.abs(sigmas)).sum() == 0: wiggler._FLAG_EMITTANCE = False if wiggler._FLAG_EMITTANCE: x_electron = numpy.random.normal(loc=0.0,scale=sigmas[0],size=NRAYS) y_electron = 0.0 z_electron = numpy.random.normal(loc=0.0,scale=sigmas[2],size=NRAYS) else: x_electron = 0.0 y_electron = 0.0 z_electron = 0.0 # traj[0,ii] = yx[i] # traj[1,ii] = yy[i]+j * per - start_len # traj[2,ii] = 0.0 # traj[3,ii] = betax[i] # traj[4,ii] = betay[i] # traj[5,ii] = 0.0 # traj[6,ii] = curv[i] # traj[7,ii] = bz[i] PATH_STEP = self.__result_cdf["step"] X_TRAJ = self.__result_cdf["x"] Y_TRAJ = self.__result_cdf["y"] SEEDIN = self.__result_cdf["cdf"] ANGLE = self.__result_cdf["angle"] CURV = self.__result_cdf["curv"] EPSI_PATH = numpy.arange(CURV.size) * PATH_STEP # self._result_trajectory[7,:] # ! C We define the 5 arrays: # ! C Y_X(5,N) ---> X(Y) # ! C Y_XPRI(5,N) ---> X'(Y) # ! C Y_CURV(5,N) ---> CURV(Y) # ! C Y_PATH(5,N) ---> PATH(Y) # ! C F(1,N) contains the array of Y values where the nodes are located. # CALL PIECESPL(SEED_Y, Y_TEMP, NP_SY, IER) # CALL CUBSPL (Y_X, X_TEMP, NP_TRAJ, IER) # CALL CUBSPL (Y_Z, Z_TEMP, NP_TRAJ, IER) # CALL CUBSPL (Y_XPRI, ANG_TEMP, NP_TRAJ, IER) # CALL CUBSPL (Y_ZPRI, ANG2_TEMP, NP_TRAJ, IER) # CALL CUBSPL (Y_CURV, C_TEMP, NP_TRAJ, IER) # CALL CUBSPL (Y_PATH, P_TEMP, NP_TRAJ, IER) SEED_Y = interp1d(SEEDIN,Y_TRAJ,kind='linear') Y_X = interp1d(Y_TRAJ,X_TRAJ,kind='cubic') Y_XPRI = interp1d(Y_TRAJ,ANGLE,kind='cubic') Y_CURV = interp1d(Y_TRAJ,CURV,kind='cubic') Y_PATH = interp1d(Y_TRAJ,EPSI_PATH,kind='cubic') # ! C+++ # ! C Compute the path length to the middle (origin) of the wiggler. # ! C We need to know the "center" of the wiggler coordinate. # ! C input: Y_PATH ---> spline array # ! C NP_TRAJ ---> # of points # ! C Y_TRAJ ---> calculation point (ind. variable) # ! C output: PATH0 ---> value of Y_PATH at X = Y_TRAJ. If # ! C Y_TRAJ = 0, then PATH0 = 1/2 length # ! C of trajectory. # ! C+++ Y_TRAJ = 0.0 # CALL SPL_INT (Y_PATH, NP_TRAJ, Y_TRAJ, PATH0, IER) PATH0 = Y_PATH(Y_TRAJ) # ! C # ! C These flags are set because of the original program structure. # ! C # F_PHOT = 0 # F_COLOR = 3 # FSOUR = 3 # FDISTR = 4 ws_ev,ws_f,tmp = wiggler_spectrum(self.__result_trajectory, enerMin=wiggler._EMIN, enerMax=wiggler._EMAX, nPoints=500, # per=self.syned_wiggler.period_length(), electronCurrent=syned_electron_beam._current, outFile="", elliptical=False) ws_flux_per_ev = ws_f / (ws_ev*1e-3) samplerE = Sampler1D(ws_flux_per_ev,ws_ev) sampled_energies,h,h_center = samplerE.get_n_sampled_points_and_histogram(NRAYS) ############################################### gamma = syned_electron_beam.gamma() m2ev = codata.c * codata.h / codata.e TOANGS = m2ev * 1e10 ##################################################### RAD_MIN = 1.0 / numpy.abs(self.__result_cdf["curv"]).max() critical_energy = TOANGS * 3.0 * numpy.power(gamma, 3) / 4.0 / numpy.pi / 1.0e10 * (1.0 / RAD_MIN) if psi_interval_in_units_one_over_gamma is None: c = numpy.array([-0.3600382, 0.11188709]) # see file fit_psi_interval.py # x = numpy.log10(self._EMIN / critical_energy) x = numpy.log10(wiggler._EMIN / (4 * critical_energy)) # the wiggler that does not have an unique # Ec. To be safe, I use 4 times the # Ec vale to make the interval wider than for the BM y_fit = c[1] + c[0] * x psi_interval_in_units_one_over_gamma = 10 ** y_fit # this is the semi interval psi_interval_in_units_one_over_gamma *= 4 # doubled interval if psi_interval_in_units_one_over_gamma < 2: psi_interval_in_units_one_over_gamma = 2 if verbose: print(">>> psi_interval_in_units_one_over_gamma: ",psi_interval_in_units_one_over_gamma) angle_array_mrad = numpy.linspace(-0.5*psi_interval_in_units_one_over_gamma * 1e3 / gamma, 0.5*psi_interval_in_units_one_over_gamma * 1e3 / gamma, psi_interval_number_of_points) # a = numpy.linspace(-0.6,0.6,150) a = angle_array_mrad ##################################################################### a8 = 1.0 hdiv_mrad = 1.0 # i_a = self.syned_electron_beam._current # # fm = sync_f(a*self.syned_electron_beam.gamma()/1e3,eene,polarization=0) * \ # numpy.power(eene,2)*a8*i_a*hdiv_mrad*numpy.power(self.syned_electron_beam._energy_in_GeV,2) # # plot(a,fm,title="sync_f") # # samplerAng = Sampler1D(fm,a) # # sampled_theta,hx,h = samplerAng.get_n_sampled_points_and_histogram(10*NRAYS) # plot(h,hx) for itik in range(NRAYS): # ARG_Y = GRID(2,ITIK) # CALL SPL_INT (SEED_Y, NP_SY, ARG_Y, Y_TRAJ, IER) arg_y = numpy.random.random() # ARG_Y[itik] Y_TRAJ = SEED_Y(arg_y) # ! <EMAIL> 2014-05-19 # ! in wiggler some problems arise because spl_int # ! does not return a Y value in the correct range. # ! In those cases, we make a linear interpolation instead. # if ((y_traj.le.y_temp(1)).or.(y_traj.gt.y_temp(NP_SY))) then # y_traj_old = y_traj # CALL LIN_INT (SEED_Y, NP_SY, ARG_Y, Y_TRAJ, IER) # print*,'SOURCESYNC: bad y_traj from SPL_INT, corrected with LIN_SPL: ',y_traj_old,'=>',y_traj # endif # # CALL SPL_INT (Y_X, NP_TRAJ, Y_TRAJ, X_TRAJ, IER) # CALL SPL_INT (Y_XPRI, NP_TRAJ, Y_TRAJ, ANGLE, IER) # CALL SPL_INT (Y_CURV, NP_TRAJ, Y_TRAJ, CURV, IER) # CALL SPL_INT (Y_PATH, NP_TRAJ, Y_TRAJ, EPSI_PATH, IER) # END IF X_TRAJ = Y_X(Y_TRAJ) ANGLE = Y_XPRI(Y_TRAJ) CURV = Y_CURV(Y_TRAJ) EPSI_PATH = Y_PATH(Y_TRAJ) # print("\n>>><<<",arg_y,Y_TRAJ,X_TRAJ,ANGLE,CURV,EPSI_PATH) # EPSI_PATH = EPSI_PATH - PATH0 ! now refer to wiggler's origin # IF (CURV.LT.0) THEN # POL_ANGLE = 90.0D0 ! instant orbit is CW # ELSE # POL_ANGLE = -90.0D0 ! CCW # END IF # IF (CURV.EQ.0) THEN # R_MAGNET = 1.0D+20 # ELSE # R_MAGNET = ABS(1.0D0/CURV) # END IF # POL_ANGLE = TORAD*POL_ANGLE EPSI_PATH = EPSI_PATH - PATH0 # now refer to wiggler's origin if CURV < 0: POL_ANGLE = 90.0 # instant orbit is CW else: POL_ANGLE = -90.0 # CCW if CURV == 0.0: R_MAGNET = 1.0e20 else: R_MAGNET = numpy.abs(1.0/CURV) POL_ANGLE = POL_ANGLE * numpy.pi / 180.0 # ! C # ! C Compute the actual distance (EPSI_W*) from the orbital focus # ! C EPSI_WX = EPSI_DX + EPSI_PATH EPSI_WZ = EPSI_DZ + EPSI_PATH # ! BUG <EMAIL> found that these routine does not make the # ! calculation correctly. Changed to new one BINORMAL # !CALL GAUSS (SIGMAX, EPSI_X, EPSI_WX, XXX, E_BEAM(1), istar1) # !CALL GAUSS (SIGMAZ, EPSI_Z, EPSI_WZ, ZZZ, E_BEAM(3), istar1) # ! # ! calculation of the electrom beam moments at the current position # ! (sX,sZ) = (epsi_wx,epsi_ez): # ! <x2> = sX^2 + sigmaX^2 # ! <x x'> = sX sigmaXp^2 # ! <x'2> = sigmaXp^2 (same for Z) # # ! then calculate the new recalculated sigmas (rSigmas) and correlation rho of the # ! normal bivariate distribution at the point in the electron trajectory # ! rsigmaX = sqrt(<x2>) # ! rsigmaXp = sqrt(<x'2>) # ! rhoX = <x x'>/ (rsigmaX rsigmaXp) (same for Z) # # if (abs(sigmaX) .lt. 1e-15) then !no emittance # sigmaXp = 0.0d0 # XXX = 0.0 # E_BEAM(1) = 0.0 # else # sigmaXp = epsi_Xold/sigmaX ! true only at waist, use epsi_xOld as it has been redefined :( # rSigmaX = sqrt( (epsi_wX**2) * (sigmaXp**2) + sigmaX**2 ) # rSigmaXp = sigmaXp # if (abs(rSigmaX*rSigmaXp) .lt. 1e-15) then !no emittance # rhoX = 0.0 # else # rhoX = epsi_wx * sigmaXp**2 / (rSigmaX * rSigmaXp) # endif # # CALL BINORMAL (rSigmaX, rSigmaXp, rhoX, XXX, E_BEAM(1), istar1) # endif # if wiggler._FLAG_EMITTANCE: # CALL BINORMAL (rSigmaX, rSigmaXp, rhoX, XXX, E_BEAM(1), istar1) # [ c11 c12 ] [ sigma1^2 rho*sigma1*sigma2 ] # [ c21 c22 ] = [ rho*sigma1*sigma2 sigma2^2 ] sigmaX,sigmaXp,sigmaZ,sigmaZp = syned_electron_beam.get_sigmas_all() epsi_wX = sigmaX * sigmaXp rSigmaX = numpy.sqrt( (epsi_wX**2) * (sigmaXp**2) + sigmaX**2 ) rSigmaXp = sigmaXp rhoX = epsi_wX * sigmaXp**2 / (rSigmaX * rSigmaXp) mean = [0, 0] cov = [[sigmaX**2, rhoX*sigmaX*sigmaXp], [rhoX*sigmaX*sigmaXp, sigmaXp**2]] # diagonal covariance sampled_x, sampled_xp = numpy.random.multivariate_normal(mean, cov, 1).T # plot_scatter(sampled_x,sampled_xp) XXX = sampled_x E_BEAM1 = sampled_xp epsi_wZ = sigmaZ * sigmaZp rSigmaZ = numpy.sqrt( (epsi_wZ**2) * (sigmaZp**2) + sigmaZ**2 ) rSigmaZp = sigmaZp rhoZ = epsi_wZ * sigmaZp**2 / (rSigmaZ * rSigmaZp) mean = [0, 0] cov = [[sigmaZ**2, rhoZ*sigmaZ*sigmaZp], [rhoZ*sigmaZ*sigmaZp, sigmaZp**2]] # diagonal covariance sampled_z, sampled_zp = numpy.random.multivariate_normal(mean, cov, 1).T ZZZ = sampled_z E_BEAM3 = sampled_zp else: sigmaXp = 0.0 XXX = 0.0 E_BEAM1 = 0.0 rhoX = 0.0 sigmaZp = 0.0 ZZZ = 0.0 E_BEAM3 = 0.0 # # ! C # ! C For normal wiggler, XXX is perpendicular to the electron trajectory at # ! C the point defined by (X_TRAJ,Y_TRAJ,0). # ! C # IF (F_WIGGLER.EQ.1) THEN ! normal wiggler # YYY = Y_TRAJ - XXX*SIN(ANGLE) # XXX = X_TRAJ + XXX*COS(ANGLE) YYY = Y_TRAJ - XXX * numpy.sin(ANGLE) XXX = X_TRAJ + XXX * numpy.cos(ANGLE) rays[itik,0] = XXX rays[itik,1] = YYY rays[itik,2] = ZZZ # # directions # # ! C # ! C Synchrotron source # ! C Note. The angle of emission IN PLANE is the same as the one used # ! C before. This will give rise to a source curved along the orbit. # ! C The elevation angle is instead characteristic of the SR distribution. # ! C The electron beam emittance is included at this stage. Note that if # ! C EPSI = 0, we'll have E_BEAM = 0.0, with no changes. # ! C # IF (F_WIGGLER.EQ.3) ANGLE=0 ! Elliptical Wiggler. # ANGLEX = ANGLE + E_BEAM(1) # DIREC(1) = TAN(ANGLEX) # IF (R_ALADDIN.LT.0.0D0) DIREC(1) = - DIREC(1) # DIREC(2) = 1.0D0 # ARG_ANG = GRID(6,ITIK) ANGLEX = ANGLE + E_BEAM1 DIREC1 = numpy.tan(ANGLEX) DIREC2 = 1.0 # ! C # ! C In the case of SR, we take into account the fact that the electron # ! C trajectory is not orthogonal to the field. This will give a correction # ! C to the photon energy. We can write it as a correction to the # ! C magnetic field strength; this will linearly shift the critical energy # ! C and, with it, the energy of the emitted photon. # ! C # E_TEMP(3) = TAN(E_BEAM(3))/COS(E_BEAM(1)) # E_TEMP(2) = 1.0D0 # E_TEMP(1) = TAN(E_BEAM(1)) # CALL NORM (E_TEMP,E_TEMP) # CORREC = SQRT(1.0D0-E_TEMP(3)**2) # 4400 CONTINUE E_TEMP3 = numpy.tan(E_BEAM3)/numpy.cos(E_BEAM1) E_TEMP2 = 1.0 E_TEMP1 = numpy.tan(E_BEAM1) e_temp_norm = numpy.sqrt( E_TEMP1**2 + E_TEMP2**2 + E_TEMP3**2) E_TEMP3 /= e_temp_norm E_TEMP2 /= e_temp_norm E_TEMP1 /= e_temp_norm CORREC = numpy.sqrt(1.0 - E_TEMP3**2) # IF (FDISTR.EQ.6) THEN # CALL ALADDIN1 (ARG_ANG,ANGLEV,F_POL,IER) # Q_WAVE = TWOPI*PHOTON(1)/TOCM*CORREC # POL_DEG = ARG_ANG # ELSE IF (FDISTR.EQ.4) THEN # ARG_ENER = WRAN (ISTAR1) # RAD_MIN = ABS(R_MAGNET) # # i1 = 1 # CALL WHITE & # (RAD_MIN,CORREC,ARG_ENER,ARG_ANG,Q_WAVE,ANGLEV,POL_DEG,i1) # END IF RAD_MIN = numpy.abs(R_MAGNET) # CALL WHITE (RAD_MIN,CORREC,ARG_ENER,ARG_ANG,Q_WAVE,ANGLEV,POL_DEG,i1) ARG_ANG = numpy.random.random() ARG_ENER = numpy.random.random() # print(" >> R_MAGNET, DIREC",R_MAGNET,DIREC1,DIREC2) # print(" >> RAD_MIN,CORREC,ARG_ENER,ARG_ANG,",RAD_MIN,CORREC,ARG_ENER,ARG_ANG) ####################################################################### # gamma = self.syned_electron_beam.gamma() # m2ev = codata.c * codata.h / codata.e # TOANGS = m2ev * 1e10 # critical_energy = TOANGS*3.0*numpy.power(gamma,3)/4.0/numpy.pi/1.0e10*(1.0/RAD_MIN) # sampled_photon_energy = sampled_energies[itik] # wavelength = codata.h * codata.c / codata.e /sampled_photon_energy # Q_WAVE = 2 * numpy.pi / (wavelength*1e2) # print(" >> PHOTON ENERGY, Ec, lambda, Q: ",sampled_photon_energy,critical_energy,wavelength*1e10,Q_WAVE) ################################################################################### sampled_photon_energy = sampled_energies[itik] # wavelength = codata.h * codata.c / codata.e /sampled_photon_energy critical_energy = TOANGS * 3.0 * numpy.power(gamma, 3) / 4.0 / numpy.pi / 1.0e10 * (1.0 / RAD_MIN) eene = sampled_photon_energy / critical_energy # TODO: remove old after testing... method = "new" if method == "old": # fm = sync_f(a*1e-3*self.syned_electron_beam.gamma(),eene,polarization=0) * \ # numpy.power(eene,2)*a8*self.syned_electron_beam._current*hdiv_mrad * \ # numpy.power(self.syned_electron_beam._energy_in_GeV,2) fm_s = sync_f(a*1e-3*self.syned_electron_beam.gamma(),eene,polarization=1) * \ numpy.power(eene,2)*a8*self.syned_electron_beam._current*hdiv_mrad * \ numpy.power(self.syned_electron_beam._energy_in_GeV,2) fm_p = sync_f(a*1e-3*self.syned_electron_beam.gamma(),eene,polarization=2) * \ numpy.power(eene,2)*a8*self.syned_electron_beam._current*hdiv_mrad * \ numpy.power(self.syned_electron_beam._energy_in_GeV,2) else: fm_s , fm_p = sync_f_sigma_and_pi(a*1e-3*syned_electron_beam.gamma(),eene) cte = eene ** 2 * a8 * syned_electron_beam._current * hdiv_mrad * syned_electron_beam._energy_in_GeV ** 2 fm_s *= cte fm_p *= cte fm = fm_s + fm_p fm_pol = numpy.zeros_like(fm) for i in range(fm_pol.size): if fm[i] == 0.0: fm_pol[i] = 0 else: fm_pol[i] = fm_s[i] / fm[i] fm.shape = -1 fm_s.shape = -1 fm_pol.shape = -1 pol_deg_interpolator = interp1d(a*1e-3,fm_pol) samplerAng = Sampler1D(fm,a*1e-3) # samplerPol = Sampler1D(fm_s/fm,a*1e-3) # plot(a*1e-3,fm_s/fm) if fm.min() == fm.max(): print("Warning: cannot compute divergence for ray index %d"%itik) sampled_theta = 0.0 else: sampled_theta = samplerAng.get_sampled(ARG_ENER) sampled_pol_deg = pol_deg_interpolator(sampled_theta) # print("sampled_theta: ",sampled_theta, "sampled_energy: ",sampled_photon_energy, "sampled pol ",sampled_pol_deg) ANGLEV = sampled_theta ANGLEV += E_BEAM3 # IF (ANGLEV.LT.0.0) I_CHANGE = -1 # ANGLEV = ANGLEV + E_BEAM(3) # ! C # ! C Test if the ray is within the specified limits # ! C # IF (FGRID.EQ.0.OR.FGRID.EQ.2) THEN # IF (ANGLEV.GT.VDIV1.OR.ANGLEV.LT.-VDIV2) THEN # ARG_ANG = WRAN(ISTAR1) # ! C # ! C If it is outside the range, then generate another ray. # ! C # GO TO 4400 # END IF # END IF # DIREC(3) = TAN(ANGLEV)/COS(ANGLEX) DIREC3 = numpy.tan(ANGLEV) /
numpy.cos(ANGLEX)
numpy.cos
# Importação das bibliotecas import rasterio as rst import matplotlib.pyplot as plt import numpy as np import os # As bibliotecas importadas abaixo são funções dos outros módulos presentes no pacote contraste from contraste.RaizQuadrada import RQ from contraste.Negativo import neg from contraste.Linear import lin from contraste.MinMax import mm from contraste.Quadratico import Qd from contraste.Equalizacao import cdf, df, equalize_image #Definindo a variável CURR_DIR que receberá o path do diretório atual, com o objetivo de listar os arquivos .TIF no display CURR_DIR = os.getcwd() ################################################################################# ################################################################################# #BLOCO DE CÓDIGO RESPONSÁVEL PELA APLICAÇÃO DAS FUNÇÕES DE CONTRASTE OTIMIZADO POR CLASSE E PERSONALIZADO POR CLASSE # Definindo a função PorClasse def PORCLASSE(): ### Bloco de código responsável por listar os arquivos .TIF (imagens) do diretório atual e exibi-los para o usuário escolher qual ### imagem ele deseja aplicar o contraste lista_arqs = [arq for arq in os.listdir(CURR_DIR)] # armazena em variável os arquivos presentes no diretório atual arquivos_tif = [a for a in lista_arqs if a[-4:] == '.tif'] # armazena em variável os arquivos .TIF do diretório atual tam = len(arquivos_tif) #Obtem o tamanho da lista de arquivos .TIF lista_pos_arquivos = [] #cria uma lista em branco para receber posteriormente a posição do arquivo na lista print('Arquivos .TIF listados no diretório raiz:') #printa para o usuário o cabeçalho da mensagem de arquivos .TIF for pos, arq in zip(range(1, tam + 1), arquivos_tif): #laço for que adiciona na lista criada acima a posição a partir de 1 do arquivo .TIF a lista lista_pos_arquivos.append(str(pos)) print(pos, '-', arq) #printa na tela após a msg de cabeçalho os arquivos .TIF com um valor numérico sequencial image_pos = input('Entre com o número associado à imagem de satélite, de acordo com a lista acima: ') #input para o usuário escolher através do número sequencial qual arquivo ele deseja para entrada da imagem de satélite while image_pos not in lista_pos_arquivos: #laço criado para valores numéricos diferentes do armazenado na lista de posições image_pos = input('Valor não encontrado. Entre com o número associado à imagem de satélite: ') #msg para nova entrada de valores for pos, arq in zip(range(1, tam + 1), arquivos_tif): #novo laço for que armazena na variável image o nome do arquivo de imagem associada a posição na lista de arquivos if image_pos == str(pos): image = arq classe_pos = input('Entre com o número associado à imagem classificada - Mapbiomas, de acordo com a lista acima: ') #input para o usuário escolher através do número sequencial qual arquivo ele deseja para entrada da imagem do Mapbiomas while classe_pos not in lista_pos_arquivos: #laço criado para valores numéricos diferentes do armazenado na lista de posições classe_pos = input('Valor não encontrado. Entre com o número associado à imagem classificada - Mapbiomas: ') #msg para nova entrada de valores for pos, arq in zip(range(1, tam + 1), arquivos_tif): #novo laço for que armazena na variável image o nome do arquivo de imagem associada a posição na lista de arquivos if classe_pos == str(pos): classe = arq #Abertura das imagens L8 e Mapbiomas e posterior leitura de cada uma das bandas através da biblioteca rasterio mapbiomas = rst.open(classe) #abertura da imagem Mapbiomas L8 = rst.open(image) #abertura da imagem L8 banda_classificada_array = mapbiomas.read(1) #leitura da banda da imagem Mapbiomas # leitura das bandas da imagem L8 red = L8.read(1) nir = L8.read(2) swir = L8.read(3) Ored = L8.read(1) Onir = L8.read(2) Oswir = L8.read(3) ## obter os mínimos e os máximos de cada banda do L8 min_red = red.min() max_red = red.max() min_nir = nir.min() max_nir = nir.max() min_swir = swir.min() max_swir = swir.max() #Armazena em variáveis o shape da dimensão 0 e 1 do array da imagem (essa informação será usada no laço que percorrerá a imagem, modificando os valores do pixel após aplicação do contraste) linhas = red.shape[0] colunas = red.shape[1] ## array para visualização de falsa-cor sem contraste array_rgb = np.zeros((linhas, colunas, 3)) ## valores entre 0-1 array_rgb[:, :, 0] = swir / 65535 array_rgb[:, :, 1] = nir / 65535 array_rgb[:, :, 2] = red / 65535 # criando variáveis para aplicação do contraste de Equalização fered = equalize_image(red) fenir = equalize_image(nir) feswir = equalize_image(swir) # Entrada de teclado do usuário para escolher entre o contraste otimizado ou personalizado escolha = input('Você deseja aplicar um contraste otimizado por classe ou personalizado? Digite 1 para otimizado e 2 para personalizado: ') while escolha != '1' and escolha != '2': #laço criado para valores numéricos diferentes do armazenado entrada de teclado da escolha do contraste escolha = input('Valor incorreto. Entre com 1 para otimizado e 2 para personalizado: ') ########################################################################################### # BLOCO DE CÓDIGO DA APLICAÇÃO DO CONTRASTE OTIMIZADO if escolha == '1': # printa a msg de executando, para o usuário entender que o programa está sendo executado print('EXECUTANDO...') # laço for que aplica a função de contraste otimizado para todas as classes percorrendo o array for i in range(banda_classificada_array.shape[0]): for j in range(banda_classificada_array.shape[1]): if banda_classificada_array[i][j] == 3: # aplica o contraste Linear para a classe 3 (Formação Florestal) red[i][j] = lin(red[i][j], max_red, min_red) nir[i][j] = lin(nir[i][j], max_nir, min_nir) swir[i][j] = lin(swir[i][j], max_swir, min_swir) elif banda_classificada_array[i][j] == 12: # aplica o contraste MinMax para a classe 12 (Formação Natural não Florestal) red[i][j] = mm(red[i][j], max_red, min_red) nir[i][j] = mm(nir[i][j], max_nir, min_nir) swir[i][j] = mm(swir[i][j], max_swir, min_swir) elif banda_classificada_array[i][j] == 15 or 33: # aplica o contraste equalização para as classes 15 ou 33 (classe 15: Agropecuária; classe 33: Corpos dágua) red[i][j] = fered[i][j] nir[i][j] = fenir[i][j] swir[i][j] = feswir[i][j] elif banda_classificada_array[i][j] == 25: # aplica o contraste MinMax para a classe 25 (Área não Vegetada) red[i][j] = mm(red[i][j], max_red, min_red) nir[i][j] = mm(nir[i][j], max_nir, min_nir) swir[i][j] = mm(swir[i][j], max_swir, min_swir) # printa a msg de finalização da aplicação do contraste no array print('FINALIZADO!!!') # Usa a matplotlib para plotar as duas imagens (a sem contraste e a com contraste otimizado) # montando a composição colorida falsa-cor 543 # array para visualização de falsa-cor com contraste array_rgb_contraste = np.zeros((linhas, colunas, 3)) array_rgb_contraste[:, :, 0] = swir / 65535 array_rgb_contraste[:, :, 1] = nir / 65535 array_rgb_contraste[:, :, 2] = red / 65535 # Computa os histogramas para as 3 bandas original e com contraste red_ori, x = np.histogram(Ored, bins=np.arange(65535)) nir_ori, x = np.histogram(Onir, bins=np.arange(65535)) swir_ori, x = np.histogram(Oswir, bins=np.arange(65535)) red_cont, x = np.histogram(red, bins=np.arange(65535)) nir_cont, x = np.histogram(nir, bins=
np.arange(65535)
numpy.arange
from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import mean_squared_error from scipy.stats.stats import pearsonr import numpy as np from sklearn.svm import SVR import datasetUtils as dsu import embeddings import sys import os def pccMean(arr): pcc_only = np.array(list(scor[0] for scor in arr)) pcc_only = pcc_only[np.where(~np.isnan(pcc_only))] if len(pcc_only) != 0: mean_score = np.mean(pcc_only) else: #all elements are nan mean_score = "nan" return mean_score #configs post_threshold = 3 #parse cmd arguments if len(sys.argv) != 5 or sys.argv[1] not in ['O','C','E','A','N','o','c','e','a','n'] or sys.argv[2] not in ['fasttext', 'dataset9'] or not os.path.exists(sys.argv[3]) or sys.argv[4] not in ['True', 'False', 'yes', 'no']: print("Usage:", sys.argv[0], "<BIG5_trait> <embeddings_dataset> <dataset_path> <shuffle_data>") print("\tBIG5_trait: [O, C, E, A, N, o, c, e, a, n]") print("\tembeddings_dataset: [fasttext, dataset9]") print("\tdataset_path: [path/to/the/file]") print("\tshuffle_data: [yes, no], [True, False]") sys.exit(1) else: big5 = sys.argv[1].upper() dataset = sys.argv[2] dataset_path = sys.argv[3] shuffle = sys.argv[4] posts = [] yO = [] yC = [] yE = [] yA = [] yN = [] print("Loading myPersonality...") [posts, yO, yC, yE, yA, yN] = dsu.readMyPersonality() print("Loading embeddings dataset...") if dataset == 'fasttext': transform = True wordDictionary = dsu.parseFastText(dataset_path) else: transform = False wordDictionary = dsu.loadEmbeddingsDataset(dataset_path) print("Data successfully loaded.") filename = "tuning_SVM_"+big5+"_"+dataset if shuffle == 'True' or shuffle == 'yes' or shuffle == 'true': s = np.arange(posts.shape[0]) np.random.shuffle(s) posts = posts[s] yO = yO[s] yC = yC[s] yE = yE[s] yA = yA[s] yN = yN[s] filename = filename + "_shuffle" print("Data shuffled.") else: filename = filename + "_noShuffle" pcc_filename = filename + "_pcc.txt" filename = filename + ".csv" #only for test #subsetSize = len(sumE) subsetSize = 100 posts = posts[0:subsetSize] yO = yO[0:subsetSize] yC = yC[0:subsetSize] yE = yE[0:subsetSize] yA = yA[0:subsetSize] yN = yN[0:subsetSize] #save lists because transformTextForTraining() changes them old_yO = yO old_yC = yC old_yE = yE old_yA = yA old_yN = yN [sumE, yO, yC, yE, yA, yN] = embeddings.transformTextForTraining(wordDictionary, post_threshold, posts, old_yO, old_yC, old_yE, old_yA, old_yN, "sum", transform) maxE = embeddings.transformTextForTraining(wordDictionary, post_threshold, posts, old_yO, old_yC, old_yE, old_yA, old_yN, "max", transform)[0] minE = embeddings.transformTextForTraining(wordDictionary, post_threshold, posts, old_yO, old_yC, old_yE, old_yA, old_yN, "min", transform)[0] avgE = embeddings.transformTextForTraining(wordDictionary, post_threshold, posts, old_yO, old_yC, old_yE, old_yA, old_yN, "avg", transform)[0] conE = embeddings.transformTextForTraining(wordDictionary, post_threshold, posts, old_yO, old_yC, old_yE, old_yA, old_yN, "conc", transform)[0] if big5 == 'O': labels = yO elif big5 == 'C': labels = yC elif big5 == 'E': labels = yE elif big5 == 'A': labels = yA elif big5 == 'N': labels = yN if not os.path.exists("Results"): os.makedirs("Results") try: os.remove("Results/"+filename) except FileNotFoundError: pass try: os.remove("Results/"+pcc_filename) except FileNotFoundError: pass j = 1 k_fold = KFold(n_splits=10) for data in [sumE, maxE, minE, avgE, conE]: if j==1: method = "sum" print("computing results for sum...") elif j==2: method = "max" print("computing results for max...") elif j==3: method = "min" print("computing results for min...") elif j==4: method = "avg" print("computing results for avg...") elif j==5: method = "conc" print("computing results for concat...") j += 1 linear = np.zeros([3,10,2], dtype=np.float) poly_c1_d2 = np.zeros([3,10,2], dtype=np.float) poly_c10_d2 = np.zeros([3,10,2], dtype=np.float) poly_c100_d2 = np.zeros([3,10,2], dtype=np.float) poly_c1_d3 = np.zeros([3,10,2], dtype=np.float) poly_c10_d3 = np.zeros([3,10,2], dtype=np.float) poly_c100_d3 = np.zeros([3,10,2], dtype=np.float) rbf_g001_c1 = np.zeros([3,10,2], dtype=np.float) rbf_g001_c10 = np.zeros([3,10,2], dtype=np.float) rbf_g001_c100 = np.zeros([3,10,2], dtype=np.float) rbf_g01_c1 = np.zeros([3,10,2], dtype=np.float) rbf_g01_c10 = np.zeros([3,10,2], dtype=np.float) rbf_g01_c100 = np.zeros([3,10,2], dtype=np.float) rbf_g1_c1 = np.zeros([3,10,2], dtype=np.float) rbf_g1_c10 = np.zeros([3,10,2], dtype=np.float) rbf_g1_c100 =
np.zeros([3,10,2], dtype=np.float)
numpy.zeros
import pytest import mxnet as mx from mxnet import nd import numpy as np from rl_coach.architectures.mxnet_components.utils import * @pytest.mark.unit_test def test_to_mx_ndarray(): # scalar assert to_mx_ndarray(1.2) == nd.array([1.2]) # list of one scalar assert to_mx_ndarray([1.2]) == [nd.array([1.2])] # list of multiple scalars assert to_mx_ndarray([1.2, 3.4]) == [nd.array([1.2]), nd.array([3.4])] # list of lists of scalars assert to_mx_ndarray([[1.2], [3.4]]) == [[nd.array([1.2])], [nd.array([3.4])]] # numpy assert np.array_equal(to_mx_ndarray(np.array([[1.2], [3.4]])).asnumpy(), nd.array([[1.2], [3.4]]).asnumpy()) # tuple assert to_mx_ndarray(((1.2,), (3.4,))) == ((nd.array([1.2]),), (nd.array([3.4]),)) @pytest.mark.unit_test def test_asnumpy_or_asscalar(): # scalar float32 assert asnumpy_or_asscalar(nd.array([1.2])) == np.float32(1.2) # scalar int32 assert asnumpy_or_asscalar(nd.array([2], dtype=np.int32)) == np.int32(2) # list of one scalar assert asnumpy_or_asscalar([nd.array([1.2])]) == [np.float32(1.2)] # list of multiple scalars assert asnumpy_or_asscalar([nd.array([1.2]), nd.array([3.4])]) == [np.float32([1.2]), np.float32([3.4])] # list of lists of scalars assert asnumpy_or_asscalar([[nd.array([1.2])], [nd.array([3.4])]]) == [[np.float32([1.2])], [np.float32([3.4])]] # tensor assert np.array_equal(asnumpy_or_asscalar(nd.array([[1.2], [3.4]])), np.array([[1.2], [3.4]], dtype=np.float32)) # tuple assert (asnumpy_or_asscalar(((nd.array([1.2]),), (nd.array([3.4]),))) == ((
np.array([1.2], dtype=np.float32)
numpy.array
import os import time import torch import numpy as np from torch.autograd import Variable import scipy import cv2 import glob import random import math def visual_img(img, folder = 'temp',name="0.png"): scipy.misc.imsave(os.path.join(folder,name),img) def visual_kp_in_img(img, kp, size = 4, folder = 'temp', name = "kp_in_img_0.png"): # kp shape: objXnum_kpX2 for obj_id, obj in enumerate(kp): b, g, r = get_class_colors(obj_id) for xy in obj: temp_x = int(xy[0]*img.shape[1]) temp_y = int(xy[1]*img.shape[0]) for i in range(temp_x-size, temp_x+size): if i<0 or i > img.shape[1] -1 :continue for j in range(temp_y-size, temp_y+size): if j<0 or j> img.shape[0] -1 :continue img[j][i][0] = r img[j][i][1] = g img[j][i][2] = b scipy.misc.imsave(os.path.join(folder, name), img) def get_class_colors(class_id): colordict = {'gray': [128, 128, 128], 'silver': [192, 192, 192], 'black': [0, 0, 0], 'maroon': [128, 0, 0], 'red': [255, 0, 0], 'purple': [128, 0, 128], 'fuchsia': [255, 0, 255], 'green': [0, 128, 0], 'lime': [0, 255, 0], 'olive': [128, 128, 0], 'yellow': [255, 255, 0], 'navy': [0, 0, 128], 'blue': [0, 0, 255], 'teal': [0, 128, 128], 'aqua': [0, 255, 255], 'orange': [255, 165, 0], 'indianred': [205, 92, 92], 'lightcoral': [240, 128, 128], 'salmon': [250, 128, 114], 'darksalmon': [233, 150, 122], 'lightsalmon': [255, 160, 122], 'crimson': [220, 20, 60], 'firebrick': [178, 34, 34], 'darkred': [139, 0, 0], 'pink': [255, 192, 203], 'lightpink': [255, 182, 193], 'hotpink': [255, 105, 180], 'deeppink': [255, 20, 147], 'mediumvioletred': [199, 21, 133], 'palevioletred': [219, 112, 147], 'coral': [255, 127, 80], 'tomato': [255, 99, 71], 'orangered': [255, 69, 0], 'darkorange': [255, 140, 0], 'gold': [255, 215, 0], 'lightyellow': [255, 255, 224], 'lemonchiffon': [255, 250, 205], 'lightgoldenrodyellow': [250, 250, 210], 'papayawhip': [255, 239, 213], 'moccasin': [255, 228, 181], 'peachpuff': [255, 218, 185], 'palegoldenrod': [238, 232, 170], 'khaki': [240, 230, 140], 'darkkhaki': [189, 183, 107], 'lavender': [230, 230, 250], 'thistle': [216, 191, 216], 'plum': [221, 160, 221], 'violet': [238, 130, 238], 'orchid': [218, 112, 214], 'magenta': [255, 0, 255], 'mediumorchid': [186, 85, 211], 'mediumpurple': [147, 112, 219], 'blueviolet': [138, 43, 226], 'darkviolet': [148, 0, 211], 'darkorchid': [153, 50, 204], 'darkmagenta': [139, 0, 139], 'indigo': [75, 0, 130], 'slateblue': [106, 90, 205], 'darkslateblue': [72, 61, 139], 'mediumslateblue': [123, 104, 238], 'greenyellow': [173, 255, 47], 'chartreuse': [127, 255, 0], 'lawngreen': [124, 252, 0], 'limegreen': [50, 205, 50], 'palegreen': [152, 251, 152], 'lightgreen': [144, 238, 144], 'mediumspringgreen': [0, 250, 154], 'springgreen': [0, 255, 127], 'mediumseagreen': [60, 179, 113], 'seagreen': [46, 139, 87], 'forestgreen': [34, 139, 34], 'darkgreen': [0, 100, 0], 'yellowgreen': [154, 205, 50], 'olivedrab': [107, 142, 35], 'darkolivegreen': [85, 107, 47], 'mediumaquamarine': [102, 205, 170], 'darkseagreen': [143, 188, 143], 'lightseagreen': [32, 178, 170], 'darkcyan': [0, 139, 139], 'cyan': [0, 255, 255], 'lightcyan': [224, 255, 255], 'paleturquoise': [175, 238, 238], 'aquamarine': [127, 255, 212], 'turquoise': [64, 224, 208], 'mediumturquoise': [72, 209, 204], 'darkturquoise': [0, 206, 209], 'cadetblue': [95, 158, 160], 'steelblue': [70, 130, 180], 'lightsteelblue': [176, 196, 222], 'powderblue': [176, 224, 230], 'lightblue': [173, 216, 230], 'skyblue': [135, 206, 235], 'lightskyblue': [135, 206, 250], 'deepskyblue': [0, 191, 255], 'dodgerblue': [30, 144, 255], 'cornflowerblue': [100, 149, 237], 'royalblue': [65, 105, 225], 'mediumblue': [0, 0, 205], 'darkblue': [0, 0, 139], 'midnightblue': [25, 25, 112], 'cornsilk': [255, 248, 220], 'blanchedalmond': [255, 235, 205], 'bisque': [255, 228, 196], 'navajowhite': [255, 222, 173], 'wheat': [245, 222, 179], 'burlywood': [222, 184, 135], 'tan': [210, 180, 140], 'rosybrown': [188, 143, 143], 'sandybrown': [244, 164, 96], 'goldenrod': [218, 165, 32], 'darkgoldenrod': [184, 134, 11], 'peru': [205, 133, 63], 'chocolate': [210, 105, 30], 'saddlebrown': [139, 69, 19], 'sienna': [160, 82, 45], 'brown': [165, 42, 42], 'snow': [255, 250, 250], 'honeydew': [240, 255, 240], 'mintcream': [245, 255, 250], 'azure': [240, 255, 255], 'aliceblue': [240, 248, 255], 'ghostwhite': [248, 248, 255], 'whitesmoke': [245, 245, 245], 'seashell': [255, 245, 238], 'beige': [245, 245, 220], 'oldlace': [253, 245, 230], 'floralwhite': [255, 250, 240], 'ivory': [255, 255, 240], 'antiquewhite': [250, 235, 215], 'linen': [250, 240, 230], 'lavenderblush': [255, 240, 245], 'mistyrose': [255, 228, 225], 'gainsboro': [220, 220, 220], 'lightgrey': [211, 211, 211], 'darkgray': [169, 169, 169], 'dimgray': [105, 105, 105], 'lightslategray': [119, 136, 153], 'slategray': [112, 128, 144], 'darkslategray': [47, 79, 79], 'white': [255, 255, 255]} colornames = list(colordict.keys()) assert (class_id < len(colornames)) r, g, b = colordict[colornames[class_id]] return b, g, r # for OpenCV def vertices_reprojection(vertices, rt, k): p = np.matmul(k,
np.matmul(rt[:3,0:3], vertices.T)
numpy.matmul
#!/usr/bin/env python """ Interpolation of scattered data using ordinary kriging/collocation The program uses nearest neighbors interpolation and selects data from eight quadrants around the prediction point and uses a third-order Gauss-Markov covariance model, with a correlation length defined by the user. Provides the possibility of pre-cleaning of the data using a spatial n-sigma filter before interpolation. Observations with provided noise/error estimates (for each observation) are added to the diagonal of the covariance matrix if provided. User can also provide a constant rms-noise added to the diagonal. Takes as input a h5df file with needed data in geographical coordinates and a-priori error if needed. The user provides the wanted projection using the EPSG projection format. Output consists of an hdf5 file containing the predictions, rmse and the number of points used in the prediction, and the epsg number for the projection. Notes: If both the a-priori errors are provided and constant rms all values smaller then provided rms is set to this value providing a minimum error for the observations. To reduce the impact of highly correlated along-track measurements (seen as streaks in the interpolated raster) the 'rand' option can be used. This randomly samples N-observations in each quadrant instead of using the closest data points. Example: python interpkrig.py ifile.h5 ofile.h5 -d 10 10 -n 25 -r 50 -a 25 -p 3031 \ -c 50 10 -v lon lat dhdt dummy -e 0.1 -m dist python interpkrig.py ifile.h5 ofile.h5 -d 10 10 -n 25 -r 50 -a 25 -p 3031 \ -c 50 10 -v lon lat dhdt rmse -e 0.1 -m rand Credits: captoolkit - JPL Cryosphere Altimetry Processing Toolkit <NAME> (<EMAIL>) <NAME> (<EMAIL>) <NAME> (<EMAIL>) Jet Propulsion Laboratory, California Institute of Technology """ import h5py import pyproj import argparse import numpy as np from scipy import stats from scipy.spatial import cKDTree from scipy.spatial.distance import cdist def rand(x, n): """Draws random samples from array""" # Determine data density if len(x) > n: # Draw random samples from array I = np.random.choice(np.arange(len(x)), n, replace=False) else: # Output boolean vector - true I = np.ones(len(x), dtype=bool) return I def sort_dist(d, n): """ Sort array by distance""" # Determine if sorting needed if len(d) >= n: # Sort according to distance I = np.argsort(d) else: # Output boolean vector - true I = np.ones(len(x), dtype=bool) return I def transform_coord(proj1, proj2, x, y): """Transform coordinates from proj1 to proj2 (EPSG num).""" # Set full EPSG projection strings proj1 = pyproj.Proj("+init=EPSG:" + proj1) proj2 = pyproj.Proj("+init=EPSG:" + proj2) # Convert coordinates return pyproj.transform(proj1, proj2, x, y) def make_grid(xmin, xmax, ymin, ymax, dx, dy): """ Construct output grid-coordinates. """ Nn = int((np.abs(ymax - ymin)) / dy) + 1 # ny Ne = int((
np.abs(xmax - xmin)
numpy.abs
# pylint: disable=not-callable, no-member, arguments-differ, missing-docstring, invalid-name, line-too-long import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data from scipy.ndimage import zoom from cath.util import lr_schedulers from se3cnn.image.filter import low_pass_filter from se3cnn.image.gated_block import GatedBlock from se3cnn.image.utils import rotate_scalar from se3cnn.SO3 import rot class AvgSpacial(nn.Module): def forward(self, inp): return inp.view(inp.size(0), inp.size(1), -1).mean(-1) class LowPass(nn.Module): def __init__(self, scale, stride): super().__init__() self.scale = scale self.stride = stride def forward(self, inp): return low_pass_filter(inp, self.scale, self.stride) def get_volumes(size=20, pad=8, rotate=False, rotate90=False): assert size >= 4 tetris_tensorfields = [ [(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 1, 0)], # chiral_shape_1 [(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 0)], # chiral_shape_2 [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)], # square [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)], # line [(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)], # corner [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0)], # L [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)], # T [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 1, 0)], # zigzag ] labels = np.arange(len(tetris_tensorfields)) tetris_vox = [] for shape in tetris_tensorfields: volume =
np.zeros((4, 4, 4))
numpy.zeros
# @Author: <NAME> # @Email: <EMAIL> # @Filename: artificial_datasets.py # @Last modified by: <NAME> # @Last modified time: 19-Jul-2018 import argparse import bisect import collections import itertools import json import os import random import numpy import plotly import sklearn.neighbors import download_png INCREMENT = dict( # -x, -y, angle/, random-angle, +n for uniform corner=(0, 0, 2, 0, 1), side=(), centre=(0.5, 0.5, 1, 0.5, 0) ) class PlotGraph(object): @classmethod def __call__(cls, *args, **kwargs): return cls.run(*args, **kwargs) @classmethod def run(cls, path, _data, _layout): print("Plotting graph of: {}".format(path), flush=True) data = cls.plot_data_generation(_data) layout = cls.layout( "2-D Artificial Dataset", **_layout) cls.plot( path, data, layout) print("Graph Plotted: {}".format(path), flush=True) @classmethod def title_generation(cls, title, **kwargs): return "{}{}".format( title, "".join( ["<br>{}: {}".format(key, value) for key, value in kwargs.items()])) @classmethod def plot_data_generation(cls, _data): return [ plotly.graph_objs.Scatter( x=_data[0]['x'], y=_data[0]['y'], mode='markers', name='category 0' ), plotly.graph_objs.Scatter( x=_data[1]['x'], y=_data[1]['y'], mode='markers', name='category 1' ) ] @classmethod def plot_offline(cls, fig, path): filename = "{}.html".format(path[:-len('.png')]) url = plotly.offline.plot( fig, image="png", image_filename=path[path.rfind('/') + 1:-len('.png')], filename=filename, auto_open=False) destination = path[:path.rfind('/')] try: download_png.download(destination, url) except RuntimeError: print("RuntimeError occurs when downloading {}".format(url), flush=True) return print("Offline Graph Plotted: {}".format(path), flush=True) @classmethod def layout(cls, title, **kwargs): layout = dict( title=cls.title_generation(title, **kwargs)) return layout @classmethod def plot(cls, path, data, layout): fig = plotly.graph_objs.Figure(data=data, layout=layout) cls.plot_offline(fig, path) def label(point, separators): count = 0 for separator in separators: matrix = numpy.matrix([ numpy.array(point) - numpy.array(separator[0]), numpy.array(separator[1]) -
numpy.array(separator[0])
numpy.array
import numpy as np import gym from gym import spaces from numpy.random import default_rng import pickle import os import math import matplotlib.pyplot as plt from PIL import Image from gym_flp import rewards from IPython.display import display, clear_output import anytree from anytree import Node, RenderTree, PreOrderIter, LevelOrderIter, LevelOrderGroupIter ''' v0.0.3 Significant changes: 08.09.2020: - Dicrete option removed from spaces; only Box allowed - Classes for quadtratic set covering and mixed integer programming (-ish) added - Episodic tasks: no more terminal states (exception: max. no. of trials reached) 12.10.2020: - mip added - fbs added ''' class qapEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode=None, instance=None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.DistanceMatrices, self.FlowMatrices = pickle.load(open(os.path.join(__location__,'discrete', 'qap_matrices.pkl'), 'rb')) self.transport_intensity = None self.instance = instance self.mode = mode while not (self.instance in self.DistanceMatrices.keys() or self.instance in self.FlowMatrices.keys() or self.instance in ['Neos-n6', 'Neos-n7', 'Brewery']): print('Available Problem Sets:', self.DistanceMatrices.keys()) self.instance = input('Pick a problem:').strip() self.D = self.DistanceMatrices[self.instance] self.F = self.FlowMatrices[self.instance] # Determine problem size relevant for much stuff in here: self.n = len(self.D[0]) # Action space has two option: # 1) Define as Box with shape (1, 2) and allow values to range from 1 through self.n # 2) Define as Discrete with x = 1+((n^2-n)/2) actions (one half of matrix + 1 value from diagonal) --> Omit "+1" to obtain range from 0 to x! # self.action_space = spaces.Box(low=-1, high=6, shape=(1,2), dtype=np.int) # Doubles complexity of the problem as it allows the identical action (1,2) and (2,1) self.action_space = spaces.Discrete(int((self.n**2-self.n)*0.5)+1) # If you are using images as input, the input values must be in [0, 255] as the observation is normalized (dividing by 255 to have values in [0, 1]) when using CNN policies. if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape=(1, self.n, 3), dtype = np.uint8) # Image representation elif self.mode == 'human': self.observation_space = spaces.Box(low=1, high = self.n, shape=(self.n,), dtype=np.float32) self.states = {} # Create an empty dictonary where states and their respective reward will be stored for future reference self.actions = self.pairwiseExchange(self.n) # Initialize Environment with empty state and action self.action = None self.state = None self.internal_state = None #Initialize moving target to incredibly high value. To be updated if reward obtained is smaller. self.movingTargetReward = np.inf self.MHC = rewards.mhc.MHC() # Create an instance of class MHC in module mhc.py from package rewards def reset(self): state = default_rng().choice(range(1,self.n+1), size=self.n, replace=False) #MHC, self.TM = self.MHC.compute(self.D, self.F, state) self.internal_state = state.copy() return state def step(self, action): # Create new State based on action fromState = self.internal_state.copy() swap = self.actions[action] fromState[swap[0]-1], fromState[swap[1]-1] = fromState[swap[1]-1], fromState[swap[0]-1] newState = fromState.copy() #MHC, self.TM = self.MHC.compute(self.D, self.F, current_permutation) MHC, self.TM = self.MHC.compute(self.D, self.F, newState) if self.mode == 'human': self.states[tuple(fromState)] = MHC if self.movingTargetReward == np.inf: self.movingTargetReward = MHC #reward = self.movingTargetReward - MHC reward = -1 if MHC > self.movingTargetReward else 10 self.movingTargetReward = MHC if MHC < self.movingTargetReward else self.movingTargetReward if self.mode == "rgb_array": rgb = np.zeros((1,self.n,3), dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((fromState-np.min(fromState))/(np.max(fromState)-np.min(fromState))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for i, s in enumerate(fromState): rgb[0:1, i] = [R[s-1], G[s-1], B[s-1]] newState = np.array(rgb) self.state = newState.copy() self.internal_state = fromState.copy() return newState, reward, False, {} def render(self, mode=None): if self.mode == "human": SCALE = 1 # Scale size of pixels for displayability img_h, img_w = SCALE, (len(self.internal_state))*SCALE data = np.zeros((img_h, img_w, 3), dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((self.internal_state-np.min(self.internal_state))/(np.max(self.internal_state)-np.min(self.internal_state))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for i, s in enumerate(self.internal_state): data[0*SCALE:1*SCALE, i*SCALE:(i+1)*SCALE] = [R[s-1], G[s-1], B[s-1]] img = Image.fromarray(data, 'RGB') if self.mode == 'rgb_array': img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def close(self): pass def pairwiseExchange(self, x): actions = [(i,j) for i in range(1,x) for j in range(i+1,x+1) if not i==j] actions.append((1,1)) return actions class fbsEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode=None, instance = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.mode = mode self.instance = instance while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed ''' Nomenclature: W --> Width of Plant (y coordinate) L --> Length of Plant (x coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' #if self.l is None or self.w is None: # self.l = np.random.randint(max(self.min_side_length, np.min(self.a)/self.min_side_length), max(self.min_side_length, np.min(self.a)/self.min_side_length), size=(self.n,)) # self.l = np.sqrt(self.A/self.aspect_ratio) # self.w = np.round(self.a/self.l) # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L # Design a layout with l = 1,5 * w #self.L = divisor(int(self.A)) #self.W = self.A/self.L # These values need to be set manually, e.g. acc. to data from literature. Following Eq. 1 in Ulutas & Kulturel-Konak (2012), the minimum side length can be determined by assuming the smallest facility will occupy alone. self.aspect_ratio = int(max(self.beta)) if not self.beta is None else 1 self.min_length = np.min(self.a) / self.L self.min_width = np.min(self.a) / self.W # We define minimum side lengths to be 1 in order to be displayable in array self.min_length = 1 self.min_width = 1 self.action_space = spaces.Discrete(5) #Taken from doi:10.1016/j.engappai.2020.103697 self.actions = {0: 'Randomize', 1: 'Bit Swap', 2: 'Bay Exchange', 3: 'Inverse', 4: 'Idle'} #self.state_space = spaces.Box(low=1, high = self.n, shape=(self.n,), dtype=np.int) self.bay_space = spaces.Box(low=0, high = 1, shape=(self.n,), dtype=np.int) # binary vector indicating bay breaks (i = 1 means last facility in bay) self.state = None self.permutation = None # Permutation of all n facilities, read from top to bottom self.bay = None self.done = False self.MHC = rewards.mhc.MHC() if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": observation_low = np.tile(np.array([0,0,self.min_length,self.min_width],dtype=int), self.n) observation_high = np.tile(np.array([self.W, self.L, self.W, self.L], dtype=int), self.n) self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = int) # Vector representation of coordinates else: print("Nothing correct selected") def reset(self): # 1. Get a random permutation and bays self.permutation, self.bay = self.sampler() # 2. Last position in bay break vector has to be 1 by default. self.bay[-1] = 1 self.fac_x, self.fac_y, self.fac_b, self.fac_h = self.getCoordinates() self.D = getDistances(self.fac_x, self.fac_y) reward, self.TM = self.MHC.compute(self.D, self.F, self.permutation[:]) self.state = self.constructState(self.fac_x, self.fac_y, self.fac_b, self.fac_h, self.n) return self.state def constructState(self, x, y, l, w, n): # Construct state state_prelim = np.zeros((4*n,), dtype=float) state_prelim[0::4] = y state_prelim[1::4] = x state_prelim[2::4] = w state_prelim[3::4] = l if self.mode == "human": self.state = np.array(state_prelim) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(state_prelim) return self.state[:] def ConvertCoordinatesToState(self, state_prelim): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) R = np.array((self.permutation-np.min(self.permutation))/(np.max(self.permutation)-np.min(self.permutation))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for x, p in enumerate(self.permutation): x_from = state_prelim[4*x+1] -0.5 * state_prelim[4*x+3] y_from = state_prelim[4*x+0] -0.5 * state_prelim[4*x+2] x_to = state_prelim[4*x+1] + 0.5 * state_prelim[4*x+3] y_to = state_prelim[4*x+0] + 0.5 * state_prelim[4*x+2] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[p-1], G[p-1], B[p-1]] return np.array(data, dtype=np.uint8) def sampler(self): return default_rng().choice(range(1,self.n+1), size=self.n, replace=False), self.bay_space.sample() def getCoordinates(self): facilities = np.where(self.bay==1)[0] #Read all positions with a bay break bays = np.split(self.permutation, facilities[:-1]+1) lengths = np.zeros((len(self.permutation,))) widths = np.zeros((len(self.permutation,))) fac_x = np.zeros((len(self.permutation,))) fac_y = np.zeros((len(self.permutation,))) x = 0 start = 0 for b in bays: #Get the facilities that are located in the bay areas = self.a[b-1] #Get the area associated with the facilities end = start + len(areas) lengths[start:end] = np.sum(areas)/self.W #Calculate all facility widhts in bay acc. to Eq. (1) in https://doi.org/10.1016/j.eswa.2011.11.046 widths[start:end] = areas/lengths[start:end] fac_x[start:end] = lengths[start:end] * 0.5 + x x += np.sum(areas)/self.W y = np.ones(len(b)) ll = 0 for idx, l in enumerate(widths[start:end]): y[idx] = ll + 0.5*l ll += l fac_y[start:end] = y start = end return fac_x, fac_y, lengths, widths def step(self, action): a = self.actions[action] #k = np.count_nonzero(self.bay) fromState = np.array(self.permutation) # Get lists with a bay positions and facilities in each bay facilities = np.where(self.bay==1)[0] bay_breaks = np.split(self.bay, facilities[:-1]+1) # Load indiv. facilities into bay acc. to breaks; omit break on last position to avoid empty array in list. bays = np.split(self.permutation, facilities[:-1]+1) if a == 'Randomize': # Two vector elements randomly chosen are exchanged. Bay vector remains untouched. k = default_rng().choice(range(len(self.permutation-1)), size=1, replace=False) l = default_rng().choice(range(len(self.permutation-1)), size=1, replace=False) fromState[k], fromState[l] = fromState[l], fromState[k] self.permutation = np.array(fromState) elif a == 'Bit Swap': #One element randomly selected flips its value (1 to 0 or 0 to 1) j = default_rng().choice(range(len(self.bay-1)), size=1, replace=False) temp_bay = np.array(self.bay) # Make a copy of bay temp_bay[j] = 1 if temp_bay[j] == 0 else 0 self.bay = np.array(temp_bay) elif a == 'Bay Exchange': #Two bays are randomly selected and exchange facilities contained in them o = int(default_rng().choice(range(len(bays)), size=1, replace=False)) p = int(default_rng().choice(range(len(bays)), size=1, replace=False)) while p==o: # Make sure bays are not the same p = int(default_rng().choice(range(len(bays)), size=1, replace=False)) # Swap bays and break points accordingly: bays[o], bays[p] = bays[p], bays[o] bay_breaks[o], bay_breaks[p] = bay_breaks[p], bay_breaks[o] new_bay = np.concatenate(bay_breaks) new_state = np.concatenate(bays) # Make sure state is saved as copy self.permutation = np.array(new_state) self.bay = np.array(new_bay) elif a == 'Inverse': #Facilities present in a certain bay randomly chosen are inverted. q = default_rng().choice(range(len(bays))) bays[q] = np.flip(bays[q]) new_bay = np.concatenate(bay_breaks) new_state = np.concatenate(bays) # Make sure state is saved as copy self.permutation = np.array(new_state) self.bay = np.array(new_bay) elif a == 'Idle': pass # Keep old state self.fac_x, self.fac_y, self.fac_b, self.fac_h = self.getCoordinates() self.D = getDistances(self.fac_x, self.fac_y) reward, self.TM = self.MHC.compute(self.D, self.F, fromState) self.state = self.constructState(self.fac_x, self.fac_y, self.fac_b, self.fac_h, self.n) self.done = False #Always false for continuous task return self.state[:], reward, self.done, {} def render(self, mode= None): if self.mode== "human": # Mode 'human' needs intermediate step to convert state vector into image array data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') if self.mode == "rgb_array": data = self.state[:] img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() #23.02.21: Switched to data instead of img for testing video return img def close(self): pass #self.close() class ofpEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode = None, instance = None, distance = None, aspect_ratio = None, step_size = None, greenfield = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.mode = mode self.aspect_ratio = 2 if aspect_ratio is None else aspect_ratio self.step_size = 2 if step_size is None else step_size self.greenfield = greenfield self.instance = instance while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] self.counter = 0 self.done = False self.pseudo_stability = 0 #If the reward has not improved in the last 200 steps, terminate the episode self.best_reward = None # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed ''' Nomenclature: W --> Width of Plant (x coordinate) L --> Length of Plant (y coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' #if self.l is None or self.w is None: # self.l = np.random.randint(max(self.min_side_length, np.min(self.a)/self.min_side_length), max(self.min_side_length, np.min(self.a)/self.min_side_length), size=(self.n,)) # self.l = np.sqrt(self.A/self.aspect_ratio) # self.w = np.round(self.a/self.l) # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L if self.greenfield: self.L = 2*self.L self.W = 2*self.W # Design a layout with l = 1,5 * w #self.L = divisor(int(self.A)) #self.W = self.A/self.L # These values need to be set manually, e.g. acc. to data from literature. Following Eq. 1 in Ulutas & Kulturel-Konak (2012), the minimum side length can be determined by assuming the smallest facility will occupy alone. self.aspect_ratio = int(max(self.beta)) if not self.beta is None else self.aspect_ratio self.min_length = 1 self.min_width = 1 # 3. Define the possible actions: 5 for each box [toDo: plus 2 to manipulate sizes] + 1 idle action for all self.actions = {} for i in range(self.n): self.actions[0+(i)*5] = "up" self.actions[1+(i)*5] = "down" self.actions[2+(i)*5] = "right" self.actions[3+(i)*5] = "left" self.actions[4+(i)*5] = "rotate" self.actions[len(self.actions)] = "keep" # 4. Define actions space as Discrete Space self.action_space = spaces.Discrete(1+5*self.n) #5 actions for each facility: left, up, down, right, rotate + idle action across all # 5. Set some starting points self.reward = 0 self.state = None self.internal_state = None #Placeholder for state variable for internal manipulation in rgb_array mode if self.w is None or self.l is None: self.l = np.random.randint(self.min_side_length*self.aspect_ratio, np.min(self.a), size=(self.n, )) self.w = np.round(self.a/self.l) # 6. Set upper and lower bound for observation space # min x position can be point of origin (0,0) [coordinates map to upper left corner] # min y position can be point of origin (0,0) [coordinates map to upper left corner] # min width can be smallest area divided by its length # min lenght can be smallest width (above) multiplied by aspect ratio # max x pos can be bottom right edge of grid # max y pos can be bottpm right edge of grid if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": #observation_low = np.tile(np.array([0,0,self.min_side_length, self.min_side_length],dtype=float), self.n) #observation_high = np.tile(np.array([self.L, self.W, max(self.l), max(self.w)], dtype=float), self.n) observation_low = np.zeros(4* self.n) observation_high = np.zeros(4* self.n) observation_low[0::4] = max(self.w) observation_low[1::4] = max(self.l) observation_low[2::4] = max(self.w) observation_low[3::4] = max(self.l) observation_high[0::4] = self.W - max(self.w) observation_high[1::4] = self.L - max(self.l) observation_high[2::4] = self.W - max(self.w) observation_high[3::4] = self.L - max(self.l) self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = np.uint8) # Vector representation of coordinates else: print("Nothing correct selected") self.MHC = rewards.mhc.MHC() # Set Boundaries self.upper_bound = self.L- max(self.l)/2 self.lower_bound = 0 + max(self.l)/2 self.left_bound = 0 + max(self.w)/2 self.right_bound = self.W- max(self.w)/2 def reset(self): # Start with random x and y positions if self.mode == 'human': state_prelim = self.observation_space.sample() # Override length (l) and width (w) or facilities with data from instances state_prelim[2::4] = self.w state_prelim[3::4] = self.l self.D = getDistances(state_prelim[0::4], state_prelim[1::4]) self.internal_state = np.array(state_prelim) self.state = np.array(state_prelim) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) self.counter = 0 self.best_reward = reward self.reward = 0 elif self.mode == 'rgb_array': state_prelim = np.zeros((self.W, self.L, 3),dtype=np.uint8) x = np.random.uniform(0, self.L, size=(self.n,)) y = np.random.uniform(0, self.W, size=(self.n,)) #s = self.constructState(y, x, self.w, self.l, self.n) s = np.zeros(4*self.n) s[0::4] = y s[1::4] = x s[2::4] = self.w s[3::4] = self.l self.internal_state = np.array(s).copy() #self.state = self.constructState(y, x, self.w, self.l, self.n) self.D = getDistances(s[0::4], s[1::4]) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) self.state = self.ConvertCoordinatesToState(self.internal_state) self.counter = 0 self.best_reward = reward return self.state.copy() # def offGrid(self, s): # if np.any(s[0::4]-s[2::4] < 0): # #print("Bottom bound breached") # og = True # elif np.any(s[0::4]+s[2::4] > self.W): # #print("Top bound breached") # og = True # elif np.any(s[1::4]-s[3::4] < 0): # #print("left bound breached") # og = True # elif np.any(s[1::4]+s[3::4] > self.L): # #print("right bound breached") # og = True # else: # og = False # return og # def collision_test(self, y, x, w, l): # # collision test # collision = False #initialize collision for each collision test # for i in range (0, self.n-1): # for j in range (i+1,self.n): # if not(x[i]+0.5*l[i] < x[j]-0.5*l[j] or x[i]-0.5*l[i] > x[j]+0.5*l[j] or y[i]-0.5*w[i] > y[j]+0.5*w[j] or y[i]+0.5*w[i] < y[j]-0.5*w[j]): # collision = True # break # return collision def collision(self,x,y,w,l): collision = False for i in range(0,self.n-1): for j in range(i+1,self.n): if (abs(int(x[i]) - int(x[j])) < 0.5*self.w[i]+0.5*self.w[j]): if(abs(int(y[i]) - int(y[j])) < 0.5*self.l[i]+0.5*self.l[j]): #print(x[i],y[i],x[j],y[j]) collision = True if (abs(int(y[i]) - int(y[j])) < 0.5*self.l[i]+0.5*self.l[j]): if(abs(int(x[i]) - int(x[j])) < 0.5*self.w[i]+0.5*self.w[j]): #print(x[i],y[i],x[j],y[j]) collision = True return collision def step(self, action): self.reward = 0 m = np.int(np.ceil((action+1)/5)) # Facility on which the action is # Get copy of state to manipulate: temp_state = self.internal_state[:] step_size = self.step_size # Do the action if self.actions[action] == "up": if temp_state[4*(m-1)+1] + temp_state[4*(m-1)+3]*0.5 + step_size < self.upper_bound: temp_state[4*(m-1)+1] += step_size else: temp_state[4*(m-1)+1] += 0 #print('Forbidden action: machine', m, 'left grid on upper bound') elif self.actions[action] == "down": if temp_state[4*(m-1)+1] - temp_state[4*(m-1)+3]*0.5 + step_size > self.lower_bound: temp_state[4*(m-1)+1] -= step_size else: temp_state[4*(m-1)+1] += 0 #print('Forbidden action: machine', m, 'left grid on lower bound') elif self.actions[action] == "right": if temp_state[4*(m-1)]+temp_state[4*(m-1)+2]*0.5 + step_size < self.right_bound: temp_state[4*(m-1)] += step_size else: temp_state[4*(m-1)] += 0 #print('Forbidden action: machine', m, 'left grid on right bound') elif self.actions[action] == "left": if temp_state[4*(m-1)]-temp_state[4*(m-1)+2]*0.5 + step_size > self.left_bound: temp_state[4*(m-1)] -= step_size else: temp_state[4*(m-1)] += 0 #print('Forbidden action: machine', m, 'left grid on left bound') elif self.actions[action] == "keep": None #Leave everything as is elif self.actions[action] == "rotate": temp_state[4*(m-1)+2], temp_state[4*(m-1)+3] = temp_state[4*(m-1)+3], temp_state[4*(m-1)+2] else: raise ValueError("Received invalid action={} which is not part of the action space".format(action)) self.fac_x, self.fac_y, self.fac_b, self.fac_h = temp_state[0::4], temp_state[1::4], temp_state[2::4], temp_state[3::4] # ToDo: Read this from self.state self.D = getDistances(self.fac_x, self.fac_y) fromState = np.array(range(1,self.n+1)) # Need to create permutation matrix MHC, self.TM = self.MHC.compute(self.D, self.F, fromState) self.internal_state = np.array(temp_state) # Keep a copy of the vector representation for future steps self.state = self.internal_state[:] # Test if initial state causing a collision. If yes than initialize a new state until there is no collision collision = self.collision(temp_state[0::4],temp_state[1::4], temp_state[2::4], temp_state[3::4]) # Pass every 4th item starting at 0 (x pos) and 1 (y pos) for checking if (MHC < self.best_reward) and (collision == False) : self.best_reward = MHC self.reward = 50 if collision == True: self.reward = -2 if self.mode == 'rgb_array': self.state = self.ConvertCoordinatesToState(self.internal_state) #Retain state for internal use self.pseudo_stability = self.counter self.done = True if self.pseudo_stability == 200 else False self.counter += 1 #print(self.reward) return self.state,self.reward,self.done,{} def ConvertCoordinatesToState(self, state_prelim): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) p = np.arange(self.n) R = np.array((p-np.min(p))/(np.max(p)-np.min(p))*255).astype(int) R[R<=20] = 255 G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) G[G<=20] = 255 B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) B[B<=20] = 255 for x, p in enumerate(p): x_from = state_prelim[4*x+0] -0.5 * state_prelim[4*x+2] y_from = state_prelim[4*x+1] -0.5 * state_prelim[4*x+3] x_to = state_prelim[4*x+0] + 0.5 * state_prelim[4*x+2] y_to = state_prelim[4*x+1] + 0.5 * state_prelim[4*x+3] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[p-1], G[p-1], B[p-1]] return np.array(data, dtype=np.uint8) def constructState(self, x, y, b, h, n): # Construct state state_prelim = np.zeros((4*n,), dtype=float) state_prelim[0::4] = x state_prelim[1::4] = y state_prelim[2::4] = b state_prelim[3::4] = h if self.mode == "human": self.state = np.array(state_prelim) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(state_prelim) return self.state[:] def render(self): if self.mode == "human": data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') if self.mode == "rgb_array": img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def close(self): pass #Nothing here yet class stsEnv(gym.Env): metadata = {'render.modes': ['rgb_array', 'human']} def __init__(self, mode = None, instance = None): __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) self.problems, self.FlowMatrices, self.sizes, self.LayoutWidths, self.LayoutLengths = pickle.load(open(os.path.join(__location__,'continual', 'cont_instances.pkl'), 'rb')) self.instance = instance self.mode = mode self.MHC = rewards.mhc.MHC() while not (self.instance in self.FlowMatrices.keys() or self.instance in ['Brewery']): print('Available Problem Sets:', self.FlowMatrices.keys()) self.instance = input('Pick a problem:').strip() self.F = self.FlowMatrices[self.instance] self.n = self.problems[self.instance] self.AreaData = self.sizes[self.instance] # Obtain size data: FBS needs a length and area self.beta, self.l, self.w, self.a, self.min_side_length = getAreaData(self.AreaData) #Investigate available area data and compute missing values if needed # Check if there are Layout Dimensions available, if not provide enough (sqrt(a)*1.5) if self.instance in self.LayoutWidths.keys() and self.instance in self.LayoutLengths.keys(): self.L = int(self.LayoutLengths[self.instance]) # We need both values to be integers for converting into image self.W = int(self.LayoutWidths[self.instance]) else: self.A = np.sum(self.a) # Design a squared plant layout self.L = int(round(math.sqrt(self.A),0)) # We want the plant dimensions to be integers to fit them into an image self.W = self.L ''' Nomenclature: W --> Width of Plant (y coordinate) L --> Length of Plant (x coordinate) w --> Width of facility/bay (x coordinate) l --> Length of facility/bay (y coordinate) A --> Area of Plant a --> Area of facility Point of origin analoguous to numpy indexing (top left corner of plant) beta --> aspect ratios (as alpha is reserved for learning rate) ''' # Provide variables for layout encoding (epsilon in doi:10.1016/j.ejor.2018.01.001) self.permutation = None self.slicing = None self.orientation_space = spaces.Box(low=0, high = 1, shape=(self.n-1,), dtype=np.int) # binary vector indicating bay breaks (i = 1 means last facility in bay) self.state = None if self.mode == "rgb_array": self.observation_space = spaces.Box(low = 0, high = 255, shape= (self.W, self.L,3), dtype = np.uint8) # Image representation elif self.mode == "human": #observation_low = np.tile(np.array([0,0,self.min_side_length, self.min_side_length],dtype=float), self.n) #observation_high = np.tile(np.array([self.L, self.W, max(self.l), max(self.w)], dtype=float), self.n) observation_low = np.zeros(4* self.n) observation_high = np.zeros(4* self.n) observation_low[0::4] = 0.0 #Top-left corner y observation_low[1::4] = 0.0 #Top-left corner x observation_low[2::4] = 1.0 #Width observation_low[3::4] = 1.0 #Length observation_high[0::4] = self.W observation_high[1::4] = self.L observation_high[2::4] = self.W observation_high[3::4] = self.L self.observation_space = spaces.Box(low=observation_low, high=observation_high, dtype = float) # Vector representation of coordinates else: print("Nothing correct selected") self.action_space = spaces.Discrete(5) self.actions = {0: 'Permute', 1: 'Slice_Swap', 2: 'Shuffle', 3: 'Bit_Swap', 4: 'Idle'} def reset(self): # 1. Get a random permutation, slicing order and orientation self.permutation, self.slicing, self.orientation = self.sampler() # 2. Build the tree incl. size information s = self.TreeBuilder(self.permutation, self.slicing, self.orientation) centers = np.array([s[0::4] + 0.5*s[2::4], s[1::4] + 0.5* s[3::4]]) self.D = getDistances(centers[0], centers[1]) reward, self.TM = self.MHC.compute(self.D, self.F, np.array(range(1,self.n+1))) if self.mode == "human": self.state = np.array(s) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(s) return self.state def ConvertCoordinatesToState(self, s): data = np.zeros((self.observation_space.shape)) if self.mode == 'rgb_array' else np.zeros((self.W, self.L, 3),dtype=np.uint8) sources = np.sum(self.TM, axis = 1) sinks = np.sum(self.TM, axis = 0) p = self.permutation[:] R = np.array((p-np.min(p))/(np.max(p)-np.min(p))*255).astype(int) G = np.array((sources-np.min(sources))/(np.max(sources)-np.min(sources))*255).astype(int) B = np.array((sinks-np.min(sinks))/(np.max(sinks)-np.min(sinks))*255).astype(int) for x in range(self.n): y_from = s[4*x+0] x_from = s[4*x+1] y_to = y_from + s[4*x+2] x_to = x_from + s[4*x+3] data[int(y_from):int(y_to), int(x_from):int(x_to)] = [R[x], G[x], B[x]] return np.array(data, dtype=np.uint8) def TreeBuilder(self,p,s,o): names = {0: 'V', 1: 'H'} contains = np.array(p) W = self.W L = self.L area = W * L self.STS = Node(name = None, contains = contains, parent = None, area = area, width = W, length = L, upper_left = np.zeros((2,)), lower_right = np.array([W,L]), dtype = float) for i,r in enumerate(o): name = names[r] cut_after_pos = s[i] whats_in_pos = p[cut_after_pos-1] parent = anytree.search.find(self.STS, lambda node: np.any(node.contains==whats_in_pos)) parent.name = name starting_point = parent.upper_left cuts = np.split(parent.contains, [np.where(parent.contains == whats_in_pos)[0][0]+1]) for c in cuts: area = float(np.sum(self.a[c-1])) length = area/parent.width if name == 'V' else parent.length width = area/parent.length if name == 'H' else parent.width starting_point = starting_point contains = c new_name = None if not len(c)==1 else c[0] Node(name = new_name, \ contains = contains, \ parent = parent, \ area = area, \ width = width, \ length = length, \ upper_left = starting_point, \ lower_right = starting_point + np.array([width, length]), \ dtype = float) starting_point = starting_point + np.array([0, length]) if parent.name == 'V' else starting_point + np.array([width, 0]) parent.contains = None self.STS.root.area = np.sum([i.area for i in self.STS.root.children]) s = np.zeros((4*self.n,)) for l in self.STS.leaves: trg = int(l.name)-1 s[4*trg] = l.upper_left[0] s[4*trg+1] = l.upper_left[1] s[4*trg+2] = l.width s[4*trg+3] = l.length return s def step(self, a): action = self.actions[a] ''' Available actions in STS: - Random permutation change - Random slicing order change at two positions - Shuffle slicing order (new random array) - Bitswap in Orientation vector - Do Nothing ''' if action == 'Permute': i = np.random.randint(0, len(self.permutation)-1) j = np.random.randint(0, len(self.permutation)-1) temp_perm = np.array(self.permutation) temp_perm[i], temp_perm[j] = temp_perm[j], temp_perm[i] self.permutation = np.array(temp_perm) elif action == 'Slice_Swap': i = np.random.randint(0, len(self.slicing)-1) j = np.random.randint(0, len(self.slicing)-1) temp_sli = np.array(self.slicing) temp_sli[i], temp_sli[j] = temp_sli[j], temp_sli[i] self.slicing = np.array(temp_sli) elif action == 'Shuffle': self.slicing = default_rng().choice(range(1,self.n), size=self.n-1, replace=False) elif action == 'Bit_Swap': i = np.random.randint(0, len(self.orientation)-1) if self.orientation[i] == 1: self.orientation[i] = 0 elif self.orientation[i] == 0: self.orientation[i] = 1 elif action == 'Idle': self.permutation = np.array(self.permutation) self.slicing = np.array(self.slicing) self.orientation = np.array(self.orientation) new_state = self.TreeBuilder(self.permutation, self.slicing, self.orientation) if self.mode == "human": self.state = np.array(new_state) elif self.mode == "rgb_array": self.state = self.ConvertCoordinatesToState(new_state) return self.state[:], 0, False, {} def render(self, mode=None): if self.mode == "human": data = self.ConvertCoordinatesToState(self.state[:]) img = Image.fromarray(data, 'RGB') elif self.mode == "rgb_array": img = Image.fromarray(self.state, 'RGB') plt.imshow(img) plt.axis('off') plt.show() return img def sampler(self): return default_rng().choice(range(1,self.n+1),size=self.n, replace=False), \ default_rng().choice(range(1,self.n), size=self.n-1, replace=False), \ self.orientation_space.sample() def close(self): None def getAreaData(df): import re # First check for area data if np.any(df.columns.str.contains('Area', na=False, case = False)): a = df.filter(regex = re.compile("Area", re.IGNORECASE)).to_numpy() #a = np.reshape(a, (a.shape[0],)) else: a = None if np.any(df.columns.str.contains('Length', na=False, case = False)): l = df.filter(regex = re.compile("Length", re.IGNORECASE)).to_numpy() l = np.reshape(l, (l.shape[0],)) else: l = None if np.any(df.columns.str.contains('Width', na=False, case = False)): w = df.filter(regex = re.compile("Width", re.IGNORECASE)).to_numpy() w = np.reshape(w, (w.shape[0],)) else: w = None if np.any(df.columns.str.contains('Aspect', na=False, case = False)): ar = df.filter(regex = re.compile("Aspect", re.IGNORECASE)).to_numpy() #ar = np.reshape(a, (a.shape[0],)) else: ar = None ''' The following cases can apply in the implemented problem sets (as of 23.12.2020): 1. Area data --> use as is 2. Length and width data --> compute area as l * w 3. Only length data --> check for minimum length or aspect ratio 4. Several area columns (i.e. min/max) --> pick max 5. Lower and Upper Bounds for _machine-wise_ aspect ratio --> pick random between bounds ''' l_min = 1 if a is None: if not l is None and not w is None: a = l * w elif not l is None: a = l * max(l_min, max(l)) else: a = w * max(l_min, max(w)) if not ar is None and ar.ndim > 1: ar = np.array([np.random.default_rng().uniform(min(ar[i]), max(ar[i])) for i in range(len(ar))]) if not a is None and a.ndim > 1: #a = a[np.where(np.max(np.sum(a, axis = 0))),:] a = a[:, 0] # We choose the maximum value here. Can be changed if something else is needed a =
np.reshape(a, (a.shape[0],))
numpy.reshape
import itertools import textwrap import warnings from datetime import datetime from inspect import getfullargspec from typing import Any, Iterable, Mapping, Tuple, Union import numpy as np import pandas as pd from ..core.options import OPTIONS from ..core.utils import is_scalar try: import nc_time_axis # noqa: F401 nc_time_axis_available = True except ImportError: nc_time_axis_available = False ROBUST_PERCENTILE = 2.0 _registered = False def register_pandas_datetime_converter_if_needed(): # based on https://github.com/pandas-dev/pandas/pull/17710 global _registered if not _registered: pd.plotting.register_matplotlib_converters() _registered = True def import_matplotlib_pyplot(): """Import pyplot as register appropriate converters.""" register_pandas_datetime_converter_if_needed() import matplotlib.pyplot as plt return plt def _determine_extend(calc_data, vmin, vmax): extend_min = calc_data.min() < vmin extend_max = calc_data.max() > vmax if extend_min and extend_max: extend = "both" elif extend_min: extend = "min" elif extend_max: extend = "max" else: extend = "neither" return extend def _build_discrete_cmap(cmap, levels, extend, filled): """ Build a discrete colormap and normalization of the data. """ import matplotlib as mpl if not filled: # non-filled contour plots extend = "max" if extend == "both": ext_n = 2 elif extend in ["min", "max"]: ext_n = 1 else: ext_n = 0 n_colors = len(levels) + ext_n - 1 pal = _color_palette(cmap, n_colors) new_cmap, cnorm = mpl.colors.from_levels_and_colors(levels, pal, extend=extend) # copy the old cmap name, for easier testing new_cmap.name = getattr(cmap, "name", cmap) # copy colors to use for bad, under, and over values in case they have been # set to non-default values try: # matplotlib<3.2 only uses bad color for masked values bad = cmap(np.ma.masked_invalid([np.nan]))[0] except TypeError: # cmap was a str or list rather than a color-map object, so there are # no bad, under or over values to check or copy pass else: under = cmap(-np.inf) over = cmap(np.inf) new_cmap.set_bad(bad) # Only update under and over if they were explicitly changed by the user # (i.e. are different from the lowest or highest values in cmap). Otherwise # leave unchanged so new_cmap uses its default values (its own lowest and # highest values). if under != cmap(0): new_cmap.set_under(under) if over != cmap(cmap.N - 1): new_cmap.set_over(over) return new_cmap, cnorm def _color_palette(cmap, n_colors): import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap colors_i =
np.linspace(0, 1.0, n_colors)
numpy.linspace
""" Materials for the objects in a scene. """ import random import math import numpy from PIL import Image RNG = numpy.random.default_rng() AXIS_COLOUR_PAIRS = [ # +X : Red (numpy.array([1.0, 0.0, 0.0], dtype=numpy.single), numpy.array([1.0, 0.0, 0.0], dtype=numpy.single)), # +Y : Green (numpy.array([0.0, 1.0, 0.0], dtype=numpy.single), numpy.array([0.0, 1.0, 0.0], dtype=numpy.single)), # +Z : Blue (numpy.array([0.0, 0.0, 1.0]), numpy.array([0.0, 0.0, 1.0], dtype=numpy.single)), # -X : Pink (numpy.array([-1.0, 0.0, 0.0], dtype=numpy.single), numpy.array([1.0, 0.0, 1.0], dtype=numpy.single)), # -Y : Yellow (numpy.array([0.0, -1.0, 0.0], dtype=numpy.single), numpy.array([1.0, 1.0, 0.0], dtype=numpy.single)), # -Z : Cyan (numpy.array([0.0, 0.0, -1.0], dtype=numpy.single), numpy.array([0.0, 1.0, 1.0], dtype=numpy.single)), ] class Diffuse(): """ Scatter rays towards points on a hemisphere at the hit point. This provides a good approximation to the lambert shading model. This comes from https://raytracing.github.io/books/RayTracingInOneWeekend.html#diffusematerials/analternativediffuseformulation. A scattered ray bounces off the hitpoint, aiming toward a random point on the surface of a hemisphere with the centre of it's flat side at the hit point, and the centre/top of the dome pointing in the direction of the normal at that point of the surface. """ def __init__(self, colour): """ Initialise the object. Args: colour (numpy.array): An RGB 0-1 array representing the colour of the material. """ self.colour = colour def scatter(self, hit_raydirs, hit_points, hit_normals, hit_uvs, hit_backfaces): # Generate points in unit hemispheres pointing in the normal direction ray_dirs = numpy_random_unit_vecs(hit_points.shape[0]) # Reverse any points in the wrong hemisphere cosine_angles = numpy.einsum("ij,ij->i", ray_dirs, hit_normals) facing_wrong_way = cosine_angles < 0.0 ray_dirs[facing_wrong_way] *= -1.0 # Bounce ray origins are the hit points we fed in # Bounce ray directions are the random points in the hemisphere. hit_cols = numpy.full((hit_points.shape[0], 3), self.colour, dtype=numpy.single) absorbtions = numpy.full((hit_points.shape[0]), False) return hit_points, ray_dirs, hit_cols, absorbtions class TexturedDiffuse(): def __init__(self, texture_path): """ Initialise the object. Args: texture_path (str): Path to texture """ texture = Image.open(texture_path) width = texture.width height = texture.height self.smallest_side = float(min((width, height))) tex_mode = texture.mode tex_mode_map = { "RGB": 3, "RGBA": 4 } if tex_mode not in tex_mode_map: raise Exception(f"Unsupported texture image mode: {tex_mode}") self.texture_pixels = numpy.array(texture.getdata(), dtype=numpy.single) self.texture_pixels /= 255.0 self.texture_pixels = self.texture_pixels.reshape( (height, width, tex_mode_map[tex_mode]) ) self.texture_pixels = self.texture_pixels[:, :, 0:3] self.texture_pixels = numpy.flipud(self.texture_pixels) # self.texture_pixels = numpy.fliplr(self.texture_pixels) def scatter(self, hit_raydirs, hit_points, hit_normals, hit_uvs, hit_backfaces): # Generate points in unit hemispheres pointing in the normal direction ray_dirs = numpy_random_unit_vecs(hit_points.shape[0]) # Reverse any points in the wrong hemisphere cosine_angles = numpy.einsum("ij,ij->i", ray_dirs, hit_normals) facing_wrong_way = cosine_angles < 0.0 ray_dirs[facing_wrong_way] *= -1.0 # Bounce ray origins are the hit points we fed in # Bounce ray directions are the random points in the hemisphere. clipped_uvs = numpy.clip(hit_uvs, 0.0, 1.0) mapped_uvs = clipped_uvs * (self.smallest_side - 1.0) discretised_uvs = mapped_uvs.astype(numpy.intc) hit_cols = self.texture_pixels[ discretised_uvs[:, 1], discretised_uvs[:, 0], ] # col_choice = hit_uvs[:, 0] > 0.5 # col_choice = hit_uvs[:, 1] > 0.5 # hit_cols = numpy.where( # col_choice[:, numpy.newaxis], # numpy.array([0.1, 0.8, 0.2]), # numpy.array([0.2, 0.1, 0.1]) # ) absorbtions = numpy.full((hit_points.shape[0]), False) return hit_points, ray_dirs, hit_cols, absorbtions class CheckerboardDiffuse(): def __init__(self, scale, offset, colour_a, colour_b): """ Initialise the object. Args: """ self.scale = scale self.offset = offset self.colour_a = colour_a self.colour_b = colour_b def scatter(self, hit_raydirs, hit_points, hit_normals, hit_uvs, hit_backfaces): # Generate points in unit hemispheres pointing in the normal direction ray_dirs = numpy_random_unit_vecs(hit_points.shape[0]) # Reverse any points in the wrong hemisphere cosine_angles = numpy.einsum("ij,ij->i", ray_dirs, hit_normals) facing_wrong_way = cosine_angles < 0.0 ray_dirs[facing_wrong_way] *= -1.0 # Bounce ray origins are the hit points we fed in # Bounce ray directions are the random points in the hemisphere. Xs = numpy.remainder(numpy.fabs(numpy.floor(hit_points[:, 0] * self.scale[0] + self.offset[0])), 2) Ys = numpy.remainder(numpy.fabs(numpy.floor(hit_points[:, 1] * self.scale[1] + self.offset[1])), 2) Zs = numpy.remainder(numpy.fabs(numpy.floor(hit_points[:, 2] * self.scale[2] + self.offset[2])), 2) col_choice = numpy.logical_xor(Xs, numpy.logical_xor(Ys, Zs)) hit_cols = numpy.where( col_choice[:, numpy.newaxis], self.colour_a, self.colour_b ) absorbtions = numpy.full((hit_points.shape[0]), False) return hit_points, ray_dirs, hit_cols, absorbtions class NormalToRGBDiffuse(): """ Colour the surface based on the world normal at that point. """ def scatter(self, hit_raydirs, hit_points, hit_normals, hit_uvs, hit_backfaces): # Generate points in unit hemispheres pointing in the normal direction ray_dirs = numpy_random_unit_vecs(hit_points.shape[0]) # Reverse any points in the wrong hemisphere cosine_angles =
numpy.einsum("ij,ij->i", ray_dirs, hit_normals)
numpy.einsum
"""Random Forest (RandomForest) model from sklearn""" import datatable as dt import numpy as np from h2oaicore.models import CustomModel from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.preprocessing import LabelEncoder from h2oaicore.systemutils import physical_cores_count, config class RandomForestModel(CustomModel): _regression = True _binary = True _multiclass = True _display_name = "RandomForest" _description = "Random Forest Model based on sklearn" _testing_can_skip_failure = False # ensure tested as if shouldn't fail @staticmethod def can_use(accuracy, interpretability, train_shape=None, test_shape=None, valid_shape=None, n_gpus=0, num_classes=None, **kwargs): if config.hard_asserts: # for bigger data, too slow to test even with 1 iteration use = train_shape is not None and train_shape[0] * train_shape[1] < 1024 * 1024 or \ valid_shape is not None and valid_shape[0] * valid_shape[1] < 1024 * 1024 # too slow for walmart with only 421k x 15 use &= train_shape is not None and train_shape[1] < 10 return use else: return True def set_default_params(self, accuracy=None, time_tolerance=None, interpretability=None, **kwargs): # Fill up parameters we care about n_estimators = min(kwargs.get("n_estimators", 100), 1000) if config.hard_asserts: # for testing avoid too many trees n_estimators = 10 self.params = dict(random_state=kwargs.get("random_state", 1234), n_estimators=n_estimators, criterion="gini" if self.num_classes >= 2 else "mse", n_jobs=self.params_base.get('n_jobs', max(1, physical_cores_count)), max_depth=14, min_samples_split=2, min_samples_leaf=1, oob_score=False, ) def mutate_params(self, accuracy=10, **kwargs): if accuracy > 8: estimators_list = [100, 200, 300, 500, 1000, 2000] elif accuracy >= 5: estimators_list = [50, 100, 200, 300, 400, 500] elif accuracy >= 3: estimators_list = [10, 50, 100] elif accuracy >= 2: estimators_list = [10, 50] else: estimators_list = [10] if config.hard_asserts: # for testing avoid too many trees estimators_list = [10] # Modify certain parameters for tuning self.params["n_estimators"] = int(
np.random.choice(estimators_list)
numpy.random.choice
# This program was ported from the YAD2K project. # https://github.com/allanzelener/YAD2K # # copyright # https://github.com/allanzelener/YAD2K/blob/master/LICENSE # import numpy as np region_biases = (1.080000, 1.190000, 3.420000, 4.410000, 6.630000, 11.380000, 9.420000, 5.110000, 16.620001, 10.520000) voc_anchors = np.array( [[1.08, 1.19], [3.42, 4.41], [6.63, 11.38], [9.42, 5.11], [16.62, 10.52]]) voc_label = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] def sigmoid(x): return 1.0 / (1.0 + np.exp(-x)) def softmax(x): """Compute softmax values for each sets of scores in x.""" # shape (1, 13 , 13, 5, 20) dim = x.shape arr =
np.copy(x)
numpy.copy
''' Comparing single layer MLP with deep MLP (using TensorFlow) ''' import numpy as np import pickle import timeit start = timeit.default_timer() # Do not change this def initializeWeights(n_in,n_out): """ # initializeWeights return the random weights for Neural Network given the # number of node in the input layer and output layer # Input: # n_in: number of nodes of the input layer # n_out: number of nodes of the output layer # Output: # W: matrix of random initial weights with size (n_out x (n_in + 1))""" epsilon = sqrt(6) / sqrt(n_in + n_out + 1); W = (np.random.rand(n_out, n_in + 1)*2* epsilon) - epsilon; return W # Replace this with your sigmoid implementation def sigmoid(z): """# Notice that z can be a scalar, a vector or a matrix # return the sigmoid of input z""" Z = np.array(z) if (np.shape(Z) == ()): sigmoid = 1/(1+math.exp(-Z)) return sigmoid else: sigmoid = 1/(1+np.exp(-Z)) return sigmoid # Replace this with your nnObjFunction implementation def nnObjFunction(params, *args): """% nnObjFunction computes the value of objective function (negative log % likelihood error function with regularization) given the parameters % of Neural Networks, thetraining data, their corresponding training % labels and lambda - regularization hyper-parameter. % Input: % params: vector of weights of 2 matrices w1 (weights of connections from % input layer to hidden layer) and w2 (weights of connections from % hidden layer to output layer) where all of the weights are contained % in a single vector. % n_input: number of node in input layer (not include the bias node) % n_hidden: number of node in hidden layer (not include the bias node) % n_class: number of node in output layer (number of classes in % classification problem % training_data: matrix of training data. Each row of this matrix % represents the feature vector of a particular image % training_label: the vector of truth label of training images. Each entry % in the vector represents the truth label of its corresponding image. % lambda: regularization hyper-parameter. This value is used for fixing the % overfitting problem. % Output: % obj_val: a scalar value representing value of error function % obj_grad: a SINGLE vector of gradient value of error function % NOTE: how to compute obj_grad % Use backpropagation algorithm to compute the gradient of error function % for each weights in weight matrices. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % reshape 'params' vector into 2 matrices of weight w1 and w2 % w1: matrix of weights of connections from input layer to hidden layers. % w1(i, j) represents the weight of connection from unit j in input % layer to unit i in hidden layer. % w2: matrix of weights of connections from hidden layer to output layers. % w2(i, j) represents the weight of connection from unit j in hidden % layer to unit i in output layer.""" # Your code here # # # # # # Make sure you reshape the gradient matrices to a 1D array. for instance if your gradient matrices are grad_w1 and grad_w2 # you would use code similar to the one below to create a flat array # obj_grad = np.concatenate((grad_w1.flatten(), grad_w2.flatten()),0) n_input, n_hidden, n_class, training_data, training_label, lambdaval = args w1 = params[0:n_hidden * (n_input + 1)].reshape((n_hidden, (n_input + 1))) w2 = params[(n_hidden * (n_input + 1)):].reshape((n_class, (n_hidden + 1))) obj_val = 0 ## Creating bias term in training data training_data = np.concatenate((training_data,np.reshape(np.ones(len(training_data)),[len(training_data), 1])),axis = 1) ## Feed Forward network output_HL = np.dot(w1,np.transpose(training_data)) output_HL_Sigmoid = sigmoid(output_HL) bias_hidden = np.ones([1,output_HL_Sigmoid.shape[1]]) output_HL_Sigmoid = np.concatenate((output_HL_Sigmoid,bias_hidden),axis = 0) output_OL = np.dot(w2,output_HL_Sigmoid) output_OL_Sigmoid = sigmoid(output_OL) ## Creating boolean labels with size k * n training_label_n = np.zeros([n_class, training_label.shape[0]]) for i in range(0,len(training_label)): training_label_n[int(training_label[i]), i ] = 1 ## Calculating error_function leftTerm = training_label_n * np.log(output_OL_Sigmoid) rightTerm = (1-training_label_n) *
np.log(1-output_OL_Sigmoid)
numpy.log
import os import numpy as np from urllib import request import errno import struct import tarfile import glob import scipy.io as sio from sklearn.utils.extmath import cartesian from scipy.stats import laplace import joblib from spriteworld import factor_distributions as distribs from spriteworld import renderers as spriteworld_renderers from spriteworld import sprite import csv from collections import defaultdict import ast from scripts.data_analysis_utils import load_csv import pandas as pd from sklearn import preprocessing from sklearn import utils import torch from torch.utils.data import Dataset, DataLoader from torchvision.datasets import ImageFolder from torchvision.datasets.utils import download_url, check_integrity from torchvision import transforms from PIL import Image import pickle import h5py from matplotlib import pyplot as plt class TupleLoader(Dataset): def __init__(self, k=-1, rate=1, prior='uniform', transform=None, target_transform=None): # k=-1 gives random number of changing factors as in Locatello k=rand # rate=-1 gives random rate for each sample in Uniform(1,10) self.index_manager = None # set in child class self.factor_sizes = None # set in child class self.categorical = None # set in child class self.data = None # set in child class self.prior = prior self.transform = transform self.target_transform = target_transform self.rate = rate self.k = k if prior == 'laplace' and k != -1: print('warning setting k has no effect on prior=laplace. ' 'Set k=-1 or leave to default to get rid of this warning.') if prior == 'uniform' and rate != -1: print('warning setting rate has no effect on prior=uniform. ' 'Set rate=-1 or leave to default to get rid of this warning.') def __len__(self): return len(self.data) def sample_factors(self, num, random_state): """Sample a batch of observations X. Needed in dis. lib.""" assert not(num % 2) batch_size = int(num / 2) indices = random_state.choice(self.__len__(), 2 * batch_size, replace=False) batch, latents = [], [] for ind in indices: _, _, l1, _ = self.__getitem__(ind) latents.append(l1) return np.stack(latents) def sample_observations_from_factors(self, factors, random_state): batch = [] for factor in factors: sample_ind = self.index_manager.features_to_index(factor) sample = self.data[sample_ind] if self.transform: sample = self.transform(sample) if len(sample.shape) == 2: # set channel dim to 1 sample = sample[None] if np.issubdtype(sample.dtype, np.uint8): sample = sample.astype(np.float32) / 255. batch.append(sample) return np.stack(batch) def sample(self, num, random_state): #Sample a batch of factors Y and observations X factors = self.sample_factors(num, random_state) return factors, self.sample_observations_from_factors(factors, random_state) def sample_observations(self, num, random_state): #Sample a batch of observations X return self.sample(num, random_state)[1] def __getitem__(self, idx): n_factors = len(self.factor_sizes) first_sample = self.data[idx] first_sample_feat = self.index_manager.index_to_features(idx) if self.prior == 'uniform': # only change up to k factors if self.k == -1: k = np.random.randint(1, n_factors) # number of factors which can change else: k = self.k second_sample_feat = first_sample_feat.copy() indices = np.random.choice(n_factors, k, replace=False) for ind in indices: x = np.arange(self.factor_sizes[ind]) p = np.ones_like(x) / (x.shape[0] - 1) p[x == first_sample_feat[ind]] = 0 # dont pick same second_sample_feat[ind] = np.random.choice(x, 1, p=p) assert np.equal(first_sample_feat - second_sample_feat, 0).sum() == n_factors - k elif self.prior == 'laplace': second_sample_feat = self.truncated_laplace(first_sample_feat) else: raise NotImplementedError second_sample_ind = self.index_manager.features_to_index(second_sample_feat) second_sample = self.data[second_sample_ind] if self.transform: first_sample = self.transform(first_sample) second_sample = self.transform(second_sample) if len(first_sample.shape) == 2: # set channel dim to 1 first_sample = first_sample[None] second_sample = second_sample[None] if np.issubdtype(first_sample.dtype, np.uint8) or np.issubdtype(second_sample.dtype, np.uint8): first_sample = first_sample.astype(np.float32) / 255. second_sample = second_sample.astype(np.float32) / 255. if self.target_transform: first_sample_feat = self.target_transform(first_sample_feat) second_sample_feat = self.target_transform(second_sample_feat) return first_sample, second_sample, first_sample_feat, second_sample_feat def truncated_laplace(self, start): if self.rate == -1: rate = np.random.uniform(1, 10, 1)[0] else: rate = self.rate end = [] n_factors = len(self.factor_sizes) for mean, upper in zip(start, np.array(self.factor_sizes)): # sample each feature individually x = np.arange(upper) p = laplace.pdf(x, loc=mean, scale=np.log(upper) / rate) p /= np.sum(p) end.append(np.random.choice(x, 1, p=p)[0]) end = np.array(end).astype(np.int) end[self.categorical] = start[self.categorical] # don't change categorical factors s.a. shape # make sure there is at least one change if np.sum(abs(start - end)) == 0: ind = np.random.choice(np.arange(n_factors)[~self.categorical], 1)[0] # don't change categorical factors x = np.arange(self.factor_sizes[ind]) p = laplace.pdf(x, loc=start[ind], scale=np.log(self.factor_sizes[ind]) / rate) p[x == start[ind]] = 0 p /= np.sum(p) end[ind] = np.random.choice(x, 1, p=p) assert np.sum(abs(start - end)) > 0 return end class IndexManger(object): """Index mapping from features to positions of state space atoms.""" def __init__(self, factor_sizes): """Index to latent (= features) space and vice versa. Args: factor_sizes: List of integers with the number of distinct values for each of the factors. """ self.factor_sizes = np.array(factor_sizes) self.num_total = np.prod(self.factor_sizes) self.factor_bases = self.num_total / np.cumprod(self.factor_sizes) self.index_to_feat = cartesian([np.array(list(range(i))) for i in self.factor_sizes]) def features_to_index(self, features): """Returns the indices in the input space for given factor configurations. Args: features: Numpy matrix where each row contains a different factor configuration for which the indices in the input space should be returned. """ assert np.all((0 <= features) & (features <= self.factor_sizes)) index = np.array(np.dot(features, self.factor_bases), dtype=np.int64) assert np.all((0 <= index) & (index < self.num_total)) return index def index_to_features(self, index): assert np.all((0 <= index) & (index < self.num_total)) features = self.index_to_feat[index] assert np.all((0 <= features) & (features <= self.factor_sizes)) return features class Cars3D(TupleLoader): fname = 'nips2015-analogy-data.tar.gz' url = 'http://www.scottreed.info/files/nips2015-analogy-data.tar.gz' """ [4, 24, 183] 0. phi altitude viewpoint 1. theta azimuth viewpoint 2. car type """ def __init__(self, path='./data/cars/', data=None, **tupel_loader_kwargs): super().__init__(**tupel_loader_kwargs) self.factor_sizes = [4, 24, 183] self.num_factors = len(self.factor_sizes) self.categorical = np.array([False, False, True]) self.data_shape = [64, 64, 3] self.index_manager = IndexManger(self.factor_sizes) # download automatically if not exists if not os.path.exists(path): self.download_data(path) if data is None: all_files = glob.glob(path + '/*.mat') self.data = np.moveaxis(self._load_data(all_files).astype(np.float32), 3, 1) else: # speedup for debugging self.data = data def _load_data(self, all_files): def _load_mesh(filename): """Parses a single source file and rescales contained images.""" with open(os.path.join(filename), "rb") as f: mesh = np.einsum("abcde->deabc", sio.loadmat(f)["im"]) flattened_mesh = mesh.reshape((-1,) + mesh.shape[2:]) rescaled_mesh = np.zeros((flattened_mesh.shape[0], 64, 64, 3)) for i in range(flattened_mesh.shape[0]): pic = Image.fromarray(flattened_mesh[i, :, :, :]) pic.thumbnail((64, 64), Image.ANTIALIAS) rescaled_mesh[i, :, :, :] = np.array(pic) return rescaled_mesh * 1. / 255 dataset = np.zeros((24 * 4 * 183, 64, 64, 3)) for i, filename in enumerate(all_files): data_mesh = _load_mesh(filename) factor1 = np.array(list(range(4))) factor2 = np.array(list(range(24))) all_factors = np.transpose([np.tile(factor1, len(factor2)), np.repeat(factor2, len(factor1)), np.tile(i, len(factor1) * len(factor2))]) indexes = self.index_manager.features_to_index(all_factors) dataset[indexes] = data_mesh return dataset def download_data(self, load_path='./data/cars/'): os.makedirs(load_path, exist_ok=True) print('downlading data may take a couple of seconds, total ~ 300MB') request.urlretrieve(self.url, os.path.join(load_path, self.fname)) print('extracting data, do NOT interrupt') tar = tarfile.open(os.path.join(load_path, self.fname), "r:gz") tar.extractall() tar.close() print('saved data at', load_path) class SmallNORB(TupleLoader): """`MNIST <https://cs.nyu.edu/~ylclab/data/norb-v1.0-small//>`_ Dataset. factors: [5, 10, 9, 18, 6] - 0. (0 to 4) 0 for animal, 1 for human, 2 for plane, 3 for truck, 4 for car). - 1. the instance in the category (0 to 9) - 2. the elevation (0 to 8, which mean cameras are 30, 35,40,45,50,55,60,65,70 degrees from the horizontal respectively) - 3. the azimuth (0,2,4,...,34, multiply by 10 to get the azimuth in degrees) - 4. the lighting condition (0 to 5) """ dataset_root = "https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/" data_files = { 'train': { 'dat': { "name": 'smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat', "md5_gz": "66054832f9accfe74a0f4c36a75bc0a2", "md5": "8138a0902307b32dfa0025a36dfa45ec" }, 'info': { "name": 'smallnorb-5x46789x9x18x6x2x96x96-training-info.mat', "md5_gz": "51dee1210a742582ff607dfd94e332e3", "md5": "19faee774120001fc7e17980d6960451" }, 'cat': { "name": 'smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat', "md5_gz": "23c8b86101fbf0904a000b43d3ed2fd9", "md5": "fd5120d3f770ad57ebe620eb61a0b633" }, }, 'test': { 'dat': { "name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat', "md5_gz": "e4ad715691ed5a3a5f138751a4ceb071", "md5": "e9920b7f7b2869a8f1a12e945b2c166c" }, 'info': { "name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-info.mat', "md5_gz": "a9454f3864d7fd4bb3ea7fc3eb84924e", "md5": "7c5b871cc69dcadec1bf6a18141f5edc" }, 'cat': { "name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat', "md5_gz": "5aa791cd7e6016cf957ce9bdb93b8603", "md5": "fd5120d3f770ad57ebe620eb61a0b633" }, }, } raw_folder = 'raw' processed_folder = 'processed' train_image_file = 'train_img' train_label_file = 'train_label' train_info_file = 'train_info' test_image_file = 'test_img' test_label_file = 'test_label' test_info_file = 'test_info' extension = '.pt' def __init__(self, path='./data/smallNORB/', download=True, mode="all", transform=None, evaluate=False, **tupel_loader_kwargs): super().__init__(**tupel_loader_kwargs) self.root = os.path.expanduser(path) self.mode = mode self.evaluate = evaluate self.factor_sizes = [5, 10, 9, 18, 6] self.latent_factor_indices = [0, 2, 3, 4] self.num_factors = len(self.latent_factor_indices) self.categorical = np.array([True, True, False, False, False]) self.index_manager = IndexManger(self.factor_sizes) if transform: self.transform = transform else: self.transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((64, 64), interpolation=2), transforms.ToTensor(), lambda x: x.numpy()]) if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') # load labels labels_train = self._load(self.train_label_file) labels_test = self._load(self.test_label_file) # load info files infos_train = self._load(self.train_info_file) infos_test = self._load(self.test_info_file) # load right set data_train = self._load("{}_left".format(self.train_image_file)) data_test = self._load("{}_left".format(self.test_image_file)) info_train = torch.cat([labels_train[:, None], infos_train], dim=1) info_test = torch.cat([labels_test[:, None], infos_test], dim=1) infos = torch.cat([info_train, info_test]) data = torch.cat([data_train, data_test]) sorted_inds = np.lexsort([infos[:, i] for i in range(4, -1, -1)]) self.infos = infos[sorted_inds] self.data = data[sorted_inds].numpy() # is uint8 def sample_factors(self, num, random_state): # override super to ignore instance (see https://github.com/google-research/disentanglement_lib/blob/86a644d4ed35c771560dc3360756363d35477357/disentanglement_lib/data/ground_truth/norb.py#L52) factors = super().sample_factors(num, random_state) if self.evaluate: factors = np.concatenate([factors[:, :1], factors[:, 2:]], 1) return factors def sample_observations_from_factors(self, factors, random_state): # override super to ignore instance (see https://github.com/google-research/disentanglement_lib/blob/86a644d4ed35c771560dc3360756363d35477357/disentanglement_lib/data/ground_truth/norb.py#L52) if self.evaluate: instances = random_state.randint(0, self.factor_sizes[1], factors[:, :1].shape) factors = np.concatenate([factors[:, :1], instances, factors[:, 1:]], 1) return super().sample_observations_from_factors(factors, random_state) def __len__(self): return len(self.data) def _transform(self, img): # doing this so that it is consistent with all other data sets # to return a PIL Image img = Image.fromarray(img.numpy(), mode='L') if self.transform is not None: img = self.transform(img) return img def _load(self, file_name): return torch.load(os.path.join(self.root, self.processed_folder, file_name + self.extension)) def _save(self, file, file_name): with open(os.path.join(self.root, self.processed_folder, file_name + self.extension), 'wb') as f: torch.save(file, f) def _check_exists(self): """ Check if processed files exists.""" files = ( "{}_left".format(self.train_image_file), "{}_right".format(self.train_image_file), "{}_left".format(self.test_image_file), "{}_right".format(self.test_image_file), self.test_label_file, self.train_label_file ) fpaths = [os.path.exists(os.path.join(self.root, self.processed_folder, f + self.extension)) for f in files] return False not in fpaths def _flat_data_files(self): return [j for i in self.data_files.values() for j in list(i.values())] def _check_integrity(self): """Check if unpacked files have correct md5 sum.""" root = self.root for file_dict in self._flat_data_files(): filename = file_dict["name"] md5 = file_dict["md5"] fpath = os.path.join(root, self.raw_folder, filename) if not check_integrity(fpath, md5): return False return True def download(self): """Download the SmallNORB data if it doesn't exist in processed_folder already.""" import gzip if self._check_exists(): return # check if already extracted and verified if self._check_integrity(): print('Files already downloaded and verified') else: # download and extract for file_dict in self._flat_data_files(): url = self.dataset_root + file_dict["name"] + '.gz' filename = file_dict["name"] gz_filename = filename + '.gz' md5 = file_dict["md5_gz"] fpath = os.path.join(self.root, self.raw_folder, filename) gz_fpath = fpath + '.gz' # download if compressed file not exists and verified download_url(url, os.path.join(self.root, self.raw_folder), gz_filename, md5) print('# Extracting data {}\n'.format(filename)) with open(fpath, 'wb') as out_f, \ gzip.GzipFile(gz_fpath) as zip_f: out_f.write(zip_f.read()) os.unlink(gz_fpath) # process and save as torch files print('Processing...') # create processed folder try: os.makedirs(os.path.join(self.root, self.processed_folder)) except OSError as e: if e.errno == errno.EEXIST: pass else: raise # read train files left_train_img, right_train_img = self._read_image_file(self.data_files["train"]["dat"]["name"]) train_info = self._read_info_file(self.data_files["train"]["info"]["name"]) train_label = self._read_label_file(self.data_files["train"]["cat"]["name"]) # read test files left_test_img, right_test_img = self._read_image_file(self.data_files["test"]["dat"]["name"]) test_info = self._read_info_file(self.data_files["test"]["info"]["name"]) test_label = self._read_label_file(self.data_files["test"]["cat"]["name"]) # save training files self._save(left_train_img, "{}_left".format(self.train_image_file)) self._save(right_train_img, "{}_right".format(self.train_image_file)) self._save(train_label, self.train_label_file) self._save(train_info, self.train_info_file) # save test files self._save(left_test_img, "{}_left".format(self.test_image_file)) self._save(right_test_img, "{}_right".format(self.test_image_file)) self._save(test_label, self.test_label_file) self._save(test_info, self.test_info_file) print('Done!') @staticmethod def _parse_header(file_pointer): # Read magic number and ignore struct.unpack('<BBBB', file_pointer.read(4)) # '<' is little endian) # Read dimensions dimensions = [] num_dims, = struct.unpack('<i', file_pointer.read(4)) # '<' is little endian) for _ in range(num_dims): dimensions.extend(struct.unpack('<i', file_pointer.read(4))) return dimensions def _read_image_file(self, file_name): fpath = os.path.join(self.root, self.raw_folder, file_name) with open(fpath, mode='rb') as f: dimensions = self._parse_header(f) assert dimensions == [24300, 2, 96, 96] num_samples, _, height, width = dimensions left_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8) right_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8) for i in range(num_samples): # left and right images stored in pairs, left first left_samples[i, :, :] = self._read_image(f, height, width) right_samples[i, :, :] = self._read_image(f, height, width) return torch.ByteTensor(left_samples), torch.ByteTensor(right_samples) @staticmethod def _read_image(file_pointer, height, width): """Read raw image data and restore shape as appropriate. """ image = struct.unpack('<' + height * width * 'B', file_pointer.read(height * width)) image = np.uint8(np.reshape(image, newshape=(height, width))) return image def _read_label_file(self, file_name): fpath = os.path.join(self.root, self.raw_folder, file_name) with open(fpath, mode='rb') as f: dimensions = self._parse_header(f) assert dimensions == [24300] num_samples = dimensions[0] struct.unpack('<BBBB', f.read(4)) # ignore this integer struct.unpack('<BBBB', f.read(4)) # ignore this integer labels = np.zeros(shape=num_samples, dtype=np.int32) for i in range(num_samples): category, = struct.unpack('<i', f.read(4)) labels[i] = category return torch.LongTensor(labels) def _read_info_file(self, file_name): fpath = os.path.join(self.root, self.raw_folder, file_name) with open(fpath, mode='rb') as f: dimensions = self._parse_header(f) assert dimensions == [24300, 4] num_samples, num_info = dimensions struct.unpack('<BBBB', f.read(4)) # ignore this integer infos = np.zeros(shape=(num_samples, num_info), dtype=np.int32) for r in range(num_samples): for c in range(num_info): info, = struct.unpack('<i', f.read(4)) infos[r, c] = info return torch.LongTensor(infos) class Shapes3D(TupleLoader): """Shapes3D dataset. self.factor_sizes = [10, 10, 10, 8, 4, 15] The data set was originally introduced in "Disentangling by Factorising". The ground-truth factors of variation are: 0 - floor color (10 different values) 1 - wall color (10 different values) 2 - object color (10 different values) 3 - object size (8 different values) 4 - object type (4 different values) 5 - azimuth (15 different values) """ #url = 'https://liquidtelecom.dl.sourceforge.net/project/shapes3d/Shapes3D.zip' #fname = 'shapes3d.pkl' url = 'https://storage.googleapis.com/3d-shapes/3dshapes.h5' fname = '3dshapes.h5' def __init__(self, path='./data/shapes3d/', data=None, **tupel_loader_kwargs): super().__init__(**tupel_loader_kwargs) self.factor_sizes = [10, 10, 10, 8, 4, 15] self.num_factors = len(self.factor_sizes) self.categorical = np.array([False, False, False, False, True, False]) self.index_manager = IndexManger(self.factor_sizes) self.path = path if not os.path.exists(self.path): self.download() # read dataset print('init of shapes dataset (takes a couple of seconds) (large data array)') if data is None: with h5py.File(os.path.join(self.path, self.fname), 'r') as dataset: images = dataset['images'][()] self.data = np.transpose(images, (0, 3, 1, 2)) # np.uint8 else: self.data = data def download(self): print('downloading shapes3d') os.makedirs(self.path, exist_ok=True) request.urlretrieve(self.url, os.path.join(self.path, self.fname)) class SpriteDataset(TupleLoader): """ A PyTorch wrapper for the dSprites dataset by Matthey et al. 2017. The dataset provides a 2D scene with a sprite under different transformations: # dim, type, #values avail.-range * 0, color | 1 | 1-1 * 1, shape | 3 | 1-3 * 2, scale | 6 | 0.5-1. * 3, orientation | 40 | 0-2pi * 4, x-position | 32 | 0-1 * 5, y-position | 32 | 0-1 for details see https://github.com/deepmind/dsprites-dataset """ def __init__(self, path='./data/dsprites/', **tupel_loader_kwargs): super().__init__(**tupel_loader_kwargs) url = "https://github.com/deepmind/dsprites-dataset/raw/master/dsprites_ndarray_co1sh3sc6or40x32y32_64x64.npz" self.path = path self.factor_sizes = [3, 6, 40, 32, 32] self.num_factors = len(self.factor_sizes) self.categorical = np.array([True, False, False, False, False]) self.index_manager = IndexManger(self.factor_sizes) try: self.data = self.load_data() except FileNotFoundError: if not os.path.exists(path): os.makedirs(path, exist_ok=True) print( f'downloading dataset ... saving to {os.path.join(path, "dsprites.npz")}') request.urlretrieve(url, os.path.join(path, 'dsprites.npz')) self.data = self.load_data() def __len__(self): return len(self.data) def load_data(self): dataset_zip = np.load(os.path.join(self.path, 'dsprites.npz'), encoding="latin1", allow_pickle=True) return dataset_zip["imgs"].squeeze().astype(np.float32) class MPI3DReal(TupleLoader): """ object_color white=0, green=1, red=2, blue=3, brown=4, olive=5 object_shape cone=0, cube=1, cylinder=2, hexagonal=3, pyramid=4, sphere=5 object_size small=0, large=1 camera_height top=0, center=1, bottom=2 background_color purple=0, sea green=1, salmon=2 horizontal_axis 0,...,39 vertical_axis 0,...,39 """ url = 'https://storage.googleapis.com/disentanglement_dataset/Final_Dataset/mpi3d_real.npz' fname = 'mpi3d_real.npz' def __init__(self, path='./data/mpi3d_real/', **tupel_loader_kwargs): super().__init__(**tupel_loader_kwargs) self.factor_sizes = [6, 6, 2, 3, 3, 40, 40] self.num_factors = len(self.factor_sizes) self.categorical = np.array([False, True, False, False, False, False, False]) self.index_manager = IndexManger(self.factor_sizes) if not os.path.exists(path): self.download(path) load_path = os.path.join(path, self.fname) data = np.load(load_path)['images'] self.data = np.transpose(data.reshape([-1, 64, 64, 3]), (0, 3, 1, 2)) # np.uint8 def download(self, path): os.makedirs(path, exist_ok=True) print('downloading') request.urlretrieve(self.url, os.path.join(path, self.fname)) print('download complete') def value_to_key(x, val): for k in x.keys(): if x[k] == val: return k def rgb(c): return tuple((255 * np.array(c)).astype(np.uint8)) class NaturalSprites(Dataset): def __init__(self, natural_discrete=False, path='./data/natural_sprites/'): self.natural_discrete = natural_discrete self.sequence_len = 2 #only consider pairs self.area_filter = 0.1 #filter out 10% of outliers self.path = path self.fname = 'downscale_keepaspect.csv' self.url = 'https://zenodo.org/record/3948069/files/downscale_keepaspect.csv?download=1' self.load_data() def load_data(self): # download if not avaiable file_path = os.path.join(self.path, self.fname) if not os.path.exists(file_path): os.makedirs(self.path, exist_ok=True) print(f'file not found, downloading from {self.url} ...') from urllib import request url = self.url request.urlretrieve(url, file_path) with open(file_path) as data: self.csv_dict = load_csv(data, sequence=self.sequence_len) self.orig_num = [32, 32, 6, 40, 4, 1, 1, 1] self.dsprites = {'x': np.linspace(0.2,0.8,self.orig_num[0]), 'y': np.linspace(0.2,0.8,self.orig_num[1]), 'scale': np.linspace(0,0.5,self.orig_num[2]+1)[1:], 'angle': np.linspace(0,360,self.orig_num[3],dtype=np.int,endpoint=False), 'shape': ['square', 'triangle', 'star_4', 'spoke_4'], 'c0': [1.], 'c1': [1.], 'c2': [1.]} distributions = [] for key in self.dsprites.keys(): distributions.append(distribs.Discrete(key, self.dsprites[key])) self.factor_dist = distribs.Product(distributions) self.renderer = spriteworld_renderers.PILRenderer(image_size=(64, 64), anti_aliasing=5, color_to_rgb=rgb) if self.area_filter: keep_idxes = [] print(len(self.csv_dict['x'])) for i in range(self.sequence_len): x = pd.Series(np.array(self.csv_dict['area'])[:,i]) keep_idxes.append(x.between(x.quantile(self.area_filter/2), x.quantile(1-(self.area_filter/2)))) for k in self.csv_dict.keys(): y = pd.Series(self.csv_dict[k]) self.csv_dict[k] = np.array([x for x in y[np.logical_and(*keep_idxes)]]) print(len(self.csv_dict['x'])) if self.natural_discrete: num_bins = self.orig_num[:3] self.lab_encs = {} print('num_bins', num_bins) for i,key in enumerate(['x','y','area']): count, bin_edges = np.histogram(np.array(self.csv_dict[key]).flatten().tolist(), bins=num_bins[i]) bin_left, bin_right = bin_edges[:-1], bin_edges[1:] bin_centers = bin_left + (bin_right - bin_left)/2 new_data = [] old_shape = np.array(self.csv_dict[key]).shape lab_enc = preprocessing.LabelEncoder() if key == 'area': self.lab_encs['scale'] = lab_enc.fit(np.sqrt(bin_centers/(64**2))) else: self.lab_encs[key] = lab_enc.fit(bin_centers/64) for j in range(self.sequence_len): differences = (np.array(self.csv_dict[key])[:,j].reshape(1,-1) - bin_centers.reshape(-1,1)) new_data.append([bin_centers[x] for x in np.abs(differences).argmin(axis=0)]) self.csv_dict[key] = np.swapaxes(new_data, 0, 1) assert old_shape == np.array(self.csv_dict[key]).shape assert len(np.unique(np.array(self.csv_dict[key]).flatten())) == num_bins[i] for i,key in enumerate(['angle', 'shape', 'c0', 'c1', 'c2']): lab_enc = preprocessing.LabelEncoder() self.lab_encs[key] = lab_enc.fit(self.dsprites[key]) assert self.lab_encs.keys() == self.dsprites.keys() self.factor_sizes = [len(np.unique(np.array(self.csv_dict['x']).flatten())), len(np.unique(np.array(self.csv_dict['y']).flatten())), len(np.unique(np.array(self.csv_dict['area']).flatten())), 40,4,1,1,1] print(self.factor_sizes) self.latent_factor_indices = list(range(5)) self.num_factors = len(self.latent_factor_indices) self.observation_factor_indices = [i for i in range(self.num_factors) if i not in self.latent_factor_indices] self.mapping = {'square': 0, 'triangle': 1, 'star_4': 2, 'spoke_4': 3} def __getitem__(self, index): sampled_latents = self.factor_dist.sample() idx = np.random.choice(len(self.csv_dict['id']), p=None) sprites = [] latents = [] for i in range(self.sequence_len): curr_latents = sampled_latents.copy() csv_vals = [self.csv_dict['x'][idx][i], self.csv_dict['y'][idx][i], self.csv_dict['area'][idx][i]] curr_latents['x'] = csv_vals[0]/64 curr_latents['y'] = csv_vals[1]/64 curr_latents['scale'] = np.sqrt(csv_vals[2]/(64**2)) sprites.append(sprite.Sprite(**curr_latents)) latents.append(curr_latents) first_sample = np.transpose(self.renderer.render(sprites=[sprites[0]]).astype(np.float32) / 255., (2,0,1)) second_sample = np.transpose(self.renderer.render(sprites=[sprites[1]]).astype(np.float32) / 255., (2,0,1)) latents1 = np.array([self.convert_cat(item) for item in latents[0].values()]) latents2 = np.array([self.convert_cat(item) for item in latents[1].values()]) return first_sample, second_sample, latents1, latents2 def __len__(self): return len(self.csv_dict['id']) def sample_factors(self, num, random_state): #Sample a batch of factors Y if self.natural_discrete: factors = np.zeros(shape=(num, len(self.latent_factor_indices)), dtype=np.int64) for pos, i in enumerate(self.latent_factor_indices): factors[:, pos] = random_state.randint(self.factor_sizes[i], size=num) return factors else: factors = [] for n in range(num): sampled_latents = self.factor_dist.sample() idx = random_state.choice(len(self.csv_dict['id']), p=None) sampled_latents['x'] = self.csv_dict['x'][idx][0]/64 sampled_latents['y'] = self.csv_dict['y'][idx][0]/64 sampled_latents['scale'] = np.sqrt(self.csv_dict['area'][idx][0]/(64**2)) factors.append(np.array([self.convert_cat(item) for item in sampled_latents.values()])) return
np.array(factors)
numpy.array
import sys import numpy as np import pandas as pd import openmdao.api as om from wisdem.commonse import gravity eps = 1e-3 # Convenience functions for computing McDonald's C and F parameters def chsMshc(x): return np.cosh(x) * np.sin(x) - np.sinh(x) * np.cos(x) def chsPshc(x): return np.cosh(x) * np.sin(x) + np.sinh(x) * np.cos(x) def carterFactor(airGap, slotOpening, slotPitch): """Return Carter factor (based on Langsdorff's empirical expression) See page 3-13 Boldea Induction machines Chapter 3 """ gma = (2 * slotOpening / airGap) ** 2 / (5 + 2 * slotOpening / airGap) return slotPitch / (slotPitch - airGap * gma * 0.5) # --------------- def carterFactorMcDonald(airGap, h_m, slotOpening, slotPitch): """Return Carter factor using Carter's equation (based on Schwartz-Christoffel's conformal mapping on simplified slot geometry) This code is based on Eq. B.3-5 in Appendix B of McDonald's thesis. It is used by PMSG_arms and PMSG_disc. h_m : magnet height (m) b_so : stator slot opening (m) tau_s : Stator slot pitch (m) """ mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS) g_1 = airGap + h_m / mu_r # g b_over_a = slotOpening / (2 * g_1) gamma = 4 / np.pi * (b_over_a * np.arctan(b_over_a) - np.log(np.sqrt(1 + b_over_a ** 2))) return slotPitch / (slotPitch - gamma * g_1) # --------------- def carterFactorEmpirical(airGap, slotOpening, slotPitch): """Return Carter factor using Langsdorff's empirical expression""" sigma = (slotOpening / airGap) / (5 + slotOpening / airGap) return slotPitch / (slotPitch - sigma * slotOpening) # --------------- def carterFactorSalientPole(airGap, slotWidth, slotPitch): """Return Carter factor for salient pole rotor Where does this equation come from? It's different from other approximations above. Original code: tau_s = np.pi * dia / S # slot pitch b_s = tau_s * b_s_tau_s # slot width b_t = tau_s - b_s # tooth width K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor slotPitch - slotWidth == toothWidth """ return (slotPitch + 10 * airGap) / (slotPitch - slotWidth + 10 * airGap) # salient pole rotor # --------------------------------- def array_seq(q1, b, c, Total_number): Seq = np.array([1, 0, 0, 1, 0]) diff = Total_number * 5 / 6 G = np.prod(Seq.shape) return Seq, diff, G # --------------------------------- def winding_factor(Sin, b, c, p, m): S = int(Sin) # Step 1 Writing q1 as a fraction q1 = b / c # Step 2: Writing a binary sequence of b-c zeros and b ones Total_number = int(S / b) L = array_seq(q1, b, c, Total_number) # STep 3 : Repeat binary sequence Q_s/b times New_seq = np.tile(L[0], Total_number) Actual_seq1 = pd.DataFrame(New_seq[:, None].T) Winding_sequence = ["A", "C1", "B", "A1", "C", "B1"] New_seq2 = np.tile(Winding_sequence, int(L[1])) Actual_seq2 = pd.DataFrame(New_seq2[:, None].T) Seq_f = pd.concat([Actual_seq1, Actual_seq2], ignore_index=True) Seq_f.reset_index(drop=True) Slots = S R = S if S % 2 == 0 else S + 1 Windings_arrange = (pd.DataFrame(index=Seq_f.index, columns=Seq_f.columns[1:R])).fillna(0) counter = 1 # Step #4 Arranging winding in Slots for i in range(0, len(New_seq)): if Seq_f.loc[0, i] == 1: Windings_arrange.loc[0, counter] = Seq_f.loc[1, i] counter = counter + 1 Windings_arrange.loc[1, 1] = "C1" for k in range(1, R): if Windings_arrange.loc[0, k] == "A": Windings_arrange.loc[1, k + 1] = "A1" elif Windings_arrange.loc[0, k] == "B": Windings_arrange.loc[1, k + 1] = "B1" elif Windings_arrange.loc[0, k] == "C": Windings_arrange.loc[1, k + 1] = "C1" elif Windings_arrange.loc[0, k] == "A1": Windings_arrange.loc[1, k + 1] = "A" elif Windings_arrange.loc[0, k] == "B1": Windings_arrange.loc[1, k + 1] = "B" elif Windings_arrange.loc[0, k] == "C1": Windings_arrange.loc[1, k + 1] = "C" Phase_A = np.zeros((1000, 1), dtype=float) counter_A = 0 # Windings_arrange.to_excel('test.xlsx') # Winding vector, W_A for Phase A for l in range(1, R): if Windings_arrange.loc[0, l] == "A" and Windings_arrange.loc[1, l] == "A": Phase_A[counter_A, 0] = l Phase_A[counter_A + 1, 0] = l counter_A = counter_A + 2 elif Windings_arrange.loc[0, l] == "A1" and Windings_arrange.loc[1, l] == "A1": Phase_A[counter_A, 0] = -1 * l Phase_A[counter_A + 1, 0] = -1 * l counter_A = counter_A + 2 elif Windings_arrange.loc[0, l] == "A" or Windings_arrange.loc[1, l] == "A": Phase_A[counter_A, 0] = l counter_A = counter_A + 1 elif Windings_arrange.loc[0, l] == "A1" or Windings_arrange.loc[1, l] == "A1": Phase_A[counter_A, 0] = -1 * l counter_A = counter_A + 1 W_A = (np.trim_zeros(Phase_A)).T # Calculate winding factor K_w = 0 for r in range(0, int(2 * (S) / 3)): Gamma = 2 * np.pi * p * np.abs(W_A[0, r]) / S K_w += np.sign(W_A[0, r]) * (np.exp(Gamma * 1j)) K_w = np.abs(K_w) / (2 * S / 3) CPMR = np.lcm(S, int(2 * p)) N_cog_s = CPMR / S N_cog_p = CPMR / p N_cog_t = CPMR * 0.5 / p A = np.lcm(S, int(2 * p)) b_p_tau_p = 2 * 1 * p / S - 0 b_t_tau_s = (2) * S * 0.5 / p - 2 return K_w # --------------------------------- def shell_constant(R, t, l, x, E, v): Lambda = (3 * (1 - v ** 2) / (R ** 2 * t ** 2)) ** 0.25 D = E * t ** 3 / (12 * (1 - v ** 2)) C_14 = (np.sinh(Lambda * l)) ** 2 + (np.sin(Lambda * l)) ** 2 C_11 = (np.sinh(Lambda * l)) ** 2 - (np.sin(Lambda * l)) ** 2 F_2 = np.cosh(Lambda * x) * np.sin(Lambda * x) + np.sinh(Lambda * x) * np.cos(Lambda * x) C_13 = np.cosh(Lambda * l) * np.sinh(Lambda * l) - np.cos(Lambda * l) * np.sin(Lambda * l) F_1 = np.cosh(Lambda * x) * np.cos(Lambda * x) F_4 = np.cosh(Lambda * x) * np.sin(Lambda * x) - np.sinh(Lambda * x) * np.cos(Lambda * x) return D, Lambda, C_14, C_11, F_2, C_13, F_1, F_4 # --------------------------------- def plate_constant(a, b, E, v, r_o, t): D = E * t ** 3 / (12 * (1 - v ** 2)) C_2 = 0.25 * (1 - (b / a) ** 2 * (1 + 2 *
np.log(a / b)
numpy.log
"""MHD rotor test script """ import numpy as np from scipy.constants import pi as PI from gawain.main import run_gawain run_name = "mhd_rotor" output_dir = "." cfl = 0.25 with_mhd = True t_max = 0.15 integrator = "euler" # "base", "lax-wendroff", "lax-friedrichs", "vanleer", "hll" fluxer = "hll" ################ MESH ##################### nx, ny, nz = 128, 128, 1 mesh_shape = (nx, ny, nz) n_outputs = 100 lx, ly, lz = 1, 1, 0.001 mesh_size = (lx, ly, lz) x = np.linspace(0.0, lx, num=nx) y = np.linspace(0.0, ly, num=ny) z = np.linspace(0.0, lz, num=nz) X, Y, Z = np.meshgrid(x, y, z, indexing="ij") ############ INITIAL CONDITION ################# adiabatic_idx = 1.4 R = np.sqrt((X - 0.5) ** 2 + (Y - 0.5) ** 2) R0 = 0.1 R1 = 0.115 FR = (R1 - R) / (R - R0) U0 = 2 rho_mid_vals = 1 + 9 * FR vx_in_vals = -FR * U0 * (Y - 0.5) / R0 vx_mid_vals = -FR * U0 * (Y - 0.5) / R vy_in_vals = FR * U0 * (X - 0.5) / R0 vy_mid_vals = FR * U0 * (X - 0.5) / R inner_mask = np.where(R <= R0) middle_mask = np.where(
np.logical_and(R > R0, R < R1)
numpy.logical_and
from gzip import GzipFile import logging import numpy as np from struct import unpack from sys import argv def get_size(format_string): return sum( size_lookup[_t] for _t in list(format_string)) # define constants size_lookup = { "I": 4, # uint32 "Q": 8, # uint64 "i": 4, # int32 "B": 1, # byte } BG_ONLY = 0 FG_ONLY = 1 MIXED = 2 # compute header info for reading body_header_t = "IIIQ" body_header_n = get_size(body_header_t) block_header_t = "iiiB" block_header_n = get_size(block_header_t) subblock_header_t = "B" subblock_header_n = get_size(subblock_header_t) subblock_t = 64*"B" subblock_n = get_size(subblock_t) def assemble_array(mask_list): x_list = list() y_list = list() z_list = list() for x, y, z, _ in mask_list: x_list.append(x) y_list.append(y) z_list.append(z) x_unique = np.unique(x_list) y_unique = np.unique(y_list) z_unique = np.unique(z_list) min_x = x_unique[0] min_y = y_unique[0] min_z = z_unique[0] max_x = x_unique[-1] max_y = y_unique[-1] max_z = z_unique[-1] dx = x_unique[1] - x_unique[0] dy = y_unique[1] - y_unique[0] dz = z_unique[1] - z_unique[0] block_shape = mask_list[0][-1].shape x_space = int(dx/block_shape[0]) y_space = int(dy/block_shape[1]) z_space = int(dz/block_shape[2]) mask_x = max_x - min_x mask_x = int(mask_x/x_space) + block_shape[0] mask_y = max_y - min_y mask_y = int(mask_y/y_space) + block_shape[1] mask_z = max_z - min_z mask_z = int(mask_z/z_space) + block_shape[2] mask_array = np.zeros( ( mask_x, mask_y, mask_z), dtype=np.uint8) for x, y, z, block in mask_list: x_low = x-min_x x_low = int(x_low/x_space) x_high = x-min_x x_high = int(x_high/x_space)+block_shape[0] y_low = y-min_y y_low = int(y_low/y_space) y_high = y-min_y y_high = int(y_high/y_space)+block_shape[1] z_low = z-min_z z_low = int(z_low/z_space) z_high = z-min_z z_high = int(z_high/z_space)+block_shape[2] mask_array[ x_low:x_high, y_low:y_high, z_low:z_high] = block return mask_array def assemble_list( body_handle, granularity="bit"): # read body header gx, gy, gz, fg_label = unpack( "=" + body_header_t, body_handle.read(body_header_n)) # read body and process blocks blocks = list() while True: _bytes = body_handle.read(block_header_n) if len(_bytes) == 0: break x_block, y_block, z_block, content_flag = unpack( "=" + block_header_t, _bytes) if granularity == "bit": block_shape = (8*gx, 8*gy, 8*gz) elif granularity == "subblock": block_shape = (gx, gy, gz) elif granularity == "block": block_shape = (1, 1, 1) if content_flag == BG_ONLY: mask = np.zeros( block_shape, dtype=np.uint8) elif content_flag == FG_ONLY: mask = np.ones( block_shape, dtype=np.uint8) elif content_flag == MIXED: mask = assemble_block( gx, gy, gz, body_handle, granularity=granularity) else: logging.error("invalid content_flag") blocks.append(( x_block, y_block, z_block, mask)) mask_array = blocks return mask_array def assemble_block( gx, gy, gz, body_handle, granularity="bit"): mask = np.empty( (8*gx, 8*gy, 8*gz), dtype=np.uint8) for s_ix in range(gx*gy*gz): x_index = s_ix // (gy*gz) y_index = (s_ix // gz) % gy z_index = s_ix % gz content_flag = unpack( "=" + subblock_header_t, body_handle.read(subblock_header_n))[0] if content_flag == BG_ONLY: submask = np.zeros( (8, 8, 8), dtype=np.uint8) elif content_flag == FG_ONLY: submask = np.ones( (8, 8, 8), dtype=np.uint8) elif content_flag == MIXED: byte_raw = unpack( "=" + subblock_t, body_handle.read(subblock_n)) byte_list = list(byte_raw) byte_flat = np.array( byte_list, dtype=np.uint8) byte_structured = byte_flat.reshape(( 8, 8, 1)) submask = np.flip( np.unpackbits( byte_structured, axis=-1), axis=-1) else: logging.error("invalid content_flag") mask[ (8*x_index):(8*x_index+8), (8*y_index):(8*y_index+8), (8*z_index):(8*z_index+8)] = submask if granularity == "subblock": temp = np.empty( (gx, gy, gz), dtype=np.uint8) for x_index in range(gx): for y_index in range(gy): for z_index in range(gz): x_low = 8*x_index x_high = x_low+8 y_low = 8*y_index y_high = y_low+8 z_low = 8*z_index z_high = z_low+8 temp[ x_index, y_index, z_index] = mask[ x_low:x_high, y_low:y_high, z_low:z_high].max() mask = temp elif granularity == "block": mask = np.full( (1, 1, 1), mask.max(), dtype=np.uint8) return
np.transpose(mask, (2, 1, 0))
numpy.transpose
# -*- coding: utf-8 -*- ''' Survival (toxico-dynamics) models, forward simulation and model fitting. References ---------- [1] <NAME> al. (2011). General unified threshold model of survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environmental Science & Technology, 45(7), 2529-2540. ''' import sys import numpy as np import pandas as pd import scipy.integrate as sid from scipy.special import erf import lmfit import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import corner #ODE solver settings ATOL = 1e-9 MXSTEP = 1000 def mortality_lognormal(r, s): '''Calculate mortality from cumulative log-normal distribution Keyword arguments: :param r: ratio of body burdens to cbr, summed (dimensionless) :param s: dose-response slope (dimensionless) :returns: mortality fraction (fraction) ''' if r>0: mean = 0.0 x = (np.log10(r) - mean) / (s * np.sqrt(2)) return 0.5 * (1 + erf(x)) else: return 0.0 def guts_sic(y, t, ke, cd): '''One-compartment scaled internal concentration ODE (rhs)''' # One-compartment kinetics model for body residues dy = ke*(cd(t) - y) return dy def guts_sic_sd(y, t, params, cd, dy): '''GUTS-SIC-SD: Scaled internal concentration + hazard rate survival ODE (rhs)''' v = params n = y.size - 1 # One-compartment kinetics model for body residues dcv = guts_sic(y[:n], t, v['ke'], cd) #Dose metric cstot = np.sum(y[:n]) #Hazard rate hc = v['b'] * max(0, cstot - v['c0s']) h = hc + v['hb'] ds = -h * y[n] dy[:n] = dcv dy[n] = ds return dy def solve_guts_sic_sd(params, y0, times, cd): '''Solve the GUTS-SIC-SD ODE.''' v = params.valuesdict() dy = y0.copy() rhs = guts_sic_sd y = sid.odeint(rhs, y0, times, args=(v, cd, dy), atol=ATOL, mxstep=MXSTEP) return y def solve_guts_sic_it(params, y0, times, cd): '''Solve the GUTS-SIC-IT ODE. Scaled internal concentration, individual tolerance ''' v = params.valuesdict() #Solve uptake kinetics for internal concentrations y = sid.odeint(guts_sic, y0, times, args=(v['ke'], cd), atol=ATOL, mxstep=MXSTEP) #Number of body residues n = ystep.shape[1] - 1 for i, ystep in enumerate(y): if i == 0: continue #Total internal concentration cstot = np.sum(ystep[:n]) #Calculate survival from ratio of internal concentration to #tolerance threshold. surv = y[0, n] * (1.0 - mortality_lognormal(cstot/v['cbr'], v['s'])) #Survival cannot increase with time y[i, n] = min(y[i-1, n], surv) return y def get_model_prediction(times, params, exposure, s0=1, solver=solve_guts_sic_sd): v = params.valuesdict() n = exposure.shape[0] #Evaluate model for each exposure concentration model_pred = [] for col in exposure.columns: cd = lambda t: exposure[col].values # Initial conditions: zero internal concentration, 100% survival y0 =
np.array([0.0]*n + [s0])
numpy.array
import tensorflow as tf import numpy as np import cv2 import argparse from sklearn.utils import shuffle def Dataset_preprocessing(dataset = 'MNIST', image_type = True): if dataset == 'mnist': nch = 1 r = 32 (train_images, _), (test_images, _) = tf.keras.datasets.mnist.load_data() elif dataset == 'fmnist': (train_images, _), (test_images, _) = tf.keras.datasets.fashion_mnist.load_data() r = 32 nch = 1 elif dataset == 'cifar10': (train_images, _), (test_images, _) = tf.keras.datasets.cifar10.load_data() r = 32 nch = 3 elif dataset == 'celeba': celeba = np.load('/raid/konik/data/celeba_64_100k.npy') celeba = shuffle(celeba) train_images, test_images = np.split(celeba, [80000], axis=0) print(type(train_images[0,0,0,0])) nch = 3 r = 64 elif dataset == 'imagenet': imagenet = np.load('/raid/Amir/Projects/datasets/Tiny_imagenet.npy') imagenet = shuffle(imagenet) train_images, test_images = np.split(imagenet, [80000], axis=0) nch = 3 r = 64 elif dataset == 'rheo': rheo = np.load('/raid/Amir/Projects/datasets/rheology.npy') rheo = shuffle(rheo) train_images, test_images = np.split(rheo, [1500], axis=0) nch = 3 r = 64 elif dataset == 'chest': chest = np.load('/raid/Amir/Projects/datasets/X_ray_dataset_128.npy')[:100000,:,:,0:1] chest = shuffle(chest) print(np.shape(chest)) train_images, test_images = np.split(chest, [80000], axis=0) # print(type(train_images[0,0,0,0])) nch = 1 r = 128 elif dataset == 'church': church = np.load('/raid/Amir/Projects/datasets/church_outdoor_train_lmdb_color_64.npy')[:100000,:,:,:] church = shuffle(church) print(np.shape(church)) train_images, test_images = np.split(church, [80000], axis=0) # print(type(train_images[0,0,0,0])) nch = 3 r = 64 training_images = np.zeros((
np.shape(train_images)
numpy.shape
import os import gc from tqdm import tqdm import numpy as np import scipy.sparse as smat from sklearn.svm import LinearSVR, LinearSVC from sklearn.linear_model import Ridge, LogisticRegression from pathlib import Path import json from multiprocessing import cpu_count, Pool _FUNC = None # place holder to Pool functions. def _worker_init(func): """Init method to invoke Pool.""" global _FUNC _FUNC = func def _worker(x): """Init function to invoke Pool.""" return _FUNC(x) class MultiLabelInstance(object): """Class for input data type of model for one level.""" def __init__(self, X, Y, C, M=None): self.X = smat.csr_matrix(X, dtype=np.float32) self.Y = smat.csc_matrix(Y, dtype=np.float32) self.C = smat.csc_matrix(C, dtype=np.float32) if M is None: self.M = self.Y.dot(self.C).tocsc() else: self.M = smat.csc_matrix(M, dtype=np.float32) self.X.eliminate_zeros() self.Y.eliminate_zeros() self.C.eliminate_zeros() self.M.eliminate_zeros() self.C_csr = self.C.tocsr() @property def nr_labels(self): return self.Y.shape[1] class MultiLabelSolve(object): """Object to hold solution to a multilabel instance.""" def __init__(self, W, C): self.W = smat.csc_matrix(W, dtype=np.float32) self.C = smat.csc_matrix(C, dtype=np.float32) @property def nr_labels(self): return self.W.shape[1] @property def nr_codes(self): return self.C.shape[1] @property def nr_features(self): return self.W.shape[0] - 1 def save(self, model_folder): """Save model.""" smat.save_npz(Path(model_folder, "W.npz"), self.W) smat.save_npz(Path(model_folder, "C.npz"), self.C) @classmethod def load(cls, model_folder): """Load model.""" W = smat.load_npz(Path(model_folder, "W.npz")) C = smat.load_npz(Path(model_folder, "C.npz")) return cls(W, C) @classmethod def train( cls, mli, learner="SVC", linear_config={"tol": 0.1, "max_iter": 40}, threshold=0.1, threads=cpu_count(), ): """Train code for mli. Parameters: --------- mli: object ml instance regression: bool if true then regression training is used linear_config: dict config for liblinear threshold: float values below this are deleted Returns: instance of type MultiLabelSolve """ chunks = np.array_split(np.arange(mli.nr_labels), threads) results = [] with Pool( processes=threads, initializer=_worker_init, initargs=(lambda i: cls._train_label(mli, i, learner, linear_config, threshold),), ) as pool: results = pool.map(_worker, np.arange(mli.nr_labels)) gc.collect() W = smat.hstack(results).tocsc() return cls(W, mli.C) @classmethod def _train_label(self, mli, label, learner, linear_config, threshold): positives = set(list(mli.Y[:, label].indices)) negatives = set(list(mli.M[:, mli.C_csr[label, :].indices[0]].indices)).difference( positives ) if len(negatives) == 0: negatives = [np.random.choice(mli.X.shape[0])] if len(positives) == 0: positives = [
np.random.choice(mli.X.shape[0])
numpy.random.choice