prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/python from __future__ import division from __future__ import print_function import sys import os import re import datetime import zipfile import tempfile import argparse import math import warnings import json import csv import numpy as np import scipy.stats as scp from lxml import etree as et def get_rdml_lib_version(): """Return the version string of the RDML library. Returns: The version string of the RDML library. """ return "1.0.0" class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.bool_): return bool(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) class RdmlError(Exception): """Basic exception for errors raised by the RDML-Python library""" def __init__(self, message): Exception.__init__(self, message) pass class secondError(RdmlError): """Just to have, not used yet""" def __init__(self, message): RdmlError.__init__(self, message) pass def _get_first_child(base, tag): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: The first child lxml node element found or None. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return node return None def _get_first_child_text(base, tag): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: The text of first child node element found or an empty string. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return node.text return "" def _get_first_child_bool(base, tag, triple=True): """Get a child element of the base node with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) triple: If True, None is returned if not found, if False, False Returns: The a bool value of tag or if triple is True None. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: return _string_to_bool(node.text, triple) if triple is False: return False else: return None def _get_step_sort_nr(elem): """Get the number of the step eg. for sorting. Args: elem: The node element. (lxml node) Returns: The a int value of the step node nr. """ if elem is None: raise RdmlError('A step element must be provided for sorting.') ret = _get_first_child_text(elem, "nr") if ret == "": raise RdmlError('A step element must have a \"nr\" element for sorting.') return int(ret) def _sort_list_int(elem): """Get the first element of the array as int. for sorting. Args: elem: The 2d list Returns: The a int value of the first list element. """ return int(elem[0]) def _sort_list_float(elem): """Get the first element of the array as float. for sorting. Args: elem: The 2d list Returns: The a float value of the first list element. """ return float(elem[0]) def _sort_list_digital_PCR(elem): """Get the first column of the list as int. for sorting. Args: elem: The list Returns: The a int value of the first list element. """ arr = elem.split("\t") return int(arr[0]), arr[4] def _string_to_bool(value, triple=True): """Translates a string into bool value or None. Args: value: The string value to evaluate. (string) triple: If True, None is returned if not found, if False, False Returns: The a bool value of tag or if triple is True None. """ if value is None or value == "": if triple is True: return None else: return False if type(value) is bool: return value if type(value) is int: if value != 0: return True else: return False if type(value) is str: if value.lower() in ['false', '0', 'f', '-', 'n', 'no']: return False else: return True return def _value_to_booldic(value): """Translates a string, list or dic to a dictionary with true/false. Args: value: The string value to evaluate. (string) Returns: The a bool value of tag or if triple is True None. """ ret = {} if type(value) is str: ret[value] = True if type(value) is list: for ele in value: ret[ele] = True if type(value) is dict: for key, val in value.items(): ret[key] = _string_to_bool(val, triple=False) return ret def _get_first_child_by_pos_or_id(base, tag, by_id, by_pos): """Get a child element of the base node with a given tag and position or id. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) by_id: The unique id to search for. (string) by_pos: The position of the element in the list (int) Returns: The child node element found or raise error. """ if by_id is None and by_pos is None: raise RdmlError('Either an ' + tag + ' id or a position must be provided.') if by_id is not None and by_pos is not None: raise RdmlError('Only an ' + tag + ' id or a position can be provided.') allChildren = _get_all_children(base, tag) if by_id is not None: for node in allChildren: if node.get('id') == by_id: return node raise RdmlError('The ' + tag + ' id: ' + by_id + ' was not found in RDML file.') if by_pos is not None: if by_pos < 0 or by_pos > len(allChildren) - 1: raise RdmlError('The ' + tag + ' position ' + by_pos + ' is out of range.') return allChildren[by_pos] def _add_first_child_to_dic(base, dic, opt, tag): """Adds the first child element with a given tag to a dictionary. Args: base: The base node element. (lxml node) dic: The dictionary to add the element to (dictionary) opt: If false and id is not found in base, the element is added with an empty string (Bool) tag: Child elements group tag used to select the elements. (string) Returns: The dictionary with the added element. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: dic[tag] = node.text return dic if not opt: dic[tag] = "" return dic def _get_all_children(base, tag): """Get a list of all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A list with all child node elements found or an empty list. """ ret = [] for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: ret.append(node) return ret def _get_all_children_id(base, tag): """Get a list of ids of all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A list with all child id strings found or an empty list. """ ret = [] for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: ret.append(node.get('id')) return ret def _get_number_of_children(base, tag): """Count all child elements with a given tag. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) Returns: A int number of the found child elements with the id. """ counter = 0 for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: counter += 1 return counter def _check_unique_id(base, tag, id): """Find all child elements with a given group and check if the id is already used. Args: base: The base node element. (lxml node) tag: Child elements group tag used to select the elements. (string) id: The unique id to search for. (string) Returns: False if the id is already used, True if not. """ for node in base: if node.tag.replace("{http://www.rdml.org}", "") == tag: if node.get('id') == id: return False return True def _create_new_element(base, tag, id): """Create a new element with a given tag and id. Args: base: The base node element. (lxml node) tag: Child elements group tag. (string) id: The unique id of the new element. (string) Returns: False if the id is already used, True if not. """ if id is None or id == "": raise RdmlError('An ' + tag + ' id must be provided.') if not _check_unique_id(base, tag, id): raise RdmlError('The ' + tag + ' id "' + id + '" must be unique.') return et.Element(tag, id=id) def _add_new_subelement(base, basetag, tag, text, opt): """Create a new element with a given tag and id. Args: base: The base node element. (lxml node) basetag: Child elements group tag. (string) tag: Child elements own tag, to be created. (string) text: The text content of the new element. (string) opt: If true, the element is optional (Bool) Returns: Nothing, the base lxml element is modified. """ if opt is False: if text is None or text == "": raise RdmlError('An ' + basetag + ' ' + tag + ' must be provided.') et.SubElement(base, tag).text = text else: if text is not None and text != "": et.SubElement(base, tag).text = text def _change_subelement(base, tag, xmlkeys, value, opt, vtype, id_as_element=False): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) value: The text content of the new element. opt: If true, the element is optional (Bool) vtype: If true, the element is optional ("string", "int", "float") id_as_element: If true, handle tag "id" as element, else as attribute Returns: Nothing, the base lxml element is modified. """ # Todo validate values with vtype goodVal = value if vtype == "bool": ev = _string_to_bool(value, triple=True) if ev is None or ev == "": goodVal = "" else: if ev: goodVal = "true" else: goodVal = "false" if opt is False: if goodVal is None or goodVal == "": raise RdmlError('A value for ' + tag + ' must be provided.') if tag == "id" and id_as_element is False: if base.get('id') != goodVal: par = base.getparent() groupTag = base.tag.replace("{http://www.rdml.org}", "") if not _check_unique_id(par, groupTag, goodVal): raise RdmlError('The ' + groupTag + ' id "' + goodVal + '" is not unique.') base.attrib['id'] = goodVal return # Check if the tag already excists elem = _get_first_child(base, tag) if elem is not None: if goodVal is None or goodVal == "": base.remove(elem) else: elem.text = goodVal else: if goodVal is not None and goodVal != "": new_node = et.Element(tag) new_node.text = goodVal place = _get_tag_pos(base, tag, xmlkeys, 0) base.insert(place, new_node) def _get_or_create_subelement(base, tag, xmlkeys): """Get element with a given tag, if not present, create it. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) Returns: The node element with the tag. """ # Check if the tag already excists if _get_first_child(base, tag) is None: new_node = et.Element(tag) place = _get_tag_pos(base, tag, xmlkeys, 0) base.insert(place, new_node) return _get_first_child(base, tag) def _remove_irrelevant_subelement(base, tag): """If element with a given tag has no children, remove it. Args: base: The base node element. (lxml node) tag: Child elements own tag, to be created. (string) Returns: The node element with the tag. """ # Check if the tag already excists elem = _get_first_child(base, tag) if elem is None: return if len(elem) == 0: base.remove(elem) def _move_subelement(base, tag, id, xmlkeys, position): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) id: The unique id of the new element. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) position: the new position of the element (int) Returns: Nothing, the base lxml element is modified. """ pos = _get_tag_pos(base, tag, xmlkeys, position) ele = _get_first_child_by_pos_or_id(base, tag, id, None) base.insert(pos, ele) def _move_subelement_pos(base, tag, oldpos, xmlkeys, position): """Change the value of the element with a given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) oldpos: The unique id of the new element. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) position: the new position of the element (int) Returns: Nothing, the base lxml element is modified. """ pos = _get_tag_pos(base, tag, xmlkeys, position) ele = _get_first_child_by_pos_or_id(base, tag, None, oldpos) base.insert(pos, ele) def _get_tag_pos(base, tag, xmlkeys, pos): """Returns a position were to add a subelement with the given tag inc. pos offset. Args: base: The base node element. (lxml node) tag: The id to search for. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) pos: The position relative to the tag elements (int) Returns: The int number of were to add the element with the tag. """ count = _get_number_of_children(base, tag) offset = pos if pos is None or pos < 0: offset = 0 pos = 0 if pos > count: offset = count return _get_first_tag_pos(base, tag, xmlkeys) + offset def _get_first_tag_pos(base, tag, xmlkeys): """Returns a position were to add a subelement with the given tag. Args: base: The base node element. (lxml node) tag: The id to search for. (string) xmlkeys: The list of possible keys in the right order for xml (list strings) Returns: The int number of were to add the element with the tag. """ listrest = xmlkeys[xmlkeys.index(tag):] counter = 0 for node in base: if node.tag.replace("{http://www.rdml.org}", "") in listrest: return counter counter += 1 return counter def _writeFileInRDML(rdmlName, fileName, data): """Writes a file in the RDML zip, even if it existed before. Args: rdmlName: The name of the RDML zip file fileName: The name of the file to write into the zip data: The data string of the file Returns: Nothing, modifies the RDML file. """ needRewrite = False if os.path.isfile(rdmlName): with zipfile.ZipFile(rdmlName, 'r') as RDMLin: for item in RDMLin.infolist(): if item.filename == fileName: needRewrite = True if needRewrite: tempFolder, tempName = tempfile.mkstemp(dir=os.path.dirname(rdmlName)) os.close(tempFolder) # copy everything except the filename with zipfile.ZipFile(rdmlName, 'r') as RDMLin: with zipfile.ZipFile(tempName, mode='w', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.comment = RDMLin.comment for item in RDMLin.infolist(): if item.filename != fileName: RDMLout.writestr(item, RDMLin.read(item.filename)) if data != "": RDMLout.writestr(fileName, data) os.remove(rdmlName) os.rename(tempName, rdmlName) else: with zipfile.ZipFile(rdmlName, mode='a', compression=zipfile.ZIP_DEFLATED) as RDMLout: RDMLout.writestr(fileName, data) def _lrp_linReg(xIn, yUse): """A function which calculates the slope or the intercept by linear regression. Args: xIn: The numpy array of the cycles yUse: The numpy array that contains the fluorescence Returns: An array with the slope and intercept. """ counts = np.ones(yUse.shape) xUse = xIn.copy() xUse[np.isnan(yUse)] = 0 counts[np.isnan(yUse)] = 0 cycSqared = xUse * xUse cycFluor = xUse * yUse sumCyc = np.nansum(xUse, axis=1) sumFluor = np.nansum(yUse, axis=1) sumCycSquared = np.nansum(cycSqared, axis=1) sumCycFluor = np.nansum(cycFluor, axis=1) n = np.nansum(counts, axis=1) ssx = sumCycSquared - (sumCyc * sumCyc) / n sxy = sumCycFluor - (sumCyc * sumFluor) / n slope = sxy / ssx intercept = (sumFluor / n) - slope * (sumCyc / n) return [slope, intercept] def _lrp_findStopCyc(fluor, aRow): """Find the stop cycle of the log lin phase in fluor. Args: fluor: The array with the fluorescence values aRow: The row to work on Returns: An int with the stop cycle. """ # Take care of nan values validTwoLessCyc = 3 # Cycles so +1 to array while (validTwoLessCyc <= fluor.shape[1] and (np.isnan(fluor[aRow, validTwoLessCyc - 1]) or np.isnan(fluor[aRow, validTwoLessCyc - 2]) or np.isnan(fluor[aRow, validTwoLessCyc - 3]))): validTwoLessCyc += 1 # First and Second Derivative values calculation fluorShift = np.roll(fluor[aRow], 1, axis=0) # Shift to right - real position is -0.5 fluorShift[0] = np.nan firstDerivative = fluor[aRow] - fluorShift if np.isfinite(firstDerivative).any(): FDMaxCyc = np.nanargmax(firstDerivative, axis=0) + 1 # Cycles so +1 to array else: return fluor.shape[1] firstDerivativeShift = np.roll(firstDerivative, -1, axis=0) # Shift to left firstDerivativeShift[-1] = np.nan secondDerivative = firstDerivativeShift - firstDerivative if FDMaxCyc + 2 <= fluor.shape[1]: # Only add two cycles if there is an increase without nan if (not np.isnan(fluor[aRow, FDMaxCyc - 1]) and not np.isnan(fluor[aRow, FDMaxCyc]) and not np.isnan(fluor[aRow, FDMaxCyc + 1]) and fluor[aRow, FDMaxCyc + 1] > fluor[aRow, FDMaxCyc] > fluor[aRow, FDMaxCyc - 1]): FDMaxCyc += 2 else: FDMaxCyc = fluor.shape[1] maxMeanSD = 0.0 stopCyc = fluor.shape[1] for cycInRange in range(validTwoLessCyc, FDMaxCyc): with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) tempMeanSD = np.mean(secondDerivative[cycInRange - 2: cycInRange + 1], axis=0) # The > 0.000000000001 is to avoid float differences to the pascal version if not np.isnan(tempMeanSD) and (tempMeanSD - maxMeanSD) > 0.000000000001: maxMeanSD = tempMeanSD stopCyc = cycInRange if stopCyc + 2 >= fluor.shape[1]: stopCyc = fluor.shape[1] return stopCyc def _lrp_findStartCyc(fluor, aRow, stopCyc): """A function which finds the start cycle of the log lin phase in fluor. Args: fluor: The array with the fluorescence values aRow: The row to work on stopCyc: The stop cycle Returns: An array [int, int] with the start cycle and the fixed start cycle. """ startCyc = stopCyc - 1 # startCyc might be NaN, so shift it to the first value firstNotNaN = 1 # Cycles so +1 to array while np.isnan(fluor[aRow, firstNotNaN - 1]) and firstNotNaN < startCyc: firstNotNaN += 1 while startCyc > firstNotNaN and np.isnan(fluor[aRow, startCyc - 1]): startCyc -= 1 # As long as there are no NaN and new values are increasing while (startCyc > firstNotNaN and not np.isnan(fluor[aRow, startCyc - 2]) and fluor[aRow, startCyc - 2] <= fluor[aRow, startCyc - 1]): startCyc -= 1 startCycFix = startCyc if (not np.isnan(fluor[aRow, startCyc]) and not np.isnan(fluor[aRow, startCyc - 1]) and not np.isnan(fluor[aRow, stopCyc - 1]) and not np.isnan(fluor[aRow, stopCyc - 2])): startStep = np.log10(fluor[aRow, startCyc]) - np.log10(fluor[aRow, startCyc - 1]) stopStep = np.log10(fluor[aRow, stopCyc - 1]) - np.log10(fluor[aRow, stopCyc - 2]) if startStep > 1.1 * stopStep: startCycFix += 1 return [startCyc, startCycFix] def _lrp_testSlopes(fluor, aRow, stopCyc, startCycFix): """Splits the values and calculates a slope for the upper and the lower half. Args: fluor: The array with the fluorescence values aRow: The row to work on stopCyc: The stop cycle startCycFix: The start cycle Returns: An array with [slopelow, slopehigh]. """ # Both start with full range loopStart = [startCycFix[aRow], stopCyc[aRow]] loopStop = [startCycFix[aRow], stopCyc[aRow]] # Now find the center ignoring nan while True: loopStart[1] -= 1 loopStop[0] += 1 while (loopStart[1] - loopStop[0]) > 1 and np.isnan(fluor[aRow, loopStart[1] - 1]): loopStart[1] -= 1 while (loopStart[1] - loopStop[0]) > 1 and np.isnan(fluor[aRow, loopStop[1] - 1]): loopStop[0] += 1 if (loopStart[1] - loopStop[0]) <= 1: break # basic regression per group ssx = [0, 0] sxy = [0, 0] slope = [0, 0] for j in range(0, 2): sumx = 0.0 sumy = 0.0 sumx2 = 0.0 sumxy = 0.0 nincl = 0.0 for i in range(loopStart[j], loopStop[j] + 1): if not np.isnan(fluor[aRow, i - 1]): sumx += i sumy += np.log10(fluor[aRow, i - 1]) sumx2 += i * i sumxy += i * np.log10(fluor[aRow, i - 1]) nincl += 1 ssx[j] = sumx2 - sumx * sumx / nincl sxy[j] = sumxy - sumx * sumy / nincl slope[j] = sxy[j] / ssx[j] return [slope[0], slope[1]] def _lrp_lastCycMeanMax(fluor, vecSkipSample, vecNoPlateau): """A function which calculates the mean of the max fluor in the last ten cycles. Args: fluor: The array with the fluorescence values vecSkipSample: Skip the sample vecNoPlateau: Sample has no plateau Returns: An float with the max mean. """ maxFlour = np.nanmax(fluor[:, -11:], axis=1) maxFlour[vecSkipSample] = np.nan maxFlour[vecNoPlateau] = np.nan # Ignore all nan slices, to fix them below with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) maxMean = np.nanmean(maxFlour) if np.isnan(maxMean): maxMean = np.nanmax(maxFlour) return maxMean def _lrp_meanPcrEff(tarGroup, vecTarget, pcrEff, vecSkipSample, vecNoPlateau, vecShortLogLin): """A function which calculates the mean efficiency of the selected target group excluding bad ones. Args: tarGroup: The target number vecTarget: The vector with the targets numbers pcrEff: The array with the PCR efficiencies vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau vecShortLogLin: True indicates a short log lin phase Returns: An array with [meanPcrEff, pcrEffVar]. """ cnt = 0 sumEff = 0.0 sumEff2 = 0.0 for j in range(0, len(pcrEff)): if tarGroup is None or tarGroup == vecTarget[j]: if (not (vecSkipSample[j] or vecNoPlateau[j] or vecShortLogLin[j])) and pcrEff[j] > 1.0: cnt += 1 sumEff += pcrEff[j] sumEff2 += pcrEff[j] * pcrEff[j] if cnt > 1: meanPcrEff = sumEff / cnt pcrEffVar = (sumEff2 - (sumEff * sumEff) / cnt) / (cnt - 1) else: meanPcrEff = 1.0 pcrEffVar = 100 return [meanPcrEff, pcrEffVar] def _lrp_startStopInWindow(fluor, aRow, upWin, lowWin): """Find the start and the stop of the part of the curve which is inside the window. Args: fluor: The array with the fluorescence values aRow: The row to work on upWin: The upper limit of the window lowWin: The lower limit of the window Returns: The int startWinCyc, stopWinCyc and the bool notInWindow. """ startWinCyc = 0 stopWinCyc = 0 # Find the stopCyc and the startCyc cycle of the log lin phase stopCyc = _lrp_findStopCyc(fluor, aRow) [startCyc, startCycFix] = _lrp_findStartCyc(fluor, aRow, stopCyc) if np.isfinite(fluor[aRow, startCycFix - 1:]).any(): stopMaxCyc = np.nanargmax(fluor[aRow, startCycFix - 1:]) + startCycFix else: return startCyc, startCyc, True # If is true if outside the window if fluor[aRow, startCyc - 1] > upWin or fluor[aRow, stopMaxCyc - 1] < lowWin: notInWindow = True if fluor[aRow, startCyc - 1] > upWin: startWinCyc = startCyc stopWinCyc = startCyc if fluor[aRow, stopMaxCyc - 1] < lowWin: startWinCyc = stopMaxCyc stopWinCyc = stopMaxCyc else: notInWindow = False # look for stopWinCyc if fluor[aRow, stopMaxCyc - 1] < upWin: stopWinCyc = stopMaxCyc else: for i in range(stopMaxCyc, startCyc, -1): if fluor[aRow, i - 1] > upWin > fluor[aRow, i - 2]: stopWinCyc = i - 1 # look for startWinCyc if fluor[aRow, startCycFix - 1] > lowWin: startWinCyc = startCycFix else: for i in range(stopMaxCyc, startCyc, -1): if fluor[aRow, i - 1] > lowWin > fluor[aRow, i - 2]: startWinCyc = i return startWinCyc, stopWinCyc, notInWindow def _lrp_paramInWindow(fluor, aRow, upWin, lowWin): """Calculates slope, nNull, PCR efficiency and mean x/y for the curve part in the window. Args: fluor: The array with the fluorescence values aRow: The row to work on upWin: The upper limit of the window lowWin: The lower limit of the window Returns: The calculated values: indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl. """ startWinCyc, stopWinCyc, notInWindow = _lrp_startStopInWindow(fluor, aRow, upWin, lowWin) sumx = 0.0 sumy = 0.0 sumx2 = 0.0 sumy2 = 0.0 sumxy = 0.0 nincl = 0.0 ssx = 0.0 ssy = 0.0 sxy = 0.0 for i in range(startWinCyc, stopWinCyc + 1): fluorSamp = fluor[aRow, i - 1] if not np.isnan(fluorSamp): logFluorSamp = np.log10(fluorSamp) sumx += i sumy += logFluorSamp sumx2 += i * i sumy2 += logFluorSamp * logFluorSamp sumxy += i * logFluorSamp nincl += 1 if nincl > 1: ssx = sumx2 - sumx * sumx / nincl ssy = sumy2 - sumy * sumy / nincl sxy = sumxy - sumx * sumy / nincl if ssx > 0.0 and ssy > 0.0 and nincl > 0.0: cslope = sxy / ssx cinterc = sumy / nincl - cslope * sumx / nincl correl = sxy / np.sqrt(ssx * ssy) indMeanX = sumx / nincl indMeanY = sumy / nincl pcrEff = np.power(10, cslope) nnulls = np.power(10, cinterc) else: correl = np.nan indMeanX = np.nan indMeanY = np.nan pcrEff = np.nan nnulls = np.nan if notInWindow: ninclu = 0 else: ninclu = stopWinCyc - startWinCyc + 1 return indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl def _lrp_allParamInWindow(fluor, tarGroup, vecTarget, indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl, upWin, lowWin, vecNoAmplification, vecBaselineError): """A function which calculates the mean of the max fluor in the last ten cycles. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers indMeanX: The vector with the x mean position indMeanY: The vector with the y mean position pcrEff: The array with the PCR efficiencies nnulls: The array with the calculated nnulls ninclu: The array with the calculated ninclu correl: The array with the calculated correl upWin: The upper limit of the window lowWin: The lower limit of the window vecNoAmplification: True if there is a amplification error vecBaselineError: True if there is a baseline error Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ for row in range(0, fluor.shape[0]): if tarGroup is None or tarGroup == vecTarget[row]: if not (vecNoAmplification[row] or vecBaselineError[row]): if tarGroup is None: indMeanX[row], indMeanY[row], pcrEff[row], nnulls[row], ninclu[row], correl[row] = _lrp_paramInWindow(fluor, row, upWin[0], lowWin[0]) else: indMeanX[row], indMeanY[row], pcrEff[row], nnulls[row], ninclu[row], correl[row] = _lrp_paramInWindow(fluor, row, upWin[tarGroup], lowWin[tarGroup]) else: correl[row] = np.nan indMeanX[row] = np.nan indMeanY[row] = np.nan pcrEff[row] = np.nan nnulls[row] = np.nan ninclu[row] = 0 return indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl def _lrp_meanStopFluor(fluor, tarGroup, vecTarget, stopCyc, vecSkipSample, vecNoPlateau): """Return the mean of the stop fluor or the max fluor if all rows have no plateau. Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers stopCyc: The vector with the stop cycle of the log lin phase vecSkipSample: Skip the sample vecNoPlateau: True if there is no plateau Returns: The meanMax fluorescence. """ meanMax = 0.0 maxFluor = 0.0000001 cnt = 0 if tarGroup is None: for aRow in range(0, fluor.shape[0]): if not vecSkipSample[aRow]: if not vecNoPlateau[aRow]: cnt += 1 meanMax += fluor[aRow, stopCyc[aRow] - 1] else: for i in range(0, fluor.shape[1]): if fluor[aRow, i] > maxFluor: maxFluor = fluor[aRow, i] else: for aRow in range(0, fluor.shape[0]): if tarGroup == vecTarget[aRow] and not vecSkipSample[aRow]: if not vecNoPlateau[aRow]: cnt += 1 meanMax += fluor[aRow, stopCyc[aRow] - 1] else: for i in range(0, fluor.shape[1]): if fluor[aRow, i] > maxFluor: maxFluor = fluor[aRow, i] if cnt > 0: meanMax = meanMax / cnt else: meanMax = maxFluor return meanMax def _lrp_maxStartFluor(fluor, tarGroup, vecTarget, startCyc, vecSkipSample): """Return the maximum of the start fluorescence Args: fluor: The array with the fluorescence values tarGroup: The target number vecTarget: The vector with the targets numbers startCyc: The vector with the start cycle of the log lin phase vecSkipSample: Skip the sample Returns: The maxStart fluorescence. """ maxStart = -10.0 if tarGroup is None: for aRow in range(0, fluor.shape[0]): if not vecSkipSample[aRow]: if fluor[aRow, startCyc[aRow] - 1] > maxStart: maxStart = fluor[aRow, startCyc[aRow] - 1] else: for aRow in range(0, fluor.shape[0]): if tarGroup == vecTarget[aRow] and not vecSkipSample[aRow]: if fluor[aRow, startCyc[aRow] - 1] > maxStart: maxStart = fluor[aRow, startCyc[aRow] - 1] return 0.999 * maxStart def _lrp_setLogWin(tarGroup, newUpWin, foldWidth, upWin, lowWin, maxFluorTotal, minFluorTotal): """Sets a new window and ensures its within the total fluorescence values. Args: tarGroup: The target number newUpWin: The new upper window foldWidth: The foldWith to the lower window upWin: The upper window fluorescence lowWin: The lower window fluorescence maxFluorTotal: The maximum fluorescence over all rows minFluorTotal: The minimum fluorescence over all rows Returns: An array with [indMeanX, indMeanY, pcrEff, nnulls, ninclu, correl]. """ # No rounding needed, only present for exact identical output with Pascal version tempUpWin = np.power(10,
np.round(1000 * newUpWin)
numpy.round
# -*- coding: utf-8 -*- """ Created on Sat Mar 30 20:59:01 2019 @author: Administrator """ import numpy as np import random import cv2 import os import h5py class DataLoaderSceneFlow(object): def __init__(self, img_path, disp_path, batch_size, patch_size=(256, 512), max_disp=129): self.img_path = img_path self.disp_path = disp_path self.batch_size = batch_size self.patch_size = patch_size self.max_disp = max_disp img_m = h5py.File(self.img_path) disp_m = h5py.File(self.disp_path) left_img = img_m["left_img"][:] right_img = img_m["right_img"][:] disp_img = disp_m["disp_img"][:] left_img=left_img.transpose() #(N,H,W,3) array number=8864 right_img=right_img.transpose()#(N,H,W,3) array disp_img=disp_img.transpose()#(N,H,W) array print("load data success!!!") self.num, self.heigh, self.weight = disp_img.shape # ============================================================================= # state = np.random.get_state() # np.random.shuffle(left_img) # np.random.set_state(state) # np.random.shuffle(right_img) # np.random.set_state(state) # np.random.shuffle(disp_img) # ============================================================================= self.val_left = left_img[:1108] self.val_right = right_img[:1108] self.val_labels = disp_img[:1108] self.shuffled_left_data = left_img[1108:] self.shuffled_right_data = right_img[1108:] self.shuffled_labels = disp_img[1108:] def generator(self, is_training=True): if is_training: state = np.random.get_state() np.random.shuffle(self.shuffled_left_data) np.random.set_state(state) np.random.shuffle(self.shuffled_right_data) np.random.set_state(state) np.random.shuffle(self.shuffled_labels) print("start making data!!!") if is_training: for j in range((self.num-1108) // self.batch_size): left, right, label = self.load_batch(self.shuffled_left_data[j * self.batch_size: (j + 1) * self.batch_size], self.shuffled_right_data[ j * self.batch_size: (j + 1) * self.batch_size], self.shuffled_labels[j * self.batch_size: (j + 1) * self.batch_size], is_training) left = np.array(left) right =
np.array(right)
numpy.array
"""Generate a single discrete time SIR model. """ from . import data_model import numpy as np from scipy import stats import xarray as xr # Generate Betas # Beta, or the growth rate of the infection, depends on the covariates. # Here we implement three different functional forms for the dependency. SPLIT_TIME = 100 def generate_betas_from_single_random_covariate(num_locations): """Beta depend on a single covariate that is randomly generated. Args: num_locations: an int representing the number of locations to simulate Returns: beta: an xr.DataArray consisting of the growth rate for each epidemic v: an xr.DataArray consisting of the randomly generated covariate for each location alpha: an xr.DataArray consisting of the weights for each covariate """ v = xr.DataArray( np.random.uniform(0.0, 1.0, (num_locations, 1)), dims=['location', 'static_covariate']) alpha = xr.DataArray(np.ones(1), dims=['static_covariate']) beta = 0.4 * np.exp(alpha @ v) return beta, v, alpha def generate_betas_effect_mod(num_locations): """Betas depend on 2 discrete, randomly generated effects. Args: num_locations: an int representing the number of locations to simulate Returns: beta: an xr.DataArray consisting of the growth rate for each epidemic v: an xr.DataArray consisting of the randomly generated covariate for each location alpha: an xr.DataArray consisting of the weights for each covariate """ v = xr.DataArray(np.random.binomial(1, 0.5, size=(num_locations, 2)), dims={'location': num_locations, 'static_covariate': 2}) hd = v.values[:, 0] ws = v.values[:, 1] beta_np = np.exp(
np.log(1.5)
numpy.log
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 5GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df1=pd.read_csv('../input/forest-cover-type-prediction/train.csv') df_test1=pd.read_csv('../input/forest-cover-type-prediction/test.csv') df_test2=pd.read_csv('../input/forest-cover-type-prediction/test3.csv') df=df1.copy() df_test=df_test1.copy() df pd.set_option('display.max_columns',None) df.drop(columns=['Id','Cover_Type'],inplace=True) df_test.drop(columns=['Id'],inplace=True) df_test X_train=df Y_train=df1.iloc[:,-1] X_train df_test from collections import Counter from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold, learning_curve from lightgbm import LGBMClassifier sns.set(style='white', context='notebook', palette='deep') kfold = StratifiedKFold(n_splits=10) random_state = 2 classifiers = [] classifiers.append(SVC(random_state=random_state)) classifiers.append(DecisionTreeClassifier(random_state=random_state)) classifiers.append(AdaBoostClassifier(DecisionTreeClassifier(random_state=random_state),random_state=random_state,learning_rate=0.1)) classifiers.append(RandomForestClassifier(random_state=random_state)) classifiers.append(ExtraTreesClassifier(random_state=random_state)) classifiers.append(GradientBoostingClassifier(random_state=random_state)) classifiers.append(MLPClassifier(random_state=random_state)) classifiers.append(KNeighborsClassifier()) classifiers.append(LogisticRegression(random_state = random_state)) classifiers.append(LinearDiscriminantAnalysis()) classifiers.append(XGBClassifier(random_state = random_state)) classifiers.append(LGBMClassifier(random_state = random_state)) cv_results = [] for classifier in classifiers : score=cross_val_score(classifier, X_train, y = Y_train, scoring = "accuracy", cv = kfold, n_jobs=-1) cv_results.append(score) print('{} crossvalidation score:{}\n'.format(classifier,score.mean())) cv_means = [] cv_std = [] for cv_result in cv_results: cv_means.append(cv_result.mean()) cv_std.append(cv_result.std()) cv_res = pd.DataFrame({"CrossValMeans":cv_means,"CrossValerrors": cv_std,"Algorithm":["SVC","DecisionTree","AdaBoost", "RandomForest","ExtraTrees","GradientBoosting","MultipleLayerPerceptron","KNeighboors","LogisticRegression","LinearDiscriminantAnalysis",'XGboost','LGboost']}) g = sns.barplot("CrossValMeans","Algorithm",data = cv_res, palette="Set3",orient = "h",**{'xerr':cv_std}) g.set_xlabel("Mean Accuracy") g = g.set_title("Cross validation scores") from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest=train_test_split(X_train.values,Y_train.values,test_size=0.2) from sklearn.metrics import accuracy_score RFC = RandomForestClassifier(random_state=random_state) RFC.fit(xtrain,ytrain) ypred=RFC.predict(xtest) score=cross_val_score(RFC,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for random forest: {}'.format(score.mean())) print('Accuracy score for random forest: {}'.format(accuracy_score(ytest,ypred))) RFC.get_params() from sklearn.metrics import accuracy_score RFC2 = RandomForestClassifier(random_state=random_state, n_estimators=500, max_depth=32, min_samples_leaf=1, criterion='entropy') RFC2.fit(xtrain,ytrain) ypred=RFC2.predict(xtest) score=cross_val_score(RFC2,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for random forest: {}'.format(score.mean())) print('Accuracy score for random forest: {}'.format(accuracy_score(ytest,ypred))) et=ExtraTreesClassifier(random_state=random_state) et.fit(xtrain,ytrain) ypred=et.predict(xtest) score=cross_val_score(et,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for extra trees classifier: {}'.format(score.mean())) print('Accuracy score for extra trees classifier: {}'.format(accuracy_score(ytest,ypred))) et2=ExtraTreesClassifier() et2.get_params() et2=ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None, criterion='entropy', max_depth=38, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=500, n_jobs=None, oob_score=False, random_state=0, verbose=0, warm_start=False) et2.fit(xtrain,ytrain) ypred=et2.predict(xtest) score=cross_val_score(et2,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for extra trees classifier: {}'.format(score.mean())) print('Accuracy score for extra trees classifier: {}'.format(accuracy_score(ytest,ypred))) lgb2=LGBMClassifier(random_state=random_state) lgb2.fit(xtrain,ytrain) ypred=lgb2.predict(xtest) score=cross_val_score(lgb2,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for Lightgb classifier: {}'.format(score.mean())) print('Accuracy score for Lightgb classifier: {}'.format(accuracy_score(ytest,ypred))) lgb=LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, importance_type='split', learning_rate=0.2, max_depth=-1, min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0, n_estimators=200, n_jobs=4, num_leaves=63, objective=None, random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0) lgb.fit(xtrain,ytrain) ypred=lgb.predict(xtest) score=cross_val_score(lgb,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for Lightgb classifier: {}'.format(score.mean())) print('Accuracy score for Lightgb classifier: {}'.format(accuracy_score(ytest,ypred))) vc= VotingClassifier(estimators=[('rfc', RFC2), ('extc', et2), ('lgb',lgb)], voting='soft', n_jobs=-1) vc.fit(xtrain,ytrain) ypred=vc.predict(xtest) score=cross_val_score(vc,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for Lightgb classifier: {}'.format(score.mean())) print('Accuracy score for Lightgb classifier: {}'.format(accuracy_score(ytest,ypred))) """ from sklearn.ensemble import StackingClassifier estimators = [ ('rf', RFC2), ('et', et2)] sc= StackingClassifier(estimators=estimators, final_estimator=lgb) sc.fit(xtrain,ytrain) ypred=sc.predict(xtest) score=cross_val_score(sc,X_train,Y_train,scoring='accuracy',cv=kfold,n_jobs=-1) # Best score print('Crossval score for Lightgb classifier: {}'.format(score.mean())) print('Accuracy score for Lightgb classifier: {}'.format(accuracy_score(ytest,ypred)))""" vc.fit(X_train,Y_train) ypred=vc.predict(df_test.values) id=df_test1['Id'] dict={'ID':id,'Cover_Type':ypred} dfsub=pd.DataFrame(dict) dfsub.to_csv('./submission_ensemblevoting.csv', index=False) """ #ExtraTrees et2= ExtraTreesClassifier() ## Search grid for optimal parameters ex_param_grid = { 'criterion': ['gini','entropy'], 'max_depth':[5,10,25], 'max_features':[1,3,7], 'max_samples': [0.2], 'min_samples_leaf': [1,2,5], 'min_samples_split': [2,5,7], 'n_estimators': [100,200,300], } gset = GridSearchCV(et2,param_grid = ex_param_grid, cv=kfold, scoring="accuracy", n_jobs=-1, verbose = 1) gset.fit(X_train,Y_train) gset_best = gset.best_estimator_ # Best score print(gset.best_score_) print(gset.best_estimator_)""" """ # RFC Parameters tunning RFC = RandomForestClassifier() ## Search grid for optimal parameters rf_param_grid = {"max_depth": [None], "max_features": [1, 3, 10], "min_samples_split": [2, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [False], "n_estimators" :[100,300], "criterion": ["gini"]} rf_param_grid = { 'bootstrap': [True], 'max_depth': [80, 90, 100, 110], 'max_features': [2, 3], 'min_samples_leaf': [3, 4, 5], 'min_samples_split': [8, 10, 12], 'n_estimators': [100, 200, 300, 1000] } gsRFC = GridSearchCV(RFC,param_grid = rf_param_grid, cv=kfold, scoring="accuracy", n_jobs= 4, verbose = 1) gsRFC.fit(X_train,Y_train) RFC_best = gsRFC.best_estimator_ # Best score gsRFC.best_score_""" """ RFC2 = RandomForestClassifier() rf_param_grid = { 'bootstrap': [True], 'max_depth': [32], 'max_features': [2], 'min_samples_leaf': [1], 'min_samples_split': [6], 'n_estimators': [300] } gsRFC2 = GridSearchCV(RFC,param_grid = rf_param_grid, cv=kfold, scoring="accuracy", n_jobs= 4, verbose = 1) gsRFC2.fit(X_train,Y_train) gsRFC2.best_score_""" pd.DataFrame(RFC.feature_importances_, index=X_train.columns, columns=['Importance']).sort_values( by='Importance', ascending=False)[:10] pd.DataFrame(et.feature_importances_, index=X_train.columns, columns=['Importance']).sort_values( by='Importance', ascending=False)[:10] def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 5)): """Generate a simple plot of the test and training learning curve""" plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt g = plot_learning_curve(RFC,"Random Forest learning curves",X_train,Y_train,cv=kfold) g = plot_learning_curve(et,"Extra trees learning curves",X_train,Y_train,cv=kfold) g = plot_learning_curve(gsRFC2,"Random Forest tuned learning curves",X_train,Y_train,cv=kfold) #g = plot_learning_curve(gsExtC.best_estimator_,"ExtraTrees learning curves",X_train,Y_train,cv=kfold) def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 5)): """Generate a simple plot of the test and training learning curve""" plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std =
np.std(test_scores, axis=1)
numpy.std
#!/usr/bin/env python from scipy import stats from scipy.signal import find_peaks from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.neighbors import KernelDensity from matplotlib import markers from operator import itemgetter from peak_cleanup import PeakCleanup import argparse import json import math import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import scipy.optimize as optimization import seaborn as sns import statistics import uproot def find_gain(infpn, df, feb_id, ch, print_peak_adcs, prominence=300, left_threshold=0.7, right_threshold=1.4): # make the plot of a channel chvar = 'chg[{}]'.format(ch) # select data of the specified board df_1b = df[df['feb_num'] == feb_id] # make histogram and find peaks bins = np.linspace(0, 4100, 821) plt.figure(figsize=(12,6)) ax1 = plt.subplot2grid((2, 3), (0, 0), colspan=2) histy, bin_edges, _ = ax1.hist(df_1b[chvar], bins=bins, histtype='step') peaks, _ = find_peaks(histy, prominence=prominence) ax1.scatter(np.array(bin_edges)[peaks], np.array(histy)[peaks], marker=markers.CARETDOWN, color='r', s=20) ax1.set_xlabel('ADC value') # load the found peaks into a list peak_adcs = list(np.array(bin_edges)[peaks]) if print_peak_adcs: print(peak_adcs) # make the ADC difference vs PE id plot if len(peak_adcs) >= 2: peak_diff = [peak_adcs[1] - peak_adcs[0]] + [peak_adcs[i+1]-peak_adcs[i] for i in range(len(peak_adcs)-1)] else: return 0 bins_adc_diff = np.linspace(0, len(peak_adcs)-1, len(peak_adcs)).astype(int) ax_adc_diff = plt.subplot2grid((2, 3), (0, 2)) ax_adc_diff.step(bins_adc_diff, peak_diff, ls='-') ax_adc_diff.set_xticks(bins_adc_diff) ax_adc_diff.set_xlabel('PE id') ax_adc_diff.set_ylabel('adjacent ADC difference') # plot mean and standard deviation of all the differences y_mean = statistics.mean(peak_diff) y_std = statistics.stdev(peak_diff) n_std = 3 y_shifts = [y_mean + y_std*i for i in range(-n_std, n_std+1)] color_std = ['y', 'magenta', 'g', 'r', 'g', 'magenta', 'y'] for i in range(2*n_std+1): ax_adc_diff.axhline(y_shifts[i], ls='--', c=color_std[i], alpha=.25) # # make kernel density plots # ref: https://stackoverflow.com/questions/9814429/gaussian-kernel-density-estimation-kde-of-large-numbers-in-python # # each bin is 5 ADC, so the bandwidth is multiple of 5 # if y_std > 0: # x_kde = np.linspace(min(peak_diff)*.8, max(peak_diff)*1.2, 101) # density = stats.gaussian_kde(peak_diff, bw_method=5/y_std) # y_kde = density(x_kde) # ax_kde = plt.subplot2grid((2, 3), (1, 0)) # ax_kde.plot(x_kde, y_kde) # ax_kde.set_xlabel('adjacent ADC difference') # ax_kde.set_title('kernel density estimation') ax_kde = plt.subplot2grid((2, 3), (1, 0)) pc = PeakCleanup(peak_adcs) pc.plot_to_axis(ax_kde, np.array(pc.peak_diffs), thresh=5) ax_kde.set_title('before outlier removal') # remove outliers peak_adcs_orig = peak_adcs.copy() peak_cleaner = PeakCleanup(peak_adcs) # peak_cleaner.remove_outlier_twice() peak_cleaner.remove_outlier_by_relative_interval(left_th=left_threshold, right_th=right_threshold) peak_adcs = peak_cleaner.peak_adcs # peak_diff2 = [peak_adcs[i+1]-peak_adcs[i] for i in range(len(peak_adcs)-1)] # make kernel density plots after outlier removal ax_kde2 = plt.subplot2grid((2, 3), (1, 1)) peak_cleaner.plot_to_axis(ax_kde2,
np.array(peak_cleaner.peak_diffs)
numpy.array
#!/usr/bin/env python # -*- coding: utf8 -*- from __future__ import division import os from itertools import islice import numpy as np from .synthetic import broadening, _read_raw_moog apogee_kurucz = { 'teff': ( 3500, 3750, 4000, 4250, 4500, 4750, 5000, 5250, 5500, 5750, 6000, 6250, 6500, 6750, 7000, 7250, 7500, 7750, 8000, 8250, 8500, 8750, 9000, 9250, 9500, 9750, 10000, 10250, 10500, 10750, 11000, 11250, 11500, 11750, 12000, 12250, 12500, 12750, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000, ), 'feh': ( -5.0, -4.5, -4.0, -3.5, -3.0, -2.75, -2.5, -2.25, -2.0, -1.75, -1.5, -1.25, -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, ), 'logg': (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0), } marcs = { 'teff': ( 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4250, 4500, 4750, 5000, 5250, 5500, 5750, 6000, 6250, 6500, 6750, 7000, 7250, 7500, 7750, 8000, ), 'feh': ( -5.0, -4.0, -3.0, -2.5, -2.0, -1.5, -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, ), 'logg': (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0), } class GetModels: ''' Find the names of the closest grid points for a given effective temperature, surface gravity, and iron abundance (proxy for metallicity). Inputs ------ teff : int The effective temperature (K) for the model atmosphere logg : float The surface gravity (logarithmic in cgs) for the model atmosphere feh : float The metallicity for the model atmosphere atmtype : str The type of atmosphere models to use. Currently only Kurucz from '95. ''' def __init__(self, teff, logg, feh, atmtype): self.teff = teff self.logg = logg self.feh = feh self.atmtype = atmtype atmmodels = { 'apogee_kurucz': [apogee_kurucz, 'apogee_kurucz'], 'marcs': [marcs, 'marcs'], } if atmtype in atmmodels.keys(): self.grid = atmmodels[atmtype][0] else: raise NotImplementedError( 'You request for atmospheric models: %s is not available' % atmtype ) self.grid['teff'] = np.asarray(self.grid['teff']) self.grid['logg'] = np.asarray(self.grid['logg']) self.grid['feh'] = np.asarray(self.grid['feh']) # Checking for bounds in Teff, logg, and [Fe/H] if (self.teff < self.grid['teff'][0]) or (self.teff > self.grid['teff'][-1]): raise ValueError('Teff out of bounds: %s' % self.teff) if (self.logg < self.grid['logg'][0]) or (self.logg > self.grid['logg'][-1]): raise ValueError('logg out of bounds: %s' % self.logg) if (self.feh < self.grid['feh'][0]) or (self.feh > self.grid['feh'][-1]): raise ValueError('[Fe/H] out of bounds: %s' % self.feh) def _model_path(self, teff_model, logg_model, feh_model): '''Create the path for atmosphere models given Teff, logg, and [Fe/H] Inputs ------ teff_model : int The Teff from the model grid logg_model : float The logg from the model grid feh_model : float The [Fe/H] from the model grid Output ------ name : str The path to the atmosphere model ''' cwd = os.path.dirname(os.path.abspath(__file__)) name = cwd + '/models/%s/' % self.atmtype if feh_model < 0: name += 'm%s/' % str(abs(feh_model)).replace('.', '') else: name += 'p%s/' % str(abs(feh_model)).replace('.', '') name += '%ig%s.' % (teff_model, str(logg_model).replace('.', '')) if feh_model < 0: name += 'm%s.gz' % str(abs(feh_model)).replace('.', '') else: name += 'p%s.gz' % str(abs(feh_model)).replace('.', '') return name def _model_exists(self, teff_model, logg_model, feh_model, upper=True): '''Check if a model exists. If not lower/raise Teff Inputs ------ teff_model : int The Teff from the model grid logg_model : float The logg from the model grid feh_model : float The [Fe/H] from the model grid upper : bool If True, then search for Teff higher than previous. False otherwise. (Default: True) Outputs ------- fname : str Path for the model teff_model : int The new Teff. Same Teff is returned if the model exists at the right place ''' fname = self._model_path(teff_model, logg_model, feh_model) if os.path.isfile(fname): return fname, teff_model, logg_model else: print('Models do not exist.') return False # Change the Teff (up or down) to compensate for the gap teff_model0 = teff_model idx =
np.where(teff_model == self.grid['teff'])
numpy.where
import os from os.path import join import gzip import shutil from pathlib import Path import numpy as np import torch import torch.nn.functional as F from torch import nn from scipy.linalg import block_diag def get_decoder(manifold, x_dim, z_dim, rng_data_gen): if manifold == "nn": # NOTE: injectivity requires z_dim <= h_dim <= x_dim h_dim = x_dim neg_slope = 0.2 device = "cuda:0" if torch.cuda.is_available() else "cpu" # sampling NN weight matrices W1 = rng_data_gen.normal(size=(z_dim, h_dim)) W1 = np.linalg.qr(W1.T)[0].T # print("distance to identity:", np.max(np.abs(np.matmul(W1, W1.T) - np.eye(self.z_dim)))) W1 *= np.sqrt(2 / (1 + neg_slope ** 2)) * np.sqrt(2. / (z_dim + h_dim)) W1 = torch.Tensor(W1).to(device) W1.requires_grad = False W2 = rng_data_gen.normal(size=(h_dim, h_dim)) W2 = np.linalg.qr(W2.T)[0].T # print("distance to identity:", np.max(np.abs(np.matmul(W2, W2.T) - np.eye(h_dim)))) W2 *= np.sqrt(2 / (1 + neg_slope ** 2)) * np.sqrt(2. / (2 * h_dim)) W2 = torch.Tensor(W2).to(device) W2.requires_grad = False W3 = rng_data_gen.normal(size=(h_dim, h_dim)) W3 = np.linalg.qr(W3.T)[0].T # print("distance to identity:", np.max(np.abs(np.matmul(W3, W3.T) - np.eye(h_dim)))) W3 *= np.sqrt(2 / (1 + neg_slope ** 2)) * np.sqrt(2. / (2 * h_dim)) W3 = torch.Tensor(W3).to(device) W3.requires_grad = False W4 = rng_data_gen.normal(size=(h_dim, x_dim)) W4 = np.linalg.qr(W4.T)[0].T # print("distance to identity:", np.max(np.abs(np.matmul(W4, W4.T) - np.eye(h_dim)))) W4 *= np.sqrt(2 / (1 + neg_slope ** 2)) *
np.sqrt(2. / (x_dim + h_dim))
numpy.sqrt
import imageio import torch import numpy as np import time import matplotlib.pyplot as plt import copy import random import math class Predict2D: def __init__(self, config, model, device): self.config = config self.model = model self.device = device def find_heat_map_maxima(self, heatmaps, sigma=None, method="simple"): """ heatmaps: (#LM, hm_size,hm_size) """ out_dim = heatmaps.shape[0] # number of landmarks hm_size = heatmaps.shape[1] # coordinates = np.zeros((out_dim, 2), dtype=np.float32) coordinates = np.zeros((out_dim, 3), dtype=np.float32) # TODO Need to figure out why x and y are switched here...probably something with row, col # simple: Use only maximum pixel value in HM if method == "simple": for k in range(out_dim): hm = copy.copy(heatmaps[k, :, :]) highest_idx = np.unravel_index(np.argmax(hm), (hm_size, hm_size)) px = highest_idx[0] py = highest_idx[1] value = hm[px, py] # TODO check if values is equal to np.max(hm) coordinates[k, :] = (px - 1, py - 0.5, value) # TODO find out why it works with the subtractions if method == "moment": for k in range(out_dim): hm = heatmaps[k, :, :] highest_idx = np.unravel_index(np.argmax(hm), (hm_size, hm_size)) px = highest_idx[0] py = highest_idx[1] value = np.max(hm) # Size of window around max (15 on each side gives an array of 2 * 5 + 1 values) sz = 15 a_len = 2 * sz + 1 if px > sz and hm_size-px > sz and py > sz and hm_size-py > sz: slc = hm[px-sz:px+sz+1, py-sz:py+sz+1] ar = np.arange(a_len) sum_x = np.sum(slc, axis=1) s = np.sum(np.multiply(ar, sum_x)) ss = np.sum(sum_x) pos = s / ss - sz px = px + pos sum_y = np.sum(slc, axis=0) s = np.sum(np.multiply(ar, sum_y)) ss = np.sum(sum_y) pos = s / ss - sz py = py + pos coordinates[k, :] = (px-1, py-0.5, value) # TODO find out why it works with the subtractions return coordinates def find_maxima_in_batch_of_heatmaps(self, heatmaps, cur_id, heatmap_maxima): write_heatmaps = False heatmaps = heatmaps.numpy() batch_size = heatmaps.shape[0] f = None for idx in range(batch_size): if write_heatmaps: name_hm_maxima = self.config.temp_dir / ('hm_maxima' + str(cur_id + idx) + '.txt') f = open(name_hm_maxima, 'w') coordinates = self.find_heat_map_maxima(heatmaps[idx, :, :, :], method='moment') for lm_no in range(coordinates.shape[0]): px = coordinates[lm_no][0] py = coordinates[lm_no][1] value = coordinates[lm_no][2] if value > 1.2: # TODO debug - really bad hack due to weird max in heatmaps print("Found heatmap with value > 1.2 LM {} value {} pos {} {} ".format(lm_no, value, px, py)) value = 0 # if lm_no == 0: # print('LM value and pos', lm_no, value, px, py) # name_hm_maxima = self.config.temp_dir / # ('hm_maxima' + str(cur_id + idx) + '_LM_' + str(lm_no) + '.png') # imageio.imwrite(name_hm_maxima, heatmaps[idx, lm_no, :, :]) heatmap_maxima[lm_no, cur_id + idx, :] = (px, py, value) if write_heatmaps: out_str = str(px) + ' ' + str(py) + ' ' + str(value) + '\n' f.write(out_str) if write_heatmaps: f.close() def generate_image_with_heatmap_maxima(self, image, heat_map): im_size = image.shape[0] hm_size = heat_map.shape[2] i = image.copy() coordinates = self.find_heat_map_maxima(heat_map, method='moment') # the predicted heat map is sometimes smaller than the input image factor = im_size / hm_size for c in range(coordinates.shape[0]): px = coordinates[c][0] py = coordinates[c][1] if not np.isnan(px) and not
np.isnan(py)
numpy.isnan
#!/usr/bin/python DESC = '''Synthetic multipathway graph model By: NP Pending (AA): visualize: https://stackoverflow.com/questions/35109590/how-to-graph-nodes-on-a-grid-in-networkx ''' import argparse import csv import logging import math import matplotlib.pyplot as plt import networkx as nx import numpy as np from numpy import linalg as LA import scipy #Scipy 1.7? I think is incomplatible with networkx need to downgrade to scipy 1.4.1? to get it to work properly import os import pandas as pd from pdb import set_trace from scipy.sparse.linalg import eigs from scipy.sparse import csgraph #from scipy import stats # from pandas import *: AA: avoid such 'import *' statements import sqlite3 from sqlite3 import Error import random #import seaborn as sns #can't use problem with the stats from scipy so I can't use FORMAT = "%(levelname)s:%(filename)s:%(funcName)s:%(message)s" def self_mediated_dispersal(dispersalRange, side): H = nx.Graph() for i in range(0, side ** 2 - 1): col = i % side # initializing which column its on row = i // side # initializing rows # AA: check whether np.floor is correct for x in range(0, int(np.floor(dispersalRange)) + 1): # is connecting the x direction columns for y in range(0, int(np.floor(dispersalRange)) + 1): # is connecting the y direction rows rangeSquared = dispersalRange ** 2 distanceSquared = x ** 2 + y ** 2 if x == 0 and y == 0: continue if col + x < side and row + y < side and distanceSquared <= rangeSquared: H.add_edge((row, col), (row + y, col + x)) return H # AA: function names should be all lowercase (with underscores if required) def locality_clique(gridSideLength, regionSideLength, localitySideLength, localityNumber): # clique template # side is total number of localitySideLength # regionSideLength is number of localitySideLength in a regionSideLength # row is how many localitySideLength are in meta nodes 0 is the first meta node # regionSideLength number is which meta node it is/which regionSideLength going from left to right up to down x = ( regionSideLength - localitySideLength) // 2 # of meta node localitySideLength - number of white row nodes divided by 2. Gives the number of non white nodes surrounding white nodes in meta node # numberOfSquares = side**2//regionSideLength//regionSideLength initialRow = (localityNumber // (gridSideLength // regionSideLength)) * regionSideLength+x #Error where I forgot to include the x initialCol = (localityNumber % (gridSideLength // regionSideLength)) * regionSideLength+x G = nx.Graph() for i in range(0, localitySideLength): for j in range(0, localitySideLength): for k in range(0, localitySideLength): for l in range(0, localitySideLength): if not (i == k and j == l): G.add_edge((initialRow + i, initialCol + j), (initialRow + k, initialCol + l)) # iterates through every combonation of nodes and pairs them all togehter G.add_edge((initialRow + k, initialCol + l), (initialRow + i, initialCol + j)) # probably don't need this line as in networkx edges are undirect return G # returns a graph of all the white nodes in a metanode connected to every other white node def locality_star(gridSideLength, regionSideLength, localitySideLength, localityNumber): midRow = localitySideLength // 2 # picks either the middle node or the bottom right of the smallest regionSideLength node for white localitySideLength midCol = localitySideLength // 2 # if even picks bottom right of 2x2 regionSideLength in the middle z = ( regionSideLength - localitySideLength) // 2 # of meta node localitySideLength - number of white row nodes divided by 2. Gives the number of non white nodes surrounding white nodes in meta node # numberOfSquares = gridSideLength*gridSideLength//regionSideLength//regionSideLength initialRow = (localityNumber // (gridSideLength // regionSideLength)) * regionSideLength + z initialCol = (localityNumber % (gridSideLength // regionSideLength)) * regionSideLength + z G = nx.Graph() for x in range(0, localitySideLength): for y in range(0, localitySideLength): if not (x == midRow and y == midCol): G.add_edge((initialRow + x, initialCol + y), ( initialRow + midRow, initialCol + midCol)) # connects the head node to every other node except itself return G def complete_bipartite(graph1, graph2): # function takes two graphs and returns a complete bipartate graph of one node set to another nodes1 = list(graph1.nodes) nodes2 = list(graph2.nodes) newGraph = nx.Graph() for x in range(0, len(nodes1)): for y in range(0, len(nodes2)): newGraph.add_edge(nodes1[x], nodes2[y]) return newGraph def heat_map(G,betweenness,filename,title): plt.clf() numNodes = len(list(G.nodes())) numRows = math.sqrt(numNodes) numRows = int(numRows) arr = [[0 for i in range(0,numRows)] for j in range(0,numRows)] for x in range(0,numRows): for y in range(0,numRows): arr[x][y]=betweenness[x,y] _ = plt.imshow(arr, cmap='autumn_r', interpolation='nearest') plt.title(title) plt.colorbar() plt.axis('off') #ax = sns.heatmap(arr, linewidth=0.5, cmap='coolwarm') plt.savefig(filename, bbox_inches=0) def creating_files(G,GS,GL,GLD,localityNum,localityNodes,longDistanceEdges): #Need to check if simulation automatically assume bi-directionallity or not I don't think it does THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) my_file = os.path.join(THIS_FOLDER, '0.nodes') current_name = os.path.join(THIS_FOLDER, 'nodes0.csv') # absolute path database = my_file nodesFile = '0.nodes' if os.path.exists(nodesFile): os.remove('0.nodes') # creating maps nodes = G.nodes() nodes = sorted(nodes, key=lambda tup: (tup[0], tup[1])) numRows = int(np.sqrt(len(nodes))) with open('0.nodes', 'w') as storage_file: storage_writer = csv.writer(storage_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator = '\n') data = ['node', 'node_x','node_y',1,2,3,4,5,6,7,8,9,10,11,12] storage_writer.writerow(data) for node in nodes: data = [node[0]*numRows+node[1],node[0],node[1],1,1,1,1,1,1,1,1,1,1,1,1] storage_writer.writerow(data) storage_file.close() #os.rename(current_name,my_file) edgeFile = '0.edges' if os.path.exists(edgeFile): os.remove('0.edges') with open('0.edges', 'w') as storage_file: storage_writer = csv.writer(storage_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator = '\n') data = ['source', 'target','moore','source_x','source_y', 'target_x','target_y'] storage_writer.writerow(data) #print(G.edges()) edges = list(G.edges()) for edge in edges: node00 = edge[0][0] node01 = edge[0][1] node10 = edge[1][0] node11 = edge[1][1] nodeNumber0 = node00*numRows+node01 nodeNumber1 = node10*numRows+node11 distanceX = (node10-node00)**2 distanceY = (node11-node01)**2 distanceTotal = math.sqrt(distanceX+distanceY) data = [nodeNumber0,nodeNumber1,distanceTotal,edge[0][0],edge[0][1],edge[1][0],edge[1][1]] storage_writer.writerow(data) data = [nodeNumber1,nodeNumber0,distanceTotal,edge[1][0],edge[1][1],edge[0][0],edge[0][1]] storage_writer.writerow(data) storage_file.close() numberOfNodes = len(list(G.nodes())) nodesFile = '1.nodes' if os.path.exists(nodesFile): os.remove('1.nodes') with open('1.nodes', 'w') as storage_file: storage_writer = csv.writer(storage_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator='\n') data = ['node', 'locality_number'] storage_writer.writerow(data) nodes = G.nodes() nodes = sorted(nodes, key=lambda tup: (tup[0], tup[1])) x = 0 for node in range(0,localityNum): localityNumber = node+numberOfNodes+1000 data = [localityNumber, node] storage_writer.writerow(data) storage_file.close() nodesFile='1.edges' if os.path.exists(nodesFile): os.remove('1.edges') with open('1.edges', 'w') as storage_file: storage_writer = csv.writer(storage_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator='\n') data = ["source", "target", "weight", "month", "cell_id_x", "cell_id_y", "source_region", "target_region"] storage_writer.writerow(data) nodes = G.nodes() nodes = sorted(nodes, key=lambda tup: (tup[0], tup[1])) for edge in longDistanceEdges.edges(): edge0 = edge[0]+numberOfNodes+1000 edge1 = edge[1]+numberOfNodes+1000 for y in range(1,13): #makes sure that it goes through every single month and that its constant throughout data = [edge0,edge1,1,y,0,0,edge[0],edge[1]] storage_writer.writerow(data) data = [edge1, edge0, 1, y, 0, 0, edge[1], edge[0]] storage_writer.writerow(data) storage_file.close() nodesFile = 'hierarchy.tree' if os.path.exists(nodesFile): os.remove('hierarchy.tree') seed_loc = pd.DataFrame(columns = ['node', 'probability', 'locality']) with open('hierarchy.tree', 'w') as storage_file: storage_writer = csv.writer(storage_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL, lineterminator='\n') data = ['parent', 'child', 'parent_node', 'child_node_x', 'child_node_y'] storage_writer.writerow(data) nodes = G.nodes() nodes = sorted(nodes, key=lambda tup: (tup[0], tup[1])) x = 0 for node in range(0, localityNum): localityNumber = node + numberOfNodes + 1000 data = [-1, localityNumber, -1, localityNum] storage_writer.writerow(data) for locality in range(0, localityNum): localityNumber = locality + numberOfNodes + 1000 for node in localityNodes[locality]: nodeNumber = node[0] * numRows + node[1] data = [localityNumber, nodeNumber, locality, node[0], node[1]] seed_loc = seed_loc.append({ 'node': nodeNumber, 'locality': locality}, ignore_index = True) storage_writer.writerow(data) onlyShortDistance = [node for node in G.nodes() if node not in GL.nodes()] #print(onlyShortDistance) for node in onlyShortDistance: nodeNumber = node[0] * numRows + node[1] data = [-1,nodeNumber,-1,nodes[0],node[1]] seed_loc = seed_loc.append({ 'node': nodeNumber, 'locality': -1}, ignore_index = True) storage_writer.writerow(data) storage_file.close() # seeding percentageSeedNodes = 5 df = pd.DataFrame({'node': np.arange(G.number_of_nodes()), 'probability': np.full(G.number_of_nodes(), percentageSeedNodes/100)}) df.to_csv('seed_all.csv', index = False) numNodesInLocality = (seed_loc.locality != -1).sum() localityProb = min(1, G.number_of_nodes()/numNodesInLocality \ * percentageSeedNodes / 100) nonLocalityProb = max(0, (G.number_of_nodes() * percentageSeedNodes / 100 - \ numNodesInLocality * localityProb) / G.number_of_nodes()) seed_loc.probability = nonLocalityProb seed_loc.loc[seed_loc.locality != -1, 'probability'] = localityProb seed_loc = seed_loc.astype({'node': int}) seed_loc.to_csv('seed_loc.csv', index = False) ## df = pd.DataFrame({'node': nodesInLocality, ## 'probability': np.full(numNodesInLocality, localityProb})) ## df = df.append(pd.DataFrame({'node': nodesInLocal def main(): parser = argparse.ArgumentParser(description=DESC, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--number_of_nodes", required=True, help="Number of nodes in the square grid. Must be a square.", type=int) parser.add_argument("--number_of_regions", required=True, help="Number of square regions in the grid. Must be a square and be a factor of number_of_nodes.", type=int) parser.add_argument("--range", required=True, help="Distance parameter", type=float) parser.add_argument("--locality_size", required=True, help="Number of nodes in a locality, which forms a square grid within a region. Must be a square and have the same parity as number_of_nodes/number_of_regions.", type=int) parser.add_argument("--locality_graph", required=True, help="Type of locality graph (star/clique)") parser.add_argument("--long_distance_type", required=True, help="Type of graph for long distance pathway (ER/CL/SF)") parser.add_argument("--ld_param", nargs="+", help="Long Distance parameters",type=float) parser.add_argument("--seed", required=True, help="Random seed", type=int) parser.add_argument("--directed", action="store_true", help="says that the graph is a directional graph") parser.add_argument("-m", "--multi", action="store_true", help="says that the graph is a multi-edged graph") parser.add_argument("--suppress_properties", action="store_true", default = False, help="Mode to just create graphs.") parser.add_argument("-d", "--debug", action="store_true") parser.add_argument("-q", "--quiet", action="store_true") args = parser.parse_args() # set logger if args.debug: logging.basicConfig(level=logging.DEBUG, format=FORMAT) elif args.quiet: logging.basicConfig(level=logging.WARNING, format=FORMAT) else: logging.basicConfig(level=logging.INFO, format=FORMAT) # checking if constraints are satisfied if not np.sqrt(args.number_of_nodes).is_integer(): raise ValueError('number of nodes must be a square') if not np.sqrt(args.number_of_regions).is_integer(): raise ValueError('number of regions must be a square') if args.number_of_regions > args.number_of_nodes: raise ValueError('number of regions > number_of_nodes') if not
np.sqrt(args.locality_size)
numpy.sqrt
import os.path as osp import numpy as np import math from tqdm import tqdm import torch.nn as nn import torch.backends.cudnn as cudnn import torch.utils.data from torchvision import transforms, datasets from ofa.utils import AverageMeter, accuracy from ofa.model_zoo import ofa_specialized from ofa.imagenet_classification.elastic_nn.utils import set_running_statistics import copy import random def evaluate_ofa_resnet_subnet(ofa_net, path, net_config, data_loader, batch_size, device='cuda:0'): assert 'w' in net_config and 'd' in net_config and 'e' in net_config assert len(net_config['w']) == 6 and len(net_config['e']) == 18 and len(net_config['d']) == 5 ofa_net.set_active_subnet(w=net_config['w'], d=net_config['d'], e=net_config['e']) subnet = ofa_net.get_active_subnet().to(device) calib_bn(subnet, path, 224, batch_size) top1 = validate(subnet, path, 224, data_loader, batch_size, device) return top1 def evaluate_ofa_resnet_ensemble_subnet(ofa_net, path, net_config1, net_config2, data_loader, batch_size, device='cuda:0'): assert 'w' in net_config1 and 'd' in net_config1 and 'e' in net_config1 assert len(net_config1['w']) == 6 and len(net_config1['e']) == 18 and len(net_config1['d']) == 5 ofa_net.set_active_subnet(w=net_config1['w'], d=net_config1['d'], e=net_config1['e']) subnet1 = ofa_net.get_active_subnet().to(device) calib_bn(subnet1, path, 224, batch_size) ofa_net.set_active_subnet(w=net_config2['w'], d=net_config2['d'], e=net_config2['e']) subnet2 = ofa_net.get_active_subnet().to(device) calib_bn(subnet2, path, 224, batch_size) # assert net_config2['r'][0]==net_config1['r'][0] subnets = [] subnets.append(subnet2) subnets.append(subnet1) top1 = ensemble_validate(subnets, path, 224, data_loader, batch_size, device) return top1 def evaluate_ofa_subnet(ofa_net, path, net_config, data_loader, batch_size, device='cuda:0'): assert 'ks' in net_config and 'd' in net_config and 'e' in net_config assert len(net_config['ks']) == 20 and len(net_config['e']) == 20 and len(net_config['d']) == 5 ofa_net.set_active_subnet(ks=net_config['ks'], d=net_config['d'], e=net_config['e']) subnet = ofa_net.get_active_subnet().to(device) calib_bn(subnet, path, net_config['r'][0], batch_size) top1 = validate(subnet, path, net_config['r'][0], data_loader, batch_size, device) return top1 def evaluate_ofa_ensemble_subnet(ofa_net, path, net_config1, net_config2, data_loader, batch_size, device='cuda:0'): assert 'ks' in net_config1 and 'd' in net_config1 and 'e' in net_config1 assert len(net_config1['ks']) == 20 and len(net_config1['e']) == 20 and len(net_config1['d']) == 5 ofa_net.set_active_subnet(ks=net_config1['ks'], d=net_config1['d'], e=net_config1['e']) subnet1 = ofa_net.get_active_subnet().to(device) calib_bn(subnet1, path, net_config1['r'][0], batch_size) ofa_net.set_active_subnet(ks=net_config2['ks'], d=net_config2['d'], e=net_config2['e']) subnet2 = ofa_net.get_active_subnet().to(device) calib_bn(subnet2, path, net_config2['r'][0], batch_size) assert net_config2['r'][0]==net_config1['r'][0] subnets = [] subnets.append(subnet2) subnets.append(subnet1) top1 = ensemble_validate(subnets, path, net_config2['r'][0], data_loader, batch_size, device) return top1 def calib_bn(net, path, image_size, batch_size, num_images=2000): # print('Creating dataloader for resetting BN running statistics...') dataset = datasets.ImageFolder( osp.join( path, 'train'), transforms.Compose([ transforms.RandomResizedCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=32. / 255., saturation=0.5), transforms.ToTensor(), transforms.Normalize( mean=[ 0.485, 0.456, 0.406], std=[ 0.229, 0.224, 0.225] ), ]) ) chosen_indexes = np.random.choice(list(range(len(dataset))), num_images) sub_sampler = torch.utils.data.sampler.SubsetRandomSampler(chosen_indexes) data_loader = torch.utils.data.DataLoader( dataset, sampler=sub_sampler, batch_size=batch_size, num_workers=16, pin_memory=True, drop_last=False, ) # print('Resetting BN running statistics (this may take 10-20 seconds)...') set_running_statistics(net, data_loader) def ensemble_validate(nets, path, image_size, data_loader, batch_size=100, device='cuda:0'): if 'cuda' in device: print('use cuda') for net in nets: net = torch.nn.DataParallel(net).to(device) else: for net in nets: net = net.to(device) data_loader.dataset.transform = transforms.Compose([ transforms.Resize(int(math.ceil(image_size / 0.875))), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) cudnn.benchmark = True criterion = nn.CrossEntropyLoss().to(device) for net in nets: net.eval() net = net.to(device) losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() with torch.no_grad(): with tqdm(total=len(data_loader), desc='Validate') as t: for i, (images, labels) in enumerate(data_loader): images, labels = images.to(device), labels.to(device) # compute output n = len(nets) output = 0 for i, net in enumerate(nets): if i == 0: output =net(images) else: output+=net(images) output = output/n loss = criterion(output, labels) # measure accuracy and record loss acc1, acc5 = accuracy(output, labels, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0].item(), images.size(0)) top5.update(acc5[0].item(), images.size(0)) t.set_postfix({ 'loss': losses.avg, 'top1': top1.avg, 'top5': top5.avg, 'img_size': images.size(2), }) t.update(1) print('Results: loss=%.5f,\t top1=%.3f,\t top5=%.1f' % (losses.avg, top1.avg, top5.avg)) return top1.avg def validate(net, path, image_size, data_loader, batch_size=100, device='cuda:0'): if 'cuda' in device: net = torch.nn.DataParallel(net).to(device) else: net = net.to(device) data_loader.dataset.transform = transforms.Compose([ transforms.Resize(int(math.ceil(image_size / 0.875))), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) cudnn.benchmark = True criterion = nn.CrossEntropyLoss().to(device) net.eval() net = net.to(device) losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() with torch.no_grad(): with tqdm(total=len(data_loader), desc='Validate') as t: for i, (images, labels) in enumerate(data_loader): images, labels = images.to(device), labels.to(device) # compute output output = net(images) loss = criterion(output, labels) # measure accuracy and record loss acc1, acc5 = accuracy(output, labels, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0].item(), images.size(0)) top5.update(acc5[0].item(), images.size(0)) t.set_postfix({ 'loss': losses.avg, 'top1': top1.avg, 'top5': top5.avg, 'img_size': images.size(2), }) t.update(1) print('Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f' % (losses.avg, top1.avg, top5.avg)) return top1.avg def evaluate_ofa_specialized(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): def select_platform_name(): valid_platform_name = [ 'pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops' ] print("Please select a hardware platform from ('pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops')!\n") while True: platform_name = input() platform_name = platform_name.lower() if platform_name in valid_platform_name: return platform_name print("Platform name is invalid! Please select in ('pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops')!\n") def select_netid(platform_name): platform_efficiency_map = { 'pixel1': { 143: 'pixel1_lat@[email protected]_finetune@75', 132: 'pixel1_lat@[email protected]_finetune@75', 79: 'pixel1_lat@[email protected]_finetune@75', 58: 'pixel1_lat@[email protected]_finetune@75', 40: 'pixel1_lat@[email protected]_finetune@25', 28: 'pixel1_lat@[email protected]_finetune@25', 20: 'pixel1_lat@[email protected]_finetune@25', }, 'pixel2': { 62: 'pixel2_lat@[email protected]_finetune@25', 50: 'pixel2_lat@[email protected]_finetune@25', 35: 'pixel2_lat@[email protected]_finetune@25', 25: 'pixel2_lat@[email protected]_finetune@25', }, 'note10': { 64: 'note10_lat@[email protected]_finetune@75', 50: 'note10_lat@[email protected]_finetune@75', 41: 'note10_lat@[email protected]_finetune@75', 30: 'note10_lat@[email protected]_finetune@75', 22: 'note10_lat@[email protected]_finetune@25', 16: 'note10_lat@[email protected]_finetune@25', 11: 'note10_lat@[email protected]_finetune@25', 8: 'note10_lat@[email protected]_finetune@25', }, 'note8': { 65: 'note8_lat@[email protected]_finetune@25', 49: 'note8_lat@[email protected]_finetune@25', 31: 'note8_lat@[email protected]_finetune@25', 22: 'note8_lat@[email protected]_finetune@25', }, 's7edge': { 88: 's7edge_lat@[email protected]_finetune@25', 58: 's7edge_lat@[email protected]_finetune@25', 41: 's7edge_lat@[email protected]_finetune@25', 29: 's7edge_lat@[email protected]_finetune@25', }, 'lg-g8': { 24: 'LG-G8_lat@[email protected]_finetune@25', 16: 'LG-G8_lat@[email protected]_finetune@25', 11: 'LG-G8_lat@[email protected]_finetune@25', 8: 'LG-G8_lat@[email protected]_finetune@25', }, '1080ti': { 27: '1080ti_gpu64@[email protected]_finetune@25', 22: '1080ti_gpu64@[email protected]_finetune@25', 15: '1080ti_gpu64@[email protected]_finetune@25', 12: '1080ti_gpu64@[email protected]_finetune@25', }, 'v100': { 11: 'v100_gpu64@[email protected]_finetune@25', 9: 'v100_gpu64@[email protected]_finetune@25', 6: 'v100_gpu64@[email protected]_finetune@25', 5: 'v100_gpu64@[email protected]_finetune@25', }, 'tx2': { 96: 'tx2_gpu16@[email protected]_finetune@25', 80: 'tx2_gpu16@[email protected]_finetune@25', 47: 'tx2_gpu16@[email protected]_finetune@25', 35: 'tx2_gpu16@[email protected]_finetune@25', }, 'cpu': { 17: 'cpu_lat@[email protected]_finetune@25', 15: 'cpu_lat@[email protected]_finetune@25', 11: 'cpu_lat@[email protected]_finetune@25', 10: 'cpu_lat@[email protected]_finetune@25', }, 'flops': { 595: 'flops@[email protected]_finetune@75', 482: 'flops@[email protected]_finetune@75', 389: 'flops@[email protected]_finetune@75', } } sub_efficiency_map = platform_efficiency_map[platform_name] if not platform_name == 'flops': print("Now, please specify a latency constraint for model specialization among", sorted(list(sub_efficiency_map.keys())), 'ms. (Please just input the number.) \n') else: print("Now, please specify a FLOPs constraint for model specialization among", sorted(list(sub_efficiency_map.keys())), 'MFLOPs. (Please just input the number.) \n') while True: efficiency_constraint = input() if not efficiency_constraint.isdigit(): print('Sorry, please input an integer! \n') continue efficiency_constraint = int(efficiency_constraint) if not efficiency_constraint in sub_efficiency_map.keys(): print('Sorry, please choose a value from: ', sorted(list(sub_efficiency_map.keys())), '.\n') continue return sub_efficiency_map[efficiency_constraint] if not ensemble: platform_name = select_platform_name() net_id = select_netid(platform_name) net, image_size = ofa_specialized(net_id=net_id, pretrained=True) validate(net, path, image_size, data_loader, batch_size, device) else: nets = [] for i in range(2): print('{}model'.format(i)) platform_name = select_platform_name() net_id = select_netid(platform_name) net, image_size = ofa_specialized(net_id=net_id, pretrained=True) nets.append(net) ensemble_validate(nets, path, image_size, data_loader, batch_size, device) return net_id net_id = ['pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@75', 'pixel1_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@25', 'pixel1_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'pixel2_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@75', 'note10_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@25', 'note10_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 'note8_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 's7edge_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', 'LG-G8_lat@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', '1080ti_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'v100_gpu64@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'tx2_gpu16@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'cpu_lat@[email protected]_finetune@25', 'flops@[email protected]_finetune@75', 'flops@[email protected]_finetune@75', 'flops@[email protected]_finetune@75', ] def evaluate_ofa_space(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): net_acc=[] for i, id in enumerate(net_id): acc="" for j in range(2, len(id)): if id[j]=='.': acc=id[j-2]+id[j-1]+id[j]+id[j+1] net_acc.append(acc) id =np.argsort(np.array(net_acc)) new_net_id = copy.deepcopy(net_id) for i, sortid in enumerate(id): new_net_id[i] = net_id[sortid] print('new_net_id', new_net_id) n = len(net_id) best_acc = 0 space = [] best_team =[] for i in range(1, n): for j in range(i): nets = [] team = [] team.append(j) team.append(i) net, image_size = ofa_specialized(net_id=new_net_id[j], pretrained=True) nets.append(net) net, image_size = ofa_specialized(net_id=new_net_id[i], pretrained=True) nets.append(net) acc = ensemble_validate(nets, path, image_size, data_loader, batch_size, device) if acc>best_acc: best_acc=acc best_team = team print('space {} best_acc{}'.format(i+1, best_acc)) space.append(best_acc) print('space:{}'.format(space)) return net_id[best_team[0]], net_id[best_team[1]] def evaluate_ofa_best_acc_team(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): net_acc=[] for i, id in enumerate(net_id): acc="" for j in range(2, len(id)): if id[j]=='.': acc=id[j-2]+id[j-1]+id[j]+id[j+1] net_acc.append(acc) id =np.argsort(np.array(net_acc)) new_net_id = copy.deepcopy(net_id) for i, sortid in enumerate(id): new_net_id[i] = net_id[sortid] print('new_net_id', new_net_id) n = len(net_id) best_acc = 0 space = [] best_team =[] i = n-1 for j in range(18, n): nets = [] team = [] team.append(j) team.append(i) net, image_size = ofa_specialized(net_id=new_net_id[j], pretrained=True) nets.append(net) net, image_size = ofa_specialized(net_id=new_net_id[i], pretrained=True) nets.append(net) acc = ensemble_validate(nets, path, image_size, data_loader, batch_size, device) print('net i:{} netj:{} acc:{}'.format(new_net_id[i], new_net_id[j], acc)) if acc>best_acc: best_acc=acc best_team = team print('space {} best_acc{}'.format(i+1, best_acc)) space.append(best_acc) print('space:{}'.format(space)) return new_net_id[best_team[0]], new_net_id[best_team[1]] def evaluate_ofa_random_sample(path, data_loader, batch_size=100, device='cuda:0', ensemble=False): net_acc=[] for i, id in enumerate(net_id): acc="" for j in range(2, len(id)): if id[j]=='.': acc=id[j-2]+id[j-1]+id[j]+id[j+1] net_acc.append(acc) id =np.argsort(np.array(net_acc)) new_net_id = copy.deepcopy(net_id) for i, sortid in enumerate(id): new_net_id[i] = net_id[sortid] print('new_net_id', new_net_id) n = len(net_id) best_acc = 0 acc_list = [] space = [] best_team =[] for k in range(20): nets = [] team = [] i = random.randint(0, n-1) j = (i + random.randint(1, n-1)) % n print('i:{} j:{}'.format(i, j)) team.append(j) team.append(i) net, image_size = ofa_specialized(net_id=new_net_id[j], pretrained=True) nets.append(net) net, image_size = ofa_specialized(net_id=new_net_id[i], pretrained=True) nets.append(net) acc = ensemble_validate(nets, path, image_size, data_loader, batch_size, device) print('net i:{} netj:{} acc:{}'.format(new_net_id[i], new_net_id[j], acc)) acc_list.append(acc) if acc>best_acc: best_acc=acc best_team = team avg_acc = np.mean(acc_list) std_acc = np.std(acc_list, ddof=1) var_acc =
np.var(acc_list)
numpy.var
import gc, macpath, pickle, pickletools, errno, traceback, gzip, io, copy, random, bisect, os, time from autograd.numpy.numpy_extra import ArrayNode import numpy as np from functools import reduce def safe_mkdir(path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise return path def expanduser(p): if p is None: return p else: return os.path.expanduser(macpath.expanduser(p)) def dump(x, filename, opener=open, optimize=False): gc.collect() filename = expanduser(filename) safe_mkdir(os.path.dirname(filename)) with opener(filename, 'wb') as fp: if optimize: s = pickle.dumps(x, pickle.HIGHEST_PROTOCOL) s = pickletools.optimize(s) fp.write(s) else: pickle.dump(x, fp, pickle.HIGHEST_PROTOCOL) return filename def load(filename, exts = ['', '.gz']): t0 = time.time() filename = expanduser(filename) tbs = list() for ext in exts: for opener in [open,gzip.open]: try: with opener(filename+ext, 'rb') as fp: if opener == gzip.open: with io.BufferedReader(fp) as fpb: rval = pickle.load(fpb) else: rval = pickle.load(fp) gc.collect() t_load = time.time() - t0 if t_load > 10: print('loaded in %i seconds' % int(t_load)) return rval except: tbs.append(traceback.format_exc()) raise Exception('\n-------------------------------------------------\n'.join(['']+tbs+[''])) def memodict(f): class memodict(dict): def __missing__(self, key): ret = self[key] = f(key) return ret return memodict().__getitem__ class RaisingDotDict(dict): _raiser = object() def __getattr__(self, attr): rval = self.get(attr,RaisingDotDict._raiser) if id(rval) == id(RaisingDotDict._raiser): raise Exception(attr) return rval def copy(self): return RaisingDotDict(dict(self).copy()) __setattr__= dict.__setitem__ __delattr__= dict.__delitem__ def sqdist(x, y=None): # x.shape = (d, nx) if y is None: xx = np.sum(x ** 2, axis=0).reshape(-1, 1) rval = -2 * np.dot(x.T, x) rval += xx rval += xx.T return rval else: xx = np.sum(x ** 2, axis=0).reshape(-1, 1) yy = np.sum(y ** 2, axis=0).reshape(1, -1) rval = -2 * np.dot(x.T, y) rval += xx rval += yy return rval def nuggetcov(x, y, sigma): return sigma ** 2 * (sqdist(x, y) == 0.0) def covexp(x, y, sigma): return np.exp((-0.5 / sigma ** 2) * sqdist(x, y)) def covlap(x, y, sigma): return np.exp((-1.0 / sigma) * np.sqrt(sqdist(x, y))) def assert_close(x,y,z=None,verbose=False,**kw): if isinstance(x, ArrayNode): x = x.value if isinstance(y, ArrayNode): y = y.value lvl = np.seterr(all='warn') s = lambda: '\nx=\n%s\ny=\n%s\nx-y=\n%s\nx/y=%s\nz=\n%s' % (str(x), str(y), str(x-y), str(x/y), str(z))
np.seterr(**lvl)
numpy.seterr
import argparse import json import torch import numpy as np from PIL import Image from utils import build_model, determine_device def load_checkpoint(filepath): checkpoint = torch.load(filepath) output = len(checkpoint['class_to_idx']) model = build_model(checkpoint['arch'], checkpoint['hidden_units'], output, checkpoint['dropout']) model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] return model def resize_image(image): width, height = image.size aspect_ratio = width / height if width < height: new_width = 256 new_height = int(new_width / aspect_ratio) elif height < width: new_height = 256 new_width = int(width * aspect_ratio) else: # when both sides are equal new_width = 256 new_height = 256 return image.resize((new_width, new_height)) def crop_image(image): ''' Crop the center of the image ''' width, height = image.size new_width, new_height = (224, 224) left = (width - new_width)/2 top = (height - new_height)/2 right = (width + new_width)/2 bottom = (height + new_height)/2 return image.crop((left, top, right, bottom)) def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' # TODO: Process a PIL image for use in a PyTorch model image = resize_image(image) image = crop_image(image) np_image =
np.array(image)
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #Coastal Pioneer WireFollowing Profilers (WFP elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL389/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL389/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL389/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL389/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL389/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL389/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL389/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL389/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL389' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL389/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL514' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL514/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data =
np.array([])
numpy.array
from numpy import log, pi, arange, exp from scipy.optimize import brentq import matplotlib.pyplot as plot from matplotlib import rc import equation def diagram_sum(x, d): return 4.*pi/log(d**2 *2.*x) def diagram_sum_3body(x, d): point=equation.equation(3.*x,'2D',20.,0.1,d) point.solve() g3=point.g3 del point return 4.*pi/log(d**2 *2.*x) + g3 drange=arange(0.6,5.,0.05) xx=[d for d in drange] ee=[1/d**2 for d in drange] yy=[brentq(lambda mu:mu - diagram_sum(mu,d),(0.5+0.01)/(d**2),0.5/d**2 *exp(8 * pi * d**2), xtol=1e-3) for d in drange] drange=arange(0.6,5.6,1.0) zx=[d for d in drange] ze=[1/d**2 for d in drange] zz=[brentq(lambda mu:mu - diagram_sum_3body(mu,d),(1+0.01)/(2.*d**2),0.5/d**2 *exp(8 * pi * d**2), xtol=1e-2) for d in drange] drange=arange(0.7,1.5,0.1) wx=[d for d in drange] we=[1/d**2 for d in drange] wz=[brentq(lambda mu:mu - diagram_sum_3body(mu,d),(1+0.01)/(2.*d**2),0.5/d**2 *exp(8 * pi * d**2), xtol=1e-2) for d in drange] drange=arange(0.6,0.7,0.025) fx=[d for d in drange] fe=[1/d**2 for d in drange] fz=[brentq(lambda mu:mu - diagram_sum_3body(mu,d),(1+0.01)/(2.*d**2),0.5/d**2 *
exp(8 * pi * d**2)
numpy.exp
""" A pytest module to test the functions relating to primes. """ import random import numpy as np import pytest import galois def test_primes(): assert galois.primes(19) == [2, 3, 5, 7, 11, 13, 17, 19] assert galois.primes(20) == [2, 3, 5, 7, 11, 13, 17, 19] with pytest.raises(TypeError): galois.primes(20.0) with pytest.raises(ValueError): galois.primes(1) def test_kth_prime(): assert galois.kth_prime(1) == 2 assert galois.kth_prime(2) == 3 assert galois.kth_prime(100) == 541 assert galois.kth_prime(1000) == 7919 with pytest.raises(TypeError): galois.kth_prime(20.0) with pytest.raises(ValueError): galois.kth_prime(0) with pytest.raises(ValueError): galois.kth_prime(galois.prime.MAX_K + 1) def test_prev_prime(): assert galois.prev_prime(8) == 7 assert galois.prev_prime(11) == 11 with pytest.raises(TypeError): galois.prev_prime(20.0) with pytest.raises(ValueError): galois.prev_prime(1) with pytest.raises(ValueError): galois.prev_prime(galois.prime.MAX_PRIME + 1) def test_next_prime(): assert galois.next_prime(8) == 11 assert galois.next_prime(11) == 13 with pytest.raises(TypeError): galois.next_prime(20.0) with pytest.raises(ValueError): galois.next_prime(galois.prime.MAX_PRIME) def test_mersenne_exponents(): # https://oeis.org/A000043 exponents = [2,3,5,7,13,17,19,31,61,89,107,127] # Up to 128 bits assert galois.mersenne_exponents(128) == exponents def test_mersenne_primes(): # https://oeis.org/A000668 primes = [3,7,31,127,8191,131071,524287,2147483647,2305843009213693951,618970019642690137449562111,162259276829213363391578010288127,170141183460469231731687303715884105727] # Up to 128 bits assert galois.mersenne_primes(128) == primes def test_prime_factorization_small(): x = 8 P = [2,] K = [3,] p, k = galois.prime_factors(x) assert
np.array_equal(p, P)
numpy.array_equal
# -*- coding: utf-8 -*- """ Created on Wed Feb 12 2020 Class to read and manipulate CryoSat-2 waveform data Reads CryoSat Level-1b data products from baselines A, B and C Reads CryoSat Level-1b netCDF4 data products from baseline D Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR INPUTS: full_filename: full path of CryoSat .DBL or .nc file PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python http://www.numpy.org http://www.scipy.org/NumPy_for_Matlab_Users netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html UPDATE HISTORY: Updated 08/2020: flake8 compatible binary regular expression strings Forked 02/2020 from read_cryosat_L1b.py Updated 11/2019: empty placeholder dictionary for baseline D DSD headers Updated 09/2019: added netCDF4 read function for baseline D Updated 04/2019: USO correction signed 32 bit int Updated 10/2018: updated header read functions for python3 Updated 05/2016: using __future__ print and division functions Written 03/2016 """ from __future__ import print_function from __future__ import division import numpy as np import pointCollection as pc import netCDF4 import re import os class data(pc.data): np.seterr(invalid='ignore') def __default_field_dict__(self): """ Define the default fields that get read from the CryoSat-2 file """ field_dict = {} field_dict['Location'] = ['days_J2k','Day','Second','Micsec','USO_Corr', 'Mode_ID','SSC','Inst_config','Rec_Count','Lat','Lon','Alt','Alt_rate', 'Sat_velocity','Real_beam','Baseline','ST_ID','Roll','Pitch','Yaw','MCD'] field_dict['Data'] = ['TD', 'H_0','COR2','LAI','FAI','AGC_CH1','AGC_CH2', 'TR_gain_CH1','TR_gain_CH2','TX_Power','Doppler_range','TR_inst_range', 'R_inst_range','TR_inst_gain','R_inst_gain','Internal_phase', 'External_phase','Noise_power','Phase_slope'] field_dict['Geometry'] = ['dryTrop','wetTrop','InvBar','DAC','Iono_GIM', 'Iono_model','ocTideElv','lpeTideElv','olTideElv','seTideElv','gpTideElv', 'Surf_type','Corr_status','Corr_error'] field_dict['Waveform_20Hz'] = ['Waveform','Linear_Wfm_Multiplier', 'Power2_Wfm_Multiplier','N_avg_echoes'] field_dict['METADATA'] = ['MPH','SPH'] return field_dict def from_dbl(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from binary formats """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() # CryoSat-2 Mode record sizes i_size_timestamp = 12 n_SARIN_BC_RW = 1024 n_SARIN_RW = 512 n_SAR_BC_RW = 256 n_SAR_RW = 125 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # check baseline from file to set i_record_size and allocation function if (BASELINE == 'C'): # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2 + 6*4 + 3*3*4 + 3*2 + 4*4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_BC_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_BC_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_BC_RW*2 + \ n_SARIN_BC_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baseline C read_cryosat_variables = self.cryosat_baseline_C else: # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2+ 6*4 + 3*3*4 + 4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_RW*2 + \ n_SARIN_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baselines A and B read_cryosat_variables = self.cryosat_baseline_AB # get dataset MODE from PRODUCT portion of file name # set record sizes and DS_TYPE for read_DSD function self.MODE = re.findall('(LRM|SAR|SIN)', PRODUCT).pop() if (self.MODE == 'LRM'): i_record_size = i_record_size_LRM_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SAR'): i_record_size = i_record_size_SAR_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SIN'): i_record_size = i_record_size_SARIN_L1b DS_TYPE = 'CS_L1B' # read the input file to get file information fid = os.open(os.path.expanduser(full_filename),os.O_RDONLY) file_info = os.fstat(fid) os.close(fid) # num DSRs from SPH j_num_DSR = np.int32(file_info.st_size//i_record_size) # print file information if verbose: print(full_filename) print('{0:d} {1:d} {2:d}'.format(j_num_DSR,file_info.st_size,i_record_size)) # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size == file_info.st_size): print('No Header on file') print('The number of DSRs is: {0:d}'.format(j_num_DSR)) else: print('Header on file') # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size != file_info.st_size): # If there are MPH/SPH/DSD headers s_MPH_fields = self.read_MPH(full_filename) j_sph_size = np.int32(re.findall(r'[-+]?\d+',s_MPH_fields['SPH_SIZE']).pop()) s_SPH_fields = self.read_SPH(full_filename, j_sph_size) # extract information from DSD fields s_DSD_fields = self.read_DSD(full_filename, DS_TYPE=DS_TYPE) # extract DS_OFFSET j_DS_start = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DS_OFFSET']).pop()) # extract number of DSR in the file j_num_DSR = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['NUM_DSR']).pop()) # check the record size j_DSR_size = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DSR_SIZE']).pop()) # minimum size is start of the read plus number of records to read j_check_size = j_DS_start + (j_DSR_size*j_num_DSR) if verbose: print('The offset of the DSD is: {0:d} bytes'.format(j_DS_start)) print('The number of DSRs is {0:d}'.format(j_num_DSR)) print('The size of the DSR is {0:d}'.format(j_DSR_size)) # check if invalid file size if (j_check_size > file_info.st_size): raise IOError('File size error') # extract binary data from input CryoSat data file (skip headers) fid = open(os.path.expanduser(full_filename), 'rb') cryosat_header = fid.read(j_DS_start) # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # add headers to output dictionary as METADATA CS_L1b_mds['METADATA'] = {} CS_L1b_mds['METADATA']['MPH'] = s_MPH_fields CS_L1b_mds['METADATA']['SPH'] = s_SPH_fields CS_L1b_mds['METADATA']['DSD'] = s_DSD_fields # close the input CryoSat binary file fid.close() else: # If there are not MPH/SPH/DSD headers # extract binary data from input CryoSat data file fid = open(os.path.expanduser(full_filename), 'rb') # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # close the input CryoSat binary file fid.close() # if unpacking the units if unpack: CS_l1b_scale = self.cryosat_scaling_factors() # for each dictionary key for group in CS_l1b_scale.keys(): # for each variable for key,val in CS_L1b_mds[group].items(): # check if val is the 20Hz waveform beam variables if isinstance(val, dict): # for each waveform beam variable for k,v in val.items(): # scale variable CS_L1b_mds[group][key][k] = CS_l1b_scale[group][key][k]*v.copy() else: # scale variable CS_L1b_mds[group][key] = CS_l1b_scale[group][key]*val.copy() # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def from_nc(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from netCDF4 format data """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() print(full_filename) if verbose else None # get dataset MODE from PRODUCT portion of file name self.MODE = re.findall(r'(LRM|FDM|SAR|SIN)', PRODUCT).pop() # read level-2 CryoSat-2 data from netCDF4 file CS_L1b_mds = self.cryosat_baseline_D(full_filename, unpack=unpack) # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def calc_GPS_time(self, day, second, micsec): """ Calculate the GPS time (seconds since Jan 6, 1980 00:00:00) """ # TAI time is ahead of GPS by 19 seconds return (day + 7300.0)*86400.0 + second.astype('f') + micsec/1e6 - 19 def count_leap_seconds(self, GPS_Time): """ Count number of leap seconds that have passed for given GPS times """ # GPS times for leap seconds leaps = [46828800, 78364801, 109900802, 173059203, 252028804, 315187205, 346723206, 393984007, 425520008, 457056009, 504489610, 551750411, 599184012, 820108813, 914803214, 1025136015, 1119744016, 1167264017] # number of leap seconds prior to GPS_Time n_leaps = np.zeros_like(GPS_Time) for i,leap in enumerate(leaps): count = np.count_nonzero(GPS_Time >= leap) if (count > 0): i_records,i_blocks = np.nonzero(GPS_Time >= leap) n_leaps[i_records,i_blocks] += 1.0 return n_leaps def read_MPH(self, full_filename): """ Read ASCII Main Product Header (MPH) block from an ESA PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # check that first line of header matches PRODUCT if not bool(re.match(br'PRODUCT\=\"(.*)(?=\")',file_contents[0])): raise IOError('File does not start with a valid PDS MPH') # read MPH header text s_MPH_fields = {} for i in range(n_MPH_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_MPH_fields def read_SPH(self, full_filename, j_sph_size): """ Read ASCII Specific Product Header (SPH) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # compile regular expression operator for reading headers rx = re.compile(br'(.*?)\=\"?(.*)',re.VERBOSE) # check first line of header matches SPH_DESCRIPTOR if not bool(re.match(br'SPH\_DESCRIPTOR\=',file_contents[n_MPH_lines+1])): raise IOError('File does not have a valid PDS DSD') # read SPH header text (no binary control characters) s_SPH_lines = [li for li in file_contents[n_MPH_lines+1:] if rx.match(li) and not re.search(br'[^\x20-\x7e]+',li)] # extract SPH header text s_SPH_fields = {} c = 0 while (c < len(s_SPH_lines)): # check if line is within DS_NAME portion of SPH header if bool(re.match(br'DS_NAME',s_SPH_lines[c])): # add dictionary for DS_NAME field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() key = value.decode('utf-8').rstrip() s_SPH_fields[key] = {} for line in s_SPH_lines[c+1:c+7]: if bool(re.match(br'(.*?)\=\"(.*)(?=\")',line)): # data fields within quotes dsfield,dsvalue=re.findall(br'(.*?)\=\"(.*)(?=\")',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',line)): # data fields without quotes dsfield,dsvalue=re.findall(br'(.*?)\=(.*)',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() # add 6 to counter to go to next entry c += 6 # use regular expression operators to read headers elif bool(re.match(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',s_SPH_lines[c])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # add 1 to counter to go to next line c += 1 # Return block name array to calling function return s_SPH_fields def read_DSD(self, full_filename, DS_TYPE=None): """ Read ASCII Data Set Descriptors (DSD) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # number of text lines in a DSD header n_DSD_lines = 8 # Level-1b CryoSat DS_NAMES within files regex_patterns = [] if (DS_TYPE == 'CS_L1B'): regex_patterns.append(br'DS_NAME\="SIR_L1B_LRM[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SAR[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SARIN[\s+]*"') elif (DS_TYPE == 'SIR_L1B_FDM'): regex_patterns.append(br'DS_NAME\="SIR_L1B_FDM[\s+]*"') # find the DSD starting line within the SPH header c = 0 Flag = False while ((Flag is False) and (c < len(regex_patterns))): # find indice within indice = [i for i,line in enumerate(file_contents[n_MPH_lines+1:]) if re.search(regex_patterns[c],line)] if indice: Flag = True else: c+=1 # check that valid indice was found within header if not indice: raise IOError('Can not find correct DSD field') # extract s_DSD_fields info DSD_START = n_MPH_lines + indice[0] + 1 s_DSD_fields = {} for i in range(DSD_START,DSD_START+n_DSD_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_DSD_fields def cryosat_baseline_AB(self, fid, n_records): """ Read L1b MDS variables for CryoSat Baselines A and B """ n_SARIN_RW = 512 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # Bind all the variables of the l1b_mds together into a single dictionary CS_l1b_mds = {} # CryoSat-2 Time and Orbit Group CS_l1b_mds['Location'] = {} # Time: day part CS_l1b_mds['Location']['Day'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32,fill_value=0) # Time: second part CS_l1b_mds['Location']['Second'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Time: microsecond part CS_l1b_mds['Location']['Micsec'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # USO correction factor CS_l1b_mds['Location']['USO_Corr'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Mode ID CS_l1b_mds['Location']['Mode_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Source sequence counter CS_l1b_mds['Location']['SSC'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Instrument configuration CS_l1b_mds['Location']['Inst_config'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Record Counter CS_l1b_mds['Location']['Rec_Count'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lat'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lon'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Location']['Alt'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) CS_l1b_mds['Location']['Alt_rate'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) # ITRF= International Terrestrial Reference Frame CS_l1b_mds['Location']['Sat_velocity'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Real beam direction vector. In CRF: packed units (micro-m, 1e-6 m) # CRF= CryoSat Reference Frame. CS_l1b_mds['Location']['Real_beam'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Interferometric baseline vector. In CRF: packed units (micro-m, 1e-6 m) CS_l1b_mds['Location']['Baseline'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Measurement Confidence Data Flags # Generally the MCD flags indicate problems when set # If MCD is 0 then no problems or non-nominal conditions were detected # Serious errors are indicated by setting bit 31 CS_l1b_mds['Location']['MCD'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters CS_l1b_mds['Data'] = {} # Window Delay reference (two-way) corrected for instrument delays CS_l1b_mds['Data']['TD'] = np.ma.zeros((n_records,n_blocks),dtype=np.int64) # H0 Initial Height Word from telemetry CS_l1b_mds['Data']['H_0'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # COR2 Height Rate: on-board tracker height rate over the radar cycle CS_l1b_mds['Data']['COR2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Coarse Range Word (LAI) derived from telemetry CS_l1b_mds['Data']['LAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Fine Range Word (FAI) derived from telemetry CS_l1b_mds['Data']['FAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. # Gain calibration corrections are applied (Sum of AGC stages 1 and 2 # plus the corresponding corrections) (dB/100) CS_l1b_mds['Data']['AGC_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. # Gain calibration corrections are applied (dB/100) CS_l1b_mds['Data']['AGC_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Transmit Power in microWatts CS_l1b_mds['Data']['TX_Power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Doppler range correction: Radial component (mm) # computed for the component of satellite velocity in the nadir direction CS_l1b_mds['Data']['Doppler_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: transmit-receive antenna (mm) # Calibration correction to range on channel 1 computed from CAL1. CS_l1b_mds['Data']['TR_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: receive-only antenna (mm) # Calibration correction to range on channel 2 computed from CAL1. CS_l1b_mds['Data']['R_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: transmit-receive antenna (dB/100) # Calibration correction to gain on channel 1 computed from CAL1 CS_l1b_mds['Data']['TR_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: receive-only (dB/100) # Calibration correction to gain on channel 2 computed from CAL1 CS_l1b_mds['Data']['R_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Internal Phase Correction (microradians) CS_l1b_mds['Data']['Internal_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # External Phase Correction (microradians) CS_l1b_mds['Data']['External_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Noise Power measurement (dB/100): converted from telemetry units to be # the noise floor of FBR measurement echoes. # Set to -9999.99 when the telemetry contains zero. CS_l1b_mds['Data']['Noise_power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Phase slope correction (microradians) # Computed from the CAL-4 packets during the azimuth impulse response # amplitude (SARIN only). Set from the latest available CAL-4 packet. CS_l1b_mds['Data']['Phase_slope'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) CS_l1b_mds['Data']['Spares1'] = np.ma.zeros((n_records,n_blocks,4),dtype=np.int8) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry'] = {} # Dry Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['dryTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Wet Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['wetTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['InvBar'] = np.ma.zeros((n_records),dtype=np.int32) # Delta Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['DAC'] = np.ma.zeros((n_records),dtype=np.int32) # GIM Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_GIM'] = np.ma.zeros((n_records),dtype=np.int32) # Model Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_model'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['ocTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['lpeTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean loading tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['olTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Solid Earth tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['seTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Geocentric Polar tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['gpTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Surface Type: enumerated key to classify surface at nadir # 0 = Open Ocean # 1 = Closed Sea # 2 = Continental Ice # 3 = Land CS_l1b_mds['Geometry']['Surf_type'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare1'] = np.ma.zeros((n_records,4),dtype=np.int8) # Corrections Status Flag CS_l1b_mds['Geometry']['Corr_status'] = np.ma.zeros((n_records),dtype=np.uint32) # Correction Error Flag CS_l1b_mds['Geometry']['Corr_error'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare2'] = np.ma.zeros((n_records,4),dtype=np.int8) # CryoSat-2 Average Waveforms Groups CS_l1b_mds['Waveform_1Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SIN'): # SARIN Mode # Same as the LRM/SAR groups but the waveform array is 512 bins instead of # 128 and the number of echoes averaged is different. # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) # CryoSat-2 Waveforms Groups # Beam Behavior Parameters Beam_Behavior = {} # Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # 3rd moment: providing the degree of asymmetry of the range integrated # stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) # 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-5),dtype=np.int16) # CryoSat-2 mode specific waveforms CS_l1b_mds['Waveform_20Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior elif (self.MODE == 'SIN'): # SARIN Mode # Averaged Power Echo Waveform [512] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior # Coherence [512]: packed units (1/1000) CS_l1b_mds['Waveform_20Hz']['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int16) # Phase Difference [512]: packed units (microradians) CS_l1b_mds['Waveform_20Hz']['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int32) # for each record in the CryoSat file for r in range(n_records): # CryoSat-2 Time and Orbit Group for b in range(n_blocks): CS_l1b_mds['Location']['Day'].data[r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Mode_ID'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['SSC'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['Inst_config'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Rec_Count'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt_rate'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Sat_velocity'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Real_beam'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Baseline'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['MCD'][r,b] = np.fromfile(fid,dtype='>u4',count=1) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters for b in range(n_blocks): CS_l1b_mds['Data']['TD'][r,b] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Data']['H_0'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['COR2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['LAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['FAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TX_Power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Doppler_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Internal_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['External_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Noise_power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Phase_slope'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Spares1'][r,b,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry']['dryTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['wetTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['InvBar'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['DAC'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_GIM'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_model'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['ocTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['lpeTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['olTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['seTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['gpTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Surf_type'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare1'][r,:] = np.fromfile(fid,dtype='>i1',count=4) CS_l1b_mds['Geometry']['Corr_status'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Corr_error'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare2'][r,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 Average Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SAR'): # SAR Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SIN'): # SARIN Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Waveform_1Hz']['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_1Hz']['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) # CryoSat-2 Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) elif (self.MODE == 'SAR'): # SAR Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-5)) elif (self.MODE == 'SIN'): # SARIN Mode for b in range(n_blocks): CS_l1b_mds['Waveform_20Hz']['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) CS_l1b_mds['Waveform_20Hz']['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-5)) CS_l1b_mds['Waveform_20Hz']['Coherence'][r,b,:] = np.fromfile(fid,dtype='>i2',count=n_SARIN_RW) CS_l1b_mds['Waveform_20Hz']['Phase_diff'][r,b,:] = np.fromfile(fid,dtype='>i4',count=n_SARIN_RW) # set the mask from day variables mask_20Hz = CS_l1b_mds['Location']['Day'].data == CS_l1b_mds['Location']['Day'].fill_value Location_keys = [key for key in CS_l1b_mds['Location'].keys() if not re.search(r'Spare',key)] Data_keys = [key for key in CS_l1b_mds['Data'].keys() if not re.search(r'Spare',key)] Geometry_keys = [key for key in CS_l1b_mds['Geometry'].keys() if not re.search(r'Spare',key)] Wfm_1Hz_keys = [key for key in CS_l1b_mds['Waveform_1Hz'].keys() if not re.search(r'Spare',key)] Wfm_20Hz_keys = [key for key in CS_l1b_mds['Waveform_20Hz'].keys() if not re.search(r'Spare',key)] for key in Location_keys: CS_l1b_mds['Location'][key].mask = mask_20Hz.copy() for key in Data_keys: CS_l1b_mds['Data'][key].mask = mask_20Hz.copy() # return the output dictionary return CS_l1b_mds def cryosat_baseline_C(self, fid, n_records): """ Read L1b MDS variables for CryoSat Baseline C """ n_SARIN_BC_RW = 1024 n_SARIN_RW = 512 n_SAR_BC_RW = 256 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # Bind all the variables of the l1b_mds together into a single dictionary CS_l1b_mds = {} # CryoSat-2 Time and Orbit Group CS_l1b_mds['Location'] = {} # Time: day part CS_l1b_mds['Location']['Day'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32,fill_value=0) # Time: second part CS_l1b_mds['Location']['Second'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Time: microsecond part CS_l1b_mds['Location']['Micsec'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # USO correction factor CS_l1b_mds['Location']['USO_Corr'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Mode ID CS_l1b_mds['Location']['Mode_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Source sequence counter CS_l1b_mds['Location']['SSC'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Instrument configuration CS_l1b_mds['Location']['Inst_config'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Record Counter CS_l1b_mds['Location']['Rec_Count'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lat'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lon'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Location']['Alt'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) CS_l1b_mds['Location']['Alt_rate'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) # ITRF= International Terrestrial Reference Frame CS_l1b_mds['Location']['Sat_velocity'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Real beam direction vector. In CRF: packed units (micro-m/s, 1e-6 m/s) # CRF= CryoSat Reference Frame. CS_l1b_mds['Location']['Real_beam'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Interferometric baseline vector. In CRF: packed units (micro-m/s, 1e-6 m/s) CS_l1b_mds['Location']['Baseline'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Star Tracker ID CS_l1b_mds['Location']['ST_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.int16) # Antenna Bench Roll Angle (Derived from star trackers) # packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Roll'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Antenna Bench Pitch Angle (Derived from star trackers) # packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Pitch'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Antenna Bench Yaw Angle (Derived from star trackers) # packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Yaw'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Measurement Confidence Data Flags # Generally the MCD flags indicate problems when set # If MCD is 0 then no problems or non-nominal conditions were detected # Serious errors are indicated by setting bit 31 CS_l1b_mds['Location']['MCD'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) CS_l1b_mds['Location']['Spares'] = np.ma.zeros((n_records,n_blocks,2),dtype=np.int16) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters CS_l1b_mds['Data'] = {} # Window Delay reference (two-way) corrected for instrument delays CS_l1b_mds['Data']['TD'] = np.ma.zeros((n_records,n_blocks),dtype=np.int64) # H0 Initial Height Word from telemetry CS_l1b_mds['Data']['H_0'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # COR2 Height Rate: on-board tracker height rate over the radar cycle CS_l1b_mds['Data']['COR2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Coarse Range Word (LAI) derived from telemetry CS_l1b_mds['Data']['LAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Fine Range Word (FAI) derived from telemetry CS_l1b_mds['Data']['FAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. # Gain calibration corrections are applied (Sum of AGC stages 1 and 2 # plus the corresponding corrections) (dB/100) CS_l1b_mds['Data']['AGC_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. # Gain calibration corrections are applied (dB/100) CS_l1b_mds['Data']['AGC_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Transmit Power in microWatts CS_l1b_mds['Data']['TX_Power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Doppler range correction: Radial component (mm) # computed for the component of satellite velocity in the nadir direction CS_l1b_mds['Data']['Doppler_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: transmit-receive antenna (mm) # Calibration correction to range on channel 1 computed from CAL1. CS_l1b_mds['Data']['TR_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: receive-only antenna (mm) # Calibration correction to range on channel 2 computed from CAL1. CS_l1b_mds['Data']['R_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: transmit-receive antenna (dB/100) # Calibration correction to gain on channel 1 computed from CAL1 CS_l1b_mds['Data']['TR_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: receive-only (dB/100) # Calibration correction to gain on channel 2 computed from CAL1 CS_l1b_mds['Data']['R_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Internal Phase Correction (microradians) CS_l1b_mds['Data']['Internal_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # External Phase Correction (microradians) CS_l1b_mds['Data']['External_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Noise Power measurement (dB/100) CS_l1b_mds['Data']['Noise_power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Phase slope correction (microradians) # Computed from the CAL-4 packets during the azimuth impulse response # amplitude (SARIN only). Set from the latest available CAL-4 packet. CS_l1b_mds['Data']['Phase_slope'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) CS_l1b_mds['Data']['Spares1'] = np.ma.zeros((n_records,n_blocks,4),dtype=np.int8) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry'] = {} # Dry Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['dryTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Wet Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['wetTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['InvBar'] = np.ma.zeros((n_records),dtype=np.int32) # Delta Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['DAC'] = np.ma.zeros((n_records),dtype=np.int32) # GIM Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_GIM'] = np.ma.zeros((n_records),dtype=np.int32) # Model Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_model'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['ocTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['lpeTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean loading tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['olTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Solid Earth tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['seTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Geocentric Polar tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['gpTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Surface Type: enumerated key to classify surface at nadir # 0 = Open Ocean # 1 = Closed Sea # 2 = Continental Ice # 3 = Land CS_l1b_mds['Geometry']['Surf_type'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare1'] = np.ma.zeros((n_records,4),dtype=np.int8) # Corrections Status Flag CS_l1b_mds['Geometry']['Corr_status'] = np.ma.zeros((n_records),dtype=np.uint32) # Correction Error Flag CS_l1b_mds['Geometry']['Corr_error'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare2'] = np.ma.zeros((n_records,4),dtype=np.int8) # CryoSat-2 Average Waveforms Groups CS_l1b_mds['Waveform_1Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SIN'): # SARIN Mode # Same as the LRM/SAR groups but the waveform array is 512 bins instead of # 128 and the number of echoes averaged is different. # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) # CryoSat-2 Waveforms Groups # Beam Behavior Parameters Beam_Behavior = {} # Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # 3rd moment: providing the degree of asymmetry of the range integrated # stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) # 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) # Standard deviation as a function of boresight angle (microradians) Beam_Behavior['SD_boresight_angle'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center angle as a function of boresight angle (microradians) Beam_Behavior['Center_boresight_angle'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-7),dtype=np.int16) # CryoSat-2 mode specific waveform variables CS_l1b_mds['Waveform_20Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Averaged Power Echo Waveform [256] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_BC_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior elif (self.MODE == 'SIN'): # SARIN Mode # Averaged Power Echo Waveform [1024] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior # Coherence [1024]: packed units (1/1000) CS_l1b_mds['Waveform_20Hz']['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.int16) # Phase Difference [1024]: packed units (microradians) CS_l1b_mds['Waveform_20Hz']['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.int32) # for each record in the CryoSat file for r in range(n_records): # CryoSat-2 Time and Orbit Group for b in range(n_blocks): CS_l1b_mds['Location']['Day'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Mode_ID'][r,b] =
np.fromfile(fid,dtype='>u2',count=1)
numpy.fromfile
import numpy as np import cv2 from nn import ANN def init_train_data(): X = [] for i in range(12, 22): name = "images/shubham" + str(i) + ".jpg" arr = cv2.imread(str(name)) # 640x480x3 array arr = np.reshape(arr,(1,480*640*3))/255 X.append(arr[0]) for i in range(5): name = "images/mahika" + str(i) + ".jpg" arr = cv2.imread(name) # 640x480x3 array arr = np.reshape(arr, (1, 480*640*3))/255 X.append(arr[0]) for i in range(1, 5): name = "images/dad" + str(i)+".jpg" arr = cv2.imread(name) # 640x480x3 array arr = np.reshape(arr, (1,480*640*3))/255 X.append(arr[0]) for i in range(5): name = "images/mum" + str(i) + ".jpg" arr = cv2.imread(name) # 640x480x3 array arr = np.reshape(arr, (1,480*640*3))/255 X.append(arr[0]) X = np.array(X) X = X.T Y = [] for i in range(X.shape[1]): if i<10: k = [1, 0, 0, 0] Y.append(k) elif i >= 10 and i < 15: k = [0, 1, 0, 0] Y.append(k) elif i >= 15 and i < 19: k = [0, 0, 1, 0] Y.append(k) else: k = [0, 0, 0, 1] Y.append(k) Y = np.array(Y) Y = Y.T return X, Y def create_input_data(video): X = [] check, frame = video.read() frame =
np.reshape(frame, (1,480*640*3))
numpy.reshape
import codecs from collections import defaultdict import itertools import matplotlib.pyplot as plt import numpy as np import pandas as pd import random from sklearn.decomposition import PCA from sklearn.manifold import TSNE import scipy import scipy.spatial.distance import sys import utils __author__ = "<NAME>" __version__ = "CS224u, Stanford, Spring 2020" def euclidean(u, v): return scipy.spatial.distance.euclidean(u, v) def vector_length(u): return np.sqrt(u.dot(u)) def length_norm(u): return u / vector_length(u) def cosine(u, v): return scipy.spatial.distance.cosine(u, v) def matching(u, v): return np.sum(np.minimum(u, v)) def jaccard(u, v): return 1.0 - (matching(u, v) / np.sum(np.maximum(u, v))) def neighbors(word, df, distfunc=cosine): """Tool for finding the nearest neighbors of `word` in `df` according to `distfunc`. The comparisons are between row vectors. Parameters ---------- word : str The anchor word. Assumed to be in `rownames`. df : pd.DataFrame The vector-space model. distfunc : function mapping vector pairs to floats (default: `cosine`) The measure of distance between vectors. Can also be `euclidean`, `matching`, `jaccard`, as well as any other distance measure between 1d vectors. Raises ------ ValueError If word is not in `df.index`. Returns ------- pd.Series Ordered by closeness to `word`. """ if word not in df.index: raise ValueError('{} is not in this VSM'.format(word)) w = df.loc[word] dists = df.apply(lambda x: distfunc(w, x), axis=1) return dists.sort_values() def observed_over_expected(df): col_totals = df.sum(axis=0) total = col_totals.sum() row_totals = df.sum(axis=1) expected = np.outer(row_totals, col_totals) / total oe = df / expected return oe def pmi(df, positive=True): df = observed_over_expected(df) # Silence distracting warnings about log(0): with np.errstate(divide='ignore'): df = np.log(df) df[np.isinf(df)] = 0.0 # log(0) = 0 if positive: df[df < 0] = 0.0 return df def tfidf(df): # Inverse document frequencies: doccount = float(df.shape[1]) freqs = df.astype(bool).sum(axis=1) idfs = np.log(doccount / freqs) idfs[np.isinf(idfs)] = 0.0 # log(0) = 0 # Term frequencies: col_totals = df.sum(axis=0) tfs = df / col_totals return (tfs.T * idfs).T def ngram_vsm(df, n=2): """Create a character-level VSM from `df`. Parameters ---------- df : pd.DataFrame n : int The n-gram size. Returns ------- pd.DataFrame This will have the same column dimensionality as `df`, but the rows will be expanded with representations giving the sum of all the original rows in `df` that contain that row's n-gram. """ unigram2vecs = defaultdict(list) for w, x in df.iterrows(): for c in get_character_ngrams(w, n): unigram2vecs[c].append(x) unigram2vecs = {c: np.array(x).sum(axis=0) for c, x in unigram2vecs.items()} cf = pd.DataFrame(unigram2vecs).T cf.columns = df.columns return cf def get_character_ngrams(w, n): """Map a word to its character-level n-grams, with boundary symbols '<w>' and '</w>'. Parameters ---------- w : str n : int The n-gram size. Returns ------- list of str """ if n > 1: w = ["<w>"] + list(w) + ["</w>"] else: w = list(w) return ["".join(w[i: i+n]) for i in range(len(w)-n+1)] def character_level_rep(word, cf, n=4): """Get a representation for `word` as the sum of all the representations of `n`grams that it contains, according to `cf`. Parameters ---------- word : str The word to represent. cf : pd.DataFrame The character-level VSM (e.g, the output of `ngram_vsm`). n : int The n-gram size. Returns ------- np.array """ ngrams = get_character_ngrams(word, n) ngrams = [n for n in ngrams if n in cf.index] reps = cf.loc[ngrams].values return reps.sum(axis=0) def tsne_viz(df, colors=None, output_filename=None, figsize=(40, 50), random_state=None): """2d plot of `df` using t-SNE, with the points labeled by `df.index`, aligned with `colors` (defaults to all black). Parameters ---------- df : pd.DataFrame The matrix to visualize. colors : list of colornames or None (default: None) Optional list of colors for the vocab. The color names just need to be interpretable by matplotlib. If they are supplied, they need to have the same length as `df.index`. If `colors=None`, then all the words are displayed in black. output_filename : str (default: None) If not None, then the output image is written to this location. The filename suffix determines the image type. If `None`, then `plt.plot()` is called, with the behavior determined by the environment. figsize : (int, int) (default: (40, 50)) Default size of the output in display units. random_state : int or None Optionally set the `random_seed` passed to `PCA` and `TSNE`. """ # Colors: vocab = df.index if not colors: colors = ['black' for i in vocab] # Recommended reduction via PCA or similar: n_components = 50 if df.shape[1] >= 50 else df.shape[1] dimreduce = PCA(n_components=n_components, random_state=random_state) X = dimreduce.fit_transform(df) # t-SNE: tsne = TSNE(n_components=2, random_state=random_state) tsnemat = tsne.fit_transform(X) # Plot values: xvals = tsnemat[: , 0] yvals = tsnemat[: , 1] # Plotting: fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize) ax.plot(xvals, yvals, marker='', linestyle='') # Text labels: for word, x, y, color in zip(vocab, xvals, yvals, colors): try: ax.annotate(word, (x, y), fontsize=8, color=color) except UnicodeDecodeError: ## Python 2 won't cooperate! pass # Output: if output_filename: plt.savefig(output_filename, bbox_inches='tight') else: plt.show() def lsa(df, k=100): """Latent Semantic Analysis using pure scipy. Parameters ---------- df : pd.DataFrame The matrix to operate on. k : int (default: 100) Number of dimensions to truncate to. Returns ------- pd.DataFrame The SVD-reduced version of `df` with dimension (m x k), where m is the rowcount of mat and `k` is either the user-supplied k or the column count of `mat`, whichever is smaller. """ rowmat, singvals, colmat =
np.linalg.svd(df, full_matrices=False)
numpy.linalg.svd
#!/usr/bin/env python # -*- coding: utf-8 -*- """Mean, weighted mean, median, and weighted median. WeightedStats includes four functions (mean, weighted_mean, median, weighted_median) which accept lists as arguments, and two functions (numpy_weighted_mean, numpy weighted_median) which accept either lists or numpy arrays. Example: import weightedstats as ws my_data = [1, 2, 3, 4, 5] my_weights = [10, 1, 1, 1, 9] # Ordinary (unweighted) mean and median ws.mean(my_data) # equivalent to ws.weighted_mean(my_data) ws.median(my_data) # equivalent to ws.weighted_median(my_data) # Weighted mean and median ws.weighted_mean(my_data, weights=my_weights) ws.weighted_median(my_data, weights=my_weights) # Special weighted mean and median functions for use with numpy arrays ws.numpy_weighted_mean(my_data, weights=my_weights) ws.numpy_weighted_median(my_data, weights=my_weights) """ from __future__ import division import sys __title__ = "WeightedStats" __version__ = "0.4.1" __author__ = "<NAME>" __email__ = "<EMAIL>" __license__ = "MIT" def mean(data): """Calculate the mean of a list.""" return sum(data) / float(len(data)) def weighted_mean(data, weights=None): """Calculate the weighted mean of a list.""" if weights is None: return mean(data) total_weight = float(sum(weights)) weights = [weight / total_weight for weight in weights] w_mean = 0 for i, weight in enumerate(weights): w_mean += weight * data[i] return w_mean def numpy_weighted_mean(data, weights=None): """Calculate the weighted mean of an array/list using numpy.""" import numpy as np weights = np.array(weights).flatten() / float(sum(weights)) return np.dot(np.array(data), weights) def median(data): """Calculate the median of a list.""" data.sort() num_values = len(data) half = num_values // 2 if num_values % 2: return data[half] return 0.5 * (data[half-1] + data[half]) def weighted_median(data, weights=None): """Calculate the weighted median of a list.""" if weights is None: return median(data) midpoint = 0.5 * sum(weights) if any([j > midpoint for j in weights]): return data[weights.index(max(weights))] if any([j > 0 for j in weights]): sorted_data, sorted_weights = zip(*sorted(zip(data, weights))) cumulative_weight = 0 below_midpoint_index = 0 while cumulative_weight <= midpoint: below_midpoint_index += 1 cumulative_weight += sorted_weights[below_midpoint_index-1] cumulative_weight -= sorted_weights[below_midpoint_index-1] if abs(cumulative_weight - midpoint) < sys.float_info.epsilon: bounds = sorted_data[below_midpoint_index-2:below_midpoint_index] return sum(bounds) / float(len(bounds)) return sorted_data[below_midpoint_index-1] def numpy_weighted_median(data, weights=None): """Calculate the weighted median of an array/list using numpy.""" import numpy as np if weights is None: return np.median(np.array(data).flatten()) data, weights = np.array(data).flatten(),
np.array(weights)
numpy.array
import numpy as np import json class NCA(): def __init__(self, var_dims, learning_rate = 0.01, max_steps = 100, init_style = "normal", init_stddev = 0.1): self.var_dims = var_dims self.learning_rate = learning_rate self.max_steps = max_steps self.init_style = init_style self.init_stddev = init_stddev def transform(self, X): halfM = np.dot(X, self.A) return halfM def fit_transform(self, X, Y): self.fit(X, Y) halfM = self.transform(X) return halfM def init_matrix(self, shape): if self.init_style == "normal": return self.init_stddev * np.random.standard_normal(size = shape) elif self.init_style == "uniform": return np.random.uniform(size = shape) else: print("error style!") raise Exception def fit(self, X, Y): (n, d) = X.shape self.n_samples = n self.param_dims = d self.A = self.init_matrix(shape = (self.param_dims, self.var_dims)) s = 0 target = 0 res = [] while s < self.max_steps: if s >= 1: res.append(target) halfM = np.dot(X, self.A) sum_row = np.sum(halfM ** 2, axis = 1) xxt = np.dot(halfM, halfM.transpose()) #broadcast dist_mat = sum_row + np.reshape(sum_row, (-1, 1)) - 2 * xxt exp_neg_dist =
np.exp(-dist_mat)
numpy.exp
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,0,-1,0,-1,0,1,0,0])
numpy.array
from CoaxialDrone import CoaxialCopter from PIDcontroller import PIDController_with_ff import numpy as np import math import matplotlib.pyplot as plt import matplotlib.pylab as pylab class DronewithPID(CoaxialCopter,PIDController_with_ff): def __init__(self, z_path, z_dot_path, z_dot_dot_path, t, dt, Sensor ): self.t = t self.dt = dt self.z_path = z_path self.z_dot_path = z_dot_path self.z_dot_dot_path = z_dot_dot_path self.Sensor = Sensor def PID_controller_with_measured_values(self,k_p,k_d,k_i,mass_err,sigma,use_measured_height=False): # creating the co-axial drone object Controlled_Drone=CoaxialCopter() # array for recording the state history drone_state_history = Controlled_Drone.X # introducing a small error of the actual mass and the mass for which the path has been calculated actual_mass = Controlled_Drone.m * mass_err # creating the control system object control_system = PIDController_with_ff(k_p,k_d,k_i) # declaring the initial state of the drone with zero hight and zero velocity Controlled_Drone.X = np.array([0.0,0.0,0.0,0.0]) Drone_Sensor = self.Sensor(Controlled_Drone.X, 0.95) observation_history = Controlled_Drone.X[0] # executing the flight for i in range(1,self.z_path.shape[0]-1): # condition to use height observation to control the drone or # use the magically given true state if use_measured_height: z_observation = Drone_Sensor.measure(Controlled_Drone.X[0],sigma) u_bar = control_system.control(self.z_path[i], z_observation, self.z_dot_path[i], Controlled_Drone.X[2], self.z_dot_dot_path[i], self.dt) observation_history = np.vstack((observation_history,z_observation)) else: u_bar = control_system.control(self.z_path[i], Controlled_Drone.X[0], self.z_dot_path[i], Controlled_Drone.X[2], self.z_dot_dot_path[i], self.dt) observation_history = np.vstack((observation_history,self.z_path[i])) Controlled_Drone.set_rotors_angular_velocities(u_bar,0.0) # calculating the new state vector drone_state = Controlled_Drone.advance_state(self.dt, actual_mass) # generating a history of vertical positions for the drone drone_state_history = np.vstack((drone_state_history, drone_state)) plt.subplot(211) plt.plot(self.t,self.z_path,linestyle='-',marker='.',color='red') plt.plot(self.t[1:],drone_state_history[:,0],linestyle='-',color='blue',linewidth=3) if use_measured_height: plt.scatter(self.t[1:],observation_history[:,0],color='black',marker='.',alpha=0.3) plt.grid() if use_measured_height: plt.title('Change in height (using measured value)').set_fontsize(20) else: plt.title('Change in height (ideal case)').set_fontsize(20) plt.xlabel('$t$ [sec]').set_fontsize(20) plt.ylabel('$z-z_0$ [$m$]').set_fontsize(20) plt.xticks(fontsize = 14) plt.yticks(fontsize = 14) if use_measured_height: plt.legend(['Planned path','Executed path','Observed value'],fontsize = 14) else: plt.legend(['Planned path','Executed path'],fontsize = 14) plt.show() plt.subplot(212) plt.plot(self.t[1:],abs(self.z_path[1:]-drone_state_history[:,0]),linestyle='-',marker='.',color='blue') plt.grid() plt.title('Error value ').set_fontsize(20) plt.xlabel('$t$ [sec]').set_fontsize(20) plt.ylabel('||$z_{target} - z_{actual}$|| [$m$]').set_fontsize(20) plt.xticks(fontsize = 14) plt.yticks(fontsize = 14) plt.legend(['Error'],fontsize = 14) plt.show() def PID_controller_with_estimated_values(self,k_p,k_d,k_i,mass_err,sigma,alpha,use_estimated_height=False): # creating the co-axial drone object Controlled_Drone=CoaxialCopter() # array for recording the state history drone_state_history = Controlled_Drone.X # introducing a small error of the actual mass and the mass for which the path has been calculated actual_mass = Controlled_Drone.m * mass_err # creating the control system object control_system = PIDController_with_ff(k_p,k_d,k_i) # declaring the initial state of the drone with zero hight and zero velocity Controlled_Drone.X = np.array([0.0,0.0,0.0,0.0]) Drone_Sensor = self.Sensor(Controlled_Drone.X, alpha) # recording the estimated height for each step estimated_height_history = Drone_Sensor.x_hat observation_history = Controlled_Drone.X[0] # executing the flight for i in range(1,self.z_path.shape[0]-1): # condition to use height observation to control the drone or # use the majically given true state if use_estimated_height: z_observation = Drone_Sensor.measure(Controlled_Drone.X[0],sigma) z_estimated = Drone_Sensor.estimate(z_observation) u_bar = control_system.control(self.z_path[i], z_estimated, self.z_dot_path[i], Controlled_Drone.X[2], self.z_dot_dot_path[i], self.dt) else: z_observation = Drone_Sensor.measure(Controlled_Drone.X[0],sigma) u_bar = control_system.control(self.z_path[i], z_observation, self.z_dot_path[i], Controlled_Drone.X[2], self.z_dot_dot_path[i], self.dt) Controlled_Drone.set_rotors_angular_velocities(u_bar,0.0) # calculating the new state vector drone_state = Controlled_Drone.advance_state(self.dt, actual_mass) # generating a history of vertical positions for the drone drone_state_history = np.vstack((drone_state_history, drone_state)) # generating the estimated height for each step estimated_height_history = np.vstack((estimated_height_history,Drone_Sensor.x_hat)) observation_history =
np.vstack((observation_history,z_observation))
numpy.vstack
try: from ulab import numpy as np except ImportError: import numpy as np print(len(np.array([1, 2, 3, 4, 5], dtype=np.uint8))) print(len(np.array([[1, 2, 3],[4, 5, 6]]))) print(~np.array([0, -1, -100], dtype=np.uint8)) print(~np.array([0, -1, -100], dtype=np.uint16)) print(~np.array([0, -1, -100], dtype=np.int8)) print(~np.array([0, -1, -100], dtype=np.int16)) print(abs(np.array([0, -1, -100], dtype=np.uint8))) print(abs(np.array([0, -1, -100], dtype=np.uint16))) print(abs(np.array([0, -1, -100], dtype=np.int8))) print(abs(np.array([0, -1, -100], dtype=np.int16))) print(abs(np.array([0, -1, -100], dtype=np.float))) print(-(np.array([0, -1, -100], dtype=np.uint8))) print(-(np.array([0, -1, -100], dtype=np.uint16))) print(-(np.array([0, -1, -100], dtype=np.int8))) print(-(np.array([0, -1, -100], dtype=np.int16))) print(-(np.array([0, -1, -100], dtype=np.float))) print(+(np.array([0, -1, -100], dtype=np.uint8))) print(+(
np.array([0, -1, -100], dtype=np.uint16)
numpy.array
# -*- coding: utf-8 -*- import numpy as np import tensorflow as tf import warnings from typing import List numeric_tuple = (int, float, np.float32, np.float64, np.longdouble) def coupled_logarithm(value: [int, float, np.ndarray, tf.Tensor], kappa: [int, float] = 0.0, dim: int = 1 ) -> [float, np.ndarray, tf.Tensor]: """ Generalization of the logarithm function, which defines smooth transition to power functions. Parameters ---------- value : Input variable in which the coupled logarithm is applied to. Accepts int, float, np.ndarray and tf.Tensor data types. kappa : Coupling parameter which modifies the coupled logarithm function. Accepts int and float data types. dim : The dimension (or rank) of value. If value is scalar, then dim = 1. Accepts only int data type. """ # convert value into np.ndarray (if scalar) to keep consistency value =
np.array(value)
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu May 30 20:03:50 2019 Finds Vg1 and Vg2 values above a threshold, determined by the ratio of the areas of a Gaussian fit of the intensity histogram to the total area of the intensities @author: <NAME> """ import numpy as np import scipy.signal as ss import scipy.optimize as opt from scipy.signal import medfilt2d, savgol_filter from scipy.ndimage import correlate from sklearn.neighbors import KDTree import stability as stab def hist_data(z): """ Finds x and y data from histogram :param z: input :return: x and y """ data = np.histogram(z, bins='scott') x = data[1] x = np.array([(x[i] + x[i + 1]) / 2 for i in range(0, len(x) - 1)]) return x, np.array(data[0]) def gauss(x, *params): return abs(params[2]) * np.exp(-(x - params[0]) ** 2 / (2 * params[1] ** 2)) def multi_gaussian(x, *params): """ Fits multiple Gaussian distributions, number of which determined by the number of parameters inputted """ y = np.zeros_like(x) index = np.arange(0, len(params), 3) if index.size > 1: for i in range(0, len(params) // 3): mu = params[i] sig = params[i + len(params) // 3] amp = params[i + 2 * len(params) // 3] y = y + abs(amp) * np.exp(-(x - mu) ** 2 / (2 * sig ** 2)) else: y = y + abs(params[2]) * np.exp(-(x - params[0]) ** 2 / (2 * params[1] ** 2)) return y def multi_gauss_background(x, *params): y = np.zeros_like(x) index = np.arange(0, len(params) - 2, 3) if index.size > 1: y = y + params[0] * x + params[1] for i in range(0, (len(params) - 2) // 3): mu = params[i + 2] sig = params[i + 2 + (len(params) - 2) // 3] amp = params[i + 2 + 2 * (len(params) - 2) // 3] y = y + abs(amp) * np.exp(-(x - mu) ** 2 / (2 * sig ** 2)) else: y = y + params[0] * x + params[1] + abs(params[4]) * np.exp(-(x - params[2]) ** 2 / (2 * params[3] ** 2)) return y def greedy_guess(guess, x, y): n = (len(guess) - 2) // 3 m, sig, a = guess[2:n + 2], guess[n + 2:2 * n + 2], guess[2 * n + 2:] chi = (y - multi_gauss_background(x, *guess)) / multi_gauss_background(x, *guess) chi = savgol_filter(chi, 3, 2) m, a = np.append(m, float(x[np.where(chi == np.max(chi))])), np.append(a, float(y[np.where(chi == np.max(chi))])) sig = np.append(sig, sig[n - 1] / 2) return np.append(guess[:2], np.append(m, np.append(sig, a))) def gradient(x, y, z): """ Calculates gradient along x and y of intensities to reduce noise @param x: x vales @param y: y values @param z: intensities @return: """ m_z = np.reshape(z, (len(np.unique(y)), len(np.unique(x))))# Transform array into matrix sg = savgol_filter(m_z, 5, 2) + savgol_filter(m_z, 5, 2, axis=0) # Savgol filter acts as a low pass band filter signal = sg - np.mean(sg) + np.mean(m_z) return np.reshape(signal, np.shape(x)) def gradient_exp(x, y, z): """ Calculates gradient along x and y of intensities to reduce noise @param x: x vales @param y: y values @param z: intensities @return: """ m_z = np.reshape(z, (len(np.unique(y)), len(np.unique(x))))# Transform array into matrix diff = [[0, -1, 0], [-1, 5, -1], [0, -1, 0]] z_diff = correlate(m_z, diff) sg = savgol_filter(z_diff, 5, 2) + savgol_filter(z_diff, 5, 2, axis=0) # Savgol filter acts as a low pass band filter signal = sg - np.mean(sg) + np.mean(m_z) return np.reshape(signal, np.shape(x)) def filtering(x, y, z): m_z = np.reshape(z, (len(np.unique(y)), len(np.unique(x)))) # Transform array into matrix s = medfilt2d(m_z) return np.reshape(s, (int(len(x)),)) def normalise(z): """ Unity-based normalisation function, such that all values range between 0 and 1 :param z: Raw data that needs normalising :return: Normalised data """ return np.nan_to_num((z - np.min(z)) / (np.max(z) - np.min(z))) def fit_gauss(z): intensity = normalise(z) x, y = hist_data(intensity) guess = np.append(0, np.append(np.median(y), np.append(np.median(x[np.where(y == np.max(y))]), np.append(np.std(x[np.where(y > np.median(y))]), np.max(y))))) fit_param, cov = opt.curve_fit(multi_gauss_background, x, y, guess) if fit_param[2] > 0.5: index = np.where(intensity<fit_param[2]-3*abs(fit_param[3])) else: index = np.where(intensity>fit_param[2]+3*abs(fit_param[3])) return index def curved_plane(x, y, param): return param[0]*x + param[1]*x**2 + param[2]*y + param[3]*y**2 + param[4]*x*y + param[5] def linear_plane(x, y, param): return param[0]*x + param[1]*y + param[2] def minimise_plane(param, x, y, z): return np.sum((z - linear_plane(x, y, param))**2) def linear(x, z): return (np.median(z[np.where(x==np.min(x))])-np.median(z[np.where(x==np.max(x))]))/(np.min(x)-np.max(x)) def remove_background(x, y, z): p = gradient_exp(x, y, z) param = np.array((linear(x, z), linear(y,z), np.median(p))) sol = opt.minimize(minimise_plane, param, args=(x, y, p)) p_n = normalise(p - linear_plane(x, y, sol.x)) return p_n*(np.max(z)-np.min(z)) + np.min(z) def grad_exp(z, val_x, val_y): val = z.reshape(val_y, val_x) scharr = np.array([[ -3-3j, 0-10j, +3 -3j], [-10+0j, 0+ 0j, +10 +0j], [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy grad = ss.convolve2d(val, scharr, boundary='symm', mode='same') index = np.where(np.logical_or(abs(np.angle(grad).flatten())<=0.15, abs(np.angle(grad).flatten())>=np.pi-0.15)) z[index] = 0 return z def get_klpq_div(p_probs, q_probs): # Calcualtes the Kullback-Leibler divergence between pi and qi kl_div = 0.0 for pi, qi in zip(p_probs, q_probs): kl_div += pi*np.nan_to_num(np.log(pi/qi)) return kl_div def D_KL(threshold, x, y): # Finds best fit Gaussian distribution and calculates the corresponding Kullback-Leibler divergence index = np.where(np.logical_and(x>=threshold[0], x<=threshold[1])) xs, ys = x[index], y[index] if np.trapz(ys)>0: ys = ys/np.trapz(ys) else: return np.inf guess = np.append(np.median(xs[np.where(ys == np.max(ys))]), np.append(np.std(xs[np.where(ys > np.median(ys))]), np.max(ys))) bounds = ((np.min(x)-np.std(x), np.std(x)/10**4, np.mean(ys)), (np.max(x)+np.std(x), np.max(x)-np.min(x), 10*np.max(ys))) fit_param, cov = opt.curve_fit(gauss, xs, ys, guess, bounds=bounds) return get_klpq_div(ys+10**-7, gauss(xs, *fit_param)+10**-7) # Add small epsilon to ensure that we donn't devide by zero def minimise_DKL(x, y): # Estimate first guess and boundaries to use: guess = np.append(np.median(x[np.where(y == np.max(y))]), np.append(np.std(x[np.where(y > np.median(y))]), np.max(y))) b = ((np.min(x)-np.std(x), np.std(x)/10**4, np.mean(y)), (np.max(x)+np.std(x), np.max(x)-np.min(x), np.max(y)*10)) fit_param, cov = opt.curve_fit(gauss, x, y, guess, bounds=b) x0 = [fit_param[0]-2*fit_param[1], fit_param[0]+2*fit_param[1]] bound = ((np.min(x), fit_param[0]-fit_param[1]), (fit_param[0]+fit_param[1], np.max(x))) # Find optimal bound solutions sol = opt.minimize(D_KL, x0, jac=None, method='L-BFGS-B', options={'eps':1/len(x)}, args=(x, y), bounds=bound) return sol.x def threshold_DKL(z): intensity = normalise(z) x, y = hist_data(intensity) y = y**0.5 # Broadens peak to allow to identify finer structure in the intensity threshold = minimise_DKL(x, y) if abs(np.max(z))>abs(np.min(z)): index = np.where(intensity>=threshold[1]) else: index = np.where(intensity<=threshold[0]) return index def threshold(z, val): if abs(np.max(z))>abs(np.min(z)): v = abs(np.min(z))*0.9 else: v = -abs(np.max(z))*0.9 val = np.append(val, v) v = np.mean(abs(val)) m = np.where(np.logical_or(z > v, z < -v)) return m, val def intense(z, index): x, y = hist_data(z) guess = np.append(np.median(x[np.where(y == np.max(y))]), np.append(np.std(x[np.where(y > np.median(y))]), np.max(y))) fit_param, cov = opt.curve_fit(gauss, x, y, guess) return z[index]-fit_param[0] def threshold_experimental(vg1, vg2, i, q): i_g, q_g = remove_background(vg1, vg2, i), remove_background(vg1, vg2, q) m_i, m_q = threshold_DKL(i_g), threshold_DKL(q_g) index = np.unique(np.append(m_i, m_q)) intensity = normalise(abs(intense(i, index)))+normalise(abs(intense(q, index))) return vg1[index], vg2[index], intensity, i_g, q_g, index def threshold_theoretical(vg1, vg2, i): i_g = gradient(vg1, vg2, i) x, y = hist_data(i_g) x = normalise(x) fit_param = [np.median(x[np.where(y == np.max(y))]), np.std(x[np.where(y > np.median(y))]), np.max(y)] try: fit_one, _ = opt.curve_fit(multi_gaussian, x, y, fit_param) ind = np.where(x > fit_one[0] + fit_one[1]) ys = y[ind] - multi_gaussian(x[ind], *fit_one) guess = [fit_one[0], np.median(x[ind][np.where(ys == np.max(ys))]), fit_one[1], np.std(x[np.where(y > np.median(ys))]), fit_one[2], np.max(ys)] try: fit_param, cov = opt.curve_fit(multi_gaussian, x, y, guess) error = np.sqrt(np.diag(cov)) if error[1] * 10 > error[0]: index = np.where(normalise(i) > fit_param[1]) else: index = np.where(normalise(i) > 0.4) except: val = np.min(x[np.where(x > fit_one[0] + fit_one[1])]) index = np.where(normalise(i) > val) except: index = np.where(normalise(i) > 0.4) return vg1[index], vg2[index], i[index], x, y, fit_param def averaging_xy(x, y, intensity, leaf, n_neighbours): """ Uses KDTree to find n_neighbours and then calculates a weighted mean, resulting in thinning the data :param x: threshold x values :param y: threshold y values :param intensity: corresponding intensities :param leaf: determines how many neighbouring points to check, leaf > n_neighbours :param n_neighbours: number of neighbours to average through :return: thinned x and y values """ data = np.transpose(np.vstack([x, y])) xs, ys, zs = [], [], [] tree = KDTree(data, leaf_size=leaf) # Finds relation between points for i in range(0, len(data)):# // n_neighbours): # Figure out which are the neighbouring points # dist, ind = tree.query(np.reshape(data[i * n_neighbours, :], (1, -1)), k=n_neighbours) dist, ind = tree.query(np.reshape(data[i, :], (1, -1)), k=n_neighbours) # takes weighted average of x and y values of given point x_m, y_m = np.average(x[ind], weights=intensity[ind]), np.average(y[ind], weights=intensity[ind]) z_m = np.average(intensity[ind]) xs, ys, zs = np.append(xs, x_m), np.append(ys, y_m), np.append(zs, z_m) return xs, ys, zs def thinning(Vg1, Vg2, i_g, q_g, ind): val_x, val_y = len(np.unique(Vg1)), len(np.unique(Vg2)) # Set data points below threshold to zero M = np.sqrt(i_g**2+q_g**2) mask = np.ones(M.shape,dtype=bool) mask[ind] = False M[mask] = 0 M = grad_exp(M, val_x, val_y) # Find peaks along x if val_x > 100: peaks, hight = ss.find_peaks(M, width=1, distance=val_x//100) else: peaks, hight = ss.find_peaks(M, width=1) xs, ys, zs = Vg1[peaks], Vg2[peaks], M[peaks] # Find peaks along y xt = np.reshape(np.transpose(np.reshape(Vg1, (val_y, val_x))), np.shape(Vg1)) yt = np.reshape(np.transpose(np.reshape(Vg2, (val_y, val_x))),
np.shape(Vg2)
numpy.shape
import argparse import logging import numpy as np from obiwan import SimCatalog,BrickCatalog,utils,setup_logging import settings logger = logging.getLogger('preprocessing') def isELG_colors(gflux=None, rflux=None, zflux=None, south=True, gmarg=0., grmarg=0., rzmarg=0., primary=None): """ Apply ELG selection with box enlarged by ``gmarg``, ``grmarg``, ``rzmarg``. Base selection from https://github.com/desihub/desitarget/blob/master/py/desitarget/cuts.py. """ if primary is None: primary = np.ones_like(rflux, dtype='?') elg = primary.copy() # ADM work in magnitudes instead of fluxes. NOTE THIS IS ONLY OK AS # ADM the snr masking in ALL OF g, r AND z ENSURES positive fluxes. g = 22.5 - 2.5*np.log10(gflux.clip(1e-16)) r = 22.5 - 2.5*np.log10(rflux.clip(1e-16)) z = 22.5 - 2.5*np.log10(zflux.clip(1e-16)) # ADM cuts shared by the northern and southern selections. elg &= g > 20 - gmarg # bright cut. elg &= r - z > 0.3 - rzmarg # blue cut. elg &= r - z < 1.6 + rzmarg # red cut. elg &= g - r < -1.2*(r - z) + 1.6 + grmarg # OII flux cut. # ADM cuts that are unique to the north or south. if south: elg &= g < 23.5 + gmarg # faint cut. # ADM south has the FDR cut to remove stars and low-z galaxies. elg &= g - r < 1.15*(r - z) - 0.15 + grmarg else: elg &= g < 23.6 + gmarg # faint cut. elg &= g - r < 1.15*(r - z) - 0.35 + grmarg # remove stars and low-z galaxies. return elg def get_truth(truth_fn, south=True): """Build truth table.""" truth = SimCatalog(truth_fn) mask = isELG_colors(south=south,gmarg=0.5,grmarg=0.5,rzmarg=0.5,**{'%sflux' % b:utils.mag2nano(truth.get(b)) for b in ['g','r','z']}) logger.info('Target selection: %d/%d objects',mask.sum(),mask.size) truth = truth[mask] truth.rename('objid','id_truth') truth.rename('rhalf','shape_r') #truth.shape_r = 1e-5*truth.ones() truth.rename('hsc_mizuki_photoz_best','redshift') truth.sersic = truth.ones(dtype=int) truth.sersic[truth.type=='DEV'] = 4 return truth def sample_from_truth(randoms, truth, rng=None, seed=None): """Sample random photometry from truth table.""" if rng is None: rng = np.random.RandomState(seed=seed) ind = rng.randint(low=0,high=truth.size,size=randoms.size) for field in ['id_truth','g','r','z','shape_r','sersic','redshift']: randoms.set(field,truth.get(field)[ind]) for b in ['g','r','z']: transmission = randoms.get_extinction(b,camera='DES') flux = utils.mag2nano(randoms.get(b))*10**(-0.4*transmission) randoms.set('flux_%s' % b,flux) ba = rng.uniform(0.2,1.,size=randoms.size) phi = rng.uniform(0,np.pi,size=randoms.size) randoms.shape_e1,randoms.shape_e2 = utils.get_shape_e1_e2(ba,phi) randoms.fill_obiwan() return randoms def write_randoms(truth_fn, randoms_fn, bricknames=None, density=1e3, seed=None, gen_in_brick=True): """Build Obiwan randoms from scratch and truth table.""" bricknames = bricknames or [] rng = np.random.RandomState(seed=seed) bricks = BrickCatalog() logger.info('Generating randoms in %s',bricknames) if gen_in_brick: randoms = 0 for brickname in bricknames: brick = bricks.get_by_name(brickname) radecbox = brick.get_radecbox() size = rng.poisson(density*brick.get_area()) tmp = SimCatalog() tmp.ra,tmp.dec = utils.sample_ra_dec(size,radecbox,rng=rng) tmp.brickname =
np.full(tmp.size,brickname)
numpy.full
import argparse import copy import os import pickle import sys import time import cv2 import numpy as np from PIL import Image BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(ROOT_DIR) import kitti_util as utils from kitti_object import kitti_object from draw_util import get_lidar_in_image_fov from ops.pybind11.rbbox_iou import rbbox_iou_3d from utils.box_util import box3d_iou def extract_boxes(objects, type_whitelist, remove_diff=False): boxes_2d = [] boxes_3d = [] filter_objects = [] for obj_idx in range(len(objects)): obj = objects[obj_idx] if obj.type not in type_whitelist: continue if remove_diff: if obj.occlusion > 2 or obj.truncation > 0.5 or obj.ymax - obj.ymin < 25: continue boxes_2d += [obj.box2d] l, w, h = obj.l, obj.w, obj.h cx, cy, cz = obj.t ry = obj.ry cy = cy - h / 2 boxes_3d += [np.array([cx, cy, cz, l, w, h, ry])] filter_objects += [obj] if len(boxes_3d) != 0: boxes_3d = np.stack(boxes_3d, 0) boxes_2d = np.stack(boxes_2d, 0) return filter_objects, boxes_2d, boxes_3d def compute_box_3d_obj_array(obj_array): ''' cx, cy, cz, l, w, h, ry ''' cx, cy, cz, l, w, h, angle = obj_array R = utils.roty(angle) # 3d bounding box corners x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] y_corners = [h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2] z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2] # rotate and translate 3d bounding box corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners])) # print corners_3d.shape corners_3d[0, :] = corners_3d[0, :] + cx corners_3d[1, :] = corners_3d[1, :] + cy corners_3d[2, :] = corners_3d[2, :] + cz # print 'cornsers_3d: ', corners_3d return np.transpose(corners_3d, (1, 0)) def compute_box_3d_obj(cx, cy, cz, l, w, h, ry): ''' Takes an object and a projection matrix (P) and projects the 3d bounding box into the image plane. Returns: corners_2d: (8,2) array in left image coord. corners_3d: (8,3) array in in rect camera coord. ''' # compute rotational matrix around yaw axis R = utils.roty(ry) # 3d bounding box corners x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] y_corners = [h / 2, h / 2, h / 2, h / 2, -h / 2, -h / 2, -h / 2, -h / 2] z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2] # rotate and translate 3d bounding box corners_3d = np.dot(R, np.vstack([x_corners, y_corners, z_corners])) # print corners_3d.shape corners_3d[0, :] = corners_3d[0, :] + cx corners_3d[1, :] = corners_3d[1, :] + cy corners_3d[2, :] = corners_3d[2, :] + cz return np.transpose(corners_3d) def single_overlap(box1, box2): area1 = (box1[2] - box1[0]) * (box1[3] - box1[1]) area2 = (box2[2] - box2[0]) * (box2[3] - box2[1]) x_w = min(box1[2], box2[2]) - max(box1[0], box2[0]) x_h = min(box1[3], box2[3]) - max(box1[1], box2[1]) if x_w <= 0 or x_h <= 0 or area1 <= 0 or area2 <= 0: return 0 return (x_w * x_h) / (area1 + area2 - (x_w * x_h)) def in_hull(p, hull): from scipy.spatial import Delaunay if not isinstance(hull, Delaunay): hull = Delaunay(hull) return hull.find_simplex(p) >= 0 def extract_pc_in_box3d(pc, box3d): ''' pc: (N,3), box3d: (8,3) ''' box3d_roi_inds = in_hull(pc[:, 0:3], box3d) return pc[box3d_roi_inds, :], box3d_roi_inds def extract_pc_in_box2d(pc, box2d): ''' pc: (N,2), box2d: (xmin,ymin,xmax,ymax) ''' box2d_corners = np.zeros((4, 2)) box2d_corners[0, :] = [box2d[0], box2d[1]] box2d_corners[1, :] = [box2d[2], box2d[1]] box2d_corners[2, :] = [box2d[2], box2d[3]] box2d_corners[3, :] = [box2d[0], box2d[3]] box2d_roi_inds = in_hull(pc[:, 0:2], box2d_corners) return pc[box2d_roi_inds, :], box2d_roi_inds def random_shift_box2d(box2d, img_height, img_width, shift_ratio=0.1): ''' Randomly shift box center, randomly scale width and height ''' r = shift_ratio xmin, ymin, xmax, ymax = box2d h = ymax - ymin w = xmax - xmin cx = (xmin + xmax) / 2.0 cy = (ymin + ymax) / 2.0 assert xmin < xmax and ymin < ymax while True: cx2 = cx + w * r * (
np.random.random()
numpy.random.random
from argparse import ArgumentParser from itertools import starmap import matplotlib.pyplot as plt import numpy as np import pandas as pd from fyne import blackscholes, heston from matplotlib.patches import Patch from scipy.stats import gaussian_kde import settings from align_settings import STARTTIME, ENDTIME from utils import resample def safe_xs(*args, **kwargs): try: return pd.Series.xs(*args, **kwargs) except KeyError: return np.nan def get_tick_size(quote): diffs = (quote['Ask'] + quote['Bid']).diff() diffs = diffs[diffs > 1e-6] return np.round(diffs.min(), 2) def filter_tick_size(data, quote, size): tick_size = quote.groupby('Strike').apply(get_tick_size) return data.reindex(tick_size[tick_size == size].index, level='Strike') def filter_trade_on_book(quote, trade): max_expiry = np.max(quote.index.get_level_values('Expiry')) trade = trade[trade.index.get_level_values('Expiry') <= max_expiry] quote_aligned = trade.groupby(['Class', 'Expiry', 'Strike'] ).apply(lambda o: resample(quote.xs(o.name), o.xs(o.name).index)) valid_trades = ((trade['Price'] == quote_aligned['Bid']) | (trade['Price'] == quote_aligned['Ask'])) filtered = trade[valid_trades] quote_aligned = quote_aligned.loc[valid_trades] filtered['Buy'] = filtered['Price'] == quote_aligned['Ask'] filtered['Half-spread'] = (quote_aligned['Ask'] - quote_aligned['Bid']).round(2)/2 return filtered def compute_duration(quote): quote = quote.copy() quote['Half-spread'] = (quote['Ask'] - quote['Bid']).round(2)/2 time = quote.reset_index('Time' ).set_index('Half-spread', append=True)[['Time']] time['Duration'] = time['Time'].groupby(['Class', 'Expiry', 'Strike'] ).transform(lambda t: t.diff().shift(-1)) time['Time'] += time['Duration']/2 duration = time.set_index('Time', append=True)['Duration'] duration /= pd.to_timedelta('1s') return duration def compute_volume_duration(quote, trade): trade = filter_trade_on_book(quote, trade) volume = trade.set_index(['Half-spread', 'Buy'], append=True)['Volume'] duration = compute_duration(quote) return volume, duration def plot_arrival_rates_bubbles(volume, duration): volume = volume.groupby(['Class', 'Expiry', 'Strike', 'Half-spread', 'Buy'] ).sum() duration = duration.groupby(['Class', 'Expiry', 'Strike', 'Half-spread']).sum() duration = duration[duration > 300] arrival_rate = volume.groupby(['Class', 'Expiry', 'Strike', 'Half-spread'] ).transform(lambda d: d.xs(d.name )/safe_xs(duration, d.name)) arrival_rate.name = 'Arrival rate' fig, axes = plt.subplots(3, 2, sharey=True, sharex=True, figsize=(8, 10)) patches = [Patch(color='b', alpha=.5, label='Call'), Patch(color='r', alpha=.5, label='Put')] axes[0, 1].legend(handles=patches) for row, (e, r_ex) in zip(axes, arrival_rate.groupby('Expiry')): for bs in ['Buy', 'Sell']: ax = row[0] if bs == 'Buy' else row[1] ax.set_title("Expiry: {}, {}".format( pd.to_datetime(e).strftime('%Y-%m-%d'), bs)) for cp, cl in [('C', 'b'), ('P', 'r')]: r = r_ex.xs((cp, bs == 'Buy'), level=('Class', 'Buy')) r.reset_index(['Strike', 'Half-spread']).plot.scatter( x='Strike', y='Half-spread', s=20*r/r_ex.mean(), ax=ax, xlim=(325, 550), ylim=(0, None), alpha=.5, color=cl) return fig def plot_arrival_rates(arrival_rate): depths = arrival_rate.index.get_level_values('Half-spread') arrival_rate = arrival_rate[depths > 0].dropna() bandwidth = 0.25 levels = ['Class', 'Expiry', 'Buy'] kernel = arrival_rate.groupby(levels).apply( lambda r: gaussian_kde(np.stack(r.xs(r.name, level=levels).index, axis=-1), bandwidth, r.values)) xlen, ylen = 200, 150 xmin, xmax, ymin, ymax = -0.2, 0.15, 0.0, 0.3 x = np.linspace(xmin, xmax, xlen) y = np.linspace(ymin, ymax, ylen) x_b, y_b =
np.broadcast_arrays(x[:, None], y[None, :])
numpy.broadcast_arrays
import csv import cv2 import numpy as np from keras.models import Sequential from keras.layers import Lambda from keras.layers.core import Dense, Activation, Flatten, Dropout from keras.layers.convolutional import Convolution2D from keras.layers.pooling import MaxPooling2D from keras.layers import Cropping2D import matplotlib.image as mpimg import matplotlib.pyplot as plt from keras.callbacks import ModelCheckpoint lines=[] with open('driving_log.csv') as csvfile: reader=csv.reader(csvfile) for line in reader: lines.append(line) images=[] measurements=[] i=0; images=[] for line in lines[1:]: measurement=float(line[3]) #get steering angle of the car in the image col=np.random.choice([0,1,2]) # randomly select number filename=line[col].split('/')[-1] #get filename from the column # image=mpimg.imread("IMG/"+filename) images.append(plt.imread("../data/IMG/"+filename)) #get image from the filepath if(col==1): measurements.append(measurement+0.25) #add 0.25 to steering angle for left images elif(col==2): measurements.append(measurement-0.25) #subtract 0.25 to steering angle for right images else: measurements.append(measurement) X_train=
np.array(images)
numpy.array
import unittest from functools import partial from scipy import stats import numpy as np from pyapprox.leja_sequences import \ leja_objective_and_gradient, compute_finite_difference_derivative, \ leja_objective, compute_coefficients_of_leja_interpolant, \ evaluate_tensor_product_function, gradient_of_tensor_product_function, \ get_leja_sequence_1d from pyapprox.utilities import beta_pdf_derivative from pyapprox.indexing import compute_hyperbolic_indices from pyapprox.variable_transformations import \ define_iid_random_variable_transformation from pyapprox.utilities import beta_pdf_on_ab from pyapprox.multivariate_polynomials import PolynomialChaosExpansion, \ define_poly_options_from_variable_transformation class TestLejaSequences(unittest.TestCase): def setup(self, num_vars, alpha_stat, beta_stat): def univariate_weight_function(x): return beta_pdf_on_ab( alpha_stat, beta_stat, -1, 1, x) def univariate_weight_function_deriv(x): return beta_pdf_derivative( alpha_stat, beta_stat, (x+1)/2)/4 weight_function = partial( evaluate_tensor_product_function, [univariate_weight_function]*num_vars) weight_function_deriv = partial( gradient_of_tensor_product_function, [univariate_weight_function]*num_vars, [univariate_weight_function_deriv]*num_vars) assert np.allclose( (univariate_weight_function(0.5+1e-6) - univariate_weight_function(0.5))/1e-6, univariate_weight_function_deriv(0.5), atol=1e-6) poly = PolynomialChaosExpansion() var_trans = define_iid_random_variable_transformation( stats.uniform(-2, 1), num_vars) poly_opts = define_poly_options_from_variable_transformation(var_trans) poly.configure(poly_opts) return weight_function, weight_function_deriv, poly def test_leja_objective_1d(self): num_vars = 1 alpha_stat, beta_stat = [2, 2] # alpha_stat,beta_stat = [1,1] weight_function, weight_function_deriv, poly = self.setup( num_vars, alpha_stat, beta_stat) leja_sequence = np.array([[0.2, -1., 1.]]) degree = leja_sequence.shape[1]-1 indices =
np.arange(degree+1)
numpy.arange
# Practice sites #https://www.machinelearningplus.com/python/101-numpy-exercises-python/ #http://www.cs.umd.edu/~nayeem/courses/MSML605/files/04_Lec4_List_Numpy.pdf #https://www.gormanalysis.com/blog/python-numpy-for-your-grandma/ #https://nickmccullum.com/advanced-python/numpy-indexing-assignment/ # 1. Import numpy as np and see the version # Difficulty Level: L1 # Q. Import numpy as np and print the version number. ##? 1. Import numpy as np and see the version # Difficulty Level: L1 # Q. Import numpy as np and print the version number. import numpy as np print(np.__version__) ##? 2. How to create a 1D array? # Difficulty Level: L1 # Q. Create a 1D array of numbers from 0 to 9 arr = np.arange(10) arr ##? 3. How to create a boolean array? # Difficulty Level: L1 # Q. Create a 3×3 numpy array of all True’s arr = np.full((3,3), True, dtype=bool) arr ##? 4. How to extract items that satisfy a given condition from 1D array? # Difficulty Level: L1 # Q. Extract all odd numbers from arr arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] ##? 5. How to replace items that satisfy a condition with another value in numpy array? # Difficulty Level: L1 # Q. Replace all odd numbers in arr with -1 arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[arr % 2 == 1] = -1 arr ##? 6. How to replace items that satisfy a condition without affecting the original array? # Difficulty Level: L2 # Q. Replace all odd numbers in arr with -1 without changing arr arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) #1 np.where out = np.where(arr % 2 == 1, -1, arr) out #2 list comp out = np.array([-1 if x % 2 == 1 else x for x in arr]) out ##? 7. How to reshape an array? # Difficulty Level: L1 # Q. Convert a 1D array to a 2D array with 2 rows arr = np.arange(10) arr.reshape(2, -1) # Setting y to -1 automatically decides number of columns. # Could do the same with arr.reshape(2, 5) ##? 8. How to stack two arrays vertically? # Difficulty Level: L2 # Q. Stack arrays a and b vertically a = np.arange(10).reshape(2, -1) b = np.repeat(1, 10).reshape(2, -1) #1 np.vstack([a, b]) #2 np.concatenate([a, b], axis=0) #3 np.r_[a, b] # 9. How to stack two arrays horizontally? # Difficulty Level: L2 # Q. Stack the arrays a and b horizontally. a = np.arange(10).reshape(2, -1) b = np.repeat(1, 10).reshape(2, -1) #1 np.hstack([a, b]) #2 np.concatenate([a, b], axis=1) #3 np.c_[a, b] ##? 10. How to generate custom sequences in numpy without hardcoding? # Difficulty Level: L2 # Q. Create the following pattern without hardcoding. # Use only numpy functions and the below input array a. a = np.array([1,2,3]) np.r_[np.repeat(a,3), np.tile(a, 3)] ##? 11. How to get the common items between two python numpy arrays? # Difficulty Level: L2 # Q. Get the common items between a and b a = np.array([1,2,3,2,3,4,3,4,5,6]) b = np.array([7,2,10,2,7,4,9,4,9,8]) np.intersect1d(a, b) ##? 12. How to remove from one array those items that exist in another? # Difficulty Level: L2 # Q. From array a remove all items present in array b a = np.array([1,2,3,4,5]) b = np.array([5,6,7,8,9]) # From 'a' remove all of 'b' np.setdiff1d(a,b) ##? 13. How to get the positions where elements of two arrays match? # Difficulty Level: L2 # Q. Get the positions where elements of a and b match a = np.array([1,2,3,2,3,4,3,4,5,6]) b = np.array([7,2,10,2,7,4,9,4,9,8]) np.where(a==b) # 14. How to extract all numbers between a given range from a numpy array? # Difficulty Level: L2 # Q. Get all items between 5 and 10 from a. a = np.array([2, 6, 1, 9, 10, 3, 27]) #1 idx = np.where((a>=5) & (a<=10)) a[idx] #2 idx = np.where(np.logical_and(a >= 5, a <= 10)) a[idx] #3 a[(a >= 5) & (a <= 10)] ##? 15. How to make a python function that handles scalars to work on numpy arrays? # Difficulty Level: L2 # Q. Convert the function maxx that works on two scalars, to work on two arrays. def maxx(x:np.array, y:np.array): """Get the maximum of two items""" if x >= y: return x else: return y a =
np.array([5, 7, 9, 8, 6, 4, 5])
numpy.array
""" @brief test log(time=120s) """ import unittest import warnings import sys from logging import getLogger from contextlib import redirect_stdout from io import StringIO import numpy import onnx from scipy.sparse import coo_matrix, csr_matrix, SparseEfficiencyWarning from scipy.special import ( # pylint: disable=E0611 expit as logistic_sigmoid, erf) from scipy.spatial.distance import cdist from onnx import TensorProto, __version__ as onnx_version from onnx.helper import make_sparse_tensor, make_tensor from onnx.defs import onnx_opset_version from onnx.numpy_helper import from_array from pyquickhelper.pycode import ExtTestCase from pyquickhelper.texthelper import compare_module_version from sklearn.utils.extmath import softmax try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings from skl2onnx.algebra.onnx_ops import ( # pylint: disable=E0611 OnnxAbs, OnnxAdd, OnnxAnd, OnnxArgMax_11, OnnxArgMax, OnnxArgMin_11, OnnxArgMin, OnnxBatchNormalization, OnnxAcos, OnnxAcosh, OnnxAsin, OnnxAsinh, OnnxAtan, OnnxAtanh, OnnxAveragePool, OnnxCast, OnnxCeil, OnnxClip, OnnxCompress, OnnxConcat, OnnxConv, OnnxConvTranspose, OnnxConstant, OnnxConstant_9, OnnxConstant_11, OnnxConstant_12, OnnxConstant_13, OnnxConstantOfShape, OnnxCos, OnnxCosh, OnnxCumSum, OnnxDequantizeLinear, OnnxDet, OnnxDiv, OnnxDropout, OnnxDropout_7, OnnxEinsum, OnnxEqual, OnnxErf, OnnxExp, OnnxEyeLike, OnnxFlatten, OnnxFloor, OnnxGreater, OnnxGreaterOrEqual, OnnxGemm, OnnxGlobalAveragePool, OnnxIdentity, OnnxIsNaN, OnnxLess, OnnxLessOrEqual, OnnxLog, OnnxLpNormalization, OnnxMatMul, OnnxMax, OnnxMaxPool, OnnxMean, OnnxMin, OnnxMod, OnnxMul, OnnxNeg, OnnxNot, OnnxOr, OnnxPad, OnnxPow, OnnxQLinearConv, OnnxQuantizeLinear, OnnxRange, OnnxReciprocal, OnnxReduceL1, OnnxReduceL2, OnnxReduceLogSumExp, OnnxReduceMax, OnnxReduceMean, OnnxReduceMin, OnnxReduceProd, OnnxReduceSum, OnnxReduceSumApi11, OnnxReduceSum_11, OnnxReduceSum_1, OnnxReduceSumSquare, OnnxRelu, OnnxReshape, OnnxRound, OnnxScatterElements, OnnxShape, OnnxSlice, OnnxSigmoid, OnnxSign, OnnxSin, OnnxSinh, OnnxSize, OnnxSoftmax, OnnxSplit, OnnxSplitApi11, OnnxSqrt, OnnxSub, OnnxSum, OnnxSqueeze, OnnxSqueezeApi11, OnnxTan, OnnxTanh, OnnxTopK, OnnxTranspose, OnnxUnsqueeze, OnnxUnsqueezeApi11 ) try: from skl2onnx.algebra.onnx_ops import OnnxCelu except ImportError: OnnxCelu = None try: from skl2onnx.algebra.onnx_ops import OnnxBatchNormalization_14 except ImportError: OnnxBatchNormalization_14 = None from skl2onnx import __version__ as skl2onnx_version, __max_supported_opset__ from mlprodict.onnxrt import OnnxInference from mlprodict.tools.asv_options_helper import ( get_opset_number_from_onnx, get_ir_version_from_onnx) from mlprodict.onnxrt.validate.validate_python import validate_python_inference from mlprodict.onnxrt.ops_cpu.op_batch_normalization import ( _batchnorm_test_mode, _batchnorm_training_mode) from mlprodict.onnxrt.ops_cpu.op_average_pool import ( _get_output_shape, _pool, _get_pad_shape) from mlprodict.onnxrt.ops_cpu.op_global_average_pool import _global_average_pool from mlprodict.onnxrt.ops_cpu._op_onnx_numpy import ( # pylint: disable=E0611,E0401 topk_element_min_double, topk_element_max_double, topk_element_fetch_double, topk_element_min_float, topk_element_max_float, topk_element_fetch_float, topk_element_min_int64, topk_element_max_int64, topk_element_fetch_int64) from mlprodict.onnxrt.ops_cpu.op_celu import _vcelu1, pycelu from mlprodict.onnxrt.ops_cpu.op_topk import topk_sorted_implementation from mlprodict.onnxrt.ops_cpu.op_pad import _pad_impl from mlprodict.onnxrt.ops_cpu.op_max_pool import ( _pool_get_output_shape, _pool_impl) from mlprodict.onnxrt.ops_cpu.op_dropout import _dropout from mlprodict.onnxrt.ops_cpu._op_helper import proto2dtype from mlprodict.onnx_tools.onnx2py_helper import ( guess_proto_dtype, _elem_type_as_str) from mlprodict.tools.data_types import ( FloatTensorType, Int64TensorType, DoubleTensorType, StringTensorType, Int32TensorType, BooleanTensorType, UInt8TensorType, Int16TensorType, Int8TensorType, UInt16TensorType, UInt32TensorType, UInt64TensorType, Float16TensorType) from mlprodict.testing.test_utils.quantized_tensor import ( QuantizedTensor, QuantizedBiasTensor, test_qlinear_conv) from mlprodict.onnxrt.ops_cpu.op_qlinear_conv_ import ( # pylint: disable=W0611,E0611,E0401 test_qgemm0, test_qgemm1) from mlprodict.onnxrt.ops_cpu.op_constant import Constant_12, Constant_11, Constant_9 try: numpy_str = numpy.str_ except ImportError: numpy_str = str try: numpy_bool = numpy.bool_ except ImportError: numpy_bool = bool sparse_support = [] sparse_no_numpy = [] python_tested = [] def make_coo_matrix(*args, **kwargs): coo = coo_matrix(*args, **kwargs) coo.row = coo.row.astype(numpy.int64) coo.col = coo.col.astype(numpy.int64) return coo def wraplog(): # from datetime import datetime def wrapper(fct): def call_f(self): # no = datetime.now() # print('BEGIN %s' % fct.__name__) with warnings.catch_warnings(record=True): warnings.simplefilter("always", DeprecationWarning) fct(self) # print('DONE %s - %r' % (fct.__name__, datetime.now() - no)) return call_f return wrapper class TestOnnxrtPythonRuntime(ExtTestCase): # pylint: disable=R0904 @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): if __name__ == "__main__": import pprint print('-----------') pprint.pprint(sparse_support) print('-----------') pprint.pprint(sparse_no_numpy) print('-----------') pprint.pprint( list(sorted({_.__name__ for _ in python_tested}))) print('-----------') def setUp(self): logger = getLogger('skl2onnx') logger.disabled = True def test_opset_skl2onnx(self): opset_mlprodict = get_opset_number_from_onnx() opset_skl2onnx = __max_supported_opset__ self.assertGreater(opset_skl2onnx, opset_mlprodict) def common_expected_shapes_types(self, oinf, inputs, got, onnx_cl, model_def, raise_shape=False): expected_types = oinf.infer_types() self.assertEqual(set(got) & set(expected_types), set(got)) for k, v in got.items(): if expected_types[k] in (str, numpy.str_): # Type mismatch: dtype('<U32') != <class 'str'> continue if v.dtype != expected_types[k]: raise AssertionError( "Type mismatch: %r != %r\nexpected_types=%r\ngot=%r" "\n----\n%r" % ( v.dtype, expected_types[k], expected_types, got, model_def)) try: expected_shapes = oinf.infer_shapes() self.assertEqual(set(got) & set(expected_shapes), set(got)) except RuntimeError as e: if raise_shape: raise e warnings.warn("infer_shapes fails for operator %r." % onnx_cl) res = oinf.infer_sizes(inputs) self.assertIsInstance(res, dict) @ignore_warnings(category=(RuntimeWarning, DeprecationWarning, SparseEfficiencyWarning, PendingDeprecationWarning)) def common_test_onnxt_runtime_unary(self, onnx_cl, np_fct, op_version=None, outputs=None, debug=False, do_sparse=True, raise_shape=False): if op_version is None: op_version = get_opset_number_from_onnx() try: onx = onnx_cl('X', output_names=['Y'], op_version=op_version) except RuntimeError as e: raise RuntimeError('onnx.opset={} op_version={}'.format( get_opset_number_from_onnx(), op_version)) from e X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float64) model_def = onx.to_onnx( {'X': X.astype(numpy.float32)}, target_opset=op_version, outputs=outputs) if debug: print(model_def) python_tested.append(onnx_cl) # python code oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': X.astype(numpy.float32)}) # no inplace oinf = OnnxInference(model_def, inplace=False) all_names = "\n".join( "%s>=v%d" % (op.ops_.__class__.__name__, op.ops_._schema.since_version) # pylint: disable=W0212 for op in oinf.sequence_) if debug: got = oinf.run({'X': X.astype(numpy.float32)}, verbose=1, fLOG=print) else: got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.common_expected_shapes_types( oinf, {'X': X.astype(numpy.float32)}, got, onnx_cl, model_def, raise_shape=raise_shape) try: self.assertEqualArray(np_fct(X), got['Y'], decimal=5) except AssertionError as e: raise AssertionError( 'onnx.opset={} op_version={}\n--ONNX--\n{}\n--NAMES--\n{}'.format( get_opset_number_from_onnx(), op_version, model_def, all_names)) from e # inplace oinf = OnnxInference(model_def, input_inplace=False, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(np_fct(X), got['Y'], decimal=5) # inplace2 onx2 = OnnxIdentity( onnx_cl('X', op_version=op_version), output_names=['Y'], op_version=op_version) model_def2 = onx2.to_onnx( {'X': X.astype(numpy.float32)}, target_opset=op_version, outputs=outputs) oinf = OnnxInference(model_def2, input_inplace=False, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(np_fct(X), got['Y'], decimal=5) # input inplace expe = np_fct(X) oinf = OnnxInference(model_def, input_inplace=True, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(expe, got['Y'], decimal=5) # sparse if do_sparse: row = numpy.array([0, 0, 1, 3, 1]) col = numpy.array([0, 2, 1, 3, 1]) data = numpy.array([1, 1, 1, 1, 1]) X = make_coo_matrix((data, (row.astype(numpy.int64), col.astype(numpy.int64))), shape=(4, 4), dtype=numpy.float32) try: exp = np_fct(X) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((onnx_cl.__name__, op_version, e)) return model_def_sparse = onx.to_onnx( {'X': X.astype(numpy.float32)}, target_opset=op_version) oinf = OnnxInference( model_def_sparse, input_inplace=False, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualSparseArray(exp, got['Y'], decimal=5) sparse_support.append(('UnOp', op_version, onnx_cl.__name__)) @ignore_warnings(category=(RuntimeWarning, DeprecationWarning, SparseEfficiencyWarning, PendingDeprecationWarning)) def common_test_onnxt_runtime_binary(self, onnx_cl, np_fct, dtype=numpy.float32, op_version=None, debug=False, raise_shape=False): if op_version is None: op_version = get_opset_number_from_onnx() idi = numpy.identity(2, dtype=dtype) onx = onnx_cl('X', idi, output_names=['Y'], op_version=op_version) X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float64) model_def = onx.to_onnx({'X': X.astype(dtype)}, target_opset=op_version) oinf = OnnxInference(model_def) if debug: got = oinf.run({'X': X.astype(dtype)}, verbose=1, fLOG=print) else: got = oinf.run({'X': X.astype(dtype)}) self.assertEqual(list(sorted(got)), ['Y']) self.common_expected_shapes_types( oinf, {'X': X.astype(dtype)}, got, onnx_cl, model_def, raise_shape=raise_shape) exp = np_fct(X, idi) self.assertEqualArray(exp, got['Y'], decimal=5) # python code python_tested.append(onnx_cl) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': X.astype(dtype)}) # sparse idi = make_coo_matrix(numpy.identity(2)).astype(numpy.float32) X = make_coo_matrix(numpy.array( [[0, 2], [3, -4]], dtype=numpy.float32)) try: exp = np_fct(X, idi) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((onnx_cl.__name__, op_version, e)) return onx = onnx_cl('X', idi, output_names=['Y'], op_version=op_version) model_def_sparse = onx.to_onnx({'X': X}, target_opset=op_version) try: oinf = OnnxInference( model_def_sparse, input_inplace=False, inplace=True) except RuntimeError as e: raise RuntimeError( "Unable to load sparse model\n{}".format( model_def_sparse)) from e if debug: got = oinf.run({'X': X}, verbose=1, fLOG=print) else: got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) if isinstance(exp, (coo_matrix, csr_matrix)): self.assertEqualSparseArray(exp, got['Y'], decimal=5) elif isinstance(exp, numpy.ndarray): self.assertEqualArray(exp, got['Y'], decimal=5) else: self.assertEqual(exp, got['Y']) sparse_support.append(('BinOp', op_version, onnx_cl.__name__)) @wraplog() def test_onnxt_runtime_abs(self): self.common_test_onnxt_runtime_unary(OnnxAbs, numpy.abs) @wraplog() def test_onnxt_runtime_abs_debug(self): f = StringIO() with redirect_stdout(f): self.common_test_onnxt_runtime_unary( OnnxAbs, numpy.abs, debug=True) @wraplog() def test_onnxt_runtime_acos(self): self.common_test_onnxt_runtime_unary(OnnxAcos, numpy.arccos) @wraplog() def test_onnxt_runtime_acosh(self): self.common_test_onnxt_runtime_unary(OnnxAcosh, numpy.arccosh) @wraplog() def test_onnxt_runtime_add(self): self.common_test_onnxt_runtime_binary(OnnxAdd, numpy.add) @wraplog() def test_onnxt_runtime_and(self): self.common_test_onnxt_runtime_binary( OnnxAnd, numpy.logical_and, dtype=numpy.bool_) @wraplog() def test_onnxt_runtime_argmax(self): opsets = list(range(11, get_opset_number_from_onnx() + 1)) opsets = ['11only'] + opsets for opset in opsets: with self.subTest(opset=opset): X = numpy.array([[2, 1], [0, 1]], dtype=float) if opset == '11only': clarg = OnnxArgMax_11 opset = 11 br = True else: clarg = OnnxArgMax br = False onx = clarg('X', output_names=['Y'], keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmax( X, axis=0), got['Y'], decimal=5) self.common_expected_shapes_types( oinf, {'X': X}, got, clarg, model_def) if br: continue oinfpy = OnnxInference( model_def, runtime="python", inplace=True) validate_python_inference( oinfpy, {'X': X.astype(numpy.float32)}) onx = OnnxArgMax('X', output_names=['Y'], axis=1, keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmax(X, axis=1).ravel(), got['Y'].ravel()) onx = OnnxArgMax('X', output_names=['Y'], axis=1, keepdims=1, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmax(X, axis=1).ravel(), got['Y'].ravel()) # sparse X = make_coo_matrix(X, dtype=numpy.float32) try: exp = numpy.argmax(X, axis=1) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((OnnxArgMax.__name__, None, e)) return model_def_sparse = onx.to_onnx({'X': X}, target_opset=opset) oinf = OnnxInference(model_def_sparse, input_inplace=False) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(exp, got['Y'], decimal=5) X = numpy.array([[2, 1], [0, 1]], dtype=float) sparse_support.append(('UnOp', None, OnnxArgMax.__name__)) python_tested.append(OnnxArgMax) @unittest.skipIf(onnx_opset_version() < 12, reason="needs onnx 1.7.0") @wraplog() def test_onnxt_runtime_argmax_12(self): self.assertGreater(onnx_opset_version(), 12) from skl2onnx.algebra.onnx_ops import OnnxArgMax_12 # pylint: disable=E0611 X = numpy.array([[2, 2, 1], [0, 1, 1]], dtype=float) onx = OnnxArgMax_12('X', output_names=['Y'], keepdims=0, axis=1, select_last_index=1, op_version=12) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.array([1, 2], dtype=numpy.int64), got['Y'], decimal=5) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxArgMax_12, model_def) @wraplog() def test_onnxt_runtime_argmin(self): opsets = list(range(11, get_opset_number_from_onnx() + 1)) opsets = ['11only'] + opsets for opset in opsets: with self.subTest(opset=opset): if opset == '11only': clarg = OnnxArgMin_11 opset = 11 br = True else: clarg = OnnxArgMin br = False X = numpy.array([[2, 1], [0, 1]], dtype=float) onx = clarg('X', output_names=['Y'], keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmin( X, axis=0), got['Y'], decimal=5) if br: continue oinfpy = OnnxInference( model_def, runtime="python", inplace=True) validate_python_inference( oinfpy, {'X': X.astype(numpy.float32)}) self.common_expected_shapes_types( oinfpy, {'X': X.astype(numpy.float32)}, got, clarg, model_def) onx = OnnxArgMin('X', output_names=['Y'], axis=1, keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmin(X, axis=1).ravel(), got['Y'].ravel()) onx = OnnxArgMin('X', output_names=['Y'], axis=1, keepdims=1, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmin(X, axis=1).ravel(), got['Y'].ravel()) # sparse X = make_coo_matrix(X, dtype=numpy.float32) try: exp = numpy.argmin(X, axis=1) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((OnnxArgMin.__name__, None, e)) return model_def_sparse = onx.to_onnx({'X': X}, target_opset=opset) oinf = OnnxInference(model_def_sparse, input_inplace=False) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(exp, got['Y'], decimal=5) sparse_support.append(('UnOp', None, OnnxArgMin.__name__)) python_tested.append(OnnxArgMin) @unittest.skipIf(onnx_opset_version() < 12, reason="needs onnx 1.7.0") @wraplog() def test_onnxt_runtime_argmin_12(self): self.assertGreater(onnx_opset_version(), 12) from skl2onnx.algebra.onnx_ops import OnnxArgMin_12 # pylint: disable=E0611 X = numpy.array([[2, 1, 1], [0, 0, 1]], dtype=float) onx = OnnxArgMin_12('X', output_names=['Y'], keepdims=0, axis=1, select_last_index=1, op_version=12) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.array([2, 1], dtype=numpy.int64), got['Y'], decimal=5) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxArgMin_12, model_def) @wraplog() def test_onnxt_runtime_asin(self): self.common_test_onnxt_runtime_unary(OnnxAsin, numpy.arcsin) @wraplog() def test_onnxt_runtime_asinh(self): self.common_test_onnxt_runtime_unary(OnnxAsinh, numpy.arcsinh) @wraplog() def test_onnxt_runtime_atan(self): self.common_test_onnxt_runtime_unary(OnnxAtan, numpy.arctan) @wraplog() def test_onnxt_runtime_atanh(self): self.common_test_onnxt_runtime_unary(OnnxAtanh, numpy.arctanh) @wraplog() def test_onnxt_runtime_atan2(self): test_pairs = [[y, x] for x in [3., -4., 0., -1., 1.] for y in [5., -6., 0., -1., 1.]] y_val = numpy.array([y for y, x in test_pairs], dtype=numpy.float32) x_val = numpy.array([x for y, x in test_pairs], dtype=numpy.float32) def atan2(y, x): # size: 100000 # timeit arctan: 0.00205 # timeit arctan2: 0.00361 # timeit atan2: 0.00599 sx = numpy.sign(x) sy = numpy.sign(y) pi_part = (sy + sx * (sy ** 2 - 1)) * (sx - 1) * (-numpy.pi / 2) atan_part = numpy.arctan(y / (x + (1 - sx ** 2))) * sx ** 2 return atan_part + pi_part self.assertEqualArray( numpy.arctan2(y_val, x_val), atan2(y_val, x_val), decimal=5) def _expect_average_pool(self, node, inputs, outputs, opset=None): if opset is None: opset = get_opset_number_from_onnx() ginputs = [ onnx.helper.make_tensor_value_info( node.input[0], TensorProto.FLOAT, []), # pylint: disable=E1101, ] goutputs = [ onnx.helper.make_tensor_value_info( node.output[0], TensorProto.FLOAT, []), # pylint: disable=E1101, ] model_def = onnx.helper.make_model( opset_imports=[onnx.helper.make_operatorsetid('', opset)], graph=onnx.helper.make_graph( name='test_average_pool', inputs=ginputs, outputs=goutputs, nodes=[node])) oinf = OnnxInference(model_def) got = oinf.run({n: v for n, v in zip(node.input, inputs)}) self.assertEqual(len(got), 1) self.assertEqualArray(outputs[0], got['y']) @wraplog() def test_onnxt_runtime_average_pool(self): node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2], auto_pad='SAME_UPPER') x =
numpy.random.randn(1, 3, 32, 32)
numpy.random.randn
#!/usr/bin/env python3 # Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @title :split_mnist.py # @author :ch # @contact :<EMAIL> # @created :04/11/2019 # @version :1.0 # @python_version :3.6.7 """ Split MNIST Dataset ^^^^^^^^^^^^^^^^^^^ The module :mod:`data.special.split_mnist` contains a wrapper for data handlers for the SplitMNIST task. """ import numpy as np from data.mnist_data import MNISTData def get_split_MNIST_handlers(data_path, use_one_hot=True, validation_size=0, steps=2): """This method instantiates 5 objects of the class :class:`SplitMNIST` which will contain a disjoint set of labels. The SplitMNIST task consists of 5 tasks corresponding to the images with labels [0,1], [2,3], [4,5], [6,7], [8,9]. Args: data_path: Where should the MNIST dataset be read from? If not existing, the dataset will be downloaded into this folder. use_one_hot: Whether the class labels should be represented in a one-hot encoding. validation_size: The size of the validation set of each individual data handler. steps: Number of classes to put into one data handler. If default every data handler will include 2 digits, otherwise 1. Returns: A list of data handlers, each corresponding to a :class:`SplitMNIST` object, """ print('Creating data handlers for SplitMNIST tasks ...') handlers = [] assert (steps == 1 or steps == 2) for i in range(0, 10, steps): handlers.append(SplitMNIST(data_path, use_one_hot=use_one_hot, validation_size=validation_size, labels=[i, i + steps - 1])) print('Creating data handlers for SplitMNIST tasks ... Done') return handlers class SplitMNIST(MNISTData): """An instance of the class shall represent a SplitMNIST task. Args: data_path: Where should the dataset be read from? If not existing, the dataset will be downloaded into this folder. use_one_hot: Whether the class labels should be represented in a one-hot encoding. validation_size: The number of validation samples. Validation samples will be taking from the training set (the first :math:`n` samples). labels: The labels that should be part of this task. full_out_dim: Choose the original MNIST instead of the the new task output dimension. This option will affect the attributes :attr:`data.dataset.Dataset.num_classes` and :attr:`data.dataset.Dataset.out_shape`. """ def __init__(self, data_path, use_one_hot=False, validation_size=1000, labels=[0, 1], full_out_dim=False): super().__init__(data_path, use_one_hot=use_one_hot, validation_size=0) K = len(labels) # assert(K == 2) self._labels = labels train_ins = self.get_train_inputs() test_ins = self.get_test_inputs() train_outs = self.get_train_outputs() test_outs = self.get_test_outputs() # Get labels. if self.is_one_hot: train_labels = self._to_one_hot(train_outs, reverse=True) test_labels = self._to_one_hot(test_outs, reverse=True) else: train_labels = train_outs test_labels = test_outs train_labels = train_labels.squeeze() test_labels = test_labels.squeeze() train_mask = train_labels == labels[0] test_mask = test_labels == labels[0] for k in range(1, K): train_mask =
np.logical_or(train_mask, train_labels == labels[k])
numpy.logical_or
""" Generate 2 group spectra of K modes """ import numpy as np import matplotlib.pyplot as plt def spectra2(): """ Return data set of 600 spectra. Spectra consist of 20 cosine modes with uniform random frequencies from .1 to 10 in arbitray frequency units. Amplitudes are sampled from normal distribution centered on integer group number with standard deviation of 0.2. """ #constants nmode = 20 #number of modes ngroup = 2 # number of groups nobv = 600 # number of observations minfreq = .01 # slowest mode frequency maxfreq = .5 # fastest mode frequency sigma = .2 # amplitude standard deviation ngrid = 1000 #spectrum grid space #assign random mode frequencies per group omega = np.random.uniform(low=minfreq, high=maxfreq, size=(nmode,ngroup)) #assign random groups group = np.random.randint(ngroup, size=(1,nobv)) #assign random mode amplitutes eta = np.random.normal(loc=0, scale=sigma, size=(nmode, nobv)) #visualize distribution of ampl #count, bins, ignored = plt.hist(eta, 30, density=True) #plt.show() #init spectra spec = np.zeros((ngrid,nobv)) #loop over groups for g in range(ngroup): ingroup =
np.where(group[0,:]==g)
numpy.where
# Class version of 1D Solver from sys import dont_write_bytecode import numpy as np import matplotlib as mpl import warnings class FEM_Simulation: ''' Object that represents a 1D FEM Simulation. ''' def __init__(self, Element, verbose=False): self.Element = Element # get initialize data from the element self.NoElementDim, \ self.NoElementNodes, \ self.ElementDofNames, \ self.NoElementHistory, \ self.ElementMaterialNames, \ self.ElementPostNames = Element.Elmt_Init() self.NoElementMaterial = len(self.ElementMaterialNames) self.NoNodeDofs = len(self.ElementDofNames) # general program variables self.verbose = verbose self.verbose_system = True self.state = 0 # general discretization variables self.time = 0.0 # current time self.dt = 1.0 # time increment gone frome last time self.step = 0 # current step self.lambda_load = 0 # global load multiplier self.NoElements = 0 # number of elements self.NoNodes = 0 # number of nodes self.NoDofs = 0 # number of degrees of freedom self.XI = 0 # nodal coordinates self.ELEM = 0 # element connectivity self.h_n = 0 # previous history field self.h_t = 0 # current history field # initialize fields for boundary conditions self.NBC = [] # python list to collect natural boundary conditions before analysis self.NBC_Indexes = 0 # vector of indexes to the external load vector where a nbc is present self.NBC_Values = 0 # vector of values to be placed in the external load vector for each nbc index self.EBC = [] # python list to collect essential boundary conditions before analysis self.EBC_Indexes = 0 # vector of indexes of constrained degrees of freedom self.EBC_Values = 0 # vector of values for each constrained degree of freedom self.NoEquations = 0 # number of all unconstrained dofs # element discretization parameter self.ElementMaterial = [] # list of material parameter self.h_n = 0 # vector of element history field of t=t (previous) self.h_t = 0 # vector of element history field of t=t+1 (current) self.DI = 0 # vector of degrees of freedom self.R_ext = 0 # vector of external forces # make some noise print("FEM Solver Instance Created") if (self.verbose): print("Simulation dimensions: ", self.NoElementDim) if (self.verbose): print("Number of element nodes: ", self.NoElementNodes) if (self.verbose): print("Names of nodal degrees of freedom: ", self.ElementDofNames) if (self.verbose): print("Names of element parameters: ", self.ElementMaterialNames) if (self.verbose): print("Names of available postprocessing fields: ", self.ElementPostNames) def Add_Mesh(self, NodesList, ElementConnectivity, verbose=False): ''' Add_Mesh(self, NodesList, ElementConnectivity, verbose=False) -> void Sets a mesh based on a list of nodes and matrix of element connectivity. Input : NodeList -> List of nodal coordinates [... , [x,y], ...] ElementConnectivity -> Matrix of nodal indexes per element [... , [n1, n2, n3], ...] ''' # check input if (NodesList.ndim == 1): no_mesh_no, mesh_dim = len(NodesList), 1 else: no_mesh_no, mesh_dim = NodesList.shape no_mesh_el, mesh_no_el = ElementConnectivity.shape if (self.verbose or verbose): print('Mesh NoNodes : ',no_mesh_no) if (self.verbose or verbose): print('Mesh Dimension : ',mesh_dim) if (self.verbose or verbose): print('Mesh NoElements : ',no_mesh_el) if (self.verbose or verbose): print('Mesh Nodes per Element: ',mesh_no_el) if (self.NoElementDim != mesh_dim): raise NameError('Mesh dimension is not the same as elements.') if (self.NoElementNodes != mesh_no_el): raise NameError('Mesh is not compatible to element topology.') # process infos self.NoElements = no_mesh_el self.NoNodes = no_mesh_no self.NoDofs = no_mesh_no * self.NoNodeDofs if (verbose): print('Mesh Total Dofs : ',self.NoDofs) self.XI = np.array(NodesList, dtype=np.float64) self.ELEM = np.array(ElementConnectivity, dtype=np.uint) if (self.verbose or self.verbose): print(' Finite Elemenmt Mesh Read!') self.state = 1 def Add_Material(self, MaterialList, Option=None): '''Adds Material parameters as a list [....] for the next element without already specified material. With Option=All, all elements are set with the given list of parameters.''' if len(MaterialList) != self.NoElementMaterial: print( 'Error: Number of material parameter does not fit element requirements!') print(' Requred parameters are :') print(*self.ElementMaterialNames, sep=", ") raise NameError('Error processing material parameters!') if Option == "All": self.ElementMaterial = [] for i in range(self.NoElements): self.ElementMaterial.append(MaterialList) if (self.verbose): print(' Material set for All Elements') if Option == None: self.ElementMaterial.append(MaterialList) if (self.verbose): print(' Material set for Element %i' % len(self.ElementMaterial)) def Add_EBC(self, NodeSelector, DofSelector, Value): '''Sets an essential boundary condition by NodeSelector, DofSelector, Value''' NodeList = self.SelectNodes(NodeSelector) AffectedDof = self.SelectDof(DofSelector) if AffectedDof >= self.NoNodeDofs: print("Error: Nodal degrees of freedom do not exceed %i" % self.NoNodeDofs) for node in NodeList: self.EBC.append([node, AffectedDof, Value]) def Add_NBC(self, NodeSelector, DofSelector, Value): '''Sets an essential boundary condition by NodeSelector, DofSelector, Value''' NodeList = self.SelectNodes(NodeSelector) AffectedDof = self.SelectDof(DofSelector) if AffectedDof >= self.NoNodeDofs: print("Error: Nodal degrees of freedom do not exceed %i" % self.NoNodeDofs) for node in NodeList: self.NBC.append([node, AffectedDof, Value]) def SelectDof(self, Input): '''Returns a single integer for the dof''' if isinstance(Input, int): return Input if isinstance(Input, str): for i, dofname in enumerate(self.ElementDofNames): if dofname == Input: return i raise NameError('Error ! DOF name not supported by element') return 100 def SelectNodes(self, Input): ''' Returns a list containing the node number that fit the input. Input can be: A single node index SelectNodes(0) A list of indexes node index SelectNodes([0,1,2]) A conditional based on the dimension 1D: SelectNodes("x==0") 2D: SelectNodes("x==0 && y==0") ''' Outlist = [] # if input is a singe integer, check if there is a node for this integer and return it in a list if isinstance(Input, int): if Input <= self.NoElements: Outlist.append(Input) else: print('Error: %i is not a valid node number!' % Input) return # if input is a list, we check each entry for being an integer and proceed as before. if the entry is # an interger we append it to the output list if isinstance(Input, list): for i in range(len(Input)): if isinstance(Input[i], int): if Input[i] <= self.NoElements: Outlist.append(Input[i]) else: print('Error: %i is not a valid node number!' % Input[i]) return else: print( 'Error: ', Input[i], " is not a valid node number! Integer required.") # if input is a string, it is supposed to be a conditional if isinstance(Input, str): # 1D - condition is x only if (self.NoElementDim==1): conditional = eval("lambda x: "+Input) Outlist = np.arange(self.NoNodes)[[conditional(x) for x in self.XI]] # 2D - condition is x and y elif (self.NoElementDim==2): conditional = eval("lambda x, y: "+Input) Outlist = np.arange(self.NoNodes)[[conditional(x,y) for x, y in self.XI]] return Outlist def Analysis(self): '''Enters into the Analysis phase. At least there must be finite elements and Materials''' if self.state < 1: self.state_report() return elif self.NoElements < 1: raise NameError('Error! No Elements! Use AddMesh.') elif len(self.ElementMaterial) != self.NoElements: raise NameError('Error! Not sufficent Material provided! Use AddMaterial.') # initialize history self.h_n = np.zeros(self.NoElements * self.NoElementHistory) self.h_t = np.copy(self.h_n) # initialize degrees of freedom self.DI = np.zeros(self.NoNodes * self.NoNodeDofs) # initialize external right hand side self.R_ext = np.zeros(self.NoNodes * self.NoNodeDofs) # consolidate boundary conditions self.EBC_Indexes = np.array([ node*self.NoNodeDofs+dof for node, dof, value in self.EBC], dtype=np.uint) self.EBC_Values = np.array([ value for node, dof, value in self.EBC], dtype=np.float64) self.NBC_Indexes = np.array([ node*self.NoNodeDofs+dof for node, dof, value in self.NBC], dtype=np.uint) self.NBC_Values = np.array([ value for node, dof, value in self.NBC], dtype=np.float64) self.NoEquations = self.NoNodes * self.NoNodeDofs - len(self.NBC_Indexes) print('Entering Analysis phase') if (self.verbose_system): print('---------------------------------') print('FE Setup Summary :') print('NoElementNodes :', self.NoElementNodes) print('NoNodeDofs :', self.NoNodeDofs) print('ElementDofNames :', self.ElementDofNames) print('ElementPostNames :', self.ElementPostNames) print('NoElementHistory :', self.NoElementHistory) print('NoElements :', self.NoElements) print('NoNodes :', self.NoNodes) print('NoDofs :', self.NoDofs) print('NoEssential BC :', len(self.EBC)) print('NoNatural BC :', len(self.NBC)) print('---------------------------------') self.state = 100 def state_report(self): '''Gives hints to the user what to do next, based on a standard procedure.''' if self.state == 0: print('Input required: Call the AddMesh() function.') elif self.state == 1: print('state is 1') def NextStep(self, time=1, lambda_load=1): # check requirements if self.state < 100: print('Error: Simulation has not entered analysis phase via Analysis().') if (self.verbose_system): print('\nCurrent Time : %f5.2' % time) self.dt = time - self.time if self.dt < 1e-16: print( 'Error: Time given in NextStep is smaller than internal time: %f5.2' % time) return # time shift time dependent variables self.time = time self.step += 1 self.h_n = np.copy(self.h_t) self.lambda_load = lambda_load # apply EBC to DI self.DI[self.EBC_Indexes] = self.lambda_load * self.EBC_Values # apply NBC to self.R_ext[self.NBC_Indexes] = self.lambda_load * self.NBC_Values return def CallElement(self, i, verbose=False): if i > self.NoElements: print('Error: Input exceeds number of elements. max is : %i8' % self.NoElements) elmt_nodes = self.ELEM[i] elmt_dof_indexes = np.array([i * self.NoNodeDofs + d for i in elmt_nodes for d in range(self.NoNodeDofs)], dtype=np.uint) elmt_hist_indexes =
np.arange(i * self.NoElementHistory,(i+1) * self.NoElementHistory)
numpy.arange
import mmcv import numpy as np import torch import cv2 import random from skimage.util import random_noise __all__ = [ 'ImageTransform', 'BboxTransform', 'MaskTransform', 'SegMapTransform', 'Numpy2Tensor' ] class ImageTransform(object): """Preprocess an image. 1. rescale the image to expected size 2. normalize the image 3. flip the image (if needed) 4. pad the image (if needed) 5. transpose to (c, h, w) """ def __init__(self, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True, size_divisor=None): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb self.size_divisor = size_divisor def opencv_blur(self, img, mode): if mode == 'blur': return cv2.blur(img, (5, 5)) elif mode == 'GaussianBlur': return cv2.GaussianBlur(img, (5, 5), 0) elif mode == 'medianBlur': return cv2.medianBlur(img, 5) elif mode == 'bilateralFilter': return cv2.bilateralFilter(img, 9, 75, 75) def add_noise(self, img, mode): # modes = ['gaussian', 's&p', 'poisson', 'speckle'] # random_noise() method will convert image in [0, 255] to [0, 1.0], # inherently it use np.random.normal() to create normal distribution # and adds the generated noised back to image if mode == 'gaussian': noise_img = random_noise(img, mode=mode, var=0.05 ** 2) else: noise_img = random_noise(img, mode=mode) return (255 * noise_img).astype(np.uint8) def __call__(self, img, scale, flip=False, keep_ratio=True, hsv_h=0, hsv_s=0, hsv_v=0, noisy_mode=None, blur_mode=None): # Augment colorspace if hsv_h+hsv_s+hsv_v > 5: # SV augmentation by 50% img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val H = img_hsv[:, :, 0].astype(np.float32) # hue S = img_hsv[:, :, 1].astype(np.float32) # saturation V = img_hsv[:, :, 2].astype(np.float32) # value a = random.uniform(-1, 1) * hsv_h + 1 b = random.uniform(-1, 1) * hsv_s + 1 c = random.uniform(-1, 1) * hsv_v + 1 H *= a S *= b V *= c img_hsv[:, :, 0] = H if a < 1 else H.clip(None, 255) img_hsv[:, :, 1] = S if b < 1 else S.clip(None, 255) img_hsv[:, :, 2] = V if c < 1 else V.clip(None, 255) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # Add noise if noisy_mode is not None: img = self.add_noise(img, noisy_mode) # Blur if blur_mode is not None: img = self.opencv_blur(img, blur_mode) if keep_ratio: img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) else: img, w_scale, h_scale = mmcv.imresize( img, scale, return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = img.shape img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) pad_shape = img.shape else: pad_shape = img_shape img = img.transpose(2, 0, 1) return img, img_shape, pad_shape, scale_factor def bbox_flip(bboxes, img_shape, direction='horizontal'): """Flip bboxes horizontally or vertically. Args: bboxes(ndarray): shape (..., 4*k) img_shape(tuple): (height, width) """ assert bboxes.shape[-1] % 4 == 0 flipped = bboxes.copy() if direction == 'horizontal': w = img_shape[1] flipped[..., 0::4] = w - bboxes[..., 2::4] - 1 flipped[..., 2::4] = w - bboxes[..., 0::4] - 1 else: h = img_shape[0] flipped[..., 1::4] = h - bboxes[..., 3::4] - 1 flipped[..., 3::4] = h - bboxes[..., 1::4] - 1 return flipped class BboxTransform(object): """Preprocess gt bboxes. 1. rescale bboxes according to image size 2. flip bboxes (if needed) 3. pad the first dimension to `max_num_gts` """ def __init__(self, max_num_gts=None): self.max_num_gts = max_num_gts def __call__(self, bboxes, img_shape, scale_factor, flip=False): gt_bboxes = bboxes * scale_factor if flip: gt_bboxes = bbox_flip(gt_bboxes, img_shape) gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) if self.max_num_gts is None: return gt_bboxes else: num_gts = gt_bboxes.shape[0] padded_bboxes = np.zeros((self.max_num_gts, 4), dtype=np.float32) padded_bboxes[:num_gts, :] = gt_bboxes return padded_bboxes class MaskTransform(object): """Preprocess masks. 1. resize masks to expected size and stack to a single array 2. flip the masks (if needed) 3. pad the masks (if needed) """ def __call__(self, masks, pad_shape, scale_factor, flip=False): # aspect ratio unchanged if isinstance(scale_factor, float): masks = [ mmcv.imrescale(mask, scale_factor, interpolation='nearest') for mask in masks ] # aspect ratio changed else: w_ratio, h_ratio = scale_factor[:2] if masks: h, w = masks[0].shape[:2] new_h = int(np.round(h * h_ratio)) new_w = int(np.round(w * w_ratio)) new_size = (new_w, new_h) masks = [ mmcv.imresize(mask, new_size, interpolation='nearest') for mask in masks ] if flip: masks = [mask[:, ::-1] for mask in masks] padded_masks = [ mmcv.impad(mask, pad_shape[:2], pad_val=0) for mask in masks ] padded_masks = np.stack(padded_masks, axis=0) return padded_masks class SegMapTransform(object): """Preprocess semantic segmentation maps. 1. rescale the segmentation map to expected size 3. flip the image (if needed) 4. pad the image (if needed) """ def __init__(self, size_divisor=None): self.size_divisor = size_divisor def __call__(self, img, scale, flip=False, keep_ratio=True): if keep_ratio: img = mmcv.imrescale(img, scale, interpolation='nearest') else: img = mmcv.imresize(img, scale, interpolation='nearest') if flip: img = mmcv.imflip(img) if self.size_divisor is not None: img = mmcv.impad_to_multiple(img, self.size_divisor) return img class Numpy2Tensor(object): def __init__(self): pass def __call__(self, *args): if len(args) == 1: return torch.from_numpy(args[0]) else: return tuple([torch.from_numpy(
np.array(array)
numpy.array
##script for finding the overlap in the top 100 most significant gene sets from msigdb for good and bad genes ##load necessary modules import pylab as plt import numpy as np import math import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) ##I did not write this function, from http://depts.washington.edu/clawpack/clawpack-4.6.3/python/pyclaw/plotters/colormaps.py ##------------------------- def make_colormap(colors): ##------------------------- """ Define a new color map based on values specified in the dictionary colors, where colors[z] is the color that value z should be mapped to, with linear interpolation between the given values of z. The z values (dictionary keys) are real numbers and the values colors[z] can be either an RGB list, e.g. [1,0,0] for red, or an html hex string, e.g. "#ff0000" for red. """ from matplotlib.colors import LinearSegmentedColormap, ColorConverter from numpy import sort z = sort(colors.keys()) n = len(z) z1 = min(z) zn = max(z) x0 = (z - z1) / (zn - z1) CC = ColorConverter() R = [] G = [] B = [] for i in range(n): #i'th color at level z[i]: Ci = colors[z[i]] if type(Ci) == str: # a hex string of form '#ff0000' for example (for red) RGB = CC.to_rgb(Ci) else: # assume it's an RGB triple already: RGB = Ci R.append(RGB[0]) G.append(RGB[1]) B.append(RGB[2]) cmap_dict = {} cmap_dict['red'] = [(x0[i],R[i],R[i]) for i in range(len(R))] cmap_dict['green'] = [(x0[i],G[i],G[i]) for i in range(len(G))] cmap_dict['blue'] = [(x0[i],B[i],B[i]) for i in range(len(B))] mymap = LinearSegmentedColormap('mymap',cmap_dict) return mymap ##get the 100 most enriched protective and harmful gene sets for each cancer f=open(os.path.join(BASE_DIR,'cox_regression','BLCA','good_overlap')) BLCA_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': BLCA_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','BLCA','bad_overlap')) BLCA_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': BLCA_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LGG','good_overlap')) LGG_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LGG_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LGG','bad_overlap')) LGG_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LGG_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','BRCA','good_overlap')) BRCA_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': BRCA_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','BRCA','bad_overlap')) BRCA_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': BRCA_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','CESC','good_overlap')) CESC_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': CESC_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','CESC','bad_overlap')) CESC_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': CESC_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','COAD','good_overlap')) COAD_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': COAD_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','COAD','bad_overlap')) COAD_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': COAD_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','GBM','good_overlap')) GBM_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': GBM_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','GBM','bad_overlap')) GBM_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': GBM_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','HNSC','good_overlap')) HNSC_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': HNSC_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','HNSC','bad_overlap')) HNSC_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': HNSC_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','KIRC','good_overlap')) KIRC_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': KIRC_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','KIRC','bad_overlap')) KIRC_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': KIRC_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','KIRP','good_overlap')) KIRP_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': KIRP_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','KIRP','bad_overlap')) KIRP_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': KIRP_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LAML','good_overlap')) LAML_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LAML_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LAML','bad_overlap')) LAML_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LAML_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LIHC','good_overlap')) LIHC_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LIHC_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LIHC','bad_overlap')) LIHC_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LIHC_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LUAD','good_overlap')) LUAD_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LUAD_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LUAD','bad_overlap')) LUAD_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LUAD_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LUSC','good_overlap')) LUSC_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LUSC_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','LUSC','bad_overlap')) LUSC_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': LUSC_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','SKCM','good_overlap')) SKCM_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': SKCM_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','SKCM','bad_overlap')) SKCM_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': SKCM_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','OV','good_overlap')) OV_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': OV_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','OV','bad_overlap')) OV_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': OV_bad.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','STAD','good_overlap')) STAD_good=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': STAD_good.append(x.split('\t')[0]) x=f.readline() f=open(os.path.join(BASE_DIR,'cox_regression','STAD','bad_overlap')) STAD_bad=[] x=f.readline() while x!='': x=f.readline() if x=='Gene Set Name\t# Genes in Gene Set (K)\tDescription\t# Genes in Overlap (k)\tk/K\tp-value\tFDR q-value\n': x=f.readline() while x!='\n': STAD_bad.append(x.split('\t')[0]) x=f.readline() all_cancers1=[BLCA_good,BRCA_good,CESC_good,COAD_good,GBM_good,\ HNSC_good,KIRC_good,KIRP_good,LAML_good,LGG_good,LIHC_good,\ LUAD_good,LUSC_good,OV_good,SKCM_good,STAD_good] all_cancers2=[BLCA_bad,BRCA_bad,CESC_bad,COAD_bad,GBM_bad,\ HNSC_bad,KIRC_bad,KIRP_bad,LAML_bad,LGG_bad,LIHC_bad,\ LUAD_bad,LUSC_bad,OV_bad,SKCM_bad,STAD_bad] ##create a list of lists of the overlaps, use all_cancers1 for good overlaps, all_cancers2 for bad overlaps final_array=[] for i in all_cancers2[::-1]: temp=[] for j in all_cancers2[::-1]: temp.append(len([k for k in j if k in i])) final_array.append(temp) ##plotting, use blue_yellow_red1 cmap for good overlaps, blue_yellow_red2 for bad overlaps blue_yellow_red1 = make_colormap({0:'#00005C',.05:'#0000D0',.14:'#01BBCF',.15:'#33CC33',.2:'#FFFF00',.27:'#FF9900',.33:'#B47603',.35:'#A32900',1:'#751E00'}) blue_yellow_red2 = make_colormap({0:'#00005C',.05:'#0000D0',.14:'#01BBCF',.15:'#33CC33',.25:'#FFFF00',.3:'#FF9900',.38:'#B47603',.45:'#A32900',1:'#751E00'}) Z=
np.array(final_array)
numpy.array
# Copyright (c) 2015, <NAME> (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from GPy.inference.latent_function_inference.var_dtc import VarDTC from GPy.util.linalg import jitchol, tdot, dtrtri, dtrtrs, backsub_both_sides,\ dpotrs, dpotri, symmetrify, mdot from GPy.core.parameterization.variational import VariationalPosterior from GPy.util import diag from GPy.inference.latent_function_inference.posterior import Posterior log_2_pi = np.log(2*np.pi) import logging, itertools logger = logging.getLogger('vardtc') class VarDTCFixedCov(VarDTC): """ An object for inference when the likelihood is Gaussian, but we want to do sparse inference. The function self.inference returns a Posterior object, which summarizes the posterior. For efficiency, we sometimes work with the cholesky of Y*Y.T. To save repeatedly recomputing this, we cache it. save_per_dim: save the log likelihood per output dimension, this is for testing the differential gene expression analysis using BGPLVM and MRD """ const_jitter = 1e-6 def __init__(self, limit=1, save_per_dim=False): #self._YYTfactor_cache = caching.cache() from paramz.caching import Cacher self.limit = limit self.get_trYYT = Cacher(self._get_trYYT, limit) self.get_YYTfactor = Cacher(self._get_YYTfactor, limit) self.save_per_dim = save_per_dim def set_limit(self, limit): self.get_trYYT.limit = limit self.get_YYTfactor.limit = limit def _get_trYYT(self, Y): return np.einsum("ij,ij->", Y, Y) # faster than, but same as: # return np.sum(np.square(Y)) def __getstate__(self): # has to be overridden, as Cacher objects cannot be pickled. return self.limit def __setstate__(self, state): # has to be overridden, as Cacher objects cannot be pickled. self.limit = state from paramz.caching import Cacher self.get_trYYT = Cacher(self._get_trYYT, self.limit) self.get_YYTfactor = Cacher(self._get_YYTfactor, self.limit) def _get_YYTfactor(self, Y): """ find a matrix L which satisfies LLT = YYT. Note that L may have fewer columns than Y. """ N, D = Y.shape if (N>=D): return Y.view(np.ndarray) else: return jitchol(tdot(Y)) def compute_lik_per_dim(self, psi0, A, LB, _LBi_Lmi_psi1, beta, Y): lik_1 = (-0.5 * Y.shape[0] * (np.log(2. * np.pi) - np.log(beta)) - 0.5 * beta * np.einsum('ij,ij->j',Y,Y)) lik_2 = -0.5 * (np.sum(beta * psi0) - np.trace(A)) * np.ones(Y.shape[1]) lik_3 = -(np.sum(np.log(np.diag(LB)))) lik_4 = .5* beta**2 * ((_LBi_Lmi_psi1.dot(Y).T)**2).sum(1) return lik_1 + lik_2 + lik_3 + lik_4 def get_VVTfactor(self, Y, prec): return Y * prec # TODO chache this, and make it effective def inference(self, kern, X, Z, likelihood, Y, Y_metadata=None, Lm=None, dL_dKmm=None, fixed_covs_kerns=None, **kw): _, output_dim = Y.shape uncertain_inputs = isinstance(X, VariationalPosterior) #see whether we've got a different noise variance for each datum beta = 1./np.fmax(likelihood.gaussian_variance(Y_metadata), 1e-6) # VVT_factor is a matrix such that tdot(VVT_factor) = VVT...this is for efficiency! #self.YYTfactor = self.get_YYTfactor(Y) #VVT_factor = self.get_VVTfactor(self.YYTfactor, beta) het_noise = beta.size > 1 if het_noise: raise(NotImplementedError("Heteroscedastic noise not implemented, should be possible though, feel free to try implementing it :)")) if beta.ndim == 1: beta = beta[:, None] # do the inference: num_inducing = Z.shape[0] num_data = Y.shape[0] # kernel computations, using BGPLVM notation Kmm = kern.K(Z).copy() diag.add(Kmm, self.const_jitter) if Lm is None: Lm = jitchol(Kmm) # The rather complex computations of A, and the psi stats if uncertain_inputs: psi0 = kern.psi0(Z, X) psi1 = kern.psi1(Z, X) if het_noise: psi2_beta = np.sum([kern.psi2(Z,X[i:i+1,:]) * beta_i for i,beta_i in enumerate(beta)],0) else: psi2_beta = kern.psi2(Z,X) * beta LmInv = dtrtri(Lm) A = LmInv.dot(psi2_beta.dot(LmInv.T)) else: psi0 = kern.Kdiag(X) psi1 = kern.K(X, Z) if het_noise: tmp = psi1 * (np.sqrt(beta)) else: tmp = psi1 * (np.sqrt(beta)) tmp, _ = dtrtrs(Lm, tmp.T, lower=1) A = tdot(tmp) # factor B B = np.eye(num_inducing) + A LB = jitchol(B) # back substutue C into psi1Vf #tmp, _ = dtrtrs(Lm, psi1.T.dot(VVT_factor), lower=1, trans=0) #_LBi_Lmi_psi1Vf, _ = dtrtrs(LB, tmp, lower=1, trans=0) #tmp, _ = dtrtrs(LB, _LBi_Lmi_psi1Vf, lower=1, trans=1) #Cpsi1Vf, _ = dtrtrs(Lm, tmp, lower=1, trans=1) # data fit and derivative of L w.r.t. Kmm #delit = tdot(_LBi_Lmi_psi1Vf) # Expose YYT to get additional covariates in (YYT + Kgg): tmp, _ = dtrtrs(Lm, psi1.T, lower=1, trans=0) _LBi_Lmi_psi1, _ = dtrtrs(LB, tmp, lower=1, trans=0) tmp, _ = dtrtrs(LB, _LBi_Lmi_psi1, lower=1, trans=1) Cpsi1, _ = dtrtrs(Lm, tmp, lower=1, trans=1) # TODO: cache this: # Compute fixed covariates covariance: if fixed_covs_kerns is not None: K_fixed = 0 for name, [cov, k] in fixed_covs_kerns.iteritems(): K_fixed += k.K(cov) #trYYT = self.get_trYYT(Y) YYT_covs = (tdot(Y) + K_fixed) data_term = beta**2 * YYT_covs trYYT_covs = np.trace(YYT_covs) else: data_term = beta**2 * tdot(Y) trYYT_covs = self.get_trYYT(Y) #trYYT = self.get_trYYT(Y) delit = mdot(_LBi_Lmi_psi1, data_term, _LBi_Lmi_psi1.T) data_fit = np.trace(delit) DBi_plus_BiPBi = backsub_both_sides(LB, output_dim * np.eye(num_inducing) + delit) if dL_dKmm is None: delit = -0.5 * DBi_plus_BiPBi delit += -0.5 * B * output_dim delit += output_dim * np.eye(num_inducing) # Compute dL_dKmm dL_dKmm = backsub_both_sides(Lm, delit) # derivatives of L w.r.t. psi dL_dpsi0, dL_dpsi1, dL_dpsi2 = _compute_dL_dpsi(num_inducing, num_data, output_dim, beta, Lm, data_term, Cpsi1, DBi_plus_BiPBi, psi1, het_noise, uncertain_inputs) # log marginal likelihood log_marginal = _compute_log_marginal_likelihood(likelihood, num_data, output_dim, beta, het_noise, psi0, A, LB, trYYT_covs, data_fit, Y) if self.save_per_dim: self.saved_vals = [psi0, A, LB, _LBi_Lmi_psi1, beta] # No heteroscedastics, so no _LBi_Lmi_psi1Vf: # For the interested reader, try implementing the heteroscedastic version, it should be possible _LBi_Lmi_psi1Vf = None # Is just here for documentation, so you can see, what it was. #noise derivatives dL_dR = _compute_dL_dR(likelihood, het_noise, uncertain_inputs, LB, _LBi_Lmi_psi1Vf, DBi_plus_BiPBi, Lm, A, psi0, psi1, beta, data_fit, num_data, output_dim, trYYT_covs, Y, None) dL_dthetaL = likelihood.exact_inference_gradients(dL_dR,Y_metadata) #put the gradients in the right places if uncertain_inputs: grad_dict = {'dL_dKmm': dL_dKmm, 'dL_dpsi0':dL_dpsi0, 'dL_dpsi1':dL_dpsi1, 'dL_dpsi2':dL_dpsi2, 'dL_dthetaL':dL_dthetaL} else: grad_dict = {'dL_dKmm': dL_dKmm, 'dL_dKdiag':dL_dpsi0, 'dL_dKnm':dL_dpsi1, 'dL_dthetaL':dL_dthetaL} if fixed_covs_kerns is not None: # For now, we do not take the gradients, we can compute them, # but the maximum likelihood solution is to switch off the additional covariates.... dL_dcovs = beta * np.eye(K_fixed.shape[0]) - beta**2*tdot(_LBi_Lmi_psi1.T) grad_dict['dL_dcovs'] = -.5 * dL_dcovs #get sufficient things for posterior prediction #TODO: do we really want to do this in the loop? if 1: woodbury_vector = (beta*Cpsi1).dot(Y) else: import ipdb; ipdb.set_trace() psi1V = np.dot(Y.T*beta, psi1).T tmp, _ = dtrtrs(Lm, psi1V, lower=1, trans=0) tmp, _ = dpotrs(LB, tmp, lower=1) woodbury_vector, _ = dtrtrs(Lm, tmp, lower=1, trans=1) Bi, _ = dpotri(LB, lower=1) symmetrify(Bi) Bi = -dpotri(LB, lower=1)[0] diag.add(Bi, 1) woodbury_inv = backsub_both_sides(Lm, Bi) #construct a posterior object post = Posterior(woodbury_inv=woodbury_inv, woodbury_vector=woodbury_vector, K=Kmm, mean=None, cov=None, K_chol=Lm) return post, log_marginal, grad_dict def _compute_dL_dpsi(num_inducing, num_data, output_dim, beta, Lm, data_term, Cpsi1, DBi_plus_BiPBi, psi1, het_noise, uncertain_inputs): dL_dpsi0 = -0.5 * output_dim * (beta* np.ones([num_data, 1])).flatten() dL_dpsi1 = np.dot(data_term, Cpsi1.T) dL_dpsi2_beta = 0.5 * backsub_both_sides(Lm, output_dim * np.eye(num_inducing) - DBi_plus_BiPBi) if het_noise: if uncertain_inputs: dL_dpsi2 = beta[:, None] * dL_dpsi2_beta[None, :, :] else: dL_dpsi1 += 2.*np.dot(dL_dpsi2_beta, (psi1 * beta).T).T dL_dpsi2 = None else: dL_dpsi2 = beta * dL_dpsi2_beta if not uncertain_inputs: # subsume back into psi1 (==Kmn) dL_dpsi1 += 2.*np.dot(psi1, dL_dpsi2) dL_dpsi2 = None return dL_dpsi0, dL_dpsi1, dL_dpsi2 def _compute_dL_dR(likelihood, het_noise, uncertain_inputs, LB, _LBi_Lmi_psi1Vf, DBi_plus_BiPBi, Lm, A, psi0, psi1, beta, data_fit, num_data, output_dim, trYYT, Y, VVT_factr=None): # the partial derivative vector for the likelihood if likelihood.size == 0: # save computation here. dL_dR = None elif het_noise: if uncertain_inputs: raise(NotImplementedError, "heteroscedatic derivates with uncertain inputs not implemented") else: #from ...util.linalg import chol_inv #LBi = chol_inv(LB) LBi, _ = dtrtrs(LB,np.eye(LB.shape[0])) Lmi_psi1, nil = dtrtrs(Lm, psi1.T, lower=1, trans=0) _LBi_Lmi_psi1, _ = dtrtrs(LB, Lmi_psi1, lower=1, trans=0) dL_dR = -0.5 * beta + 0.5 * VVT_factr**2 dL_dR += 0.5 * output_dim * (psi0 - np.sum(Lmi_psi1**2,0))[:,None] * beta**2 dL_dR += 0.5*np.sum(mdot(LBi.T,LBi,Lmi_psi1)*Lmi_psi1,0)[:,None]*beta**2 dL_dR += -np.dot(_LBi_Lmi_psi1Vf.T,_LBi_Lmi_psi1).T * Y * beta**2 dL_dR += 0.5*np.dot(_LBi_Lmi_psi1Vf.T,_LBi_Lmi_psi1).T**2 * beta**2 else: # likelihood is not heteroscedatic dL_dR = -0.5 * num_data * output_dim * beta + 0.5 * trYYT * beta ** 2 dL_dR += 0.5 * output_dim * (psi0.sum() * beta ** 2 - np.trace(A) * beta) dL_dR += beta * (0.5 * np.sum(A * DBi_plus_BiPBi) - data_fit) return dL_dR def _compute_log_marginal_likelihood(likelihood, num_data, output_dim, beta, het_noise, psi0, A, LB, trYYT_covs, data_fit, Y): #compute log marginal likelihood if het_noise: lik_1 = -0.5 * num_data * output_dim * np.log(2. * np.pi) + 0.5 * output_dim * np.sum(np.log(beta)) - 0.5 * np.sum(beta.ravel() * np.square(Y).sum(axis=-1)) lik_2 = -0.5 * output_dim * (np.sum(beta.flatten() * psi0) - np.trace(A)) else: lik_1 = -0.5 * num_data * output_dim * (np.log(2. * np.pi) -
np.log(beta)
numpy.log
import random import pandas as pd import numpy as np from multiprocessing import Pool from scipy.spatial import distance from scipy.spatial.distance import cdist from src.configs import GENERAL, PREPROCESSING, MODELING N_RANDOM_OBS = None N_POTENTIAL_EL = 3 DISTANCE_TYPE = MODELING['distance_type'] class TripletGenerator: def __init__(self, n_jobs=5): self.n_jobs = n_jobs self.paired_nodes = [] @staticmethod def map_parallel(func, iterable_args, n_jobs=1): if n_jobs==1: return map(func, iterable_args) with Pool(n_jobs) as pool: result = pool.starmap(func, iterable_args) return result @staticmethod def corrected_cosine(x, y, corr): x, y, corr = np.array(x), np.array(y), np.array(corr) corrected_x = x - corr corrected_y = y - corr return distance.cosine(corrected_x, corrected_y) def choose_pos_x_hard(self, X, y, anchor_x, anchor_y, n_random_objects=N_RANDOM_OBS, distance_type=DISTANCE_TYPE): """ choose the pos label with attention on the most remote examples """ X = X[y==anchor_y] y = y[y==anchor_y] if n_random_objects is not None: n_random_objects = n_random_objects if n_random_objects < X.shape[0] else X.shape[0] else: n_random_objects = X.shape[0] indices = np.random.choice(X.shape[0], n_random_objects, replace=False) X, y = X[indices], y[indices] y = np.array(y) if distance_type == 'euclidean': d = self.map_parallel( lambda x, y: distance.euclidean(x, y)/distance.cosine(x, y), [(anchor_x, ex) for ex in X]) elif distance_type == 'cosine': d = self.map_parallel(distance.cosine, [(anchor_x, ex) for ex in X]) elif distance_type == 'minkowski': d = self.map_parallel( lambda x, y: distance.minkowski(x, y)/distance.cosine(x, y), [(anchor_x, ex) for ex in X]) elif distance_type == 'chebyshev': d = self.map_parallel( lambda x, y: distance.chebyshev(x, y)/distance.cosine(x, y), [(anchor_x, ex) for ex in X]) elif distance_type == 'cityblock': d = self.map_parallel( lambda x, y: distance.cityblock(x, y)/distance.cosine(x, y), [(anchor_x, ex) for ex in X]) else: raise KeyError('Unknown distance metric!') #print('pos', d.shape, X.shape) pos_x = X[np.argmax(d)] return pos_x def choose_neg_x_hard(self, X, y, anchor_x, pos_x, anchor_y, n_random_objects=N_RANDOM_OBS, distance_type=DISTANCE_TYPE): """ choose the neg label with attention on the closest exaples """ X = X[y!=anchor_y] y = y[y!=anchor_y] if n_random_objects is not None: n_random_objects = n_random_objects if n_random_objects < X.shape[0] else X.shape[0] else: n_random_objects = X.shape[0] indices = np.random.choice(X.shape[0], n_random_objects, replace=False) X, y = X[indices], y[indices] y = np.array(y) if distance_type == 'euclidean': d = self.map_parallel( lambda x, y: distance.euclidean(x, y)/self.corrected_cosine(pos_x, y, anchor_x), [(anchor_x, ex) for ex in X]) elif distance_type == 'cosine': d = self.map_parallel(distance.cosine, [(anchor_x, ex) for ex in X]) elif distance_type == 'minkowski': d = self.map_parallel( lambda x, y: distance.minkowski(x, y)/self.fixed_cosine(pos_x, y, anchor_x), [(anchor_x, ex) for ex in X]) elif distance_type == 'chebyshev': d = self.map_parallel( lambda x, y: distance.chebyshev(x, y)/self.fixed_cosine(pos_x, y, anchor_x), [(anchor_x, ex) for ex in X]) elif distance_type == 'cityblock': d = self.map_parallel( lambda x, y: distance.cityblock(x, y)/self.fixed_cosine(pos_x, y, anchor_x), [(anchor_x, ex) for ex in X]) else: raise KeyError('Unknown distance metric!') #print('neg', d.shape, X.shape) neg_x = X[np.argmin(d)] return neg_x def get_triplet(self, X, y): # choose random class probs = np.array([y[y==cls].shape[0]/y.shape[0] for cls in y]) probs = probs/sum(probs) anchor_y = np.random.choice(y, p=probs) anchor_x_idx = np.random.choice(X[y==anchor_y].shape[0]) anchor_x = X[y==anchor_y][anchor_x_idx] if y[y==anchor_y].shape[0] == 1: pos_x = anchor_x else: pos_x = self.choose_pos_x_hard(X, y, anchor_x, anchor_y) neg_x = self.choose_neg_x_hard(X, y, anchor_x, pos_x, anchor_y) return anchor_x, pos_x, neg_x def generate_triplets(self, X, y, batch_size): while 1: list_a = [] list_p = [] list_n = [] for i in range(batch_size): a, p, n = self.get_triplet(X, y) list_a.append(a) list_p.append(p) list_n.append(n) A = np.array(list_a, dtype='float32') P = np.array(list_p, dtype='float32') N = np.array(list_n, dtype='float32') # a "dummy" label which will come in to our identity loss # function below as y_true. We'll ignore it. label =
np.ones(batch_size)
numpy.ones
from __future__ import print_function import string import sys import os from collections import deque import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.switch_backend('Agg') import tensorflow as tf import keras keras.backend.image_data_format() from keras import backend as K from keras import regularizers from keras.layers import Input, Dense, Reshape, Lambda, Conv1D, Flatten, MaxPooling1D, UpSampling1D, GlobalMaxPooling1D from keras.layers import LSTM, Bidirectional, BatchNormalization, Dropout, Concatenate, Embedding, Activation, Dot, dot from keras.models import Model, clone_model, Sequential from keras.optimizers import Adam from keras.callbacks import EarlyStopping,ModelCheckpoint from keras.constraints import unitnorm from keras_layer_normalization import LayerNormalization tf.keras.backend.set_floatx('float32') import sklearn as sk from sklearn.base import BaseEstimator, _pprint from sklearn.utils import check_array, check_random_state from sklearn.utils.validation import check_is_fitted from sklearn.preprocessing import StandardScaler from sklearn.manifold import LocallyLinearEmbedding, MDS, Isomap, TSNE from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA, SparsePCA, TruncatedSVD, FastICA, NMF, MiniBatchDictionaryLearning from sklearn.random_projection import GaussianRandomProjection, SparseRandomProjection from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import KFold, GroupKFold, train_test_split from sklearn.metrics import mean_squared_error, explained_variance_score, mean_absolute_error, median_absolute_error, r2_score from sklearn.metrics import average_precision_score, precision_score, recall_score, f1_score, roc_auc_score, matthews_corrcoef from sklearn.metrics import roc_curve, precision_recall_curve, RocCurveDisplay, PrecisionRecallDisplay from sklearn.metrics import roc_auc_score,accuracy_score,matthews_corrcoef from scipy import stats from scipy.stats import multivariate_normal, kurtosis, skew, pearsonr, spearmanr import processSeq from processSeq import load_seq_1, kmer_dict, load_signal_1, load_seq_2, load_seq_2_kmer, load_seq_altfeature import xgboost import pickle import os.path from optparse import OptionParser import time from timeit import default_timer as timer import utility_1 from utility_1 import mapping_Idx import h5py import json # generate sequences # idx_sel_list: chrom, serial # seq_list: relative positions def generate_sequences(idx_sel_list, gap_tol=5, region_list=[]): chrom = idx_sel_list[:,0] chrom_vec = np.unique(chrom) chrom_vec = np.sort(chrom_vec) seq_list = [] print(len(chrom),chrom_vec) for chrom_id in chrom_vec: b1 = np.where(chrom==chrom_id)[0] t_serial = idx_sel_list[b1,1] prev_serial = t_serial[0:-1] next_serial = t_serial[1:] distance = next_serial-prev_serial b2 = np.where(distance>gap_tol)[0] if len(b2)>0: if len(region_list)>0: # print('region_list',region_list,len(b2)) b_1 = np.where(region_list[:,0]==chrom_id)[0] # print(b2) t_serial = idx_sel_list[b2,1] if len(b_1)>0: # b2 = np.setdiff1d(b2,region_list[b_1,1]) # print(region_list,region_list[b_1,1],len(b2)) t_id1 = utility_1.mapping_Idx(t_serial,region_list[b_1,1]) t_id1 = t_id1[t_id1>=0] t_id2 = b2[t_id1] b2 = np.setdiff1d(b2,t_id2) # print(len(b2)) # print(idx_sel_list[b2]) # return # print('gap',len(b2)) if len(b2)>0: t_seq = list(np.vstack((b2[0:-1]+1,b2[1:])).T) t_seq.insert(0,np.asarray([0,b2[0]])) t_seq.append(np.asarray([b2[-1]+1,len(b1)-1])) else: t_seq = [np.asarray([0,len(b1)-1])] # print(t_seq) # print(chrom_id,len(t_seq),max(distance)) seq_list.extend(b1[np.asarray(t_seq)]) return np.asarray(seq_list) # select sample def sample_select2a1(x_mtx, y, idx_sel_list, seq_list, tol=5, L=5): num_sample = len(idx_sel_list) num1 = len(seq_list) size1 = 2*L+1 print(num_sample,num1,size1) feature_dim = x_mtx.shape[1] vec1_local = np.zeros((num_sample,size1),dtype=int) vec1_serial = np.zeros((num_sample,size1),dtype=int) feature_mtx = np.zeros((num_sample,size1,feature_dim),dtype=np.float32) signal_mtx = np.zeros((num_sample,size1)) ref_serial = idx_sel_list[:,1] id_vec = np.zeros(num_sample,dtype=np.int8) for i in range(0,num1): s1, s2 = seq_list[i][0], seq_list[i][1]+1 serial = ref_serial[s1:s2] id_vec[s1:s2] = 1 # print('start stop',s1,s2,serial) num2 = len(serial) t1 = np.outer(list(range(s1,s2)),np.ones(size1)) t2 = t1 + np.outer(np.ones(num2),list(range(-L,L+1))) t2[t2<s1] = s1 t2[t2>=s2] = s2-1 idx = np.int64(t2) # print(idx) vec1_local[s1:s2] = idx vec1_serial[s1:s2] = ref_serial[idx] feature_mtx[s1:s2] = x_mtx[idx] signal_mtx[s1:s2] = y[idx] # if i%10000==0: # print(i,num2,vec1_local[s1],vec1_serial[s1]) id1 = np.where(id_vec>0)[0] num2 = len(id1) if num2<num_sample: feature_mtx, signal_mtx = feature_mtx[id1], signal_mtx[id1] # vec1_serial, vec1_local = vec1_serial[id1], vec1_local[id1] vec1_serial = vec1_serial[id1] id_1 = -np.ones(sample_num,dtype=np.int64) id_1[id1] = np.arange(num2) vec1_local = id_1[vec1_local] b1 = np.where(vec1_local<0)[0] if len(b1)>0: print('error!',b1) return -1 # signal_mtx = signal_mtx[:,np.newaxis] signal_mtx = np.expand_dims(signal_mtx, axis=-1) # signal_mtx = np.expand_dims(signal_ntx, axis=-1) return feature_mtx, signal_mtx, vec1_serial, vec1_local def score_2a(y, y_predicted): score1 = mean_squared_error(y, y_predicted) score2 = pearsonr(y, y_predicted) score3 = explained_variance_score(y, y_predicted) score4 = mean_absolute_error(y, y_predicted) score5 = median_absolute_error(y, y_predicted) score6 = r2_score(y, y_predicted) score7, pvalue = spearmanr(y,y_predicted) # vec1 = [score1, score2[0], score2[1], score3, score4, score5, score6] vec1 = [score1, score2[0], score2[1], score3, score4, score5, score6, score7, pvalue] return vec1 def read_phyloP(species_name): path1 = './' filename1 = '%s/estimate_rt/estimate_rt_%s.txt'%(path1,species_name) # filename2a = 'test_seq_%s.1.txt'%(species_name) file1 = pd.read_csv(filename1,sep='\t') col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) chrom_ori, start_ori, stop_ori, serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1['serial']) num_sample = len(chrom_ori) chrom_vec = np.unique(chrom_ori) chrom_vec = ['chr22'] for chrom_id in chrom_vec: filename1 = '%s/phyloP/hg19.phyloP100way.%s.bedGraph'%(path1,chrom_id) data1 = pd.read_csv(filename1,header=None,sep='\t') chrom, start, stop, score = data1[0], data1[1], data1[2], data1[3] len1 = stop-start b = np.where(chrom_ori==chrom_id)[0] num_sample1 = len(b) vec1 = np.zeros((num_sample1,16)) print(chrom_id,len(chrom),len(b)) cnt = 0 b1 = [-1] for i in b: t1 = b1[-1]+1 b1 = np.where((start[t1:]>=start_ori[i])&(stop[t1:]<stop_ori[i]))[0]+t1 if len(b1)==0: b1 = [-1] continue t_len1, t_score = np.asarray(len1[b1]), np.asarray(score[b1]) s1 = 0 s2 = np.sum(t_len1) i1 = cnt for j in range(0,12): temp1 = (j-8)*2.5 b2 = np.where((t_score<temp1+2.5)&(t_score>=temp1))[0] print(b2) vec1[i1,j] = np.sum(t_len1[b2])*1.0/s2 s1 = s1+temp1*vec1[i1,j] vec1[i1,12] = s1 # average vec1[i1,13] = np.median(t_score) vec1[i1,14] = np.max(t_score) vec1[i1,15] = np.min(t_score) cnt += 1 if cnt%1000==0: print(cnt,len(b1),s2,vec1[i1,12:16]) break # dict1 = dict() # dict1['vec'], dict1['index'] = vec1,b # np.save('phyloP_%s'%(chrom_id),dict1,allow_pickle=True) fields = ['index'] for j in range(0,12): temp1 = (j-8)*2.5 fields.append('%s-%s'%(temp1,temp1+2.5)) fields.extend(range(0,4)) data1 = pd.DataFrame(data = np.hstack((b[:,np.newaxis],vec1)),columns=fields) data1.to_csv('phyloP_%s.txt'%(chrom_id),sep='\t',index=False) return vec1 def read_phyloP_1(ref_filename,header,file_path,chrom_vec,n_level=15,offset=10,magnitude=2): file1 = pd.read_csv(ref_filename,header=header,sep='\t') # col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) colnames = list(file1) col1, col2, col3, col4 = colnames[0], colnames[1], colnames[2], colnames[3] chrom_ori, start_ori, stop_ori, serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1[col4]) num_sample = len(chrom_ori) # chrom_vec = np.unique(chrom_ori) # chrom_vec = [chrom_id] # n_level, offset, magnitude = 15, 10, 2 score_max = (n_level-offset)*magnitude for chrom_id in chrom_vec: # filename1 = '%s/hg19.phyloP100way.%s.bedGraph'%(file_path,chrom_id) filename1 = '%s/chr%s.phyloP100way.bedGraph'%(file_path,chrom_id) data1 = pd.read_csv(filename1,header=None,sep='\t') chrom, start, stop, score = data1[0], data1[1], data1[2], data1[3] len1 = stop-start chrom_id1 = 'chr%s'%(chrom_id) b = np.where(chrom_ori==chrom_id1)[0] num_sample1 = len(b) vec1 = np.zeros((num_sample1,n_level+4)) print(chrom_id,len(chrom),len(b)) cnt = 0 m_idx = len(start)-1 start_idx = 0 print("number of regions", len(b)) for i in b: t_start, t_stop = start_ori[i], stop_ori[i] # position of zero region position = [t_start,t_stop] if start_idx<=m_idx: b1, start_idx = utility_1.search_region_include(position, start, stop, m_idx, start_idx) # print(count,t_start,t_stop,t_stop-t_start,start_idx,len(id3)) if len(b1)==0: continue t_len1, t_score = np.asarray(len1[b1]), np.asarray(score[b1]) t_score[t_score>score_max] = score_max-1e-04 s1 = 0 s2 = np.sum(t_len1) for j in range(0,n_level): temp1 = (j-offset)*magnitude b2 = np.where((t_score<temp1+magnitude)&(t_score>=temp1))[0] # print(b2) vec1[cnt,j] = np.sum(t_len1[b2])*1.0/s2 s1 = s1+temp1*vec1[cnt,j] vec1[cnt,n_level:n_level+4] = [s1,np.median(t_score),np.max(t_score),np.min(t_score)] cnt += 1 pre_b1 = b1 if cnt%1000==0: print(chrom_id,cnt,len(b1),s2,vec1[cnt,-4:]) # break # dict1 = dict() # dict1['vec'], dict1['index'] = vec1,b # np.save('phyloP_%s'%(chrom_id),dict1,allow_pickle=True) fields = ['index'] for j in range(0,n_level): temp1 = (j-offset)*magnitude fields.append('%s-%s'%(temp1,temp1+magnitude)) fields.extend(range(0,4)) idx = serial_ori[b] data1 = pd.DataFrame(data = np.hstack((idx[:,np.newaxis],vec1)),columns=fields) data1.to_csv('phyloP_%s.txt'%(chrom_id),sep='\t',index=False) return vec1 def read_motif_1(filename,output_filename=-1): data1 = pd.read_csv(filename,sep='\t') colnames = list(data1) col1, col2, col3 = colnames[0], colnames[1], colnames[2] chrom, start, stop = np.asarray(data1[col1]), np.asarray(data1[col2]), np.asarray(data1[col3]) region_len = stop-start m1, m2, median_len = np.max(region_len), np.min(region_len), np.median(region_len) b1 = np.where(region_len!=median_len)[0] print(m1,m2,median_len,len(b1)) bin_size = median_len motif_name = colnames[3:] mtx1 = np.asarray(data1.loc[:,motif_name]) mtx1 = mtx1*1000.0/np.outer(region_len,np.ones(mtx1.shape[1])) print('motif',len(motif_name)) print(mtx1.shape) print(np.max(mtx1),np.min(mtx1),np.median(mtx1)) if output_filename!=-1: fields = colnames data1 = pd.DataFrame(columns=fields) data1[colnames[0]], data1[colnames[1]], data1[colnames[2]] = chrom, start, stop num1 = len(fields)-3 for i in range(0,num1): data1[colnames[i+3]] = mtx1[:,i] data1.to_csv(output_filename,header=True,index=False,sep='\t') print(output_filename, data1.shape) return mtx1, chrom, start, stop, colnames def read_gc_1(ref_filename,header,filename,output_filename): sel_idx = [] file1 = pd.read_csv(ref_filename,header=header,sep='\t') f_list = load_seq_altfeature(filename,sel_idx) # col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) colnames = list(file1) col1, col2, col3, col4 = colnames[0], colnames[1], colnames[2], colnames[3] chrom_ori, start_ori, stop_ori, serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1[col4]) num_sample = len(chrom_ori) if num_sample!=f_list.shape[0]: print('error!',num_sample,f_list.shape[0]) fields = ['chrom','start','stop','serial','GC','GC_N','GC_skew'] file2 = pd.DataFrame(columns=fields) file2['chrom'], file2['start'], file2['stop'], file2['serial'] = chrom_ori, start_ori, stop_ori, serial_ori for i in range(0,3): file2[fields[i+4]] = f_list[:,i] file2.to_csv(output_filename,index=False,sep='\t') return f_list def generate_serial(filename1,chrom,start,stop): # chrom_vec = np.sort(np.unique(chrom)) # print(chrom_vec) chrom_vec = [] for i in range(1,23): chrom_vec.append('chr%d'%(i)) chrom_vec += ['chrX'] chrom_vec += ['chrY'] print(chrom_vec) # print(chrom) print(len(chrom)) data1 = pd.read_csv(filename1,header=None,sep='\t') ref_chrom, chrom_size = np.asarray(data1[0]), np.asarray(data1[1]) serial_start = 0 serial_vec = np.zeros(len(chrom)) bin_size = stop[1]-start[1] print(bin_size) for chrom_id in chrom_vec: b1 = np.where(ref_chrom==chrom_id)[0] t_size = chrom_size[b1[0]] b2 = np.where(chrom==chrom_id)[0] if len(b1)>0: size1 = int(np.ceil(t_size*1.0/bin_size)) serial = np.int64(start[b2]/bin_size)+serial_start serial_vec[b2] = serial print(chrom_id,b2,len(serial),serial_start,size1) serial_start = serial_start+size1 else: print("error!") return return np.int64(serial_vec) def generate_serial_local(filename1,chrom,start,stop,chrom_num): # chrom_vec = np.sort(np.unique(chrom)) # print(chrom_vec) chrom_vec = [] for i in range(1,chrom_num+1): chrom_vec.append('chr%d'%(i)) chrom_vec += ['chrX'] chrom_vec += ['chrY'] chrom_vec += ['chrM'] print(chrom_vec) print(chrom) print(len(chrom)) t_chrom = np.unique(chrom) data1 = pd.read_csv(filename1,header=None,sep='\t') ref_chrom, chrom_size = np.asarray(data1[0]), np.asarray(data1[1]) # serial_start = np.zeros(len(chrom)) serial_start = 0 serial_start_1 = dict() serial_vec = np.zeros(len(chrom)) bin_size = stop[1]-start[1] print(bin_size) for chrom_id in chrom_vec: b1 = np.where(ref_chrom==chrom_id)[0] t_size = chrom_size[b1[0]] serial_start_1[chrom_id] = serial_start size1 = int(np.ceil(t_size*1.0/bin_size)) serial_start = serial_start+size1 for chrom_id in t_chrom: b2 = np.where(chrom==chrom_id) serial = np.int64(start[b2]/bin_size)+serial_start_1[chrom_id] serial_vec[b2] = serial return np.int64(serial_vec) def generate_serial_start(filename1,chrom,start,stop,chrom_num=19): # chrom_vec = np.sort(np.unique(chrom)) # print(chrom_vec) chrom_vec = [] for i in range(1,chrom_num+1): chrom_vec.append('chr%d'%(i)) chrom_vec += ['chrX'] chrom_vec += ['chrY'] print(chrom_vec) print(chrom) print(len(chrom)) data1 = pd.read_csv(filename1,header=None,sep='\t') ref_chrom, chrom_size = np.asarray(data1[0]), np.asarray(data1[1]) serial_start = 0 serial_vec = -np.ones(len(chrom)) bin_size = stop[1]-start[1] print(bin_size) start_vec = dict() for chrom_id in chrom_vec: start_vec[chrom_id] = serial_start b1 = np.where(ref_chrom==chrom_id)[0] t_size = chrom_size[b1[0]] b2 = np.where(chrom==chrom_id)[0] if len(b1)>0: size1 = int(np.ceil(t_size*1.0/bin_size)) serial = np.int64(start[b2]/bin_size)+serial_start serial_vec[b2] = serial print(chrom_id,b2,len(serial),serial_start,size1) serial_start = serial_start+size1 else: print("error!") return return np.int64(serial_vec), start_vec def shuffle_array(vec): num1 = len(vec) idx = np.random.permutation(num1) vec = vec[idx] return vec, idx # input: estimated attention, type_id: training, validation, or test data # output: ranking of attention def select_region1_sub(filename,type_id): data1 = pd.read_csv(filename,sep='\t') colnames = list(data1) # chrom start stop serial signal predicted_signal predicted_attention chrom, start, serial = data1['chrom'], data1['start'], data1['serial'] chrom, start, serial = np.asarray(chrom), np.asarray(start), np.asarray(serial) predicted_attention = data1['predicted_attention'] predicted_attention = np.asarray(predicted_attention) ranking = stats.rankdata(predicted_attention,'average')/len(predicted_attention) rank1 = np.zeros((len(predicted_attention),2)) rank1[:,0] = ranking chrom_vec = np.unique(chrom) for t_chrom in chrom_vec: b1 = np.where(chrom==t_chrom)[0] t_attention = predicted_attention[b1] t_ranking = stats.rankdata(t_attention,'average')/len(t_attention) rank1[b1,1] = t_ranking data1['Q1'] = rank1[:,0] # rank across all the included chromosomes data1['Q2'] = rank1[:,1] # rank by each chromosome data1['typeId'] = np.int8(type_id*np.ones(len(rank1))) return data1,chrom_vec # merge estimated attention from different training/test splits # type_id1: chromosome order; type_id2: training: 0, test: 1, valid: 2 def select_region1_merge(filename_list,output_filename,type_id1=0,type_id2=1): list1 = [] chrom_numList = [] # b1 = np.where((self.chrom!='chrX')&(self.chrom!='chrY'))[0] # ref_chrom, ref_start, ref_serial = self.chrom[b1], self.start[b1], self.serial[b1] # num_sameple = len(ref_chrom) i = 0 serial1 = [] num1 = len(filename_list) vec1 = list(range(num1)) if type_id1==1: vec1 = list(range(num1-1,-1,-1)) for i in vec1: filename1 = filename_list[i] # data1: chrom, start, stop, serial, signal, predicted_signal, predicted_attention, Q1, Q2, typeId # typeId: training: 0, test: 1, valid: 2 data1, chrom_vec = select_region1_sub(filename1,type_id2) print(filename1,len(data1)) # list1.append(data1) # if i==0: # serial1 = np.asarray(data1['serial']) t_serial = np.asarray(data1['serial'],dtype=np.int64) t_serial2 = np.setdiff1d(t_serial,serial1) serial1 = np.union1d(serial1,t_serial) id1 = mapping_Idx(t_serial,t_serial2) colnames = list(data1) data1 = data1.loc[id1,colnames] list1.append(data1) chrom_numList.append(chrom_vec) data2 = pd.concat(list1, axis=0, join='outer', ignore_index=True, keys=None, levels=None, names=None, verify_integrity=False, copy=True) print('sort') data2 = data2.sort_values(by=['serial']) data2.to_csv(output_filename,index=False,sep='\t') return data2, chrom_numList class Reader(object): def __init__(self, ref_filename, feature_idvec = [1,1,1,1]): # Initializes RepliSeq self.ref_filename = ref_filename self.feature_idvec = feature_idvec def generate_serial(self,filename1,filename2,output_filename,header=None): data1 = pd.read_csv(filename2, header=header, sep='\t') colnames = list(data1) chrom, start, stop = np.asarray(data1[colnames[0]]), np.asarray(data1[colnames[1]]), np.asarray(data1[colnames[2]]) serial_vec, start_vec = generate_serial_start(filename1,chrom,start,stop) if output_filename!=None: colnames2 = colnames[0:3]+['serial']+colnames[3:] data2 = pd.DataFrame(columns=colnames2) data2['serial'] = serial_vec for colname1 in colnames: data2[colname1] = data1[colname1] flag = False if header!=None: flag = True data2.to_csv(output_filename,header=flag,index=False,sep='\t') return serial_vec, start_vec def load_motif(self,filename1,motif_filename,output_filename): # output_filename = None # ref_filename = 'hg38.5k.serial.bed' # motif_filename = 'hg38.motif.count.txt' # output_filename1 = None mtx1, chrom, start, stop, colnames = read_motif_1(motif_filename) serial_vec, start_vec = generate_serial_start(filename1,chrom,start,stop) if output_filename!=None: colnames2 = ['chrom','start','stop','serial'] data2 = pd.DataFrame(columns=colnames2) data2['chrom'], data2['start'], data2['stop'], data2['serial'] = chrom, start, stop, serial_vec data3 = pd.DataFrame(columns=colnames[3:],data=mtx1) data1 = pd.concat([data2,data3], axis=1, join='outer', ignore_index=True, keys=None, levels=None, names=None, verify_integrity=False, copy=True) data1.to_csv(output_filename,header=True,index=False,sep='\t') print('data1',data1.shape) return True class ConvergenceMonitor(object): _template = "{iter:>10d} {logprob:>16.4f} {delta:>+16.4f}" def __init__(self, tol, n_iter, verbose): self.tol = tol self.n_iter = n_iter self.verbose = verbose self.history = deque(maxlen=2) self.iter = 0 def __repr__(self): class_name = self.__class__.__name__ params = dict(vars(self), history=list(self.history)) return "{0}({1})".format( class_name, _pprint(params, offset=len(class_name))) def report(self, logprob): if self.verbose: delta = logprob - self.history[-1] if self.history else np.nan message = self._template.format( iter=self.iter + 1, logprob=logprob, delta=delta) print(message, file=sys.stderr) self.history.append(logprob) self.iter += 1 @property def converged(self): return (self.iter == self.n_iter or (len(self.history) == 2 and self.history[1] - self.history[0] < self.tol)) class _Base1(BaseEstimator): def __init__(self, file_path, species_id, resolution, run_id, generate, chromvec,test_chromvec, featureid,type_id,cell,method,ftype,ftrans,tlist, flanking,normalize, config, attention=1,feature_dim_motif=1, kmer_size=[6,5]): # Initializes RepliSeq self.run_id = run_id self.cell = cell self.generate = generate self.train_chromvec = chromvec self.chromosome = chromvec[0] print('train_chromvec',train_chromvec) print('test_chromvec',test_chromvec) self.test_chromvec = test_chromvec self.config = config self.n_epochs = config['n_epochs'] self.species_id = species_id self.type_id = type_id self.cell_type = cell self.cell_type1 = config['celltype_id'] self.method = method self.ftype = ftype self.ftrans = ftrans[0] self.ftrans1 = ftrans[1] self.t_list = tlist self.flanking = flanking self.flanking1 = 3 self.normalize = normalize self.batch_size = config['batch_size'] # config = dict(output_dim=hidden_unit,fc1_output_dim=fc1,fc2_output_dim=fc2,units1=units1[0], # units2=units1[1],n_epochs=n_epochs,batch_size=batch_size) # config['feature_dim_vec'] = units1[2:] self.tol = config['tol'] self.attention = attention self.attention_vec = [12,17,22,32,51,52,58,60] self.attention_vec1 = [1] self.lr = config['lr'] self.step = config['step'] self.feature_type = -1 self.kmer_size = kmer_size self.activation = config['activation'] self.min_delta = config['min_delta'] self.chromvec_sel = chromvec self.feature_dim_transform = config['feature_dim_transform'] feature_idvec = [1,1,1,1] # ref_filename = 'hg38_5k_serial.bed' if 'ref_filename' in config: ref_filename = config['ref_filename'] else: ref_filename = 'hg38_5k_serial.bed' self.reader = Reader(ref_filename, feature_idvec) self.predict_type_id = 0 self.method = method self.train = self.config['train_mode'] self.path = file_path self.model_path = '%s/test_%d.h5'%(self.path,run_id) self.pos_code = config['pos_code'] self.feature_dim_select1 = config['feature_dim_select'] self.method_vec = [[11,31],[22,32,52,17,51,58,60],[56,62]] self.resolution = resolution # if self.species_id=='mm10': # self.cell_type1 = config['cell_type1'] if 'cell_type1' in self.config: self.cell_type1 = config['cell_type1'] if ('load_type' in self.config) and (self.config['load_type']==1): self.load_type = 1 else: self.load_type = 0 if (method>10) and not(method in [56]) : self.predict_context = 1 else: self.predict_context = 0 if ftype[0]==-5: self.feature_idx1= -5 # full dimensions elif ftype[0]==-6: self.feature_idx1 = -6 # frequency dimensions else: self.feature_idx1 = ftype if 'est_attention_type1' in self.config: self.est_attention_type1 = self.config['est_attention_type1'] else: self.est_attention_type1 = 1 if 'est_attention_sel1' in self.config: self.est_attention_sel1 = self.config['est_attention_sel1'] else: self.est_attention_sel1 = 0 # self.feature_idx = [0,2] self.feature_idx = featureid self.x, self.y = dict(), dict() # feature matrix and signals self.vec = dict() # serial self.vec_local = dict() if self.species_id.find('hg')>=0: self.chrom_num = 22 elif self.species_id.find('mm')>=0: self.chrom_num = 19 else: self.chrom_num = -1 self.region_list_test, self.region_list_train, self.region_list_valid = [],[],[] if 'region_list_test' in config: self.region_list_test = config['region_list_test'] if 'region_list_train' in config: self.region_list_train = config['region_list_train'] if 'region_list_valid' in config: self.region_list_valid = config['region_list_valid'] flag = False if 'scale' in config: flag = True self.scale = config['scale'] else: self.scale = [0,1] if ('activation_basic' in config) and (config['activation_basic']=='tanh'): if (flag==True) and (self.scale[0]>=0): flag = False if flag==False: self.scale = [-1,1] self.region_boundary = [] self.serial_vec = [] self.f_mtx = [] print('scale',self.scale) print(self.test_chromvec) filename1 = '%s_chr%s-chr%s_chr%s-chr%s'%(self.cell_type, self.train_chromvec[0], self.train_chromvec[-1], self.test_chromvec[0], self.test_chromvec[-1]) self.filename_load = filename1 print(self.filename_load,self.method,self.predict_context,self.attention) self.set_generate(generate,filename1) def load_ref_serial(self, ref_filename, header=None): if header==None: file1 = pd.read_csv(ref_filename,header=header,sep='\t') else: file1 = pd.read_csv(ref_filename,sep='\t') colnames = list(file1) # col1, col2, col3 = '%s.chrom'%(species_name), '%s.start'%(species_name), '%s.stop'%(species_name) col1, col2, col3, col_serial = colnames[0], colnames[1], colnames[2], colnames[3] self.chrom_ori, self.start_ori, self.stop_ori, self.serial_ori = np.asarray(file1[col1]), np.asarray(file1[col2]), np.asarray(file1[col3]), np.asarray(file1[col_serial]) print('load ref serial', self.serial_ori.shape) return self.serial_ori # load local serial and signal def load_local_serial(self, filename1, header=None, region_list=[], type_id2=1, signal_normalize=1,region_list_1=[]): if header==None: file2 = pd.read_csv(filename1,header=header,sep='\t') else: file2 = pd.read_csv(filename1,sep='\t') colnames = list(file2) col1, col2, col3, col_serial = colnames[0], colnames[1], colnames[2], colnames[3] # sort the table by serial file2 = file2.sort_values(by=[col_serial]) self.chrom, self.start, self.stop, self.serial = np.asarray(file2[col1]), np.asarray(file2[col2]), np.asarray(file2[col3]), np.asarray(file2[col_serial]) b = np.where((self.chrom!='chrX')&(self.chrom!='chrY')&(self.chrom!='chrM'))[0] self.chrom, self.start, self.stop, self.serial = self.chrom[b], self.start[b], self.stop[b], self.serial[b] if self.chrom_num>0: chrom_num = self.chrom_num else: chrom_num = len(np.unique(self.chrom)) chrom_vec = [str(i) for i in range(1,chrom_num+1)] print('chrom_vec', chrom_vec) self.bin_size = self.stop[1]-self.start[1] scale = self.scale if len(colnames)>=5: col_signal = colnames[4] self.signal = np.asarray(file2[col_signal]) self.signal = self.signal[b] self.signal_pre = self.signal.copy() if signal_normalize==1: if self.run_id>10: # self.signal = signal_normalize(self.signal,[0,1]) # normalize signals self.signal_pre1, id1, signal_vec1 = self.signal_normalize_chrom(self.chrom,self.signal,chrom_vec,scale) if not('train_signal_update' in self.config) or (self.config['train_signal_update']==1): train_signal, id2, signal_vec2 = self.signal_normalize_chrom(self.chrom,self.signal,self.train_chromvec,scale) id_1 = mapping_Idx(id1,id2) self.signal = self.signal_pre1.copy() self.signal[id_1] = train_signal else: self.signal = self.signal_pre1.copy() else: print('signal_normalize_bychrom') self.signal, id1, signal_vec = self.signal_normalize_bychrom(self.chrom,self.signal,chrom_vec,scale) else: self.signal = np.ones(len(b)) # print(self.signal.shape) print('load local serial', self.serial.shape, self.signal.shape, np.max(self.signal), np.min(self.signal)) if 'tol_region_search' in self.config: tol = self.config['tol_region_search'] else: tol = 2 # only train or predict on some regions print('load_local_serial',len(self.chrom)) if len(region_list_1)>0: num1 = len(region_list_1) list1 = [] for i in range(num1): t_region = region_list_1[i] t_chrom, t_start, t_stop = 'chr%d'%(t_region[0]), t_region[1], t_region[2] t_id1 = np.where((self.chrom==t_chrom)&(self.start<t_stop)&(self.stop>t_start))[0] list1.extend(t_id1) b1 = np.asarray(list1) self.chrom, self.start, self.stop, self.serial = self.chrom[b1], self.start[b1], self.stop[b1], self.serial[b1] print('load_local_serial',num1,len(self.chrom)) print(region_list_1) if len(region_list)>0: # print('load_local_serial',region_list) # id1, region_list = self.region_search_1(chrom,start,stop,serial,region_list) id1, region_list = self.region_search_1(self.chrom,self.start,self.stop,self.serial,region_list,type_id2,tol) self.chrom, self.start, self.stop, self.serial, self.signal = self.chrom[id1], self.start[id1], self.stop[id1], self.serial[id1], self.signal[id1] id2 = self.region_search_boundary(self.chrom,self.start,self.stop,self.serial,region_list) # print('region_search_boundary', id2[:,0], self.start[id2[:,1:3]],self.stop[id2[:,1:3]]) self.region_boundary = id2 # print(self.serial[id2[:,1:3]]) print('region_boundary',id2) # return else: print('load_local_serial',region_list) # assert len(region_list)>0 # return return self.serial, self.signal # training, validation and test data index def prep_training_test(self,train_sel_list_ori): train_id1, test_id1, y_signal_train1, y_signal_test, train1_sel_list, test_sel_list = self.generate_train_test_1(train_sel_list_ori) self.idx_list = {'test':test_id1} self.y_signal = {'test':y_signal_test} if len(y_signal_test)>0: print('y_signal_test',np.max(y_signal_test),np.min(y_signal_test)) if len(y_signal_train1)>0: print('y_signal_train',np.max(y_signal_train1),np.min(y_signal_train1)) self.idx_list.update({'train':[],'valid':[]}) else: return # y_signal_test_ori = signal_normalize(y_signal_test,[0,1]) # shuffle array # x_test_trans, shuffle_id2 = shuffle_array(x_test_trans) # test_sel_list = test_sel_list[shuffle_id2] # x_train1_trans, shuffle_id1 = shuffle_array(x_train1_trans) # train_sel_list = train_sel_list[shuffle_id1] print(train1_sel_list[0:5]) # split training and validation data if 'ratio1' in self.config: ratio = self.config['ratio1'] else: ratio = 0.95 if 'type_id1' in self.config: type_id_1 = self.config['type_id1'] else: type_id_1 = 0 idx_train, idx_valid, idx_test = self.generate_index_1(train1_sel_list, test_sel_list, ratio, type_id_1) print('idx_train,idx_valid,idx_test', len(idx_train), len(idx_valid), len(idx_test)) if (len(self.region_list_train)>0) or (len(self.region_list_valid)>0): idx_train, idx_valid = self.generate_train_test_2(train1_sel_list,idx_train,idx_valid) print('idx_train,idx_valid', len(idx_train), len(idx_valid)) train_sel_list, val_sel_list = train1_sel_list[idx_train], train1_sel_list[idx_valid] self.idx_list.update({'train':train_id1[idx_train],'valid':train_id1[idx_valid]}) self.idx_train_val = {'train':idx_train,'valid':idx_valid} self.y_signal.update({'train':y_signal_train1[idx_train],'valid':y_signal_train1[idx_valid]}) return train_sel_list, val_sel_list, test_sel_list # prepare data from predefined features: kmer frequency feature and motif feature def prep_data_sub2(self,path1,file_prefix,type_id2,feature_dim1,feature_dim2,flag_1): species_id = self.species_id celltype_id = self.cell_type1 if species_id=='mm10': kmer_dim_ori, motif_dim_ori = 100, 50 filename1 = '%s/%s_%d_%d_%d.npy'%(path1,file_prefix,type_id2,kmer_dim_ori,motif_dim_ori) # filename2 = 'test_%s_genome%d_kmer7.h5'%(species_id,celltype_id) filename2 = '%s_%d_kmer7_0_200_trans.h5'%(species_id,celltype_id) else: kmer_dim_ori, motif_dim_ori = 50, 50 filename1 = '%s/%s_%d_%d_%d.npy'%(path1,file_prefix,type_id2,kmer_dim_ori,motif_dim_ori) # filename2 = 'test_%s_kmer7.h5'%(species_id) filename2 = '%s_kmer7_0_200_trans.h5'%(species_id) kmer_size1, kmer_size2, kmer_size3 = 5,6,7 x_train1_trans, train_sel_list_ori = [], [] flag1, flag2 = 0, 0 flag3 = True # if kmer_size2 in self.kmer_size: if flag3==True: if os.path.exists(filename1)==True: print("loading data...") data1 = np.load(filename1,allow_pickle=True) data_1 = data1[()] x_train1_trans_ori, train_sel_list_ori = np.asarray(data_1['x1']), np.asarray(data_1['idx']) print('train_sel_list',train_sel_list_ori.shape) print('x_train1_trans',x_train1_trans_ori.shape) if kmer_size2 in self.kmer_size: flag1 = 1 serial1 = train_sel_list_ori[:,1] dim1 = x_train1_trans_ori.shape[1] if (self.feature_dim_motif==0) or (flag_1==True): x_train1_trans = x_train1_trans_ori[:,0:-motif_dim_ori] else: # d1 = np.min((dim1-motif_dim_ori+feature_dim2,d1)) # d2 = dim1-motif_dim_ori # sel_id1 = list(range(21))+list(range(21,21+feature_dim1)) # x_train1_trans_1 = x_train1_trans[:,sel_id1] # x_train1_trans_2 = x_train1_trans[:,d2:d1] x_train1_trans_1 = x_train1_trans_ori[:,0:dim1-motif_dim_ori] x_train1_trans_2 = x_train1_trans_ori[:,dim1-motif_dim_ori:] else: print('data not found!') print(filename1) return x_train1_trans, trans_sel_list_ori if kmer_size3 in self.kmer_size: with h5py.File(filename2,'r') as fid: serial2 = fid["serial"][:] feature_mtx = fid["vec"][:] # feature_mtx = feature_mtx[:,0:kmer_dim_ori] print(serial2) print(len(serial2),feature_mtx.shape) flag2 = 1 if flag1==1: if flag2==1: t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial) id2 = mapping_Idx(serial2,t_serial) if 'feature_dim_transform_1' in self.config: sel_idx = self.config['feature_dim_transform_1'] sel_id1, sel_id2 = list(0,21)+list(range(sel_idx[0])), range(sel_idx[1]) else: sel_id1 = list(0,21)+list(range(10)) sel_id2 = range(feature_dim1-sel_idx1) if (self.feature_dim_motif==0) or (flag_1==True): x_train1_trans = np.hstack((x_train1_trans[id1,sel_id1],feature_mtx[id2,sel_id2])) else: x_train1_trans = np.hstack((x_train1_trans_1[id1,sel_id1],feature_mtx[id2,sel_id2],x_train1_trans_2[id1,0:feature_dim2])) train_sel_list_ori = train_sel_list_ori[id1] else: pass elif flag2==1: t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial) id2 = mapping_Idx(serial2,t_serial) x_train1_trans = np.hstack((x_train1_trans_ori[id1,0:2],feature_mtx[id2,0:feature_dim1])) train_sel_list_ori = train_sel_list_ori[id1] self.feature_dim_select1 = -1 if (self.feature_dim_motif==1) and (flag_1==False): x_train1_trans = np.hstack((x_train1_trans,x_train1_trans_2[id1,0:feature_dim2])) # id1 = mapping_Idx(self.serial_ori,serial2) # b1 = (id1>=0) # id1 = id1[b1] # serial2, feature_mtx = serial2[b1], feature_mtx[b1] # chrom1 = self.chrom_ori[id1] # chrom2 = np.zeros(len(serial2),dtype=np.int32) # chrom_vec = np.unique(chrom1) # for chrom_id in chrom_vec: # b2 = np.where(chrom1==chrom_id)[0] # chrom_id1 = int(chrom_id[3:]) # chrom2[b2] = chrom_id1 # x_train1_trans = feature_mtx[:,0:feature_dim1] # trans_sel_list_ori = np.vstack((chrom2,serial2)).T else: print('data not found!') return x_train1_trans, train_sel_list_ori # prepare data from predefined features def prep_data_sub1(self,path1,file_prefix,type_id2,feature_dim_transform,load_type=0): self.feature_dim_transform = feature_dim_transform # map_idx = mapping_Idx(serial_ori,serial) sub_sample_ratio = 1 shuffle = 0 normalize, flanking, attention, run_id = self.normalize, self.flanking, self.attention, self.run_id config = self.config vec2 = dict() tol = self.tol L = flanking # np.save(filename1) print("feature transform") # filename1 = '%s/%s_%d_%d_%d.npy'%(path1,file_prefix,type_id2,feature_dim_transform[0],feature_dim_transform[1]) print(self.species_id) t_featuredim1, t_featuredim2 = feature_dim_transform[0], feature_dim_transform[1] flag1 = False if self.species_id=='hg38': if 'motif_trans_typeid' in self.config: flag1 = True if (self.species_id=='mm10'): flag1 = True if (t_featuredim1>0) or (flag1==False): x_train1_trans, train_sel_list_ori = self.prep_data_sub2(path1,file_prefix,type_id2,t_featuredim1,t_featuredim2,flag1) if len(x_train1_trans)==0: print('data not found!') return -1 if t_featuredim2>0: print('train_sel_list',train_sel_list_ori.shape) print('x_train1_trans',x_train1_trans.shape) if (self.feature_dim_motif>=1) and (flag1==True): if self.species_id=='mm10': annot1 = '%s_%d_motif'%(self.species_id,self.cell_type1) else: annot1 = '%s_motif'%(self.species_id) motif_trans_typeid = self.config['motif_trans_typeid'] motif_featuredim = self.config['motif_featuredim'] motif_filename = '%s_%d_%d_trans.h5'%(annot1,motif_trans_typeid,motif_featuredim) if motif_featuredim<t_featuredim2: print('error! %d %d',motif_featuredim,t_featuredim2) t_featuredim2 = motif_featuredim with h5py.File(motif_filename,'r') as fid: serial_1 = fid["serial"][:] motif_data = fid["vec"][:] print(len(serial_1),motif_data.shape) serial1 = train_sel_list_ori[:,1] serial2 = serial_1 t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial) id2 = mapping_Idx(serial2,t_serial) x_train1_trans = np.hstack((x_train1_trans[id1],motif_data[id2,0:t_featuredim2])) train_sel_list_ori = train_sel_list_ori[id1] # train_sel_list_ori2 = serial_1[id2] else: print("data not found!") return x_train1_trans = self.feature_dim_select(x_train1_trans,feature_dim_transform) # feature loaded not specific to cell type if load_type==1: return x_train1_trans, train_sel_list_ori list1 = ['motif_feature','feature2'] for t_feature in list1: if (t_feature in self.config) and (self.config[t_feature]==1): if t_feature=='feature2': pre_config = self.config['pre_config'] if self.chrom_num>0: chrom_num = self.chrom_num else: chrom_num = len(np.unique(self.chrom)) chrom_vec = list(range(1,chrom_num+1)) feature_mtx2, serial_2 = self.prep_data_sequence_3(pre_config,chrom_vec) else: x = 1 x_train1_trans_ori1 = x_train1_trans.copy() train_sel_list_ori1 = train_sel_list_ori.copy() serial1 = train_sel_list_ori[:,1] serial2 = serial_2[:,1] t_serial = np.intersect1d(serial1,serial2) id1 = mapping_Idx(serial1,t_serial)[0] id2 = mapping_Idx(serial2,t_serial)[0] x_train1_trans = np.hstack((x_train1_trans[id1],feature_mtx2[id2])) train_sel_list_ori = train_sel_list_ori[id1] train_sel_list_ori2 = serial_2[id2] b1 = np.where(train_sel_list_ori[:,0]!=train_sel_list_ori2[:,0])[0] if len(b1)>0: print('error! train_sel_list_ori',len(b1)) if ('centromere' in self.config) and (self.config['centromere']==1): regionlist_filename = 'hg38.centromere.bed' serial1 = train_sel_list_ori[:,1] serial_list1, centromere_serial = self.select_region(serial1, regionlist_filename) id1 = mapping_Idx(serial1,serial_list1) id1 = id1[id1>=0] x_train1_trans = x_train1_trans[id1] train_sel_list_ori = train_sel_list_ori[id1] print(x_train1_trans.shape,train_sel_list_ori.shape) print('positional encoding', self.pos_code) print('feature dim',x_train1_trans.shape) self.feature_dim = x_train1_trans.shape[1] start = time.time() if self.pos_code ==1: x_train1_trans = self.positional_encoding1(x_train1_trans,train_sel_list_ori,self.feature_dim) print(x_train1_trans.shape) stop = time.time() print('positional encoding', stop-start) ## shuffle array if ('shuffle' in self.config) and (self.config['shuffle']==1): x_train1_trans, shuffle_id1 = shuffle_array(x_train1_trans) print('array shuffled') # np.random.shuffle(x_tran1_trans) # train_sel_list = train_sel_list[shuffle_id1] elif ('noise' in self.config) and (self.config['noise']>0): if self.config['noise']==1: x_train1_trans = np.zeros_like(x_train1_trans) print('x_train1_trans, noise 1', x_train1_trans[0:5]) elif self.config['noise']==2: x_train1_trans = np.random.uniform(0,1,x_train1_trans.shape) else: x_train1_trans = np.random.normal(0,1,x_train1_trans.shape) else: pass if 'sub_sample_ratio' in self.config: sub_sample_ratio = self.config['sub_sample_ratio'] num_sample = len(train_sel_list_ori) sub_sample = int(num_sample*sub_sample_ratio) train_sel_list_ori = train_sel_list_ori[0:sub_sample] x_train1_trans = x_train1_trans[0:sub_sample] # align train_sel_list_ori and serial print(train_sel_list_ori.shape,len(self.serial)) id1 = mapping_Idx(train_sel_list_ori[:,1],self.serial) id2 = (id1>=0) print('mapping',len(self.serial),np.sum(id2),len(self.serial),len(id2)) # self.chrom, self.start, self.stop, self.serial, self.signal = self.chrom[id2], self.start[id2], self.stop[id2], self.serial[id2], self.signal[id2] self.local_serial_1(id2) id1 = id1[id2] train_sel_list_ori = train_sel_list_ori[id1] x_train1_trans = x_train1_trans[id1] self.x_train1_trans = x_train1_trans self.train_sel_list = train_sel_list_ori return x_train1_trans, train_sel_list_ori def output_generate_sequences(self,idx_sel_list,seq_list): num1 = len(seq_list) t_serial1 = idx_sel_list[:,1] seq_list = np.asarray(seq_list) t_serial = t_serial1[seq_list] id1 = mapping_Idx(self.serial,t_serial[:,0]) chrom1, start1, stop1 = self.chrom[id1], self.start[id1], self.stop[id1] id2 = mapping_Idx(self.serial,t_serial[:,1]) chrom2, start2, stop2 = self.chrom[id2], self.start[id2], self.stop[id2] fields = ['chrom','start','stop','serial1','serial2'] data1 = pd.DataFrame(columns=fields) data1['chrom'], data1['start'], data1['stop'] = chrom1, start1, stop2 data1['serial1'], data1['serial2'] = t_serial[:,0], t_serial[:,1] data1['region_len'] = t_serial[:,1]-t_serial[:,0]+1 output_filename = 'test_seqList_%d_%d.txt'%(idx_sel_list[0][0],idx_sel_list[0][1]) data1.to_csv(output_filename,index=False,sep='\t') return True # prepare data from predefined features def prep_data(self,path1,file_prefix,type_id2,feature_dim_transform): x_train1_trans, train_sel_list_ori = self.prep_data_sub1(path1,file_prefix,type_id2,feature_dim_transform) train_sel_list, val_sel_list, test_sel_list = self.prep_training_test(train_sel_list_ori) # keys = ['train','valid','test'] keys = ['train','valid'] # self.idx_sel_list = {'train':train1_sel_list,'valid':val_sel_list,'test':test_sel_list} idx_sel_list = {'train':train_sel_list,'valid':val_sel_list,'test':test_sel_list} # self.idx_sel_list = idx_sel_list # seq_list_train, seq_list_valid: both locally calculated self.seq_list = dict() start = time.time() for i in keys: self.seq_list[i] = generate_sequences(idx_sel_list[i],region_list=self.region_boundary) print(len(self.seq_list[i])) self.output_generate_sequences(idx_sel_list[i],self.seq_list[i]) stop = time.time() print('generate_sequences', stop-start) # generate initial state index self.init_id = dict() self.init_index(keys) # training and validation data # x_train1_trans = self.x_train1_trans for i in keys: idx = self.idx_list[i] if self.method<5 or self.method in [56]: self.x[i] = x_train1_trans[idx] self.y[i] = self.y_signal[i] print(self.x[i].shape, self.y[i].shape) else: idx_sel_list = self.train_sel_list[idx] start = time.time() x, y, self.vec[i], self.vec_local[i] = sample_select2a1(x_train1_trans[idx],self.y_signal[i], idx_sel_list, self.seq_list[i], self.tol, self.flanking) stop = time.time() print('sample_select2a1',stop-start) # concate context for baseline methods if self.method<=10: # x_train, x_valid, y_train, y_valid = train_test_split(x_train1, y_train1, test_size=0.2, random_state=42) x = x.reshape(x.shape[0],x.shape[1]*x.shape[-1]) y = y[:,self.flanking] self.x[i], self.y[i] = x, y print(self.x[i].shape, self.y[i].shape) return True # prepare data from predefined features def prep_data_1(self,path1,file_prefix,type_id2,feature_dim_transform, n_fold=5, ratio=0.9, type_id=1): x_train1_trans, train_sel_list_ori = self.prep_data_sub1(path1,file_prefix,type_id2,feature_dim_transform) print(train_sel_list_ori) id1 = mapping_Idx(train_sel_list_ori[:,1],self.serial) id2 = (id1>=0) print('mapping',len(self.serial),np.sum(id2)) self.chrom, self.start, self.stop, self.serial, self.signal = self.chrom[id2], self.start[id2], self.stop[id2], self.serial[id2], self.signal[id2] id1 = id1[id2] train_sel_list_ori = train_sel_list_ori[id1] self.x_train1_trans = self.x_train1_trans[id1] print(train_sel_list_ori.shape,self.x_train1_trans.shape) id_vec = self.generate_index_2(train_sel_list_ori, n_fold=n_fold, ratio=ratio, type_id=type_id) return id_vec def find_serial_ori_1_local(self,chrom_vec,type_id2=1): # filename1 = 'mm10_%d_%s_encoded1.h5'%(self.config['cell_type1'],chrom_id1) self.species_id = 'mm10' self.cell_type1 = self.config['cell_type1'] file_path1 = '/work/magroup/yy3/data1/replication_timing3/mouse' # filename1 = '%s/mm10_5k_seq_genome%d_1.txt'%(file_path1,self.config['cell_type1']) chrom_id1 = 'chr1' filename1 = '%s_%d_%s_encoded1.h5'%(self.species_id,self.cell_type1,chrom_id1) list1, list2 = [], [] serial_vec = [] print(filename1) if os.path.exists(filename1)==False: # prepare data from predefined features # one hot encoded feature vectors for each chromosome self.prep_data_sequence_ori() print('prep_data_sequence_ori',filename1) for chrom_id in chrom_vec: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) # if self.config['species_id']==0: # filename2 = 'mm10_%d_%s_encoded1.h5'%(self.config['cell_type1'],chrom_id1) # else: # filename2 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) filename2 = '%s_%d_%s_encoded1.h5'%(self.species_id,self.cell_type1,chrom_id1) with h5py.File(filename2,'r') as fid: serial1 = fid["serial"][:] if type_id2==1: seq1 = fid["vec"][:] list2.extend(seq1) list1.extend([chrom_id]*len(serial1)) serial_vec.extend(serial1) print(chrom_id,len(serial1)) list1, serial_vec = np.asarray(list1), np.asarray(serial_vec) serial_vec = np.hstack((list1[:,np.newaxis],serial_vec)) f_mtx = np.asarray(list2) # data_1 = pd.read_csv(filename1,sep='\t') # colnames = list(data_1) # local_serial = np.asarray(data_1['serial']) # local_seq = np.asarray(data_1['seq']) # print('local_seq', local_seq.shape) # serial_vec = local_serial # f_mtx = local_seq # filename2 = '%s/mm10_5k_serial.bed'%(file_path1) # file2 = pd.read_csv(filename2,header=None,sep='\t') # ref_chrom, ref_start, ref_stop, ref_serial = np.asarray(file2[0]), np.asarray(file2[1]), np.asarray(file2[2]), np.asarray(file2[3]) # # assert list(local_serial==list(ref_serial)) # id_vec1 = [] # for chrom_id in chrom_vec: # # if chrom_id<22: # # continue # # chrom_id1 = 'chr%s'%(chrom_id) # id1 = np.where(ref_chrom=='chr%d'%(chrom_id))[0] # id_vec1.extend(id1) # print(chrom_id,len(id1)) # id_vec1 = np.asarray(id_vec1) # ref_chrom_1, ref_serial_1 = ref_chrom[id_vec1], ref_serial[id_vec1] # print('ref chrom local', len(ref_chrom_1), len(ref_serial_1)) # id1 = utility_1.mapping_Idx(ref_serial_1,local_serial) # id2 = np.where(id1>=0)[0] # id1 = id1[id2] # # assert len(id2)==len(id1) # chrom1 = ref_chrom_1[id1] # local_chrom = [int(chrom1[3:]) for chrom1 in ref_chrom_1] # local_chrom = np.asarray(local_chrom) # local_serial, local_seq = local_serial[id2], local_seq[id2] # serial_vec = np.column_stack((local_chrom,local_serial)) # f_mtx = np.asarray(local_seq) return serial_vec, f_mtx # find serial and feature vectors # input: type_id1: load sequence feature or kmer frequency feature, motif feature # type_id2: load serial or feature vectors def find_serial_ori_1(self,file_path,file_prefix,chrom_vec,type_id1=0,type_id2=0,select_config={}): # load the sequences if type_id1==0: # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) filename1 = '%s_serial_2.txt'%(self.species_id) list1, list2 = [], [] serial_vec = [] if (os.path.exists(filename1)==False) or (type_id2==1): if self.config['species_id']==0: serial_vec, list2 = self.find_serial_ori_1_local(chrom_vec) else: for chrom_id in chrom_vec: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) filename2 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) with h5py.File(filename2,'r') as fid: serial1 = fid["serial"][:] if type_id2==1: seq1 = fid["vec"][:] list2.extend(seq1) list1.extend([chrom_id]*len(serial1)) serial_vec.extend(serial1) print(chrom_id,len(serial1)) list1, serial_vec = np.asarray(list1), np.asarray(serial_vec) serial_vec = np.hstack((list1[:,np.newaxis],serial_vec)) np.savetxt(filename1,serial_vec,fmt='%d',delimiter='\t') else: serial_vec = np.loadtxt(filename1,dtype=np.int64) if serial_vec.shape[-1]>2: cnt1 = serial_vec[:,-1] b1 = np.where(cnt1>0)[0] ratio1 = len(b1)/len(serial_vec) print('sequence with N', len(b1),len(serial_vec),ratio1) # serial_vec = serial_vec[:,0] f_mtx = np.asarray(list2) elif type_id1==2: filename1 = select_config['input_filename1'] layer_name = select_config['layer_name'] with h5py.File(filename1,'r') as fid: f_mtx = np.asarray(fid[layer_name][:],dtype=np.float32) print(f_mtx.shape) serial_vec = fid["serial"][:] assert len(serial_vec )==f_mtx.shape[0] print(serial_vec[0:5]) else: # load kmer frequency features and motif features load_type_id2 = 0 x_train1_trans, train_sel_list_ori = self.prep_data_sub1(file_path,file_prefix,load_type_id2,self.feature_dim_transform,load_type=1) # serial_vec = train_sel_list_ori[:,1] serial_vec = np.asarray(train_sel_list_ori) f_mtx = np.asarray(x_train1_trans) return serial_vec, f_mtx def find_serial_ori(self,file_path,file_prefix,type_id1=0,type_id2=0,select_config={}): chrom_vec = np.unique(self.chrom) chrom_vec1 = [] for chrom_id in chrom_vec: try: id1 = chrom_id.find('chr') if id1>=0: chrom_id1 = int(chrom_id[3:]) chrom_vec1.append(chrom_id1) except: continue chrom_vec1 = np.sort(chrom_vec1) serial_vec, f_mtx = self.find_serial_ori_1(file_path,file_prefix,chrom_vec1, type_id1=type_id1,type_id2=type_id2, select_config=select_config) self.serial_vec = serial_vec self.f_mtx = f_mtx # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) print(len(self.chrom),len(self.serial)) # cnt1 = serial_vec[:,1] # b1 = np.where(cnt1>0)[0] # ratio1 = len(b1)/len(serial_vec) # print(len(b1),len(serial_vec),ratio1) id1 = mapping_Idx(serial_vec[:,1],self.serial) b1 = np.where(id1>=0)[0] self.local_serial_1(b1,type_id=0) print(len(self.chrom),len(self.serial)) return True def prep_data_2(self,file_path,file_prefix,seq_len_thresh=50): self.find_serial_ori(file_path,file_prefix) chrom_vec = np.unique(self.chrom) chrom_vec1 = [] for chrom_id in chrom_vec: try: id1 = chrom_id.find('chr') if id1>=0: chrom_id1 = int(chrom_id[3:]) chrom_vec1.append(chrom_id1) except: continue chrom_vec1 = np.sort(chrom_vec1) sample_num = len(self.chrom) idx_sel_list = -np.ones((sample_num,2),dtype=np.int64) for chrom_id in chrom_vec1: chrom_id1 = 'chr%d'%(chrom_id) b1 = np.where(self.chrom==chrom_id1)[0] idx_sel_list[b1,0] = [chrom_id]*len(b1) idx_sel_list[b1,1] = self.serial[b1] id1 = idx_sel_list[:,0]>=0 idx_sel_list = idx_sel_list[id1] sample_num = len(id1) y = self.signal[id1] x_mtx = idx_sel_list[id1] seq_list = generate_sequences(idx_sel_list, gap_tol=5, region_list=[]) seq_len = seq_list[:,1]-seq_list[:,0]+1 thresh1 = seq_len_thresh b1 = np.where(seq_len>thresh1)[0] print(len(seq_list),len(b1)) seq_list = seq_list[b1] seq_len1 = seq_list[:,1]-seq_list[:,0]+1 print(sample_num,np.sum(seq_len1),seq_list.shape,np.max(seq_len),np.min(seq_len),np.median(seq_len),np.max(seq_len1),np.min(seq_len1),np.median(seq_len1)) self.output_generate_sequences(idx_sel_list,seq_list) t_mtx, signal_mtx, vec1_serial, vec1_local = sample_select2a1(x_mtx, y, idx_sel_list, seq_list, tol=self.tol, L=self.flanking) t_serial = vec1_serial[:,self.flanking] context_size = vec1_serial.shape[1] id1 = mapping_Idx(idx_sel_list[:,1],t_serial) b1 = np.where(id1>=0)[0] if len(b1)!=len(vec1_serial): print('error!',len(b1),len(vec1_serial)) return -1 sel_id1 = id1[b1] # idx_sel_list1 = idx_sel_list[sel_id1] # label1 = y[sel_id1] t_chrom = idx_sel_list[sel_id1,0] print(t_chrom,t_serial) print(t_chrom.shape,t_serial.shape) print(vec1_serial.shape) list_ID = [] cnt1 = 0 interval = 200 list1, list2 = [],[] list3 = [] # region_unit_size = 5000 # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) for chrom_id in chrom_vec1: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) filename1 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) t_id1 = np.where(t_chrom==chrom_id)[0] t_serial1 = t_serial[t_id1] # serial by chromosome sample_num1 = len(t_serial1) num_segment = np.int(np.ceil(sample_num1/interval)) print(chrom_id1,num_segment,interval,sample_num1) with h5py.File(filename1,'r') as fid: serial1 = fid["serial"][:] seq1 = fid["vec"][:] serial1 = serial1[:,0] print(serial1.shape, seq1.shape) id1 = utility_1.mapping_Idx(serial1,t_serial1) id2 = np.where(id1>=0)[0] num1 = len(id2) segment_id = 0 t_signal_mtx = signal_mtx[t_id1[id2]] list3.extend(t_signal_mtx) for i in range(num1): cnt2 = i+1 t_id2 = id2[i] label_serial = t_serial1[t_id2] t_vec1_serial = vec1_serial[t_id1[t_id2]] id_1 = mapping_Idx(serial1,t_vec1_serial) b1 = np.where(id_1>=0)[0] if len(b1)!=context_size: b2 = np.where(id_1<0)[0] print('error!',chrom_id1,label_serial,t_vec1_serial[b2],len(b1),context_size) np.savetxt('temp1.txt',serial1,fmt='%d',delimiter='\t') np.savetxt('temp2.txt',t_vec1_serial,fmt='%d',delimiter='\t') return -1 t_mtx = seq1[id_1[b1]] list1.append(t_vec1_serial) list2.append(t_mtx) local_id = cnt2%interval label_id = cnt1 output_filename = 'test1_%s_%s_%d.h5'%(self.cell,chrom_id1,segment_id) if (cnt2%interval==0) or (cnt2==num1): output_filename1 = '%s/%s'%(file_path,output_filename) list1 = np.asarray(list1) list2 = np.asarray(list2,dtype=np.int8) print(chrom_id1,segment_id,local_id,label_id,label_serial,list1.shape,list2.shape) # with h5py.File(output_filename1,'w') as fid: # fid.create_dataset("serial", data=list1, compression="gzip") # fid.create_dataset("vec", data=list2, compression="gzip") # dict1 = {'serial':list1.tolist(),'vec':list2.tolist()} # np.save(output_filename,dict1,allow_pickle=True) # with open(output_filename, "w") as fid: # json.dump(dict1,fid) # with open(output_filename,"w",encoding='utf-8') as fid: # json.dump(dict1,fid,separators=(',', ':'), sort_keys=True, indent=4) list1, list2 = [], [] segment_id += 1 cnt1 = cnt1+1 list_ID.append([label_id,label_serial,output_filename,local_id]) # if cnt2%interval==0: # break # with open(output_filename, "r") as fid: # dict1 = json.load(fid) # serial1, vec1 = np.asarray(dict1['serial']), np.asarray(dict1['vec']) # print(serial1.shape,vec1.shape) # with h5py.File(output_filename1,'r') as fid: # serial1 = fid["serial"][:] # vec1 = fid["vec"][:] # print(serial1.shape,vec1.shape) fields = ['label_id','label_serial','filename','local_id'] list_ID = np.asarray(list_ID) data1 = pd.DataFrame(columns=fields,data=list_ID) output_filename = '%s/%s_label_ID_1'%(file_path,self.cell) data1.to_csv(output_filename+'.txt',index=False,sep='\t') # np.save(output_filename,data1,allow_pickle=True) output_filename = '%s/%s_label.h5'%(file_path,self.cell) list3 = np.asarray(list3) print(list3.shape) with h5py.File(output_filename,'w') as fid: fid.create_dataset("vec", data=np.asarray(list3), compression="gzip") return list_ID # find serial for training and validation data def prep_data_2_sub1(self,file_path,file_prefix,type_id1=0,type_id2=0,gap_tol=5,seq_len_thresh=5,select_config={}): if type_id1>=0: self.find_serial_ori(file_path,file_prefix, type_id1=type_id1,type_id2=type_id2, select_config=select_config) chrom_vec = np.unique(self.chrom) chrom_vec1 = [] for chrom_id in chrom_vec: try: id1 = chrom_id.find('chr') if id1>=0: chrom_id1 = int(chrom_id[3:]) chrom_vec1.append(chrom_id1) except: continue chrom_vec1 = np.sort(chrom_vec1) sample_num = len(self.chrom) idx_sel_list = -np.ones((sample_num,2),dtype=np.int64) if 'gap_thresh' in self.config: gap_tol = self.config['gap_thresh'] if 'seq_len_thresh' in self.config: seq_len_thresh = self.config['seq_len_thresh'] for chrom_id in chrom_vec1: chrom_id1 = 'chr%d'%(chrom_id) b1 = np.where(self.chrom==chrom_id1)[0] idx_sel_list[b1,0] = [chrom_id]*len(b1) idx_sel_list[b1,1] = self.serial[b1] id1 = idx_sel_list[:,0]>=0 idx_sel_list = idx_sel_list[id1] sample_num = len(id1) y = self.signal[id1] x_mtx = idx_sel_list[id1] self.train_sel_list_ori = idx_sel_list self.y_signal_1 = self.signal[id1] ref_serial = idx_sel_list[:,1] # train_sel_list, val_sel_list = train1_sel_list[idx_train], train1_sel_list[idx_valid] # self.idx_list.update({'train':train_id1[idx_train],'valid':train_id1[idx_valid]}) # self.idx_train_val = {'train':idx_train,'valid':idx_valid} # self.y_signal.update({'train':y_signal_train1[idx_train],'valid':y_signal_train1[idx_valid]}) train_sel_list, val_sel_list, test_sel_list = self.prep_training_test(idx_sel_list) print(len(train_sel_list),len(val_sel_list),len(test_sel_list)) keys = ['train','valid','test'] # keys = ['train','valid'] # self.idx_sel_list = {'train':train1_sel_list,'valid':val_sel_list,'test':test_sel_list} self.idx_sel_list_ori = {'train':train_sel_list,'valid':val_sel_list,'test':test_sel_list} # self.idx_sel_list = idx_sel_list # seq_list_train, seq_list_valid: both locally calculated self.seq_list = dict() start = time.time() # seq_len_thresh = 20 self.local_serial_dict = dict() for i in keys: # self.seq_list[i] = generate_sequences(idx_sel_list1[i],region_list=self.region_boundary) # print(len(self.seq_list[i])) # self.output_generate_sequences(idx_sel_list[i],self.seq_list[i]) idx_sel_list1 = self.idx_sel_list_ori[i] # region_list_id = 'region_list_%s'%(i) # if region_list_id in self.config: # region_list = self.config[region_list_id] # else: # region_list = [] # region_list = np.asarray(region_list) # print(region_list_id,region_list) # if i=='test': # region_boundary = self.region_boundary # else: # region_boundary = [] region_boundary = self.region_boundary print('region_boundary',region_boundary) # assert len(region_boundary)==0 seq_list = generate_sequences(idx_sel_list1, gap_tol=gap_tol, region_list=region_boundary) # seq_len = seq_list[:,1]-seq_list[:,0]+1 # thresh1 = seq_len_thresh # b1 = np.where(seq_len>thresh1)[0] # print(len(seq_list),len(b1)) # seq_list = seq_list[b1] # seq_len1 = seq_list[:,1]-seq_list[:,0]+1 # print(sample_num,np.sum(seq_len1),len(seq_list),np.max(seq_len),np.min(seq_len),np.median(seq_len),np.max(seq_len1),np.min(seq_len1),np.median(seq_len1)) # reselect the regions according to the subsequence length # recalculate seq_list idx_sel_list1, seq_list = self.select_region_local_1(idx_sel_list1,seq_list, gap_tol=gap_tol, seq_len_thresh=seq_len_thresh, region_list=[]) self.idx_sel_list_ori[i] = idx_sel_list1 self.seq_list[i] = seq_list x1 = idx_sel_list1 sel_id = utility_1.mapping_Idx(ref_serial,idx_sel_list1[:,1]) y1 = self.y_signal_1[sel_id] x, y, t_vec_serial, t_vec_local = sample_select2a1(x1,y1, idx_sel_list1, seq_list, self.tol, self.flanking) t_serial1 = t_vec_serial[:,self.flanking] # if np.sum(t_serial1!=sel_idx_list1[:,1])>0: # print('error!',i) # return id1 = utility_1.mapping_Idx(idx_sel_list1[:,1],t_serial1) b1 = np.where(id1>=0)[0] if len(b1)!=len(t_serial1): print('error!',i) return idx_sel_list1 = idx_sel_list1[id1[b1]] self.local_serial_dict[i] = [idx_sel_list1,y1,y,t_vec_serial,t_vec_local] print(i,t_serial1.shape,y.shape) stop = time.time() print('generate_sequences', stop-start) return self.local_serial_dict # load feature def load_feature_local(self,chrom_vec,type_id=0,select_config={}): # load sequences if type_id==0: serial_vec = [] list1, list2 = [],[] # list2 = np.zeros((interval,region_unit_size,4),dtype=np.int8) if self.config['species_id']==0: serial_vec, f_mtx = self.find_serial_ori_1_local(chrom_vec) else: for chrom_id in chrom_vec: # if chrom_id<22: # continue chrom_id1 = 'chr%s'%(chrom_id) filename1 = '%s_%s_encoded1.h5'%(self.species_id,chrom_id1) with h5py.File(filename1,'r') as fid: serial1 = fid["serial"][:] seq1 = fid["vec"][:] serial_vec.extend(serial1) list1.extend([chrom_id]*len(serial1)) list2.extend(seq1) print(len(serial1),seq1.shape) list1 = np.asarray(list1) serial_vec = np.hstack((list1[:,np.newaxis],serial_vec)) f_mtx = np.asarray(list2) # kmer frequency and motif feature elif type_id==1: if len(self.serial_vec)>0 and (len(self.f_mtx)>0): serial_vec = self.serial_vec f_mtx = self.f_mtx else: type_id2 = 0 x_train1_trans, train_sel_list_ori = self.prep_data_sub1(self.file_path,self.file_prefix,type_id2,self.feature_dim_transform,load_type=1) # serial_vec = train_sel_list_ori[:,1] serial_vec = np.asarray(train_sel_list_ori) f_mtx = np.asarray(x_train1_trans) else: filename1 = select_config['input_filename1'] layer_name = select_config['layer_name'] with h5py.File(filename1,'r') as fid: f_mtx = np.asarray(fid[layer_name][:],dtype=np.float32) print(f_mtx.shape) serial_vec = fid["serial"][:] assert len(serial_vec )==f_mtx.shape[0] print(serial_vec[0:5]) return serial_vec, f_mtx # find serial def find_serial_local(self,ref_serial,vec_serial_ori,sel_id): serial_1 = vec_serial_ori[:,self.flanking] # print(len(ref_serial),ref_serial) # print(len(serial_1),serial_1) assert np.max(np.abs(ref_serial-serial_1))==0 t_vec_serial = np.ravel(vec_serial_ori[sel_id]) serial1 = np.unique(t_vec_serial) id1 = mapping_Idx(ref_serial,serial1) b1 = np.where(id1<0)[0] if len(b1)>0: print('error!',len(b1)) print(serial1[b1]) b_1 = np.where(id1>=0)[0] id1 = id1[b_1] sample_num = len(ref_serial) id2 = np.setdiff1d(np.arange(sample_num),id1) if len(id2)>0: t_serial2 = ref_serial[id2] id_2 = mapping_Idx(serial_1,t_serial2) sel_id = list(sel_id)+list(id_2) sel_id = np.unique(sel_id) print('find serial local',len(sel_id),len(id_2)) return sel_id # load training and validation data def prep_data_2_sub2(self,type_id1=0,keys=['train','valid'],stride=1,type_id=0,select_config={}): chrom1 = [] for i in range(0,len(keys)): key1 = keys[i] idx_sel_list, y_ori, y, vec_serial, vec_local = self.local_serial_dict[key1] chrom1.extend(idx_sel_list[:,0]) chrom_vec1 = np.sort(np.unique(chrom1)) serial_vec, f_mtx = self.load_feature_local(chrom_vec1,type_id=type_id1,select_config=select_config) print('load feature local', serial_vec.shape, f_mtx.shape) if serial_vec.shape[1]>2: cnt1 = serial_vec[:,-1] b1 = np.where(cnt1>0)[0] ratio1 = len(b1)/len(serial_vec) print(len(b1),len(serial_vec),ratio1) ref_serial = serial_vec[:,1] for i in range(0,len(keys)): key1 = keys[i] idx_sel_list, y_ori, y, vec_serial, vec_local = self.local_serial_dict[key1] num1 = len(idx_sel_list) if stride>1: id1 = list(range(0,num1,stride)) # the windows cover the positions print(num1,stride) if type_id==1: id1 = self.find_serial_local(idx_sel_list[:,1],vec_serial,id1) y, vec_serial, vec_local = y[id1], vec_serial[id1], vec_local[id1] self.local_serial_dict[key1] = [idx_sel_list, y_ori, y, vec_serial, vec_local] id2 = mapping_Idx(ref_serial,idx_sel_list[:,1]) print(key1,len(ref_serial),len(idx_sel_list)) print(ref_serial[0:5]) print(idx_sel_list[0:5,1]) b1 = np.where(id2<0)[0] if len(b1)>0: print('error!',len(b1),key1) # return print('mapping',len(id2)) # update b_1 = np.where(id2>=0)[0] id2 = id2[b_1] idx_sel_list, y_ori = idx_sel_list[b_1], y_ori[b_1] y, vec_serial, vec_local = y[b_1], vec_serial[b_1], vec_local[b_1] self.local_serial_dict[key1] = [idx_sel_list, y_ori, y, vec_serial, vec_local] self.x[key1] = f_mtx[id2] self.idx[key1] = id2 return True # training and predition with sequences def control_pre_test1_repeat(self,path1,file_prefix,run_id_load=-1): self.prep_data_2_sub1(path1,file_prefix) config = self.config.copy() units1=[50,50,32,25,50,25,0,0] flanking = 50 context_size = 2*flanking+1 n_step_local_ori = 5000 region_unit_size = 1 feature_dim = 4 local_conv_list1 = [] regularizer2, bnorm, activation = 1e-04, 1, 'relu' if self.run_id==110001: config_vec1 = [[64, 15, 5, 1, 2, 2, 0.2, 0], [32, 5, 1, 1, 10, 10, 0.2, 0], [32, 3, 1, 1, 5, 5, 0.2, 0]] for t1 in config_vec1: n_filters, kernel_size1, stride, dilation_rate1, pool_length1, stride1, drop_out_rate, boundary = t1 conv_1 = [n_filters, kernel_size1, stride, regularizer2, dilation_rate1, boundary, bnorm, activation, pool_length1, stride1, drop_out_rate] local_conv_list1.append(conv_1) config['local_conv_list1'] = local_conv_list1 print(local_conv_list1) feature_dim1, feature_dim2, return_sequences_flag1, sample_local, pooling_local = 32, 25, True, 0, 0 n_step_local1 = 10 feature_dim3 = [] local_vec_1 = [feature_dim1, feature_dim2, feature_dim3, return_sequences_flag1, sample_local, pooling_local] attention2_local = 0 select2 = 1 concatenate_1, concatenate_2 = 0, 1 hidden_unit = 32 regularizer2_2 = 1e-04 config.update({'attention1':0,'attention2':1,'select2':select2,'context_size':context_size,'n_step_local':n_step_local1,'n_step_local_ori':n_step_local_ori}) config.update({'local_vec_1':local_vec_1,'attention2_local':attention2_local}) config['feature_dim_vec'] = units1[2:] config['feature_dim_vec_basic'] = units1[2:] config.update({'local_conv_list1':local_conv_list1,'local_vec_1':local_vec_1}) config.update({'attention1':0,'attention2':1,'context_size':context_size, 'n_step_local_ori':n_step_local_ori}) config.update({'select2':select2,'attention2_local':attention2_local}) config.update({'concatenate_1':concatenate_1,'concatenate_2':concatenate_2}) config.update({'feature_dim':feature_dim,'output_dim':hidden_unit,'regularizer2_2':regularizer2_2}) model = utility_1.get_model2a1_attention_1_2_2_sample5(config) # find feature vectors with the serial self.x = dict() self.idx = dict() self.prep_data_2_sub2(type_id1=0,keys=['train','valid'],stride=1) mtx_train = self.x['train'] idx_sel_list_train, y_train_ori_1, y_train_ori, vec_serial_train, vec_local_train = self.local_serial_dict['train'] mtx_valid = self.x['valid'] idx_sel_list_valid, y_valid_ori_1, y_valid_ori, vec_serial_valid, vec_local_valid = self.local_serial_dict['valid'] train_num1, valid_num1 = len(y_train_ori), len(y_valid_ori) print('train',len(idx_sel_list_train),len(y_train_ori),mtx_train.shape) print('valid',len(idx_sel_list_valid),len(y_valid_ori),mtx_valid.shape) x_valid = mtx_valid[vec_local_valid] y_valid = y_valid_ori print(x_valid.shape,y_valid.shape) type_id2 = 2 MODEL_PATH = 'test%d.h5'%(self.run_id) n_epochs = 1 BATCH_SIZE = 32 n_step_local = n_step_local_ori earlystop = EarlyStopping(monitor='val_loss', min_delta=self.min_delta, patience=self.step, verbose=1, mode='auto') checkpointer = ModelCheckpoint(filepath=MODEL_PATH, monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=False) num_sample1 = 1 interval = 2500 select_num = np.int(np.ceil(train_num1/interval)) # select_num1 = select_num*interval # print(num_sample1,select_num,interval,select_num1) if select_num>1: t1 = np.arange(0,train_num1,interval) pos = np.vstack((t1,t1+interval)).T pos[-1][1] = train_num1 print(train_num1,select_num,interval) print(pos) else: pos = [[0,train_num1]] start2 = time.time() train_id_1 = np.arange(train_num1) valid_id_1 = np.arange(valid_num1) np.random.shuffle(valid_id_1) cnt1 = 0 mse1 = 1e5 decay_rate = 0.95 decay_step = 1 init_lr = self.config['lr'] for i1 in range(50): self.config['lr'] = init_lr*((decay_rate)**(int(i1/decay_step))) np.random.shuffle(train_id_1) start1 = time.time() valid_num2 = 2500 num2 = np.min([valid_num1,valid_num2]) valid_id2 = valid_id_1[0:num2] x_valid1, y_valid1 = x_valid[valid_id2], y_valid[valid_id2] for l in range(select_num): s1, s2 = pos[l] print(l,s1,s2) sel_id = train_id_1[s1:s2] x_train = mtx_train[vec_local_train[sel_id]] y_train = y_train_ori[sel_id] x_train, y_train = np.asarray(x_train), np.asarray(y_train) print(x_train.shape,y_train.shape) n_epochs = 1 train_num = x_train.shape[0] print('x_train, y_train', x_train.shape, y_train.shape) print('x_valid, y_valid', x_valid1.shape, y_valid1.shape) # model.fit(x_train,y_train,epochs = n_epochs,batch_size = BATCH_SIZE,validation_data = [x_valid,y_valid],callbacks=[earlystop,checkpointer]) model.fit(x_train,y_train,epochs = n_epochs, batch_size = BATCH_SIZE, validation_data = [x_valid1,y_valid1], callbacks=[earlystop,checkpointer]) # model.load_weights(MODEL_PATH) model_path2 = '%s/model_%d_%d_%d_%d.h5'%(self.path,self.run_id,type_id2,context_size,i1) model.save(model_path2) # model_path2 = MODEL_PATH if l%5==0: print('loading weights... ', MODEL_PATH) model.load_weights(MODEL_PATH) # load model with the minimum training error y_predicted_valid1 = model.predict(x_valid) y_predicted_valid = np.ravel(y_predicted_valid1[:,flanking]) temp1 = score_2a(np.ravel(y_valid[:,flanking]), y_predicted_valid) print(temp1) print('loading weights... ', model_path2) model.load_weights(model_path2) # load model with the minimum training error print('loading weights... ', model_path2) model.load_weights(model_path2) # load model with the minimum training error y_predicted_valid1 = model.predict(x_valid) y_predicted_valid = np.ravel(y_predicted_valid1[:,flanking]) temp1 = score_2a(np.ravel(y_valid[:,flanking]), y_predicted_valid) print([i1,l]+list(temp1)) t_mse1 = temp1[0] if np.abs(t_mse1-mse1)<self.min_delta: cnt1 += 1 else: cnt1 = 0 if t_mse1 < mse1: mse1 = t_mse1 if cnt1>=self.step: break stop1 = time.time() print(stop1-start1) print('loading weights... ', MODEL_PATH) model.load_weights(MODEL_PATH) # load model with the minimum training error y_predicted_valid1 = model.predict(x_valid) y_predicted_valid = np.ravel(y_predicted_valid1[:,flanking]) temp1 = score_2a(
np.ravel(y_valid[:,flanking])
numpy.ravel
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import numpy as np import pickle import gzip from inspect import getargspec from env import env import theano import theano.tensor as TT import logging as loggers from tensor_conversion import neural_computation from disconnected_grad import disconnected_grad from deepy.utils import Scanner logging = loggers.getLogger(__name__) class GraphBuilder(object): """ Tool for creating computational graph in deepy. """ def __init__(self): self._default_block = self.new_block("default_block") def default_block(self): """ Return the default block. """ return self._default_block def collect_parameters(self): """ Return the default block, as all parameters will be registered to the default one. """ return self._default_block def new_block(self, *layers, **kwargs): """ Create a parameters block. :param layers: register some layers in the block :param name: specify the name of this block """ from deepy.layers.block import Block block = Block(*layers, **kwargs) return block def var(self, tensor_type, last_dim=0, test_shape=None): """ An alias of deepy.tensor.var. """ from deepy.tensor import var return var(tensor_type, last_dim=last_dim, test_shape=test_shape) def create_vars_from_data(self, dataset, split="train"): """ Create vars given a dataset and set test values. Useful when dataset is already defined. """ from deepy.core.neural_var import NeuralVariable vars = [] if split == "valid": data_split = dataset.valid_set() elif split == "test": data_split = dataset.test_set() else: data_split = dataset.train_set() first_data_piece = list(data_split)[0] for i, numpy_tensor in enumerate(first_data_piece): if numpy_tensor.dtype == "int64": numpy_tensor = numpy_tensor.astype("int32") if numpy_tensor.dtype == "float64": numpy_tensor = numpy_tensor.astype(env.FLOATX) type_map = { 0: "scalar", 1: "vector", 2: "matrix", 3: "tensor3", 4: "tensor4", 5: "tensor5", } tensor_type = type_map[numpy_tensor.ndim] if numpy_tensor.ndim in type_map else type_map[0] if numpy_tensor.dtype.kind == "i": tensor_type = "i" + tensor_type theano_tensor = getattr(TT, tensor_type)("input_{}_{}".format(i + 1, tensor_type)) last_dim = numpy_tensor.shape[-1] var = NeuralVariable(theano_tensor, dim=last_dim) var.set_test_value(numpy_tensor) vars.append(var) return vars @neural_computation def scan(self, func, sequences=None, outputs=None, non_sequences=None, block=None, **kwargs): """ A loop function, the usage is identical with the theano one. :type block: deepy.layers.Block """ results, updates = Scanner(func, sequences, outputs, non_sequences, neural_computation=True, **kwargs).compute() if block and updates: if type(updates) == dict: updates = updates.items() block.register_updates(*updates) return results def loop(self, sequences=None, outputs=None, non_sequences=None, block=None, **kwargs): """ Start a loop. Usage: ``` with deepy.graph.loop(sequences={"x": x}, outputs={"o": None}) as vars: vars.o = vars.x + 1 loop_outputs = deepy.graph.loop_outputs() result = loop_outputs.o ``` """ from loop import Loop return Loop(sequences, outputs, non_sequences, block, **kwargs) def get_trainer(self, model, method='sgd', config=None, annealer=None, validator=None): """ Get a trainer to optimize given model. :rtype: deepy.trainers.GeneralNeuralTrainer """ from deepy.trainers import GeneralNeuralTrainer return GeneralNeuralTrainer(model, method=method, config=config, annealer=annealer, validator=validator) @neural_computation def shared(self, value, name=None): """ Create a shared theano scalar value. """ if type(value) == int: final_value = np.array(value, dtype="int32") elif type(value) == float: final_value =
np.array(value, dtype=env.FLOATX)
numpy.array
"""Generating templates of ECG and PPG complexes""" import numpy as np from scipy.special import erf from sklearn.preprocessing import MinMaxScaler from scipy import signal import scipy from scipy.signal import argrelextrema from scipy.integrate import solve_ivp from vital_sqi.preprocess.preprocess_signal import squeeze_template def ppg_dual_double_frequency_template(width): """ EXPOSE Generate a PPG template by using 2 sine waveforms. The first waveform double the second waveform frequency :param width: the sample size of the generated waveform :return: a 1-D numpy array of PPG waveform having diastolic peak at the low position """ t = np.linspace(0, 1, width, False) # 1 second sig = np.sin(2 * np.pi * 2 * t - np.pi / 2) + \ np.sin(2 * np.pi * 1 * t - np.pi / 6) sig_scale = MinMaxScaler().fit_transform(
np.array(sig)
numpy.array
import sys import numpy as np from mpi4py import MPI from rvs import * from scheduler import * from modeling import * def eval_wmpi(rank): log(INFO, "starting;", rank=rank) sys.stdout.flush() if rank == 0: blog(sinfo_m=sinfo_m) sys.stdout.flush() schingi__sl_E_std_l = [] for i, sching_m in enumerate(sching_m_l): for p in range(1, num_mpiprocs): eval_i = np.array([i], dtype='i') comm.Send([eval_i, MPI.INT], dest=p) Esl_l, sl_std_l = [], [] # cum_sl_l = [] for p in range(1, num_mpiprocs): sl_E_std = np.empty(2, dtype=np.float64) comm.Recv(sl_E_std, source=p) Esl_l.append(sl_E_std[0] ) sl_std_l.append(sl_E_std[1] ) # sl_l = np.empty(T, dtype=np.float64) # comm.Recv(sl_l, source=p) # cum_sl_l += sl_l.tolist() log(INFO, "", i=i, sching_m=sching_m, Esl=np.mean(Esl_l), sl_std=np.mean(sl_std_l) ) sys.stdout.flush() schingi__sl_E_std_l.append(sl_E_std) # x_l = numpy.sort(cum_sl_l)[::-1] # y_l = numpy.arange(x_l.size)/x_l.size # plot.step(x_l, y_l, label=sching_m['name'], color=next(dark_color), marker=next(marker), linestyle=':') # plot.xscale('log') # plot.yscale('log') # plot.legend() # plot.xlabel(r'Slowdown', fontsize=13) # plot.ylabel(r'Tail distribution', fontsize=13) # plot.savefig("sltail_ar{0:.2f}.png".format(ar) ) # plot.gcf().clear() for p in range(1, num_mpiprocs): eval_i = np.array([-1], dtype='i') comm.Send([eval_i, MPI.INT], dest=p) print("Sent req eval_i= {} to p= {}".format(eval_i, p) ) return schingi__sl_E_std_l else: while True: eval_i = np.empty(1, dtype='i') comm.Recv([eval_i, MPI.INT], source=0) eval_i = eval_i[0] if eval_i == -1: return scher = Scher(mapping_m, sching_m_l[eval_i] ) # log(INFO, "simulating;", rank=rank, eval_i=eval_i, scher=scher) sys.stdout.flush() t_s_l, t_a_l, t_r_l, t_sl_l, load_mean, droprate_mean = sample_traj(sinfo_m, scher, use_lessreal_sim) print("rank= {}, eval_i= {}, a_mean= {}, sl_mean= {}, load_mean= {}, droprate_mean= {}".format(rank, eval_i, np.mean(t_a_l), np.mean(t_sl_l), load_mean, droprate_mean) ) sl_E_std = np.array([np.mean(t_sl_l), np.std(t_sl_l) ], dtype=np.float64) comm.Send([sl_E_std, MPI.FLOAT], dest=0) sys.stdout.flush() def learn_wmpi(rank): scher = RLScher(sinfo_m, mapping_m, sching_m) N, T, s_len = scher.N, scher.T, scher.s_len log(INFO, "starting;", rank=rank, scher=scher) sys.stdout.flush() if rank == 0: blog(sinfo_m=sinfo_m) for i in range(nlearningsteps): scher.save(i) n_t_s_l, n_t_a_l, n_t_r_l, n_t_sl_l = np.zeros((N, T, s_len)), np.zeros((N, T, 1)), np.zeros((N, T, 1)), np.zeros((N, T, 1)) for n in range(N): p = n % (num_mpiprocs-1) + 1 sim_step = np.array([i], dtype='i') comm.Send([sim_step, MPI.INT], dest=p) for n in range(N): p = n % (num_mpiprocs-1) + 1 t_s_l =
np.empty(T*s_len, dtype=np.float64)
numpy.empty
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.11.4 # kernelspec: # display_name: wtte-dev # language: python # name: wtte-dev # --- # %% [markdown] # # WTTE-RNN in PyTorch # # <NAME> # # Based on original Keras version written by <NAME>: # https://github.com/ragulpr/wtte-rnn/blob/master/examples/keras/simple_example.ipynb # MIT license # # For details, check out # https://ragulpr.github.io/2016/12/22/WTTE-RNN-Hackless-churn-modeling/ # https://github.com/ragulpr/wtte-rnn # %% # %matplotlib inline import sys import numpy as np import torch from torch import nn, optim from torch.utils.data import TensorDataset, DataLoader import matplotlib.pyplot as plt sys.path.append("..") from torch_wtte import losses np.random.seed(11) torch.manual_seed(11) # %% def get_data(n_timesteps, every_nth, n_repeats, noise_level, n_features, use_censored=True): def get_equal_spaced(n, every_nth): # create some simple data of evenly spaced events recurring every_nth step # Each is on (time,batch)-format events = np.array([np.array(range(n)) for _ in range(every_nth)]) events = events + np.array(range(every_nth)).reshape(every_nth, 1) + 1 tte_actual = every_nth - 1 - events % every_nth was_event = (events % every_nth == 0) * 1.0 was_event[:, 0] = 0.0 events = tte_actual == 0 is_censored = (events[:, ::-1].cumsum(1)[:, ::-1] == 0) * 1 tte_censored = is_censored[:, ::-1].cumsum(1)[:, ::-1] * is_censored tte_censored = tte_censored + (1 - is_censored) * tte_actual events = np.copy(events.T * 1.0) tte_actual = np.copy(tte_actual.T * 1.0) tte_censored = np.copy(tte_censored.T * 1.0) was_event = np.copy(was_event.T * 1.0) not_censored = 1 - np.copy(is_censored.T * 1.0) return tte_censored, not_censored, was_event, events, tte_actual tte_censored, not_censored, was_event, events, tte_actual = get_equal_spaced( n=n_timesteps, every_nth=every_nth ) # From https://keras.io/layers/recurrent/ # input shape rnn recurrent if return_sequences: (nb_samples, timesteps, input_dim) u_train = not_censored.T.reshape(n_sequences, n_timesteps, 1) x_train = was_event.T.reshape(n_sequences, n_timesteps, 1) tte_censored = tte_censored.T.reshape(n_sequences, n_timesteps, 1) y_train = np.append(tte_censored, u_train, axis=2) # (n_sequences,n_timesteps,2) u_test = np.ones(shape=(n_sequences, n_timesteps, 1)) x_test = np.copy(x_train) tte_actual = tte_actual.T.reshape(n_sequences, n_timesteps, 1) y_test = np.append(tte_actual, u_test, axis=2) # (n_sequences,n_timesteps,2) if not use_censored: x_train = np.copy(x_test) y_train = np.copy(y_test) # Since the above is deterministic perfect fit is feasible. # More noise->more fun so add noise to the training data: x_train = np.tile(x_train.T, n_repeats).T y_train = np.tile(y_train.T, n_repeats).T # Try with more than one feature TODO x_train_new = np.zeros([x_train.shape[0], x_train.shape[1], n_features]) x_test_new = np.zeros([x_test.shape[0], x_test.shape[1], n_features]) for f in range(n_features): x_train_new[:, :, f] = x_train[:, :, 0] x_test_new[:, :, f] = x_test[:, :, 0] x_train = x_train_new x_test = x_test_new # xtrain is signal XOR noise with probability noise_level noise = np.random.binomial(1, noise_level, size=x_train.shape) x_train = x_train + noise - x_train * noise return y_train, x_train, y_test, x_test, events # %% [markdown] # ### Generate some data # # * The true event-sequence is evenly spaced points (but we start anywhere in the sequence) # * The true feature is (binary) if there was an event in last step # * In the training data the feature has added noise # * Training TTE is censored. Testing TTE is uncensored. # %% n_timesteps = 200 n_sequences = every_nth = 80 n_features = 1 n_repeats = 1000 noise_level = 0.005 use_censored = True y_train, x_train, y_test, x_test, events = get_data( n_timesteps, every_nth, n_repeats, noise_level, n_features, use_censored ) # %% #### Plots print("test shape", x_test.shape, y_test.shape) plt.imshow(x_test[:, :, :].sum(axis=2) > 0, interpolation="none", cmap="Accent", aspect="auto") plt.title("x_test (lagged/deterministic event indicator)") plt.show() plt.imshow(y_test[:, :, 0], interpolation="none", cmap="jet", aspect="auto") plt.title("y_test[:,:,0] actual tte") plt.show() print("train shape", x_train.shape, y_train.shape) plt.imshow( x_train[:every_nth, :, :].mean(axis=2), interpolation="none", cmap="Accent", aspect="auto" ) plt.title("x_train[:every_nth,:,0] (lagged/noisy event indicator)") plt.show() plt.imshow(y_train[:every_nth, :, 0], interpolation="none", cmap="jet", aspect="auto") plt.title("y_train[:every_nth,:,0] censored tte") plt.show() plt.imshow(y_train[:every_nth, :, 1], interpolation="none", cmap="Accent", aspect="auto") plt.title("y_train[:every_nth,:,1] u (non-censoring indicator)") plt.show() ## Example TTE: print("Example TTEs") plt.plot( y_train[every_nth // 4, :, 0], label="censored tte (train)", color="black", linestyle="dashed", linewidth=2, drawstyle="steps-post", ) plt.plot( y_test[every_nth // 4, :, 0], label="actual tte (test)", color="black", linestyle="solid", linewidth=2, drawstyle="steps-post", ) plt.xlim(0, n_timesteps) plt.xlabel("time") plt.ylabel("time to event") plt.title("Example TTEs") plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0) plt.show() # %% [markdown] # # Train a WTTE-RNN # ### Things to try out: # * have fun with data paramaters: # * every_nth to control event frequency # * noise_level to make it more noisy # * n_timesteps # * n_features to get more noisy input # * Generate more interesting temporal relationships # * Here we use the smallest possible GRU. Try different learning rates, network architectures, initializations. # * Try Implementing multivariate distributions, other distributions, data pipelines etc. # * Invent better output activation layer # * Invent ways to overcome instability with lots of censoring # * ETC and have fun! # %% # Paramaeters for output activation layer initialization. # Start at naive geometric (beta=1) MLE: tte_mean_train =
np.nanmean(y_train[:, :, 0])
numpy.nanmean
# Sound Source locate # # @Time : 2019-10-9 19:03 # @Author : xyzhao # @File : generateGcc.py # @Description: process wav file into features import numpy as np import math import pickle import wave import collections import os import random import copy import sys import matplotlib.pyplot as plt ''' This function computes the offset between the signal sig and the reference signal refsig using the Generalized Cross Correlation - Phase Transform (GCC-PHAT)method. ''' def gcc_phat(sig, refsig, fs=1, max_tau=None, interp=1): if isinstance(sig, list): sig = np.array(sig) if isinstance(refsig, list): refsig = np.array(refsig) # make sure the length for the FFT is larger or equal than len(sig) + len(refsig) n = sig.shape[0] + refsig.shape[0] # Generalized Cross Correlation Phase Transform SIG = np.fft.rfft(sig, n=n) REFSIG = np.fft.rfft(refsig, n=n) R = SIG * np.conj(REFSIG) cc = np.fft.irfft(R / np.abs(R), n=(interp * n)) max_shift = int(interp * n / 2) if max_tau: max_shift = np.minimum(int(interp * fs * max_tau), max_shift) cc =
np.concatenate((cc[-max_shift:], cc[:max_shift + 1]))
numpy.concatenate
""" ndt.py File containing class definitions of NDT approximation for Consensus NDT SLAM Also contains helper NDT functions Author: <NAME> Date created: 15th April 2019 Last modified: 13th November 2019 """ import numpy as np import pptk import utils import transforms3d from scipy.optimize import check_grad from scipy.optimize import minimize import odometry import diagnostics import integrity import numpy_indexed import itertools import time from scipy.interpolate import RegularGridInterpolator as RGI """ Importing base libraries """ class NDTCloudBase: """ A class to store the sparse grid center points, means and covariances for grid points that are full. This class will be the de facto default for working with NDT point clouds. After refactoring for multiscale NDT with different methods, has become parent class for all NDT approximation methods """ def __init__(self, xlim, ylim, zlim, input_horiz_grid_size, input_vert_grid_size, cloud_type): """ A method to initialize a member of the NDTCloud class. When initializing a member of the class, grid limits are given along with the grid sizes. Using these values a sparse grid is created and corresponding zero mean and covariance lists are also created. Since the first grid is highly dependent on the user it is for, there is no default initialization :param xlim: Limit of the grid along the x-axis :param ylim: Limit of the grid along the y-axis :param zlim: Limit of the grid along the z-axis :param input_horiz_grid_size: User entered :param input_vert_grid_size: """ # Don't really need to store the limits of the space spanned by the NDT cloud. They will be needed to find if # the origin is a grid center though # When initializing the cloud, the origin is either going to be a grid center or not. self.horiz_grid_size = np.float(input_horiz_grid_size) self.vert_grid_size = np.float(input_vert_grid_size) # Create NDT map for reference grid # Initialize empty lists to store means and covariance matrices self.stats = {} # Create an empty dictionary for mu and sigma corresponding to each voxel """ Dictionary structure is {<key = center point>, {<key = 'mu'>, [mu value], <key='sigma'>, [sigma_value] , <key='no_points'>, int, <key='integrity'>, float}, ...} NOTE: key must be a tuple not a ndarray """ self.local_to_global = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) self.max_no_points = 0 self.first_center = np.empty([1, 3]) self.max_no_voxels = -1 self.cloud_type = cloud_type def update_displacement(self, odometry_vector): """ A function to update the displacement of the current local frame of reference from the global reference :param odometry_vector: A vector of [x, y, z, phi, theta, psi] measuring the affine transformation of the current local frame of reference (LiDAR origin) to the global frame of reference (map origin) :return: None """ # TODO: # Update translation vector self.local_to_global[:3] += odometry_vector[:3] # Update euler angle vector phi_local = np.deg2rad(self.local_to_global[3]) theta_local = np.deg2rad(self.local_to_global[4]) psi_local = np.deg2rad(self.local_to_global[5]) R_local = transforms3d.euler.euler2mat(phi_local, theta_local, psi_local) phi_delta = np.deg2rad(odometry_vector[3]) theta_delta = np.deg2rad(odometry_vector[4]) psi_delta = np.deg2rad(odometry_vector[5]) R_delta = transforms3d.euler.euler2mat(phi_delta, theta_delta, psi_delta, 'rxyz') R_new = np.matmul(R_delta, R_local) phi_rad, theta_rad, psi_rad = transforms3d.euler.mat2euler(R_new, 'rxyz') angle_new = np.rad2deg(np.array([phi_rad, theta_rad, psi_rad])) self.local_to_global[3:] = angle_new return None def find_voxel_center(self, ref_pointcloud, tol=1.0e-7): """ A function to return grid indices for a given set of 3D points. The input may be a set of (x, y, z) Nx3 or (x, y, z, int) Nx4. This function is written to be agnostic to either form of the array This function also checks if points on a edge of the grid upto a tolerance level. If they are, it assigns them a value to ensure that no calculations involve that point :param ref_pointcloud: Nx3 or Nx4 numpy array for which binning is required :param tol: Tolerance for picking center. Default values used for overlapping :return: grid_centers: Matrix containing center coordinates corresponding to the given points Nx3 """ # Used an array over a tuple as there is a small possibility that the coordinates might change ref_points = np.array(ref_pointcloud[:, :3]) # to remove intensity if it has been passed accidentally grid_size = np.array([self.horiz_grid_size, self.horiz_grid_size, self.vert_grid_size]) number_row = np.shape(self.first_center)[0] points_repeated = np.tile(ref_points, (number_row, 1)) N = ref_points.shape[0] voxel_centers = np.zeros_like(points_repeated) for i in range(number_row): pre_voxel_number = (ref_points + self.first_center[i, :]) / grid_size pre_voxel_center = np.round(pre_voxel_number).astype(int) * grid_size first_grid_edge = self.first_center[i, :] - 0.5*np.array([self.horiz_grid_size, self.horiz_grid_size, self.vert_grid_size]) line_check = np.abs(np.mod(ref_points, grid_size) + first_grid_edge) pre_voxel_center[line_check < tol] = np.nan pre_voxel_center[np.abs(line_check - 1) < tol] = np.nan voxel_centers[i*N:(i+1)*N, :] = np.multiply(np.sign(ref_points), np.abs(pre_voxel_center) - np.sign(ref_points)*np.broadcast_to(self.first_center[i, :], (N, 3))) return points_repeated, voxel_centers def bin_in_voxels(self, points_to_bin): """ Function to bin given points into voxels in a dictionary approach :param points_to_bin: The points that are to be binned into the voxel clusters indexed by the voxel center tuple :return: points_in_voxel: A dictionary indexed by the tuple of the center of the bin """ points_repeated, voxel_centers = self.find_voxel_center(points_to_bin) dummy = numpy_indexed.group_by(voxel_centers, points_repeated) points_in_voxels = {} for i in range(np.shape(dummy[0])[0]): voxel_key = tuple(dummy[0][i]) points_in_voxels[voxel_key] = dummy[1][i] return points_in_voxels def find_likelihood(self, transformed_pc): """ Function to return likelihood for a given transformed point cloud w.r.t NDT point cloud Slightly different from reference papers in that 1/2det(sigma) is also included while calculating the likelihood The likelihood is increased if a corresponding Gaussian is found. If not, 0 is added :param transformed_pc: Point cloud that has been passed through a candidate affine transformation :return: likelihood: Scalar value representing the likelihood of the given """ transformed_xyz = transformed_pc[:, :3] likelihood = 0 points_in_voxels = self.bin_in_voxels(transformed_xyz) for key, val in points_in_voxels.items(): if key in self.stats: sigma = self.stats[key]['sigma'] sigma_inv = np.linalg.inv(sigma) diff = np.atleast_2d(val - self.stats[key]['mu']) likelihood += np.sum(np.exp(-0.5 * np.diag(np.matmul(np.matmul(diff, sigma_inv), diff.T)))) return likelihood def display(self, plot_density=1.0): """ Function to display the single NDT approximation :param fig: The figure object on which the probability function has to be plotted :param plot_density: The density of the plot (as a int scalar) the higher the density, the more points per grid :return: plot_points: The points sampled from the distribution that are to be plotted like any other PC """ base_num_pts = 48 # 3 points per vertical and 4 per horizontal plot_points = np.empty([3, 0]) plot_integrity = np.empty(0) for key, value in self.stats.items(): sigma = self.stats[key]['sigma'] mu = self.stats[key]['mu'] measure_num = self.stats[key]['no_points'] num_pts = np.int(3 * measure_num / self.max_no_points * plot_density * base_num_pts ) if num_pts < 2: num_pts = 2 if 'integrity' in self.stats[key]: voxel_score = self.stats[key]['integrity'] * np.ones(num_pts) else: voxel_score = np.ones(num_pts) center_pt = np.array(key) grid_lim = np.zeros([2, 3]) grid_lim[0, 0] = center_pt[0] - self.horiz_grid_size grid_lim[1, 0] = center_pt[0] + self.horiz_grid_size grid_lim[0, 1] = center_pt[1] - self.horiz_grid_size grid_lim[1, 1] = center_pt[1] + self.horiz_grid_size grid_lim[0, 2] = center_pt[2] - self.vert_grid_size grid_lim[1, 2] = center_pt[2] + self.vert_grid_size grid_plot_points = np.random.multivariate_normal(mu, sigma, num_pts) # Ensure that all selected points are inside the grid for i in range(3): grid_plot_points[grid_plot_points[:, i] < grid_lim[0, i], i] = grid_lim[0, i] grid_plot_points[grid_plot_points[:, i] > grid_lim[1, i], i] = grid_lim[1, i] plot_points = np.hstack((plot_points, grid_plot_points.T)) plot_integrity = np.append(plot_integrity, voxel_score) print('The maximum number of points per voxel is ', self.max_no_points) return plot_points.T, plot_integrity def update_stats(self, points_in_voxels): """ Function to update the statistics of the NDT cloud given points and the center of the grid that they belong to :param points_in_voxels: A dictionary indexed by the center of the grid and containing corresponding values :return: None """ for k, v in points_in_voxels.items(): no_in_voxel = v.size/3 # to prevent a single row vector from being counted as 3 if k in self.stats: # Use update methodology from 3D NDT Scan Matching Paper Eq 4 and 5 m_old = self.stats[k]['no_points']*self.stats[k]['mu'] # row vector s_old = self.stats[k]['no_points']*self.stats[k]['sigma'] + \ np.matmul(np.reshape(self.stats[k]['mu'], [3, 1]), np.reshape(m_old, [1, 3])) m_new = m_old + np.sum(v, axis=0) s_new = s_old + np.matmul(v.T, v) self.stats[k]['no_points'] += no_in_voxel self.stats[k]['mu'] = m_new/self.stats[k]['no_points'] self.stats[k]['sigma'] = (s_new - np.matmul(np.reshape(self.stats[k]['mu'], [3, 1]), np.reshape(m_new, [1, 3])))/self.stats[k]['no_points'] if self.stats[k]['no_points'] > self.max_no_points: self.max_no_points = self.stats[k]['no_points'] else: if no_in_voxel >= 5 and np.sum(np.isnan(np.array(k))) == 0: self.stats[k] = {} # Initialize empty dictionary before populating with values self.stats[k]['mu'] = np.mean(v, axis=0) self.stats[k]['sigma'] = np.cov(v, rowvar=False) self.stats[k]['no_points'] = no_in_voxel self.stats[k]['idx'] = self.pairing_cent2int(np.atleast_2d(np.array(k))) self.max_no_voxels += 1 if self.stats[k]['no_points'] > self.max_no_points: self.max_no_points = self.stats[k]['no_points'] return None def eig_check(self): """ Function to perform an eigenvalue based consistency check on the covariance matrix and adjust values accordingly Algorithm based on 3d NDT Scan Matching and Biber's NDT paper Using an SVD approach here. For covariance matrices, SVD and eigen decomposition should be the same. SVD implementations are often more stable :return: None """ scale_param = 0.0001 for key, val in self.stats.items(): u, s_diag, v = np.linalg.svd(val['sigma']) # np.svd naturally returns a diagonal s_diag[s_diag < scale_param*s_diag.max()] = scale_param*s_diag.max() val['sigma'] = np.matmul(np.matmul(u, np.diag(s_diag)), v) return None def update_cloud(self, pc_points): """ Function to add points to current NDT approximation. This function adds both, new centers and points to existing grid points. :param pc_points: The points that are to be added to the NDT approximation. Might be Nx3 or Nx4. Function agnostic to that :return: None """ # This function should be used to update an empty NDT cloud as well using the given points # Find grid centers corresponding to given points update_points = pc_points[:, :3] # Dictionary approach here as well points_in_voxels = self.bin_in_voxels(update_points) # Update the NDT approximation with these binned points self.update_stats(points_in_voxels) self.eig_check() return None def find_integrity(self, points): """ Given a set of points and the underlying NDT Cloud, find the integrity of each voxel and the combined navigation solution :param points: Transformed points for which the integrity is required :return: Im: The integrity of the navigation solution obtained using the transformed points given :return: iscore: Voxel integrity score corresponding to the voxel center """ test_xyz = points[:, :3] binned_points = self.bin_in_voxels(test_xyz) N = len(self.stats) iscore_array = np.zeros(N) loop_index = 0 mu_points = np.zeros([N, 3]) for key, val in self.stats.items(): if key in binned_points: mu_points[loop_index, :] = val['mu'] iscore_array[loop_index] = integrity.voxel_integrity(val, binned_points[key]) self.stats[key]['integrity'] = iscore_array[loop_index] if np.isnan(iscore_array[loop_index]): print('NaN detected!') loop_index += 1 else: self.stats[key]['integrity'] = 0 iscore_array[iscore_array == 0] = 1e-9 Im, iscore_sum = integrity.solution_score(mu_points[:loop_index, :], iscore_array[:loop_index], points) # The loop index is added to ensure that only points that have a corresponding voxel are used for IDOP return Im, iscore_sum def optimization_integrity(self, points): """ Given a set of points and the underlying NDT Cloud, find the integrity of each voxel and the combined navigation solution :param points: Transformed points for which the integrity is required :return: Im: The integrity of the navigation solution obtained using the transformed points given :return: iscore: Voxel integrity score corresponding to the voxel center """ test_xyz = points[:, :3] binned_points = self.bin_in_voxels(test_xyz) N = len(self.stats) iscore_dict = {} rbar_dict = {} k_dict = {} loop_index = 0 mu_points = np.zeros([N, 3]) for key, val in self.stats.items(): if key in binned_points: mu_points[loop_index, :] = val['mu'] iscore_dict[key], rbar_dict[key], k_dict[key] = integrity.voxel_int_opt(val, binned_points[key]) if np.isnan(iscore_dict[key]): print('NaN detected!') loop_index += 1 iscore_dict[iscore_dict == 0] = 1e-9 # The loop index is added to ensure that only points that have a corresponding voxel are used for IDOP return iscore_dict, rbar_dict, k_dict def filter_voxels_integrity(self, integrity_limit=0.7): """ Function to trim an ndt_cloud based on the integrity values of its voxels :param self: The NDT approximation to be trimmed :param integrity_limit: The minimum valid voxel integrity value :return: ndt_cloud: The same NDT approximation, but now with all voxels below an integrity limit removed """ delete_index = [] for key in self.stats.keys(): if self.stats[key]['integrity'] < integrity_limit: delete_index.append(key) for del_key in delete_index: del self.stats[del_key] return None def pairing_cent2int(self, point_centers): """ :param point_centers: Nx3 numpy array containing coordinates under consideration :return: """ """ 1. Using voxel size, convert each center to a coordinate with only integer values 2. Implement a standard pairing function to bind said coordinate to an index """ assert(point_centers.shape[1] == 3) # Checking that the matrix is all row vectors # Assign unique positive value to each integer pt_centers_temp = np.copy(point_centers) pt_centers_temp = (pt_centers_temp + self.first_center[0, :])/np.array([self.horiz_grid_size, self.horiz_grid_size, self.vert_grid_size]) pt_centers_temp[pt_centers_temp > 0] = 2*pt_centers_temp[pt_centers_temp > 0] pt_centers_temp[pt_centers_temp < 0] = -2*pt_centers_temp[pt_centers_temp < 0] - 1 x = np.atleast_2d(pt_centers_temp[:, 0]) y = np.atleast_2d(pt_centers_temp[:, 1]) z = np.atleast_2d(pt_centers_temp[:, 2]) assert(np.min(x) > -1) assert(np.min(y) > -1) assert(np.min(z) > -1) pair_1 = np.atleast_2d(0.5*(x + y)*(x + y + 1) + y) int_pairing = np.atleast_2d(0.5*(pair_1 + z)*(pair_1 + z + 1) + z) int_pairing = np.reshape(int_pairing, [-1, 1]) assert(int_pairing.shape == (point_centers.shape[0], 1)) return int_pairing def pair_check(self): """ Checking that the number of voxels and the number of unique index assignments is the same :return: None """ voxels = [] number = 0 for key in self.stats: voxels.append(self.stats[key]['idx'][0][0]) number += 1 voxels = np.array(voxels) unique_voxels, unique_counts, case_counts = np.unique(voxels, return_index=True, return_counts=True) unique_no = np.size(unique_voxels) print('The number of voxels is ', number) print('The number of maximum voxels is ', self.max_no_voxels) print('The number of unique voxels is ', unique_no) assert(np.size(unique_voxels) == self.max_no_voxels) return None def prune_pc(self, pc): """ Remove all points that don't overlap with NDT Cloud :param pc: Point cloud :return pruned_pc: Unique points that overlap with NDT Cloud """ pruned_pc = np.zeros([0, 3]) center_dict = self.bin_in_voxels(pc) keys = np.zeros([0, 3]) binned_keys = np.zeros([0, 3]) original_keys = np.zeros([0, 3]) for key in self.stats: original_keys = np.vstack((original_keys, key)) for key in center_dict: binned_keys =
np.vstack((binned_keys, key))
numpy.vstack
import streamlit as st import numpy as np import pandas as pd import torch import copy from sklearn import decomposition import plotly.express as px import plotly.graph_objects as go import altair as alt import graphviz from graphviz import Digraph import nltk from nltk.tokenize import RegexpTokenizer from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords from random import sample import pickle from scipy.special import softmax import time import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.functional import pad import zipfile import os from os import listdir from zipfile import ZipFile from os.path import isfile, join from urllib.request import urlopen from word_highlight import get_highlight_text from train_vis import get_train_content,get_train_content_local, loss_acc_plot, params_plot MODEL_PATH = 'https://github.com/CMU-IDS-2020/fp-good_or_bad/raw/main/models/xentropy_adam_lr0.0001_wd0.0005_bs128' EMBEDDING_URL = "https://github.com/CMU-IDS-2020/fp-good_or_bad/raw/main/sample_embeddings/sample_words_embeddings.pt" AMAZON_EMBEDDING_URL = 'https://github.com/CMU-IDS-2020/fp-good_or_bad/blob/main/sample_embeddings/100d/amazon_products_sample_embeddings.pt' MOVIE_EMBEDDING_URL = 'https://github.com/CMU-IDS-2020/fp-good_or_bad/blob/main/sample_embeddings/100d/movie_review_sample_embeddings.pt' YELP_EMBEDDING_URL = 'https://github.com/CMU-IDS-2020/fp-good_or_bad/blob/main/sample_embeddings/100d/yelp_restaurant_sample_embeddings.pt' MODEL_PATH_PT = 'https://github.com/CMU-IDS-2020/fp-good_or_bad/raw/main/models/xentropy_adam_lr0.0001_wd0.0005_bs128.pt' EPOCH = 30 SAMPLE_LIMIT = 5000 EPOCH_SAMPLE_LIMIT = SAMPLE_LIMIT // EPOCH MOVIE_DATASET = 'Movie reviews' AMAZON_DATASET = 'Amazon products' YELP_DATASET = 'Yelp restaurants' OVERVIEW = '1) Overview' PREPROCESS = '2) Dataset & Input Preprocessing' TRAIN = '3) Training' PREDICT = '4) Predicting' ADAM = 'ADAM' SGD = 'SGD with Momentum' preprocesse_exed = False train_exed = False @st.cache(ttl=60 * 20) def download_stopword(): nltk.download('stopwords') @st.cache(ttl=60 * 20) def download_wordnet(): nltk.download('wordnet') class Model: def __init__(self, dataset, learning_rate, batch_size, weight_decay, optimizer): self.dataset = dataset self.learning_rate = learning_rate self.batch_size = batch_size self.weight_decay = weight_decay self.optimizer = optimizer self.model_url = None self.model_name = None self.mapped_dataset = None self.mapped_optimizer = None self.mapped_weight_decay = None self.max_length = 0 dataset_map = { 'Movie reviews':'movie_reviews','Amazon products' : "amazon_products", 'Yelp restaurants':"yelp_restaurants"} optimizer_map = {'ADAM':"adam",'SGD with Momentum':"sgdmomentum"} self.mapped_dataset = dataset_map[self.dataset] self.mapped_optimizer = optimizer_map[self.optimizer] if self.weight_decay == "5e-4": self.mapped_weight_decay = "0.0005" else: self.mapped_weight_decay = self.weight_decay url = "https://github.com/CMU-IDS-2020/fp-good_or_bad/raw/main/models/" + self.mapped_dataset + "/model_state_dict/" self.model_name = "xentropy_{}_lr{}_wd{}_bs{}.pt".format(self.mapped_optimizer, self.learning_rate, self.mapped_weight_decay, self.batch_size) self.model_url = url + self.model_name if self.mapped_dataset == 'movie_reviews': self.max_len = 29 elif self.mapped_dataset == "yelp_restaurants": self.max_len = 245 else: self.max_len = 721 def main(): download_stopword() download_wordnet() st.sidebar.header('Navigation') page = st.sidebar.radio('', (OVERVIEW, PREPROCESS, TRAIN, PREDICT)) if page == OVERVIEW: _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.markdown("<h1 style='text-align: center; color: Black;'>Good or Bad? Visualizing Neural Networks on Sentiment Analysis</h1>", unsafe_allow_html=True) # st.write("") st.write("") st.write("") st.write("") st.write("") st.subheader("Who is this app for?") st.write("") st.write("") # st.write("") st.markdown(" <b><font color='blue'>Our app is especially useful for curious machine learning laymen. With our app, you will be able to visualize the full process of sentiment analysis using a neural network, as well as the interaction of training data, hyperparameters and the model itself. </font></b>", unsafe_allow_html=True) st.markdown("<b><font color='blue'>We hope that this app can demystify the magic of neural networks.</font></b>", unsafe_allow_html=True) st.write("") # st.write("") # st.write("") st.title("Overview") st.write("") st.write("") st.write("In this age of social media, **personal opinions** are expressed ubiquitously in the public. \ Behind these opinions are sentiments and emotions. \ Gaining an understanding into sentiments regarding a topic can be beneficial in many ways, be it in the case of a business trying to know its customers or the case of a politician trying to know the electorate. \ This age has also witnessed a rise of artificial intelligence and machine learning, which enables a quick capture of the sentiments behind numerous opinions existing on social media.") st.image('https://www.kdnuggets.com/images/sentiment-fig-1-689.jpg', caption = 'Sentiment Analysis (reference: https://www.kdnuggets.com/2018/03/5-things-sentiment-analysis-classification.html)', use_column_width=True) st.write('''**Machine learning** methods can be highly accurate and efficient for various tasks. \ However, machine learning models, especially neural networks, are still a “black box” for many people, even experienced experts in the field (for example, considering the poorly understood nature of generalization of neural networks). \ Given this problem, we built this visualization application to help people understand internal mechanisms of a neural network. \ We use the task of sentiment analysis as a case study in our application to walk users through the neural network’s training and decision making process.''') st.write('''To effectively capture, classify and predict sentiments, we design, utilize and demonstrate a convolutional neural network (CNN) [1], which is known for its excellent performance in computer vision tasks, as well as natural language processing tasks recently. \ Specifically, CNNs have been shown to be able to model inherent syntactic and semantic features of sentimental expressions [2]. \ Finally, another advantage of using CNNs (and neural networks in general) is no requirement of deep domain knowledge, in this case linguistics [2]. ''') st.image('https://miro.medium.com/max/726/1*Y4aATgaQ8OO_gxLFTy3rQg.png', caption = 'Neural Networks for Sentiment Analysis (reference: https://medium.com/nlpython/sentiment-analysis-analysis-part-3-neural-networks-3768dd088f71)', use_column_width=True) st.write("") st.write("") st.write("") st.title("User Instructions") st.write("Our app would first take into user's input sentences and preprocess into tokens. Tokens are then converted into embedding vectors to pass in to the neural network. See more details in section 'Dataset & Preprocessing'.") st.write("During training, our model would use the target rating to learn the optimal parameters, mainly weights and biases. See more details in section 'Training'.") st.write("During prediction, the same preprocessing process will be applied to the newly input sentence and we'll use the optimal parameters we got from training to map the embedding vectors to the predicted rating. See more details in section 'Predicting'.") st.markdown("<font color='blue'><b>To start using our app:</b></font>", unsafe_allow_html=True) st.write(" 1. Use the sidebar on the left to navigate to the next section: **dataset & input preprocessing**.") st.write(" 2. Select a specific **dataset** and feel free to **write something emotional**!") st.write(" 3. In Training section, adjust the **training hyperparameters**, or selection **two different sets of hyperparameters** to see the entire training process!") st.write(" 4. In predicting section, check out how a neural net can understand your sentiment!") st.write("") st.write("") st.write("") st.markdown(''' ### References [1] <NAME> and <NAME>. "An introduction to convolutional neural networks." arXiv preprint arXiv:1511.08458 (2015). [2] <NAME> and <NAME> (2019) - "Sentiment Classification Using Convolutional Neural Networks." Applied Sciences, 2019, 9, 2347. ''') st.markdown(''' ### Authors (ranked by first name): <NAME> <NAME> <NAME> <NAME> ''') elif page == PREPROCESS: _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.title("Dataset & Input Preprocessing") # st.header("Model Description") # st.write("Our model has the following architecture: ") # st.write("- 3 layers of 1-Dimensional CNN with kernel sizes (2,3,4) for extracting features") # st.write("- Max Pooling Layer for retaining prominent features") # st.write("- Dropout Layer with probability 0.5 for better model generalization") # st.write("- Linear Layer with output dimension 5 for sentiment classification") st.write("") st.write("") st.header("Dataset Description") st.write("We trained our model on three relevant datasets, including Rotten Tomato movie reviews, Yelp restaurant reviews and Amazon product reviews, each with various hyperparameter values.") st.write("[Rotten Tomato movie reviews](https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews/data) contains more than 15,5000 movie reviews and ratings from 1 to 5.") st.write("[Yelp restaurant reviews](https://www.kaggle.com/omkarsabnis/yelp-reviews-dataset) contains more than 11,000 retaurant reviews and ratings from 1 to 5.") st.write("[Amazon product reviews](https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products?select=Datafiniti_Amazon_Consumer_Reviews_of_Amazon_Products.csv) contains more than 5,000 electronic product reviews and ratings from 1 to 5.") st.write("") st.write("") st.header("Choose a dataset and explore the preprocessing!") elif page == TRAIN: _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.title("Training Neural Network") elif page == PREDICT: _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.title("Predict Sentiment") if page != OVERVIEW: _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: dataset = st.selectbox('Choose a dataset', (MOVIE_DATASET, AMAZON_DATASET, YELP_DATASET)) if dataset == MOVIE_DATASET: user_input = st.text_input('Write something emotional and hit enter!', "I absolutely love this romantic movie! It's such an interesting film!") elif dataset == AMAZON_DATASET: user_input = st.text_input('Write something emotional and hit enter!', "Great device! It's easy to use!") else: user_input = st.text_input('Write something emotional and hit enter!', "Delicious food! Best place to have lunch with a friend!") if page != OVERVIEW and page != PREPROCESS: models = [] st.sidebar.header("Adjust Model Hyper-Parameters") learning_rate = st.sidebar.select_slider("Learning rate", options=[0.1, 0.01, 0.001, 0.0001], value=0.001) # st.sidebar.text('learning rate={}'.format(learning_rate)) weight_decay = st.sidebar.select_slider("Weight decay", options=[0, 5e-7, 5e-6, 5e-5, 5e-4], value=5e-5) # st.sidebar.text('weight decay={}'.format(weight_decay)) batch_size = st.sidebar.select_slider("Batch_size", options=[32, 64, 128, 256, 512], value=512) # st.sidebar.text('batch size={}'.format(batch_size)) optimizer = st.sidebar.radio('Optimizer', (ADAM, SGD)) models.append(Model(dataset, learning_rate, batch_size, weight_decay, optimizer)) two_models = st.sidebar.checkbox('Compare with another set of model parameters') if two_models: learning_rate2 = st.sidebar.select_slider("Learning rate of second model", options=[0.1, 0.01, 0.001, 0.0001], value=0.001) # st.sidebar.text('learning rate={}'.format(learning_rate)) weight_decay2 = st.sidebar.select_slider("Weight decay of second model", options=[0, 5e-7, 5e-6, 5e-5, 5e-4], value=5e-5) # st.sidebar.text('weight decay={}'.format(weight_decay)) batch_size2 = st.sidebar.select_slider("Batch_size of second model", options=[32, 64, 128, 256, 512], value=512) # st.sidebar.text('batch size={}'.format(batch_size)) optimizer2 = st.sidebar.radio('Optimizer of second model', (ADAM, SGD)) models.append(Model(dataset, learning_rate2, batch_size2, weight_decay2, optimizer2)) if page == PREPROCESS: models = [] models.append(Model(dataset, 0.001, 512, 5e-5, ADAM)) preprocessed = run_preprocess(models[0], user_input) elif page == TRAIN: run_train(models) elif page == PREDICT: preprocessed = run_preprocess(models[0], user_input, False) run_predict(preprocessed, models) class Network(nn.Module): def __init__(self, input_channel, out_channel, kernel_sizes, output_dim): super().__init__() self.convs = nn.ModuleList([ nn.Conv1d(in_channels = input_channel, out_channels = out_channel, kernel_size = ks) for ks in kernel_sizes ]) self.linear = nn.Linear(len(kernel_sizes) * out_channel, output_dim) self.dropout = nn.Dropout(0.5) def forward(self, embedded): embedded = embedded.permute(0, 2, 1) conved = [F.relu(conv(embedded)) for conv in self.convs] pooled = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved] cat = self.dropout(torch.cat(pooled, dim = 1)) return self.linear(cat) input_channel = 100 out_channel = 50 kernel_sizes = [2,3,4] output_dim = 5 def run_preprocess(model, input, visible=True): # tokenize -> lowercase -> remove stopwords -> lemmatize def tokenize_text(text): tokenizer = RegexpTokenizer(r'\w+') return tokenizer.tokenize(text) def lowercase_text(tokens): return [token.lower() for token in tokens] def remove_stopwords(tokens): english_stopwords = stopwords.words('english') return [token if token not in english_stopwords and token in word2vec_dict else None for token in tokens] def lemmatize(tokens): lemmatizer = WordNetLemmatizer() return [lemmatizer.lemmatize(token) if token else None for token in tokens] dataset = model.dataset if visible: _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.write("How can neural networks read text like humans? You might wonder. Actually, they cannot; they can only read numbers.\ This section walks you through every step that we must perform up to the conversion of text to numbers.") st.write("_**Tips**_") st.markdown(''' 1. Try to change dataset and view different word cloud. 2. Change your input text as well! ''') st.subheader("WordCloud & Word Importance") st.write("Before we head into text preprocessing, let's check out the words that are particularly important, or frequent, in your selected dataset. We highlight your \ input text based on the term frequency in the chosen dataset. ") if dataset == AMAZON_DATASET: st.image('https://github.com/CMU-IDS-2020/fp-good_or_bad/raw/main/static_pictures/amazon_wordcloud.png', use_column_width=True) get_highlight_text(input, "top_frequent_words/amazon_products_top1000.pt") elif dataset == MOVIE_DATASET: st.image('https://github.com/CMU-IDS-2020/fp-good_or_bad/raw/main/static_pictures/movie_wordcloud.png', use_column_width=True) get_highlight_text(input, "top_frequent_words/rotten_tomato_top1000.pt") elif dataset == YELP_DATASET: st.image('https://github.com/CMU-IDS-2020/fp-good_or_bad/raw/main/static_pictures/yelp_wordcloud.png', use_column_width=True) get_highlight_text(input, "top_frequent_words/yelp_restaurant_top1000.pt") if visible: _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.subheader("Preprocessing") st.write('''Let's see all that happens before the step of converting text to numbers, as promised. Now, a very natural question might come to your mind,\ "Do you convert on a sentence/word/character level? Would it be too simplified if we convert a whole sentence into a single number?" Indeed, \ sentence-level mapping could be meaningless, given that we want to read every word or character in a sentence. Thus, what we usually do in practice \ is word or character level mapping. In this app, for the purpose of easy interpretation and demonstration, we choose a word-level mapping for text-to-number conversion.''') st.write("Now, the need for breaking sentences into words becomes clear. As you can see in the following figure, our first step is splitting sentences into word tokens by spaces.") st.write('''Is that all? Probably not, as the word tokens need some standardization. Consider the tokens "love" and "LOVE." We want them to be considered as the same word, but due to \ different letter cases, they are understood as different words by a machine. Thus, the next step that follows is making all word tokens have a consistent letter case; we choose to convert all to lowercase.''') st.write('''The next step we perform is removing the so-called "stopwords." In English, there are some extremely common yet barely meaningful words, for example, articles. To prevent from diluting, we remove them from our set of word tokens!''') st.write('''One last step before text-to-number conversion is lemmatization, which is a further step of standardization. Consider the tokens "cat" and "cats." We want them to be considered as the same word, don't we? Thus, in this last step, we reduce every word token to its stem form.''') tokens = tokenize_text(input) lowercase_tokens = lowercase_text(tokens) removed_stopwords = remove_stopwords(lowercase_tokens) lemmatized = lemmatize(removed_stopwords) if visible: g = Digraph() i = 0 g.node(input) for token, lc_token, r_token, l_token in zip(reversed(tokens), reversed(lowercase_tokens), reversed(removed_stopwords), reversed(lemmatized)): g.node(token+"token"+str(i), label = token) g.edge(input, token+"token"+str(i)) g.node(lc_token+"lc_token"+str(i), label = lc_token) g.edge(token+"token"+str(i), lc_token+"lc_token"+str(i)) if r_token: g.node(r_token+"r_token"+str(i), label = r_token) g.edge(lc_token+"lc_token"+str(i), r_token+"r_token"+str(i)) g.node(l_token+"l_token"+str(i), label = l_token) g.edge(r_token+"r_token"+str(i), l_token+"l_token"+str(i)) i += 1 with g.subgraph(name='cluster_1') as c: c.attr(color='white') c.node_attr['style'] = 'filled' c.node(input) c.attr(label='Original Input') with g.subgraph(name='cluster_2') as c: c.attr(color='white') c.node_attr['style'] = 'filled' for i, token in enumerate(reversed(tokens)): c.node(token+"token"+str(i)) c.attr(label='Word Tokens') with g.subgraph(name='cluster_3') as c: c.attr(color='white') c.node_attr['style'] = 'filled' for i, token in enumerate(reversed(lowercase_tokens)): c.node(token+"lc_token"+str(i)) c.attr(label='Lowercase Tokens') with g.subgraph(name='cluster_4') as c: c.attr(color='white') c.node_attr['style'] = 'filled' for i, token in enumerate(reversed(removed_stopwords)): if token: c.node(token+"r_token"+str(i)) c.attr(label='Stopwords Removed') with g.subgraph(name='cluster_5') as c: c.attr(color='white') c.node_attr['style'] = 'filled' for i, token in enumerate(reversed(lemmatized)): if token: c.node(token+"l_token"+str(i)) c.attr(label='Lemmatized Tokens') st.graphviz_chart(g, use_container_width=True) _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.subheader('Word Embeddings') st.markdown(''' Word embeddings are dense vector representations of words. Word Embeddings have their dimensional distance correlated to the semantic similarity of the underlying words. We use [Glove Embeddings](https://nlp.stanford.edu/projects/glove/) with 1.9 million vocabulary to translate each word into a vector of its postion in the embedding space. To help you visualize how word embeddings are used in this sentiment analysis project, we plot the word embeddings of your input sentence with some common words which has straightforward sentiment tendencies. Note that although word embeddings are dense, the embedding space is still high dimensional. In our case, the embedding vector of each word is of dimension 100. We perform dimensionality reduction trick to map the word embeddings to a 3D space while keeping their relative positions. In the plot below, **blue dots** represents word embeddings of some common words in this dataset. The **red diamonds** are word embeddings of words in your input sentence. All data points are labeled with their corresponding words. ''') st.write("_**Tips**_") st.markdown(''' The distances among points can be deceptive when looking from only one angle. 1. By moving your mouse on a specific data point, lines will be displayed connecting to the axes to show you the exact position. 2. You can click and drag on the plot to rotate it. 3. Use two fingers on your touchpad to zoom in and out; you can also click on the **zoom** tool on the top right corner of the graph, and then click and drag to zoom the plot. ''') sentence = [token for token in lemmatized if token is not None] if visible: embedding_for_plot = {} for word in sentence: embedding_for_plot[word] = word2vec_dict[word] _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: run_embedding(model.mapped_dataset, embedding_for_plot) st.markdown("<b><font color='blue'>Now, use the sidebar to navigate to the next section: training, to further explore the training process of neural nets.</font></b>", unsafe_allow_html=True) return sentence @st.cache(ttl=60*10,allow_output_mutation=True) def load_word2vec_dict(word2vec_urls, word2vec_dir): word2vec_dict = [] for i in range(len(word2vec_urls)): url = word2vec_urls[i] # torch.hub.download_url_to_file(url, word2vec_dir+"word2vec_dict"+str(i)+".pt") word2vec = pickle.load(open(word2vec_dir+"word2vec_dict"+str(i)+".pt", "rb" )) word2vec = list(word2vec.items()) word2vec_dict += word2vec return dict(word2vec_dict) @st.cache(ttl=60*10,allow_output_mutation=True) def load_word2vec_dict_local(word2vec_dir): word2vec_dict = [] for f in listdir(word2vec_dir): word2vec = pickle.load(open(join(word2vec_dir,f), "rb")) word2vec = list(word2vec.items()) word2vec_dict += word2vec return dict(word2vec_dict) def tokenize_sentence(sentence, word2vec_dict): tokenizer = RegexpTokenizer(r'\w+') lemmatizer = WordNetLemmatizer() english_stopwords = stopwords.words('english') sentence = sentence.strip() tokenized_sentence = [lemmatizer.lemmatize(token.lower()) for token in tokenizer.tokenize(sentence) if token.lower() in word2vec_dict and token.lower() not in english_stopwords] return tokenized_sentence def run_predict(input, models): def predict(sentence, self_model, max_seq_length = 29): #tokenized_sentence = tokenize_sentence(sentence,word2vec_dict) embedding_for_plot = {} for word in sentence: embedding_for_plot[word] = word2vec_dict[word] embedding = np.array([word2vec_dict[word] for word in sentence]) model = Network(input_channel, out_channel, kernel_sizes, output_dim) # torch.hub.download_url_to_file(model_url, "./cur_model.pt") # state_dict = torch.load("./cur_model.pt",map_location=torch.device('cpu')) state_dict = torch.load("./models/" + self_model.mapped_dataset + "/model_state_dict/" + self_model.model_name, map_location=torch.device('cpu')) model.load_state_dict(state_dict) # model.load_state_dict(torch.hub.load_state_dict_from_url(model_url, progress=False, map_location=torch.device('cpu'))) model.eval() embedding = np.expand_dims(embedding,axis=0) embedding = pad(torch.FloatTensor(embedding), (0, 0, 0, max_seq_length - len(embedding))) outputs = model(embedding) _, predicted = torch.max(outputs.data, 1) return softmax(outputs.data), predicted.item() + 1, embedding_for_plot _, center_emb_col, _ = st.beta_columns([1, 3, 1]) with center_emb_col: st.subheader('Predicted Result') st.write("Our model will generate five probabilities for each input. This step is accomplished by performing [softmax](https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax#:~:text=Softmax%20extends%20this%20idea%20into,quickly%20than%20it%20otherwise%20would.) on the outputs of the final linear layer. It assigns probabilities to multiple classes and makes sure they sum to 1.") st.write("Now let's see what results our neural net gives for your input text. The bar chart below shows the predicted probability that your text contains a certain type of sentiment.") st.write("_**Tips**_") st.write("1. Move your mouse over the bars to see the exact predicted probabilities.") st.write("2. Also try different hyperparameters in the sidebar and see if they predict the same outcome!") st.write("") st.write("") probs_list = [] for i in range(len(models)): probs, _, embedding = predict(input, models[i], models[i].max_len) probs = probs[0].numpy() probs_list.append(probs) if len(models) == 2: re_columns = st.beta_columns(len(models)) for i in range(len(models)): d = {'Sentiment': ["negative", "somewhat negative", "neutral", "somewhat positive", "positive"], 'Probability': probs_list[i]} max_sentiment = d["Sentiment"][np.argmax(d["Probability"])] source = pd.DataFrame(d) highlight = alt.selection_single(on='mouseover', fields=['Probability'], nearest=False, clear="mouseout") c = alt.Chart(source).mark_bar().encode( alt.X('Probability:Q', axis=alt.Axis(format='.0%')), alt.Y('Sentiment:N', sort=d['Sentiment']), color=alt.condition(~highlight, alt.Color('Probability:Q', scale=alt.Scale(scheme='greens'), legend=None), alt.value('orange'), ), tooltip=['Probability:Q']).properties(width=400, height=200).add_selection( highlight).interactive() with re_columns[i]: st.write(c, use_column_width=True) st.write("Our model predicts that your input text contains " + max_sentiment + " sentiment!") else: _, center_result_col, _ = st.beta_columns([1, 2, 1]) d = {'Sentiment': ["negative", "somewhat negative", "neutral", "somewhat positive", "positive"], 'Probability': probs_list[0]} max_sentiment = d["Sentiment"][
np.argmax(d["Probability"])
numpy.argmax
# -*- coding: utf-8 -*- """ Created on Tue Sep 26 17:34:11 2017 @author: Patricio """ import numpy as np import matplotlib.pyplot as plt from scipy import signal from numba import jit,float64,vectorize,int64 #import Wavelets @vectorize([float64(float64)]) def alphan(v): return -0.01*(v+34)/(np.exp(-0.1*(v+34))-1) # ok RH @vectorize([float64(float64)]) def betan(v): return 0.125*np.exp(-(v+44)/80) # ok RH @vectorize([float64(float64)]) def alpham(v): return -0.1*(v+35)/(np.exp(-0.1*(v+35))-1) # ok RH @vectorize([float64(float64)]) def betam(v): return 4*np.exp(-(v+60)/18) # ok RH @vectorize([float64(float64)]) def alphah(v): return 0.07*np.exp(-(v+58)/20) # ok RH @vectorize([float64(float64)]) def betah(v): return 1/(np.exp(-0.1*(v+28))+1) # ok RH def expnorm(tau1,tau2): if tau1>tau2: t2=tau2; t1=tau1 else: t2=tau1; t1=tau2 tpeak = t1*t2/(t1-t2)*np.log(t1/t2) return (np.exp(-tpeak/t1) - np.exp(-tpeak/t2))/(1/t2-1/t1) # Neurons Parameters gNa = 35.0; gK = 9.0; gL=0.1 #mS/cm^2 ENa = 55.0; EK = -90.0; EL = -65.0 #mV phi = 5.0 VsynE = 0; VsynI = -80 #reversal potential tau1E = 3; tau2E = 1 tau1I = 4; tau2I = 1 theta=-20 #threshold for detecting spikes Iapp = 0; # uA/cm^2, injected current #Synaptic parameters mGsynE = 5; mGsynI = 200; mGsynExt = 3 #mean sGsynE = 1; sGsynI = 10; sGsynExt = 1 Pe=0.3; Pi=0.3 iRate = 3.5 #Rate of external input mdelay=1.5; sdelay = 0.1 #ms synaptic delays, mean and SD dt = 0.02 #ms #Network parameters Ne=100 #Numero de neuronas excitatorias Ni=25 #Numero de neuronas inhibitorias def genRandomCM(mode='all', AdjMe=None, AdjMi=None): global CMe,CMi,GsynExt,N if mode not in ('exc','inh','excinh','ext','all'): raise ValueError("mode has to be one of ['exc','inh','excinh','ext','all']") N=Ne+Ni factE = 1000*dt*expnorm(tau1E,tau2E) factI = 1000*dt*expnorm(tau1I,tau2I) if mode in ('exc','excinh','all'): GsynE = np.random.normal(mGsynE,sGsynE,size=(N,Ne)) GsynE = GsynE*(GsynE>0) # remove negative values if AdjMe is None: AdjMe=np.random.binomial(1,Pe,size=(N,Ne)) elif AdjMe.shape!=(N,Ne): raise ValueError("Check dimensions of AdjMe. It has to be N x Ne") CMe= AdjMe * GsynE / factE if mode in ('inh','excinh','all'): GsynI = np.random.normal(mGsynI,sGsynI,size=(N,Ni)) GsynI = GsynI*(GsynI>0) # remove negative values if AdjMi is None: AdjMi=np.random.binomial(1,Pi,size=(N,Ni)) elif AdjMi.shape!=(N,Ni): raise ValueError("Check dimensions of AdjMe. It has to be N x Ni") CMi= AdjMi* GsynI / factI if mode in ('ext','all'): #Weigths for external random input GsynExt = np.random.normal(mGsynExt,sGsynExt,size=N) GsynExt = GsynExt*(GsynExt>0) / factE # remove negative values and normalize genDelays() def genDelays(): global delay,delay_dt delay = np.random.normal(mdelay,sdelay,size=N) delay_dt=(delay/dt).astype(int) genRandomCM() Ggj=0.001 # not so big gap junction conductance CMelec=Ggj * np.random.binomial(1,0.3,(Ni,Ni)) #mock electric connectivity #firing=np.zeros(N) @jit(float64[:,:](float64[:,:],int64[:],int64),nopython=True) def WB_network(X,ls,i): v=X[0,:] h=X[1,:] n=X[2,:] sex=X[3,:] sey=X[4,:] six=X[5,:] siy=X[6,:] sexe=X[7,:] seye=X[8,:] minf=alpham(v)/(betam(v)+alpham(v)) INa=gNa*minf**3*h*(v-ENa) IK=gK*n**4*(v-EK) IL=gL*(v-EL) ISyn= (sey + seye) * (v - VsynE) + siy * (v - VsynI) Igj = np.zeros(N) Igj[Ne:] = np.sum(CMelec * (np.expand_dims(v[Ne:],1) - v[Ne:]),-1) firingExt = np.random.binomial(1,iRate*dt,size=N) firing=1.*(ls==(i-delay_dt)) return np.vstack((-INa-IK-IL-ISyn-Igj+Iapp, phi*(alphah(v)*(1-h) - betah(v)*h), phi*(alphan(v)*(1-n) - betan(v)*n), -sex*(1/tau1E + 1/tau2E) - sey/(tau1E*tau2E) + np.dot(CMe,firing[0:Ne]), sex, -six*(1/tau1I + 1/tau2I) - siy/(tau1I*tau2I) + np.dot(CMi,firing[Ne:]), six, -sexe*(1/tau1E + 1/tau2E) - seye/(tau1I*tau2I) + firingExt*GsynExt, sexe)) equil=400 Trun=2000 #Total=Trun + equil #ms #nsteps=len(Time) def initVars(v=None): if v is None: v_init=np.random.uniform(-80,-60,size=N) #-70.0 * np.ones(N) # -70 is the one used in brian simulation h=1/(1+betah(v_init)/alphah(v_init)) n=1/(1+betan(v_init)/alphan(v_init)) sex=np.zeros_like(v_init) sey=np.zeros_like(v_init) six=np.zeros_like(v_init) siy=np.zeros_like(v_init) sexe=np.zeros_like(v_init) seye=np.zeros_like(v_init) return np.array([v_init,h,n,sex,sey,six,siy,sexe,seye]) #X=initVars() def runSim(v_init=None,output='spikes'): global firing if v_init is None: X=initVars() elif len(v_init)==N: X=initVars(v_init) else: raise ValueError("v_init has to be None or an array of length N") if output not in ('spikes','LFP','allV'): raise ValueError("output has to be one of ['spikes','LFP','allV']") firing=np.zeros(N) #adaptation simulation - not stored equil_dt=int(equil/dt) #equilibrium time - in samples bufferl=100*(np.max(delay_dt)//100+1) V_t=np.zeros((bufferl,N)) lastSpike=equil_dt*np.ones(N,dtype=np.int64) for i in range(equil_dt): ib=i%bufferl X+=dt*WB_network(X,lastSpike,i) # firing=1*(V_t[ib-delay_dt,range(N)]>theta)*(V_t[ib-delay_dt-1,range(N)]<theta) Time = np.arange(0,Trun,dt) if output=='spikes': spikes=[] bufferl=100*(np.max(delay_dt)//100+1) V_t=np.zeros((bufferl,N)) lastSpike=lastSpike-equil_dt lastSpike[lastSpike==0]=int(Trun/dt) for i,t in enumerate(Time): ib=i%bufferl V_t[ib]=X[0] if np.any((V_t[ib]>theta)*(V_t[ib-1]<theta)): for idx in np.where((V_t[ib]>theta)*(V_t[ib-1]<theta))[0]: spikes.append([idx,t]) lastSpike[idx]=i X+=dt*WB_network(X,lastSpike,i) return np.array(spikes) elif output=='LFP': spikes=[] bufferl=100*(np.max(delay_dt)//100+1) V_t=np.zeros((bufferl,N)) LFP_t=np.zeros(len(Time)) lastSpike=lastSpike-equil_dt lastSpike[lastSpike==0]=int(Trun/dt) for i,t in enumerate(Time): ib=i%bufferl V_t[ib]=X[0] LFP_t[i]=np.mean(X[0]) if np.any((V_t[ib]>theta)*(V_t[ib-1]<theta)): for idx in np.where((V_t[ib]>theta)*(V_t[ib-1]<theta))[0]: spikes.append([idx,t]) lastSpike[idx]=i X+=dt*WB_network(X,lastSpike,i) return np.array(spikes),LFP_t,Time elif output=='allV': spikes=[] V_t=np.zeros((len(Time),N)) lastSpike=lastSpike-equil_dt lastSpike[lastSpike==0]=int(Trun/dt) for i,t in enumerate(Time): V_t[i]=X[0] if np.any((V_t[i]>theta)*(V_t[i-1]<theta)): for idx in np.where((V_t[i]>theta)*(V_t[i-1]<theta))[0]: spikes.append([idx,t]) lastSpike[idx]=i X+=dt*WB_network(X,lastSpike,i) return np.array(spikes),V_t,Time def ParamsNode(): pardict={} for var in ('gNa','gK','gL','ENa','EK','EL','phi','theta','Iapp'): pardict[var]=eval(var) return pardict def ParamsSyn(): pardict={} for var in ('VsynE','VsynI','tau1E','tau2E','tau1I','tau2I','mdelay','sdelay', 'factE','factI'): pardict[var]=eval(var) return pardict def ParamsNet(): pardict={} for var in ('Ne','Ni','N','Pe','Pi','iRate'): pardict[var]=eval(var) return pardict def ParamsNetMatrix(): pardict={} for var in ('mGsynE','mGsynI','mGsynExt','sGsynE','sGsynI','sGsynExt', 'GsynE','GsynI','GsynExt'): pardict[var]=eval(var) return pardict def ParamsSim(): pardict={} for var in ('equil','Trun','dt'): pardict[var]=eval(var) return pardict # V_t = np.zeros((nsteps,N)) # for i in range(nsteps): # V_t[i]=X[0] # X+=dt*WB_network(X,i) #%% if __name__=='__main__': Pi=0.3 iRate = 3. genRandomCM() Ggj=0.1 # not so big gap junction conductance CMelec=Ggj * np.random.binomial(1,0.3,(Ni,Ni)) #mock electric connectivity WB_network.recompile() spikes=runSim() # spikes,V_t,Time=runSim(output='allV') binsize = 0.5 # bin size for population activity in ms tbase = np.arange(0,Trun, binsize) # raster time base kernel=signal.gaussian(10*2/binsize+1,2/binsize) kernel/=np.sum(kernel) #spikes=[(np.diff(1*(V_t[:,i]>-20))==1).nonzero()[0] for i in range(N)] #pop_spikes = np.asarray([item for sublist in spikes for item in sublist]) # todas las spikes de la red pop_spikes = spikes[:,1] popact,binedge =
np.histogram(pop_spikes, tbase)
numpy.histogram
import numpy as np import argparse import tensorflow as tf import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import time import pickle NUM_LABELS = 47 rnd =
np.random.RandomState(123)
numpy.random.RandomState
import math from math import pi import numpy as np import open3d as o3d import matplotlib.pyplot as plt import cv2 import toml from .cameraparam import CameraParam from .fitted_line import FittedLine from .ransac_fit import ransac_line_fit, ransac_ground_fit from .util import check_all_false # TODO: output random seed used in ransac and open3d # PCL pre-processing (the unit of these numerics is [m]) DOWNSAMPLE_VOXEL_SIZE = 0.003 DOWNSAMPLE_VOXEL_SIZE_GROUND = 0.005 # Ground fit X_MIN = 0. X_MAX = +1.2 Y_MIN = -0.8 Y_MAX = +0.8 GRID_SIZE = 0.080 GROUND_SEED_Z_MAX = 0. GROUND_SEED_MARGIN = 0.080 GROUND_MARGIN = 0.030 SMOOTHING_KERNEL = GRID_SIZE * 0.5 # Clustering # DBSCAN_EPS : Density parameter that is used to find neighbouring points # DBSCAN_MINPOINTS : Minimum number of points to form a cluster DBSCAN_EPS = 0.016 DBSCAN_MINPOINTS = 10 CLUSTER_MINPOINTS = 50 CMAP_CLUSTER = plt.get_cmap("tab20") def set_pcl_fitter(toml_path): dict_toml = toml.load(open(toml_path)) set_roll = float(dict_toml['General']['set_roll']) set_pitch = float(dict_toml['General']['set_pitch']) set_yaw = float(dict_toml['General']['set_yaw']) camera_set_param = CameraParam() camera_set_param.set_tf_rot_and_trans([set_roll, set_pitch, set_yaw], [0., 0., 0.]) return PCLFitter(camera_set_param, dict_toml) class PCLFitter(object): def __init__(self, camera_set_param=None, target_attribute=None): self.depth_img = None self.camera_param = None self.grid_xyzw = None if camera_set_param is None: self.camera_set_param = CameraParam() else: self.camera_set_param = camera_set_param if target_attribute is None: self.set_parameters() else: self.set_target_attribute(target_attribute) def set_target_attribute(self, dict_toml): self.pcl_cutoff_dist = float(dict_toml['Selection']['pcl_cutoff_dist']) self.target_max_dist = float(dict_toml['Selection']['target_max_dist']) self.target_min_dist = float(dict_toml['Selection']['target_min_dist']) self.target_max_len = float(dict_toml['Selection']['target_max_len']) self.target_min_len = float(dict_toml['Selection']['target_min_len']) self.target_max_tilt = float(dict_toml['Selection']['target_max_tilt']) def set_parameters(self): self.pcl_cutoff_dist = 1.1 self.target_max_dist = 0.85 self.target_min_dist = 0.3 self.target_min_len = 0.25 self.target_max_len = 0.40 self.target_max_tilt = 30. def get_pcd_from_depth_img(self, depth_img, camera_param): self.depth_img = depth_img self.camera_param = camera_param pcl_raw = self.tfm_pcl_cam2global(self.cvt_depth2pcl(self.depth_img, self.camera_param), camera_param) pcd = self.downsample(pcl_raw, voxel_size=DOWNSAMPLE_VOXEL_SIZE) return pcd def fit_pcd(self, pcd, cluster_eps=DBSCAN_EPS, cluster_min_points=DBSCAN_MINPOINTS, verbose=True): pcd_list = [] fitgeom_list = [] pcd_array = np.array(pcd.points, dtype=np.float32) bflg_above_ground, xy_binidx, grid_xyzw, pcd_grounds_list = self.ground_fit(pcd_array) pcd_grounds_ary_pre_downsample = np.asarray(pcd_grounds_list[2].points) # pcd_grounds = [pcd_out_of_bin, pcd_groundseed, pcd_ground] pcd_grounds = self.downsample(pcd_grounds_ary_pre_downsample, voxel_size=DOWNSAMPLE_VOXEL_SIZE_GROUND) ground_points_ary = np.asarray(pcd_grounds.points) pcd_list += [ground_points_ary] fitgeom_list.append(self.get_mesh_ground()) # TODO debug.error() send to cloud if above ground is all false if check_all_false(bflg_above_ground): return [], pcd_list, fitgeom_list, pcd_array, ground_points_ary labels, cluster_pcd = self.clustering(pcd_array[bflg_above_ground], eps=cluster_eps, min_points=cluster_min_points) pcd_list.append(cluster_pcd) line_list = self.line_fit(pcd_array[bflg_above_ground], labels) self.merge_lines(line_list) self.mark_multiline_clusters(line_list) self.extend_lines_to_ground(line_list, grid_xyzw) self.check_line_truncation(line_list) self.final_selection(line_list) if verbose: self.print_line_info(line_list) self.bkg_postprocess(line_list) self.remove_noise_lines(line_list, grid_xyzw) mesh_cylinders = self.get_line_fit_geometry(line_list) fitgeom_list += mesh_cylinders return line_list, pcd_list, fitgeom_list, pcd_array, ground_points_ary def cvt_depth2pcl(self, depth_img, camera_param): cx, cy = camera_param.center_xy fx, fy = camera_param.focal_xy DEPTH_MIN = 1e-3 arr_y = np.arange(depth_img.shape[0], dtype=np.float32) arr_x = np.arange(depth_img.shape[1], dtype=np.float32) val_x, val_y = np.meshgrid(arr_x, arr_y) # TODO: rewrite axis convertion explicitly (i.e. zense clockwise rotation) tmp_x = +depth_img tmp_y = +depth_img * (val_y - cy) * (1. / fy) tmp_z = -depth_img * (val_x - cx) * (1. / fx) filled = (depth_img > DEPTH_MIN) * (depth_img < self.pcl_cutoff_dist + 0.2) filled_x = tmp_x[filled] filled_y = tmp_y[filled] filled_z = tmp_z[filled] pcl = np.stack([filled_x, filled_y, filled_z], axis=-1) return pcl def tfm_pcl_cam2global(self, pcl_camframe, camera_param): pcl_tmp = np.dot(pcl_camframe, camera_param.rot_mtx.transpose()) + camera_param.translation pcl_global = np.dot(pcl_tmp, self.camera_set_param.rot_mtx.transpose()) return pcl_global def cvt_to_2d_image_xyd(self, input_points, camera_param): points = input_points.reshape(-1, 3) points_tmp = np.dot(points, self.camera_set_param.inv_rot_mtx.transpose()) points_camframe = np.dot(points_tmp - camera_param.translation, camera_param.inv_rot_mtx.transpose()) cx, cy = camera_param.center_xy fx, fy = camera_param.focal_xy depth = +points_camframe[:, 0] val_y = +points_camframe[:, 1] / depth * fy + cy val_x = -points_camframe[:, 2] / depth * fx + cx xyd = np.stack([val_x, val_y, depth], axis=-1) return xyd.reshape(input_points.shape) def downsample(self, pcl_raw, voxel_size): pcd_raw = self.cvt_numpy2open3d(pcl_raw, color=[0., 0., 1.]) pcd = pcd_raw.voxel_down_sample(voxel_size=voxel_size) return pcd def cvt_numpy2open3d(self, pcl, color=None): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pcl.astype(np.float64)) if not color is None: pcd.paint_uniform_color(color) return pcd def ground_fit(self, pcl): x_nbin = int( (X_MAX - X_MIN) / float(GRID_SIZE) + 1e-3 ) y_nbin = int( (Y_MAX - Y_MIN) / float(GRID_SIZE) + 1e-3 ) x_edge = np.linspace(X_MIN, X_MIN + GRID_SIZE * x_nbin, x_nbin + 1).reshape(1, -1) y_edge = np.linspace(Y_MIN, Y_MIN + GRID_SIZE * y_nbin, y_nbin + 1).reshape(1, -1) x_ctr = (x_edge[0, 1:] + x_edge[0, :-1]) * 0.5 y_ctr = (y_edge[0, 1:] + y_edge[0, :-1]) * 0.5 pcl_tmp = pcl.reshape(-1, 1, 3) x_binflg = (pcl_tmp[:, :, 0] >= x_edge[:, :-1]) * (pcl_tmp[:, :, 0] < x_edge[:, 1:]) y_binflg = (pcl_tmp[:, :, 1] >= y_edge[:, :-1]) * (pcl_tmp[:, :, 1] < y_edge[:, 1:]) x_binidx = np.argmax(x_binflg, axis=-1) y_binidx = np.argmax(y_binflg, axis=-1) x_binidx[(x_binflg.sum(axis=-1) == 0)] = -1 y_binidx[(y_binflg.sum(axis=-1) == 0)] = -1 xy_binidx = np.concatenate([x_binidx.reshape(-1,1), y_binidx.reshape(-1,1)], axis=-1) bflg_out_of_bin = (xy_binidx == -1).sum(-1).astype(np.bool) bflg_in_bin = (bflg_out_of_bin == False) grid_xyzw = np.zeros([x_nbin, y_nbin, 4], dtype=np.float64) for i_x in range(x_nbin): for i_y in range(y_nbin): in_bin = (x_binidx == i_x) * (y_binidx == i_y) pcl_in_bin = pcl[in_bin] valid = (pcl_in_bin[:, 2] < GROUND_SEED_Z_MAX) pcl_valid = pcl_in_bin[valid] if pcl_valid.shape[0] == 0: z_val = 0. wgt = 0.1 else: z_val = pcl_valid[:, 2].min() wgt = 1. grid_xyzw[i_x, i_y] = [x_ctr[i_x], y_ctr[i_y], z_val, wgt] grid_xyzw = self.fill_empy_gridz(grid_xyzw, w_thres=0.1) pcd_groundseed = self.cvt_numpy2open3d(grid_xyzw.reshape(-1, 4)[:, :3], color=[1., 0., 1.]) pcl_ground_seed_z = grid_xyzw[x_binidx, y_binidx, 2] bflg_ground_seed = (pcl[:, 2] < (pcl_ground_seed_z + GROUND_SEED_MARGIN)) * bflg_in_bin grid_xyzw = ransac_ground_fit(pcl[bflg_ground_seed], xy_binidx[bflg_ground_seed], grid_xyzw) grid_xyzw = self.fill_empy_gridz(grid_xyzw, w_thres=1.) grid_xyzw = self.smooth_ground(grid_xyzw, kernel_size=SMOOTHING_KERNEL) self.grid_xyzw = grid_xyzw bflg_in_range = (np.linalg.norm(pcl[:,:2], axis=-1) < self.pcl_cutoff_dist) bflg_valid_points = bflg_in_range * bflg_in_bin pcl_ground_z = grid_xyzw[x_binidx, y_binidx, 2] bflg_ground = (pcl[:, 2] < (pcl_ground_z + GROUND_MARGIN)) * bflg_valid_points bflg_above_ground = (bflg_ground == False) * bflg_valid_points pcd_out_of_bin = self.cvt_numpy2open3d(pcl[bflg_valid_points == False], color=[0.3, 0., 0.5]) pcd_ground = self.cvt_numpy2open3d(pcl[bflg_ground], color=[0., 0., 0.5]) pcd_all = [pcd_out_of_bin, pcd_groundseed, pcd_ground] return bflg_above_ground, xy_binidx, grid_xyzw, pcd_all def fill_empy_gridz(self, grid_xyzw, w_thres=0.1): filled = (grid_xyzw[:,:,3] > w_thres) empty = (filled == False) # print 'filled ', filled.shape, filled.sum() # print 'empty ', empty.shape, empty.sum() filled_xyzw = grid_xyzw[filled].reshape(-1, 1, 4) empty_xyzw = grid_xyzw[empty].reshape(1, -1, 4) # print 'filled_xyzw ', filled_xyzw.shape # print 'empty_xyzw ', empty_xyzw.shape dist_array = np.linalg.norm(filled_xyzw[:,:,:2] - empty_xyzw[:,:,:2], axis=-1) # print 'dist_array ', dist_array.shape if dist_array.shape[0] != 0: nearest_filled = np.argmin(dist_array, axis=0) grid_xyzw[empty, 2] = filled_xyzw[nearest_filled, 0, 2] return grid_xyzw def smooth_ground(self, grid_xyzw, kernel_size): vect = grid_xyzw[:,:,:2].reshape(1, -1, 2) - grid_xyzw[:,:,:2].reshape(-1, 1, 2) dsq = (vect ** 2).sum(axis=-1) z_orig = grid_xyzw[:,:,2].reshape(-1) wgt = grid_xyzw[:,:,3].reshape(-1) coeff = 0.5 / kernel_size ** 2 fill_wgt = wgt * np.exp(-dsq * coeff) z_smooth = (z_orig * fill_wgt).sum(axis=-1) / fill_wgt.sum(axis=-1) grid_xyzw[:,:,2].reshape(-1)[:] = z_smooth return grid_xyzw def get_mesh_ground(self): return self.cvt_gridvtx2mesh(self.grid_xyzw) if self.grid_xyzw is not None else None def cvt_gridvtx2mesh(self, grid_vtx, double_sided=True): ngrid_x = grid_vtx.shape[0] ngrid_y = grid_vtx.shape[1] vertices = np.array(grid_vtx[:,:,:3].reshape(-1,3)) triangles = [] for i_x in range(grid_vtx.shape[0] - 1): for i_y in range(grid_vtx.shape[1] - 1): ivert_base = i_x * ngrid_y + i_y triangles.append([ivert_base, ivert_base+ngrid_y, ivert_base+1]) triangles.append([ivert_base+ngrid_y+1, ivert_base+1, ivert_base+ngrid_y]) triangles = np.array(triangles) if double_sided: triangles =
np.concatenate([triangles, triangles[:,::-1]], axis=0)
numpy.concatenate
import spiderman as sp import numpy as np import matplotlib.pyplot as plt import time as timing def plot_test(): spider_params = sp.ModelParams(brightness_model='zhang') spider_params.n_layers= 20 spider_params.t0= 200 # Central time of PRIMARY transit [days] spider_params.per= 0.81347753 # Period [days] spider_params.a_abs= 0.01526 # The absolute value of the semi-major axis [AU] spider_params.inc= 82.33 # Inclination [degrees] spider_params.ecc= 0.0 # Eccentricity spider_params.w= 90 # Argument of periastron spider_params.rp= 0.1594 # Planet to star radius ratio spider_params.a= 4.855 # Semi-major axis scaled by stellar radius spider_params.p_u1= 0 # Planetary limb darkening parameter spider_params.p_u2= 0 # Planetary limb darkening parameter spider_params.xi= 0.3 # Ratio of radiative to advective timescale spider_params.T_n= 1128 # Temperature of nightside spider_params.delta_T= 942 # Day-night temperature contrast spider_params.T_s = 5000 # Temperature of the star spider_params.l1 = 1.3e-6 # start of integration channel in microns spider_params.l2 = 1.6e-6 # end of integration channel in microns t= spider_params.t0 + np.linspace(0, + spider_params.per,100) lc = sp.lightcurve(t,spider_params) plt.plot(t,lc) plt.show() def time_test(nlayers=5,tpoints=100,nreps=1000): spider_params = sp.ModelParams(brightness_model='zhang') # spider_params = sp.ModelParams(brightness_model='uniform brightness') spider_params.n_layers= nlayers spider_params.t0= 200 # Central time of PRIMARY transit [days] spider_params.per= 0.81347753 # Period [days] spider_params.a_abs= 0.01526 # The absolute value of the semi-major axis [AU] spider_params.inc= 82.33 # Inclination [degrees] spider_params.ecc= 0.0 # Eccentricity spider_params.w= 90 # Argument of periastron spider_params.rp= 0.1594 # Planet to star radius ratio spider_params.a= 4.855 # Semi-major axis scaled by stellar radius spider_params.p_u1= 0 # Planetary limb darkening parameter spider_params.p_u2= 0 # Planetary limb darkening parameter spider_params.xi= 0.3 # Ratio of radiative to advective timescale spider_params.T_n= 1128 # Temperature of nightside spider_params.delta_T= 942 # Day-night temperature contrast spider_params.T_s = 4500 # Temperature of the star spider_params.l1 = 1.3e-6 # start of integration channel in microns spider_params.l2 = 1.6e-6 # end of integration channel in microns spider_params.pb = 0.01 # planet relative brightness t= spider_params.t0 +
np.linspace(0, + spider_params.per,tpoints)
numpy.linspace
import os import unittest from io import StringIO from numpy import array, allclose, cross import numpy as np import pyNastran from pyNastran.bdf.bdf import BDF from pyNastran.bdf.bdf import CORD2C, GRID, FORCE from pyNastran.bdf.mesh_utils.loads import sum_forces_moments, sum_forces_moments_elements model_path = os.path.join(pyNastran.__path__[0], '..', 'models') log = None class TestLoadSum(unittest.TestCase): def test_loads_sum_01(self): """tests FORCE""" model = BDF(log=log, debug=False) bdf_filename = os.path.join(model_path, 'solid_bending', 'solid_bending.bdf') model.read_bdf(bdf_filename) loadcase_id = 1 #print("keys1", model.loads.keys()) p0 = array([0., 0., 0.]) F_expected = array([23000., 0., 0.]) M_expected = array([0., 33209.869, -22803.951]) eids = None nids = None F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) def test_loads_sum_02(self): """tests FORCE""" model = BDF(log=log, debug=False) bdf_filename = os.path.join(model_path, 'sol_101_elements', 'static_solid_shell_bar.bdf') model.read_bdf(bdf_filename) loadcase_id = 10000 #print("keys2", model.loads.keys()) p0 = array([0., 0., 0.]) F_expected = array([0., 0., 10000.]) M_expected = array([5000., -5000., 0.]) eids = None nids = None F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) loadcase_id = 123458 p0 = array([0., 0., 0.]) F_expected = array([0., 0., 10000.]) M_expected = array([5000., -5000., 0.]) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) def test_loads_sum_03(self): """tests N/A""" if 0: # pragma: no cover model = BDF(log=log, debug=False) bdf_filename = os.path.join(model_path, 'iSat', 'ISat_Launch_Sm_4pt.dat') model.read_bdf(bdf_filename) loadcase_id = 1 #print("keys3", model.loads.keys()) p0 = array([0., 0., 0.]) F_expected = array([0., 0., 1.]) M_expected = array([0., 0., 0.]) eids = None nids = None F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) def test_loads_sum_04(self): """ tests: - 1=FORCE - 2=LOAD/FORCE - 3=LOAD/PLOAD4 - 4=LOAD/PLOAD4 - 5=LOAD/PLOAD4 - 6=LOAD/PLOAD4 - 10=PLOAD4 - 11=PLOAD4 """ p0 = array([0., 0., 0.]) model = BDF(log=log, debug=False) bdf_filename = os.path.join(model_path, 'plate', 'plate.bdf') #print(bdf_filename) model.read_bdf(bdf_filename) #print("keys4", model.loads.keys()) loadcase_id = 1 F_expected = array([600., 0., 0.]) M_expected = array([0., 0., -3000.]) eids = None nids = None F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) loadcase_id = 2 F_expected = array([600., 0., 0.]) M_expected = array([0., 0., -3000.]) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) #--------- loadcase_id = 3 A = 0. for e, element in model.elements.items(): A += element.Area() A_expected = 100. self.assertTrue(allclose(A, A_expected), 'loadcase_id=%s A_expected=%s A=%s' % (loadcase_id, A_expected, A)) p = 3. Fi = p * A eids = None nids = None F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(p*A, F[2]), 'loadcase_id=%s p*A=%s F=%s' % (loadcase_id, p*A, F)) F_expected = array([0., 0., 300.]) M_expected = array([1500., -1500., 0.]) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) #--- loadcase_id = 10 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) #--- loadcase_id = 4 F_expected = array([0., 0., 300.]) M_expected = array([1500., -1500., 0.]) F_expected *= 5. M_expected *= 5. F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) #print('F =', F) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) loadcase_id = 5 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) F_expected = array([0., 0., 300.]) M_expected = array([1500., -1500., 0.]) F_expected *= 7. M_expected *= 7. self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) loadcase_id = 6 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) F_expected = array([0., 0., 300.]) M_expected = array([1500., -1500., 0.]) F_expected *= 7. * 5. M_expected *= 7. * 5. self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) #--------- loadcase_id = 11 A_expected = 4. A = 4. p = 3. Fi = p * A element = model.elements[1] normal = element.Normal() normal_expected = array([0., 0., 1.]) self.assertTrue(allclose(normal_expected, normal), 'loadcase_id=%s normal_expected=%s normal=%s' % (loadcase_id, normal_expected, normal)) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(p*A, F[2]), 'loadcase_id=%s p*A=%s F=%s' % (loadcase_id, p*A, F)) F_expected = array([0., 0., 12.]) M_expected = array([12., -12., 0.]) self.assertTrue(allclose(F_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F_expected, F)) self.assertTrue(allclose(M_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M_expected, M)) def test_loads_sum_05(self): """ tests: - 1=LOAD/PLOAD4 - 2=LOAD/PLOAD4/FORCE - 5=PLOAD4 - 6=PLOAD4 - 1001=PLOAD4 - 1002=1002 - 1003=PLOAD """ model = BDF(log=log, debug=False) bdf_filename = os.path.join(model_path, 'real', 'loads', 'loads.bdf') model.read_bdf(bdf_filename) p = 3. A = 1. n = array([0., 0., 1.]) F1001_expected = p * A * n r = array([0.5, 1.5, 0.]) p0 = array([0., 0., 0.]) M1001_expected = cross(r, F1001_expected) loadcase_id = 1001 eids = None nids = None F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F1001_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F1001_expected, F)) self.assertTrue(allclose(M1001_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M1001_expected, M)) loadcase_id = 1002 r = array([4., 2., 0.]) F1002_expected = array([0., 0., 1.]) M1002_expected = cross(r, F1002_expected) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) self.assertTrue(allclose(F1002_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F1002_expected, F)) self.assertTrue(allclose(M1002_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M1002_expected, M)) loadcase_id = 1 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F1001_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F1001_expected, F)) self.assertTrue(allclose(M1001_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M1001_expected, M)) loadcase_id = 2 F2_expected = F1001_expected + F1002_expected M2_expected = M1001_expected + M1002_expected F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F2_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F2_expected, F)) self.assertTrue(allclose(M2_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M2_expected, M)) F6_expected = 2. * (3. * F1001_expected + 13. * F1002_expected) M6_expected = 2. * (3. * M1001_expected + 13. * M1002_expected) F7_expected = 7. * 11. * F6_expected M7_expected = 7. * 11. * M6_expected if 0: # pragma: no cover loadcase_id = 6 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F6_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F6_expected, F)) self.assertTrue(allclose(M6_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M6_expected, M)) loadcase_id = 7 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F7_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F7_expected, F)) self.assertTrue(allclose(M7_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M7_expected, M)) loadcase_id = 5 p = 2. A = 1. n = array([0., 1., 1.]) / np.sqrt(2.) F5_expected = p * A * n r = array([0.5, 0.5, 0.]) M5_expected = cross(r, F5_expected) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F5_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F5_expected, F)) self.assertTrue(allclose(M5_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M5_expected, M)) #print('loadcase_id=%s F=%s M=%s' % (loadcase_id, F, M)) loadcase_id = 6 p = 2. A = 1. n = array([0., 0., 0.5]) / 0.5 F6_expected = p * A * n r = array([0.5, 0.5, 0.]) M6_expected = cross(r, F6_expected) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F6_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F6_expected, F)) self.assertTrue(allclose(M6_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M6_expected, M)) #print('loadcase_id=%s F=%s M=%s' % (loadcase_id, F, M)) loadcase_id = 1003 p = 9. A = 1. n = array([0., 0., 1.]) F1003_expected = p * A * n r = array([0.5, 0.5, 0.]) M1003_expected = cross(r, F1003_expected) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F1003_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F1003_expected, F)) self.assertTrue(allclose(M1003_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M1003_expected, M)) loadcase_id = 8 F8_expected = 2. * (3. * F7_expected + 2. * F1003_expected) M8_expected = 2. * (3. * M7_expected + 2. * M1003_expected) if 0: # pragma: no cover F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F8_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F8_expected, F)) self.assertTrue(allclose(M8_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M8_expected, M)) loadcase_id = 800 p = 3.5 A = 1. n = array([0., 0., 1.]) F800_expected = p * A * n r = array([3.5, 1.5, 0.]) M800_expected = cross(r, F800_expected) if 0: # pragma: no cover F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F800_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F800_expected, F)) self.assertTrue(allclose(M800_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M800_expected, M)) loadcase_id = 801 F801_expected = F800_expected M801_expected = M800_expected if 0: # pragma: no cover F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F801_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F801_expected, F)) self.assertTrue(allclose(M801_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M801_expected, M)) loadcase_id = 802 p = 3.5 A = 0.5 n = array([0., 0., 1.]) F802_expected = p * A * n rx = (3. + 4. + 4.) / 3. ry = (1. + 1. + 2.) / 3. r = array([rx, ry, 0.]) M802_expected = cross(r, F802_expected) if 0: # pragma: no cover F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F802_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F802_expected, F)) self.assertTrue(allclose(M802_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M802_expected, M)) bdf_file = StringIO() model.write_bdf(bdf_file, close=False) bdf_file.seek(0) model.write_bdf(bdf_file, size=16) def _test_loads_sum_06(self): model = BDF(log=log, debug=False) bdf_filename = os.path.join(model_path, 'real', 'loads', 'bars.bdf') model.read_bdf(bdf_filename) p0 = array([0., 0., 0.]) loadcase_id = 1 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) if 0: # pragma: no cover r = array([0., 0., 0.]) F1_expected = array([0., 0., 1.]) M1_expected = cross(r, F1_expected) F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) self.assertTrue(allclose(F1_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F1_expected, F)) self.assertTrue(allclose(M1_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M1_expected, M)) def test_loads_sum_radial_01(self): model = BDF(debug=False) model.nodes[1] = GRID(1, cp=1, xyz=[0., 0., 0.], cd=0, ps='', seid=0, comment='') cid = 1 origin = [0., 0., 0.] zaxis = [0., 0., 1.] xaxis = [1., 0., 0.] model.add_cord2c(cid, rid=0, origin=origin, zaxis=zaxis, xzplane=xaxis, comment='') sid = 1 node = 1 cid = 1 mag = 1.1 xyz = [1., 0., 0.] radial_force = model.add_force(sid, node, mag, xyz, cid=cid, comment='') sid = 2 xyz = [1., 90., 0.] mag = 2.2 theta_force = model.add_force(sid, node, mag, xyz, cid=cid, comment='') model.cross_reference() p0 = 1 eids = None nids = None loadcase_id = 1 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False, xyz_cid0=None) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False, xyz_cid0=None) assert np.allclose(F, F2), 'F=%s F2=%s' % (F, F2) assert np.allclose(M, M2), 'M=%s M2=%s' % (M, M2) F1_expected = np.array([1.1, 0., 0.]) M1_expected = np.array([0., 0., 0.]) self.assertTrue(allclose(F1_expected, F), 'loadcase_id=%s F_expected=%s F=%s' % (loadcase_id, F1_expected, F)) self.assertTrue(allclose(M1_expected, M), 'loadcase_id=%s M_expected=%s M=%s' % (loadcase_id, M1_expected, M)) loadcase_id = 2 F, M = sum_forces_moments(model, p0, loadcase_id, include_grav=False, xyz_cid0=None) F2, M2 = sum_forces_moments_elements(model, p0, loadcase_id, eids, nids, include_grav=False, xyz_cid0=None) assert
np.allclose(F, F2)
numpy.allclose
import numpy as np import sys, os, subprocess import OpenEXR import Imath from PIL import Image, ImageChops from plyfile import PlyData, PlyElement def trim(im): bg = Image.new(im.mode, im.size, im.getpixel((0,0))) diff = ImageChops.difference(im, bg) diff = ImageChops.add(diff, diff) bbox = diff.getbbox() if bbox: return im.crop(bbox) # PATH_TO_MITSUBA2 = "/home/tolga/Codes/mitsuba2/build/dist/mitsuba" # mitsuba exectuable PATH_TO_MITSUBA2 = "/home/wangyida/Documents/gitfarm/mitsuba2/build/dist/mitsuba" # mitsuba exectuable # replaced by command line arguments # PATH_TO_NPY = 'pcl_ex.npy' # the tensor to load # note that sampler is changed to 'independent' and the ldrfilm is changed to hdrfilm xml_head = \ """ <scene version="0.6.0"> <integrator type="path"> <integer name="maxDepth" value="-1"/> </integrator> <sensor type="perspective"> <float name="farClip" value="100"/> <float name="nearClip" value="0.1"/> <transform name="toWorld"> <lookat origin="3,3,3" target="0,0,0" up="0,0,1"/> </transform> <float name="fov" value="25"/> <sampler type="independent"> <integer name="sampleCount" value="256"/> </sampler> <film type="hdrfilm"> <integer name="width" value="720"/> <integer name="height" value="720"/> <rfilter type="gaussian"/> </film> </sensor> <bsdf type="roughplastic" id="surfaceMaterial"> <string name="distribution" value="ggx"/> <float name="alpha" value="0.05"/> <float name="intIOR" value="1.46"/> <rgb name="diffuseReflectance" value="1,1,1"/> <!-- default 0.5 --> </bsdf> """ # I also use a smaller point size xml_ball_segment = \ """ <shape type="sphere"> <float name="radius" value="0.015"/> <transform name="toWorld"> <translate x="{}" y="{}" z="{}"/> </transform> <bsdf type="diffuse"> <rgb name="reflectance" value="{},{},{}"/> </bsdf> </shape> """ # material for plastic """ <bsdf type="diffuse"> <rgb name="reflectance" value="{},{},{}"/> </bsdf> """ # material for dielectric """ <bsdf type="roughdielectric"> <string name="distribution" value="beckmann"/> <float name="alpha" value="0.1"/> <string name="int_ior" value="bk7"/> <string name="ext_ior" value="air"/> <rgb name="specular_reflectance" value="{},{},{}"/> </bsdf> """ # material for metal """ <bsdf type="roughconductor"> <string name="material" value="Ag"/> <string name="distribution" value="beckmann"/> <float name="alpha" value="0.4"/> <rgb name="specular_reflectance" value="{},{},{}"/> </bsdf> """ obj_mesh = \ """ <shape type="obj"> <string name="filename" value="{}"/> <bsdf type="diffuse"> </bsdf> </shape> """ # A rectangular bottom plane """ <shape type="rectangle"> <ref name="bsdf" id="surfaceMaterial"/> <transform name="toWorld"> <scale x="10" y="10" z="1"/> <translate x="0" y="0" z="{}"/> </transform> </shape> """ xml_tail = \ """ <shape type="rectangle"> <ref name="bsdf" id="surfaceMaterial"/> <transform name="toWorld"> <scale x="10" y="10" z="1"/> <translate x="0" y="0" z="{}"/> </transform> </shape> <shape type="rectangle"> <transform name="toWorld"> <scale x="10" y="10" z="1"/> <lookat origin="-4,4,20" target="0,0,0" up="0,0,1"/> </transform> <emitter type="area"> <rgb name="radiance" value="7,7,7"/> </emitter> </shape> </scene> """ def colormap(x, y, z): vec = np.array([x, y, z]) vec = np.clip(vec, 0.001, 1.0) norm = np.sqrt(np.sum(vec ** 2)) vec /= norm return [vec[0], vec[1], vec[2]] def standardize_bbox(pcl, points_per_object): pt_indices = np.random.choice(pcl.shape[0], points_per_object, replace=False) np.random.shuffle(pt_indices) pcl = pcl[pt_indices] # n by 3 mins = np.amin(pcl, axis=0) maxs = np.amax(pcl, axis=0) center = (mins + maxs) / 2. scale =
np.amax(maxs - mins)
numpy.amax
""" miscelallaneous functions and classes to extract connectivity metrics Author: <NAME>, PhD [<EMAIL>], https://twitter.com/davemomi """ import numpy as np import pandas as pd from math import pi import glob import seaborn as sns import matplotlib.pyplot as plt import bct as bct class Connectivity_metrics(object): def __init__(self, matrices_files, net_label_txt, labels_dic): self.matrices_files = matrices_files self.net_label_txt = net_label_txt self.labels_dic = labels_dic def nodes_overall_conn(self, make_symmetric=True, upper_threshold=None, lower_threshold=None): ''' computing the overall connectivity of each node regardless of network affiliation Parameters ---------- make_symmetric: Boolean| True indicate that the matrix is either upper or lower triangular and need to be symmetrize False indicate that the matrix is a full matrix already upper_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value under that threshold will be 0 (Default is None) lower_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value above that threshold will be 0 (Default is None) Returns ------- float data : numpy array | numpy array (dim number of subject X number of node) representing the connectivity of each node regardless of network affiliation ''' self.nodes_conn = [] for subj in range(len(self.matrices_files)): self.matrix = pd.read_csv(self.matrices_files[subj], sep= ' ', header=None) self.matrix = np.array(self.matrix) if make_symmetric==True: self.matrix = self.matrix + self.matrix.T - np.diag(self.matrix.diagonal()) else: self.matrix = self.matrix self.max=np.max(self.matrix.flatten()) if upper_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix < upper_threshold*self.max/100 ] = 0 if lower_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix > lower_threshold*self.max/100 ] = 0 np.fill_diagonal(self.matrix,0) for nodes in range(self.matrix.shape[0]): self._node_conn = np.sum(self.matrix[nodes]) self.nodes_conn.append(self._node_conn) self.nodes_conn = np.array(self.nodes_conn) self.nodes_conn = self.nodes_conn.reshape(len(self.matrices_files), self.matrix.shape[0]) return self.nodes_conn def node_inner_conn(self, sbj_number, nodes_number, make_symmetric=True, upper_threshold=None, lower_threshold=None): ''' computing the connectivity of each node with its own network Parameters ---------- sbj_number: int | number of subjects nodes_number: int| number of nodes make_symmetric: Boolean| True indicate that the matrix is either upper or lower triangular and need to be symmetrize False indicate that the matrix is a full matrix already upper_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value under that threshold will be 0 (Default is None) lower_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value above that threshold will be 0 (Default is None) Returns ------- float data : numpy array | numpy array (dim number of subject X number of node) representing the connectivity of each node with its own network ''' with open(self.net_label_txt) as f: net=f.read().splitlines() self.all_conn = np.zeros([sbj_number, nodes_number]) for subj in range(len(self.matrices_files)): self.matrix = pd.read_csv(self.matrices_files[subj], sep= ' ', header=None) self.matrix = np.array(self.matrix) if make_symmetric==True: self.matrix = self.matrix + self.matrix.T - np.diag(self.matrix.diagonal()) else: self.matrix = self.matrix self.max=np.max(self.matrix.flatten()) if upper_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix < upper_threshold*self.max/100 ] = 0 if lower_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix > lower_threshold*self.max/100 ] = 0 np.fill_diagonal(self.matrix,0) for network in net: for nodes in self.labels_dic[network]: self.sub_matrix =self.matrix[nodes] self.streamlines_sum = np.sum(self.sub_matrix[self.labels_dic[network]]) self.all_conn[subj, nodes] = self.streamlines_sum/self.labels_dic[network].shape[0] return self.all_conn def node_outer_conn(self, sbj_number, nodes_number, make_symmetric=True, upper_threshold=None, lower_threshold=None): ''' computing the connectivity of each node with the other nodes which don't belong to the same network Parameters ---------- sbj_number: int | number of subjects nodes_number: int| number of nodes make_symmetric: Boolean| True indicate that the matrix is either upper or lower triangular and need to be symmetrize False indicate that the matrix is a full matrix already upper_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value under that threshold will be 0 (Default is None) lower_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value above that threshold will be 0 (Default is None) Returns ------- float data : numpy array | numpy array (dim number of subject X number of node) representing the connectivity of each node with regions that are outsite the node's network ''' with open(self.net_label_txt) as f: net=f.read().splitlines() self.all_conn = np.zeros([sbj_number, nodes_number]) for subj in range(len(self.matrices_files)): self.matrix = pd.read_csv(self.matrices_files[subj], sep= ' ', header=None) self.matrix = np.array(self.matrix) if make_symmetric==True: self.matrix = self.matrix + self.matrix.T - np.diag(self.matrix.diagonal()) else: self.matrix = self.matrix self.max=np.max(self.matrix.flatten()) if upper_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix < upper_threshold*self.max/100 ] = 0 if lower_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix > lower_threshold*self.max/100 ] = 0
np.fill_diagonal(self.matrix,0)
numpy.fill_diagonal
import isopy import numpy as np import pytest # calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation def test_mass_fractionation1(): # Testing with input as isotope array # Using default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed = 46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd') c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor) assert c_fractionated1.keys == unfractionated.keys assert c_fractionated1.size == unfractionated.size assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd') c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor) assert c_unfractionated1.keys == unfractionated.keys assert c_unfractionated1.size == unfractionated.size assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd') np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key/'105pd') fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated1[key], fractionated) np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key]) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) #Changing reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated2 = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd', isotope_masses=mass_ref) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref) assert c_fractionated1.keys == unfractionated.keys assert c_fractionated1.size == unfractionated.size assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd', isotope_masses=mass_ref) c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref) assert c_unfractionated1.keys == unfractionated.keys assert c_unfractionated1.size == unfractionated.size assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key / '105pd') fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated1[key], fractionated) np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key]) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) # calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation def test_mass_fractionation2(): # Testing with input as ratio array # Using default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor) assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor) assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd') np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key) fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated2[key], fractionated) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) # Changing reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref) assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref) assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key) fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated2[key], fractionated) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) class Test_MassIndependentCorrection: def test_one(self): # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated1 = unfractionated1 * fraction_ref unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd'] unfractionated2 = unfractionated1.ratio('105pd') n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000 mf_factor = isopy.random(100, (0, 2), seed=47) fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor) fractionated2 = fractionated1.deratio(unfractionated1['105pd']) self.run(fractionated1, unfractionated2, '108pd/105pd') self.run(fractionated2, unfractionated2, '108pd/105pd') self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon') self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon') # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated1 = unfractionated1 * fraction_ref unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd'] unfractionated2 = unfractionated1.ratio('105pd') n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000 mf_factor = isopy.random(100, (0, 2), seed=47) fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor, isotope_masses=mass_ref) fractionated2 = fractionated1.deratio(unfractionated1['105pd']) self.run(fractionated1, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) def test_two(self): # With interference correctionn # We wont get an exact match here so we have to lower the tolerance. # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor) for key in fractionated.keys.filter(element_symbol='pd'): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= fractionated['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) fractionated[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= fractionated['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) fractionated[key] += cd correct1 = data.copy(element_symbol = 'pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = (correct1 / fraction_ref - 1) * 10_000 self.run(fractionated, correct1, '108pd/105pd') self.run(fractionated, correct2, '108pd/105pd', factor=1) self.run(fractionated, correct3, '108pd/105pd', factor=10_000) self.run(fractionated, correct3, '108pd/105pd', factor='epsilon') # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref) for key in fractionated.keys.filter(element_symbol='pd'): if (ru := fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= fractionated['101ru'] * ( mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) fractionated[key] += ru if (cd := fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= fractionated['111cd'] * ( mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) fractionated[key] += cd correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = (correct1 / fraction_ref - 1) * 10_000 self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) def test_three(self): # Normalisations # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor) correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct1, '108pd/105pd') self.run(fractionated, correct2, '108pd/105pd', factor=1) self.run(fractionated, correct3, '108pd/105pd', factor=1000) self.run(fractionated, correct3, '108pd/105pd', factor='ppt') self.run(fractionated, correct3, '108pd/105pd', factor='permil') self.run(fractionated, correct4, '108pd/105pd', factor=10_000) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon') self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000) self.run(fractionated, correct5, '108pd/105pd', factor='mu') self.run(fractionated, correct5, '108pd/105pd', factor='ppm') # Single value std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=48) std1 = std1 * fraction_ref rstd1 = std1.ratio('pd105') correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / np.mean(rstd1) - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1) std1 = np.mean(std1) rstd1 = np.mean(rstd1) self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1) # Multiple std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=48) std1 = std1 * fraction_ref rstd1 = std1.ratio('pd105') std2 = isopy.random(50, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=49) std2 = std2 * fraction_ref rstd2 = std2.ratio('pd105') correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / (np.mean(rstd1)/2 + np.mean(rstd2)/2) - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) std1 = np.mean(std1) rstd1 = np.mean(rstd1) self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) std2 = np.mean(std2) rstd2 = np.mean(rstd2) self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref) correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor=1000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='permil', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor='mu', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', mass_ref=mass_ref, fraction_ref=fraction_ref) def run(self, data, correct, mb_ratio, factor = None, mass_ref = None, fraction_ref=None, norm_val = None): if type(factor) is str: func = getattr(isopy.tb.internal_normalisation, factor) factor2 = None else: factor2 = factor func = isopy.tb.internal_normalisation kwargs = {} if factor2 is not None: kwargs['extnorm_factor'] = factor2 if mass_ref is not None: kwargs['isotope_masses'] = mass_ref if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref if norm_val is not None: kwargs['extnorm_value'] = norm_val corrected = func(data, mb_ratio, **kwargs) assert corrected.keys == correct.keys - mb_ratio assert corrected.size == correct.size assert corrected.ndim == correct.ndim for key in corrected.keys: np.testing.assert_allclose(corrected[key], correct[key]) # mass independent correction if type(factor) is str: func = getattr(isopy.tb.mass_independent_correction, factor) factor2 = None else: factor2 = factor func = isopy.tb.mass_independent_correction kwargs = {} if factor2 is not None: kwargs['normalisation_factor'] = factor2 if mass_ref is not None: kwargs['isotope_masses'] = mass_ref if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref if norm_val is not None: kwargs['normalisation_value'] = norm_val corrected = func(data, mb_ratio, **kwargs) assert corrected.keys == correct.keys - mb_ratio assert corrected.size == correct.size assert corrected.ndim == correct.ndim for key in corrected.keys: np.testing.assert_allclose(corrected[key], correct[key]) class Test_IsobaricInterferences: def test_one(self): # No mass fractionation factor # Single interference isotope # Default reference values fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru'] data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd') # Different reference values fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru'] data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref) def test_two(self): # No mass fractionation factor # Multiple interference isotopes # Default reference values fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq = '<KEY>'.split()): data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru'] data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()): data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru'] data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd'] correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd') # Different reference values fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq='<KEY>'.split()): data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru'] data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='<KEY>'.split()): data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru'] data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd'] correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref) def test_three(self): #Mass fractionation #Single interference isotope mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='<KEY>'.split()) mf_factor = isopy.random(100, (0,2)) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= data['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) data[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= data['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) data[key] += cd interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd', mf_factor=mf_factor) #M Multiple interference isotopes # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq='<KEY>'.split()): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= data1['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) data1[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd112', 0)) > 0: cd *= data1['cd112'] * (mass_ref.get(f'cd{key.mass_number}/cd112', 0) ** mf_factor) data1[key] += cd interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru99', 0)) > 0: ru *= data2['ru99'] * (mass_ref.get(f'ru{key.mass_number}/ru99', 0) ** mf_factor) data2[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= data2['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) data2[key] += cd correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref, mass_ref=mass_ref, mf_factor=mf_factor) def run(self, data1, data2, correct1, correct2, interferences1, interferences2, denom=None, mf_factor=None, fraction_ref=None, mass_ref=None): interferences = isopy.tb.find_isobaric_interferences('pd', data1) assert len(interferences) == len(interferences) for key in interferences1: assert key in interferences assert interferences[key] == interferences1[key] corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected1.keys == correct1.keys assert corrected1.size == correct1.size for key in corrected1.keys: np.testing.assert_allclose(corrected1[key], correct1[key]) corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected2.keys == correct2.keys assert corrected2.size == correct2.size for key in corrected2.keys: np.testing.assert_allclose(corrected2[key], correct2[key]) #Ratio test data if denom is not None: data1 = data1.ratio(denom) data2 = data2.ratio(denom) correct1 = correct1.ratio(denom) correct2 = correct2.ratio(denom) interferences = isopy.tb.find_isobaric_interferences('pd', data1) assert len(interferences) == len(interferences) for key in interferences1: assert key in interferences assert interferences[key] == interferences1[key] corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected1.keys == correct1.keys assert corrected1.size == correct1.size for key in corrected1.keys: np.testing.assert_allclose(corrected1[key], correct1[key]) corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected2.keys == correct2.keys assert corrected2.size == correct2.size for key in corrected2.keys: np.testing.assert_allclose(corrected2[key], correct2[key]) def test_find(self): interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'cd')) assert len(interferences) == 2 assert 'ru' in interferences assert interferences['ru'] == ('102Pd', '104Pd') assert 'cd' in interferences assert interferences['cd'] == ('106Pd', '108Pd', '110Pd') interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'rh', 'ag', 'cd')) assert len(interferences) == 2 assert 'ru' in interferences assert interferences['ru'] == ('102Pd', '104Pd') assert 'cd' in interferences assert interferences['cd'] == ('106Pd', '108Pd', '110Pd') interferences = isopy.tb.find_isobaric_interferences('ce') assert len(interferences) == 4 assert 'xe' in interferences assert interferences['xe'] == ('136Ce',) assert 'ba' in interferences assert interferences['ba'] == ('136Ce', '138Ce') assert 'la' in interferences assert interferences['la'] == ('138Ce', ) assert 'nd' in interferences assert interferences['nd'] == ('142Ce',) interferences = isopy.tb.find_isobaric_interferences('138ce') assert len(interferences) == 2 assert 'ba' in interferences assert interferences['ba'] == ('138Ce',) assert 'la' in interferences assert interferences['la'] == ('138Ce',) interferences = isopy.tb.find_isobaric_interferences('zn', ('ni', 'ge', 'ba++')) assert len(interferences) == 3 assert 'ni' in interferences assert interferences['ni'] == ('64Zn',) assert 'ge' in interferences assert interferences['ge'] == ('70Zn',) assert 'ba++' in interferences assert interferences['ba++'] == ('66Zn', '67Zn', '68Zn') class Test_rDelta(): def test_rDelta1(self): # Data is a single value data = isopy.refval.isotope.fraction.to_array(element_symbol='pd') # Dict reference = isopy.refval.isotope.fraction correct1 = isopy.zeros(None, data.keys) correct2 = isopy.ones(None, data.keys) self.run(data, data, reference, correct1, correct2) # Single array reference = isopy.random(100, keys=data.keys) correct1 = data / np.mean(reference) - 1 correct2 = data / np.mean(reference) self.run(data, data, reference, correct1, correct2) self.run(data, data, np.mean(reference), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, reference, correct1, correct2, 10_000) self.run(data, data, np.mean(reference), correct1, correct2, 10_000) # Multiple values reference1 = isopy.random(100, keys=data.keys) reference2 = isopy.random(100, keys=data.keys) meanmean = np.mean(reference1)/2 + np.mean(reference2)/2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data, (reference1, reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) # Keys that do not match data2 = data.copy() data2['105pd', '106pd'] = np.nan reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split()) reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split()) meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data2, (reference1, reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) def test_rDelta2(self): data = isopy.random(100, keys=isopy.refval.element.isotopes['pd']) data = data * isopy.refval.isotope.fraction # Dict reference = isopy.refval.isotope.fraction correct1 = data / reference - 1 correct2 = data / reference self.run(data, data, reference, correct1, correct2) # Single array reference = isopy.random(100, keys=data.keys) correct1 = data / np.mean(reference) - 1 correct2 = data / np.mean(reference) self.run(data, data, reference, correct1, correct2) self.run(data, data, np.mean(reference), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, reference, correct1, correct2, 10_000) self.run(data, data, np.mean(reference), correct1, correct2, 10_000) # Multiple values reference1 = isopy.random(100, keys=data.keys) reference2 = isopy.random(100, keys=data.keys) meanmean = np.mean(reference1)/2 + np.mean(reference2)/2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data, (reference1, reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) # Keys that do not match data2 = data.copy() data2['105pd', '106pd'] = np.nan reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split()) reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split()) meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data2, (reference1, reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) def test_presets(self): data = isopy.random(100, keys=isopy.refval.element.isotopes['pd']) data = data * isopy.refval.isotope.fraction reference = isopy.refval.isotope.fraction correct = (data / reference - 1) * 1000 normalised = isopy.tb.rDelta.ppt(data, reference) denormalised = isopy.tb.inverse_rDelta.ppt(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1000 normalised = isopy.tb.rDelta.permil(data, reference) denormalised = isopy.tb.inverse_rDelta.permil(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 10_000 normalised = isopy.tb.rDelta.epsilon(data, reference) denormalised = isopy.tb.inverse_rDelta.epsilon(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1_000_000 normalised = isopy.tb.rDelta.mu(data, reference) denormalised = isopy.tb.inverse_rDelta.mu(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1_000_000 normalised = isopy.tb.rDelta.ppm(data, reference) denormalised = isopy.tb.inverse_rDelta.ppm(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) def run(self, data1, data2, reference_value, correct1, correct2, factor=1): normalised = isopy.tb.rDelta(data1, reference_value, factor=factor) assert normalised.keys == data1.keys assert normalised.size == data1.size assert normalised.ndim == data1.ndim for key in normalised.keys: np.testing.assert_allclose(normalised[key], correct1[key]) denormalised = isopy.tb.inverse_rDelta(normalised, reference_value, factor=factor) assert denormalised.keys == data1.keys assert denormalised.size == data1.size assert denormalised.ndim == data1.ndim for key in denormalised.keys: np.testing.assert_allclose(denormalised[key], data2[key]) normalised = isopy.tb.rDelta(data1, reference_value, factor=factor, deviations=0) assert normalised.keys == data1.keys assert normalised.size == data1.size assert normalised.ndim == data1.ndim for key in normalised.keys: np.testing.assert_allclose(normalised[key], correct2[key]) denormalised = isopy.tb.inverse_rDelta(normalised, reference_value, factor=factor, deviations=0) assert denormalised.keys == data1.keys assert denormalised.size == data1.size assert denormalised.ndim == data1.ndim for key in denormalised.keys: np.testing.assert_allclose(denormalised[key], data2[key]) def compare(self, correct, calculated): assert calculated.keys == correct.keys assert calculated.size == correct.size assert calculated.ndim == correct.ndim for key in calculated.keys: np.testing.assert_allclose(calculated[key], correct[key]) class Test_OutliersLimits: def test_limits(self): data = isopy.random(100, (1,1), keys=isopy.refval.element.isotopes['pd']) median = np.median(data) mean = np.mean(data) mad3 = isopy.mad3(data) sd2 = isopy.sd2(data) upper = isopy.tb.upper_limit(data) assert upper == median + mad3 upper = isopy.tb.upper_limit(data, np.mean, isopy.sd2) assert upper == mean + sd2 upper = isopy.tb.upper_limit.sd2(data) assert upper == mean + sd2 upper = isopy.tb.upper_limit(data, 1, isopy.sd2) assert upper == 1 + sd2 upper = isopy.tb.upper_limit(data, np.mean, 1) assert upper == mean + 1 upper = isopy.tb.upper_limit(data, 1, 1) assert upper == 2 lower = isopy.tb.lower_limit(data) assert lower == median - mad3 lower = isopy.tb.lower_limit.sd2(data) assert lower == mean - sd2 lower = isopy.tb.lower_limit(data, np.mean, isopy.sd2) assert lower == mean - sd2 lower = isopy.tb.lower_limit(data, 1, isopy.sd2) assert lower == 1 - sd2 lower = isopy.tb.lower_limit(data, np.mean, 1) assert lower == mean - 1 lower = isopy.tb.lower_limit(data, 1, 1) assert lower == 0 def test_find_outliers1(self): #axis = 0 data = isopy.random(100, (1, 1), keys=isopy.refval.element.isotopes['pd']) median = np.median(data) mean = np.mean(data) mad3 = isopy.mad3(data) sd = isopy.sd(data) median_outliers = (data > (median + mad3)) + (data < (median - mad3)) mean_outliers = (data > (mean + sd)) + (data < (mean - sd)) mean_outliers1 = (data > (1 + sd)) + (data < (1 - sd)) mean_outliers2 = (data > (mean + 1)) + (data < (mean - 1)) mean_outliers3 = (data > (1 + 1)) + (data < (1 - 1)) outliers = isopy.tb.find_outliers(data) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], median_outliers[key]) outliers = isopy.tb.find_outliers(data, np.mean, isopy.sd) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers[key]) outliers = isopy.tb.find_outliers.sd(data) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers[key]) outliers = isopy.tb.find_outliers(data, 1, isopy.sd) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers1[key]) outliers = isopy.tb.find_outliers(data, np.mean, 1) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers2[key]) outliers = isopy.tb.find_outliers(data, 1, 1) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers3[key]) # invert median_outliers = np.invert(median_outliers) mean_outliers = np.invert(mean_outliers) mean_outliers1 = np.invert(mean_outliers1) mean_outliers2 = np.invert(mean_outliers2) mean_outliers3 = np.invert(mean_outliers3) outliers = isopy.tb.find_outliers(data, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], median_outliers[key]) outliers = isopy.tb.find_outliers(data, np.mean, isopy.sd, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers[key]) outliers = isopy.tb.find_outliers.sd(data, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers[key]) outliers = isopy.tb.find_outliers(data, 1, isopy.sd, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers1[key]) outliers = isopy.tb.find_outliers(data, np.mean, 1, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers2[key]) outliers = isopy.tb.find_outliers(data, 1, 1, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers3[key]) def test_find_outliers2(self): # axis = 0 data = isopy.random(100, (1, 1), keys=isopy.refval.element.isotopes['pd']) median = np.median(data) mean = np.mean(data) mad3 = isopy.mad3(data) sd = isopy.sd2(data) median_outliers = np.any((data > (median + mad3)) + (data < (median - mad3)), axis=1) mean_outliers = np.any((data > (mean + sd)) + (data < (mean - sd)), axis=1) mean_outliers1 = np.any((data > (1 + sd)) + (data < (1 - sd)), axis=1) mean_outliers2 = np.any((data > (mean + 1)) + (data < (mean - 1)), axis=1) mean_outliers3 = np.any((data > (1 + 1)) + (data < (1 - 1)), axis=1) outliers = isopy.tb.find_outliers(data, axis=1) assert len(outliers) == data.size np.testing.assert_allclose(outliers, median_outliers) outliers = isopy.tb.find_outliers(data, np.mean, isopy.sd2, axis=1) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers) outliers = isopy.tb.find_outliers.sd2(data, axis=1) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers) outliers = isopy.tb.find_outliers(data, 1, isopy.sd2, axis=1) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers1) outliers = isopy.tb.find_outliers(data, np.mean, 1, axis=1) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers2) outliers = isopy.tb.find_outliers(data, 1, 1, axis=1) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers3) # invert median_outliers = np.invert(median_outliers) mean_outliers = np.invert(mean_outliers) mean_outliers1 = np.invert(mean_outliers1) mean_outliers2 = np.invert(mean_outliers2) mean_outliers3 = np.invert(mean_outliers3) outliers = isopy.tb.find_outliers(data, axis=1, invert=True) assert len(outliers) == data.size np.testing.assert_allclose(outliers, median_outliers) outliers = isopy.tb.find_outliers(data, np.mean, isopy.sd2, axis=1, invert=True) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers) outliers = isopy.tb.find_outliers.sd2(data, axis=1, invert=True) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers) outliers = isopy.tb.find_outliers(data, 1, isopy.sd2, axis=1, invert=True) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers1) outliers = isopy.tb.find_outliers(data, np.mean, 1, axis=1, invert=True) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers2) outliers = isopy.tb.find_outliers(data, 1, 1, axis=1, invert=True) assert len(outliers) == data.size np.testing.assert_allclose(outliers, mean_outliers3) class Test_Make: def test_make_array1(self): # No mass fractionation mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 correct = isopy.ones(None, keys='102pd 104pd 105pd 106pd 108pd 110pd'.split()) correct = correct * fraction_ref correct10 = correct.normalise(10, '106pd') self.compare(correct, isopy.tb.make_ms_array('pd')) self.compare(correct10, isopy.tb.make_ms_beams('pd', integrations=None)) self.compare(correct10, isopy.tb.make_ms_sample('pd', integrations=None)) correct = isopy.ones(None, keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) correct = correct * fraction_ref for key in correct.keys.filter(key_neq = '<KEY>'.split()): correct[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * correct['101ru'] correct[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * correct['111cd'] correct10 = correct.normalise(10, isopy.keymax) self.compare(correct, isopy.tb.make_ms_array('pd', '101ru', '111cd')) self.compare(correct10, isopy.tb.make_ms_beams('pd', '101ru', '111cd', integrations=None)) correct = isopy.ones(None, keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) correct['101ru'] *= 0.1 correct['111cd'] *= 0.01 correct = correct * fraction_ref for key in correct.keys.filter(key_neq='<KEY>'.split()): correct[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * correct['101ru'] correct[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * correct['111cd'] correct10 = correct.normalise(10, '106pd') self.compare(correct, isopy.tb.make_ms_array('pd', **{'101ru': 0.1, '111cd':0.01})) self.compare(correct, isopy.tb.make_ms_array('pd', ru101 = 0.1, cd111=0.01)) self.compare(correct10, isopy.tb.make_ms_beams('pd', ru101 = 0.1, cd111=0.01, integrations=None)) self.compare(correct10, isopy.tb.make_ms_sample('pd', ru101 = 0.1, cd111=0.01, integrations=None)) correct = isopy.ones(None, keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) correct['101ru'] *= 0.1 correct['99ru'] *= 0.1 correct['111cd'] *= 0.01 correct['112cd'] *= 0 correct2 = correct * fraction_ref correct = correct2.copy() for key in correct.keys.filter(key_neq='ru99 ru101 cd111'.split()): correct[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * correct['101ru'] correct[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * correct['99ru'] correct[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * correct['111cd'] correct['ru99'] += fraction_ref.get(f'ru99/ru101', 0) * correct2['101ru'] correct['101ru'] += fraction_ref.get(f'ru101/ru99', 0) * correct2['ru99'] correct10 = correct.normalise(10, '106pd') self.compare(correct, isopy.tb.make_ms_array('pd', **{'101ru': 0.1, '111cd': 0.01, '99ru': 0.1, '112cd': 0})) self.compare(correct, isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0)) self.compare(correct10, isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0, integrations=None)) self.compare(correct10, isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0, integrations=None)) # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 correct = isopy.ones(None, keys='102pd 104pd 105pd 106pd 108pd 110pd'.split()) correct = correct * fraction_ref correct10 = correct.normalise(10, '106pd') self.compare(correct, isopy.tb.make_ms_array('pd', isotope_fractions=fraction_ref, isotope_masses=mass_ref)) self.compare(correct10, isopy.tb.make_ms_beams('pd', integrations=None, isotope_fractions=fraction_ref, isotope_masses=mass_ref)) self.compare(correct10, isopy.tb.make_ms_sample('pd', integrations=None, isotope_fractions=fraction_ref, isotope_masses=mass_ref)) correct = isopy.ones(None, keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) correct = correct * fraction_ref for key in correct.keys.filter(key_neq='<KEY>'.split()): correct[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * correct['101ru'] correct[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * correct['111cd'] correct10 = correct.normalise(10, isopy.keymax) self.compare(correct, isopy.tb.make_ms_array('pd', '101ru', '111cd', isotope_fractions=fraction_ref, isotope_masses=mass_ref)) self.compare(correct10, isopy.tb.make_ms_beams('pd', '101ru', '111cd', integrations=None, isotope_fractions=fraction_ref, isotope_masses=mass_ref)) correct = isopy.ones(None, keys='101ru 102pd 104pd 105pd 106pd 108pd <KEY>'.split()) correct['101ru'] *= 0.1 correct['111cd'] *= 0.01 correct = correct * fraction_ref for key in correct.keys.filter(key_neq='<KEY>'.split()): correct[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * correct['101ru'] correct[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * correct['111cd'] correct10 = correct.normalise(10, '106pd') self.compare(correct, isopy.tb.make_ms_array('pd', **{'101ru': 0.1, '111cd': 0.01}, isotope_fractions=fraction_ref, isotope_masses=mass_ref)) self.compare(correct, isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01, isotope_fractions=fraction_ref, isotope_masses=mass_ref)) self.compare(correct10, isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, integrations=None, isotope_fractions=fraction_ref, isotope_masses=mass_ref)) self.compare(correct10, isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, integrations=None, isotope_fractions=fraction_ref, isotope_masses=mass_ref)) def test_make_array2(self): # At this stage we know that the functions correctly create the arrays. # So we only need to make sure that what we create can be reversed using the # mass independent correction. # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 correct = isopy.ones(None, keys='102pd 104pd 105pd 106pd 110pd'.split()) correct = correct * fraction_ref correct = correct.ratio('105pd') result = isopy.tb.make_ms_array('pd', 'ru', 'cd') corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_beams('pd', 'ru', 'cd', integrations=None) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_sample('pd', ru=1, cd=1, integrations=None) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_array('pd', ru101=0.1, cd111 = 0.01) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111 = 0.01, integrations=None) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111 = 0.01, integrations=None) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01, ru99=0.1) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0, integrations=None) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0, integrations=None) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd') self.compare(correct, corrected) # Different default values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 correct = isopy.ones(None, keys='102pd 104pd 105pd 106pd 110pd'.split()) correct = correct * fraction_ref correct = correct.ratio('105pd') result = isopy.tb.make_ms_array('pd', 'ru', 'cd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) self.compare(correct, corrected) result = isopy.tb.make_ms_beams('pd', 'ru', 'cd', integrations=None, isotope_masses=mass_ref, isotope_fractions=fraction_ref) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) self.compare(correct, corrected) result = isopy.tb.make_ms_sample('pd', ru=1, cd=1, integrations=None, isotope_masses=mass_ref, isotope_fractions=fraction_ref) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) self.compare(correct, corrected) result = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01, isotope_masses=mass_ref, isotope_fractions=fraction_ref) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) self.compare(correct, corrected) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, integrations=None, isotope_masses=mass_ref, isotope_fractions=fraction_ref) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) self.compare(correct, corrected) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, integrations=None, isotope_masses=mass_ref, isotope_fractions=fraction_ref) corrected = isopy.tb.internal_normalisation(result, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) self.compare(correct, corrected) def test_make_array3(self): correct = isopy.tb.make_ms_array('pd', 'ru', 'cd').normalise(10, isopy.keymax) result = isopy.tb.make_ms_beams('pd', 'ru', 'cd', random_seed=46) self.compare_sd(correct, 100, result) result = isopy.tb.make_ms_sample('pd', ru=1, cd=1, random_seed=46) self.compare_sd(correct, 100, result) correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(10, isopy.keymax) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46) self.compare_sd(correct, 100, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46) self.compare_sd(correct, 100, result) correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0).normalise(10, isopy.keymax) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0, random_seed=46) self.compare_sd(correct, 100, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, ru99=0.1, cd112=0, random_seed=46) self.compare_sd(correct, 100, result) # Integrations correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(10, isopy.keymax) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200) self.compare_sd(correct, 200, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200) self.compare_sd(correct, 200, result) # Fixed Key & Value correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(10) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=None) self.compare_sd(correct, 200, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=None) self.compare_sd(correct, 200, result) correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(1) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=None, fixed_voltage=1) self.compare_sd(correct, 200, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=None, fixed_voltage=1) self.compare_sd(correct, 200, result) correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(10, '102pd') result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key='102pd') self.compare_sd(correct, 200, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key='102pd') self.compare_sd(correct, 200, result) correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(5, '102pd') result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key='102pd', fixed_voltage=5) self.compare_sd(correct, 200, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key='102pd', fixed_voltage=5) self.compare_sd(correct, 200, result) correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(10, ('102pd', '104pd')) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=('102pd', '104pd')) self.compare_sd(correct, 200, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=('102pd', '104pd')) self.compare_sd(correct, 200, result) correct = isopy.tb.make_ms_array('pd', ru101=0.1, cd111=0.01).normalise(100, ('102pd', '104pd')) result = isopy.tb.make_ms_beams('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=('102pd', '104pd'), fixed_voltage=100) self.compare_sd(correct, 200, result) result = isopy.tb.make_ms_sample('pd', ru101=0.1, cd111=0.01, random_seed=46, integrations=200, fixed_key=('102pd', '104pd'), fixed_voltage=100) self.compare_sd(correct, 200, result) def test_spike(self): spike = isopy.array(pd104 = 1, pd106=0, pd108=1, pd110=0) spike = spike.normalise(1) sample = isopy.refval.isotope.fraction.to_array(element_symbol='pd') sample = sample.normalise(1, spike.keys) correct = isopy.add(sample * 0.5, spike * 0.5, 0) correct = correct.normalise(10, isopy.keymax) result = isopy.tb.make_ms_sample('pd', spike=spike, integrations=None) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', spike=spike) self.compare_sd(correct, 100, result) correct = isopy.add(sample * 0.1, spike * 0.9, 0) correct = correct.normalise(10, isopy.keymax) result = isopy.tb.make_ms_sample('pd', spike=spike, integrations=None, spike_fraction=0.9) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', spike=spike, spike_fraction=0.9) self.compare_sd(correct, 100, result) def test_blank(self): sample = isopy.refval.isotope.fraction.to_array(element_symbol='pd') blank = isopy.ones(None, sample.keys) blank = blank + isopy.refval.isotope.fraction blank = blank.normalise(1) blank2 = blank.normalise(0.01, '106pd') correct = sample.normalise(10-0.01, '106pd') correct = correct + blank2 result = isopy.tb.make_ms_sample('pd', blank=blank, integrations=None) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', blank=blank) self.compare_sd(correct, 100, result) blank2 = blank.normalise(0.1, '106pd') correct = sample.normalise(10 - 0.1, '106pd') correct = correct + blank2 result = isopy.tb.make_ms_sample('pd', blank=blank, blank_fixed_voltage=0.1, integrations=None) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', blank=blank, blank_fixed_voltage=0.1) self.compare_sd(correct, 100, result) blank2 = blank.normalise(0.1, '102pd') correct = sample.normalise(10 - blank2['106pd'], '106pd') correct = correct + blank2 result = isopy.tb.make_ms_sample('pd', blank=blank, blank_fixed_voltage=0.1, blank_fixed_key='102pd', integrations=None) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', blank=blank, blank_fixed_voltage=0.1, blank_fixed_key='102pd') self.compare_sd(correct, 100, result) blank2 = blank.normalise(0.1, ('102pd', '104pd')) correct = sample.normalise(10 - blank2['106pd'], '106pd') correct = correct + blank2 result = isopy.tb.make_ms_sample('pd', blank=blank, blank_fixed_voltage=0.1, blank_fixed_key=('102pd', '104pd'), integrations=None) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', blank=blank, blank_fixed_voltage=0.1, blank_fixed_key=('102pd', '104pd')) self.compare_sd(correct, 100, result) blank2 = blank.normalise(0.01, '106pd') correct = sample.normalise(10 - blank2['102pd'], '102pd') correct = correct + blank2 result = isopy.tb.make_ms_sample('pd', blank=blank, integrations=None, fixed_key='102pd') self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', blank=blank, fixed_key='102pd') self.compare_sd(correct, 100, result) blank2 = blank.normalise(0.01, '106pd') correct = sample.normalise(10 - blank2[('102pd', '104pd')].sum(axis=None), ('102pd', '104pd')) correct = correct + blank2 result = isopy.tb.make_ms_sample('pd', blank=blank, integrations=None, fixed_key=('102pd', '104pd')) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', blank=blank, fixed_key=('102pd', '104pd')) self.compare_sd(correct, 100, result) blank2 = blank.normalise(0.01, '106pd') correct = sample.normalise(10 - blank2.sum(axis=None), None) correct = correct + blank2 result = isopy.tb.make_ms_sample('pd', blank=blank, integrations=None, fixed_key=None) self.compare(correct, result) result = isopy.tb.make_ms_sample('pd', blank=blank, fixed_key=None) self.compare_sd(correct, 100, result) def compare(self, correct, result): assert result.keys == correct.keys assert result.size == correct.size assert result.ndim == correct.ndim for key in result.keys: np.testing.assert_allclose(result[key], correct[key]) def compare_sd(self, correct, integrations, result): assert result.keys == correct.keys assert result.size == integrations assert result.ndim == 1 for key in result.keys: np.testing.assert_allclose(np.mean(result[key]), correct[key], rtol=0, atol=isopy.sd(result[key])) class Test_JohnsonNyquistNoise: def test_one(self): self.run(10) self.run(10, 1E12) self.run(10, time=4.1) self.run(10, T=400) self.run(10, 1E10) self.run(10, cpv=1E7) voltages = isopy.refval.isotope.fraction.to_array(element_symbol='pd').normalise(10, isopy.keymax) resistors = isopy.full(None, 1E11, voltages.keys) resistors['102pd'] = 1E13 resistors['106pd'] = 1E10 self.run(voltages) self.run(voltages, 1E12) self.run(voltages, resistors) self.run(voltages, time=4.1) self.run(voltages, T=400) self.run(voltages, 1E10) self.run(voltages, cpv=1E7) def test2(self): Os187 = [0.000052, 0.000522, 0.001044, 0.002088, 0.003132, 0.004176, 0.005220, 0.007830, 0.010439, 0.026099, 0.052197] Os188 = [0.000324, 0.003244, 0.006487, 0.012974, 0.019462, 0.025949, 0.032436, 0.048654, 0.064872, 0.162180, 0.324359] jk_correct = [0.0140985, 0.0014082, 0.0007042, 0.0003521, 0.0002347, 0.0001760, 0.0001408, 0.0000939, 0.0000704, 0.0000282, 0.0000141] combined_correct = [0.0141373, 0.0014467, 0.0007422, 0.0003892, 0.0002709, 0.0002115, 0.0001756, 0.0001270, 0.0001022, 0.0000547, 0.0000360] Os_data = isopy.array(os187=Os187, os188=Os188) jk_result = isopy.tb.johnson_nyquist_noise(Os_data, 1E12, include_counting_statistics=False)
np.testing.assert_allclose(jk_result, 0.00004510199454/10)
numpy.testing.assert_allclose
''' Common methods for beamtools package Created Fri May 12 @author: cpkmanchee ''' import numpy as np from beamtools.file_formats import file_formats import dill __all__ = ['saveObj','loadObj','normalize','rmbg','gaussian','sech2','lorentzian', 'gaussian2D','rk4','moments','d4sigma','roi','alias_dict'] class Func: def __init__(self, value=None, index=None): self.val = value self.ind = index def at(self,x): return np.interp(x, self.ind, self.val) def diff(self): self.gradient = np.gradient(self.val)/np.gradient(self.ind) def diff_at(self,x): return np.interp(x,self.ind,self.gradient) class FitResult(): def __init__(self, ffunc, ftype, popt, pcov=0, indep_var='time', bgform='constant'): self.ffunc = ffunc self.ftype = ftype self.popt = popt self.pcov = pcov self.iv = indep_var self.bgform = bgform def subs(self,x): return self.ffunc(x,*self.popt) def get_args(self): return inspect.getargspec(self.ffunc) class DataObj(dict): def __init__(self,d): self.__dict__ = d def fields(self): return self.__dict__.keys() def properties(self): [print(k,v) for k,v in file_formats[self.filetype].items()] return def saveObj(obj, filename): with open(filename, 'wb') as output: dill.dump(obj, output, -1) def loadObj(filename): with open(filename, 'rb') as input: obj = dill.load(input) return obj def normalize(f, offset=0, method='normal'): '''Normalize array of data. Optional offset. ''' norm = (f-f.min())/(f.max()-f.min()) + offset if method.lower() in ['area']: norm = norm/np.sum(norm) return norm def rmbg(data, fit=None, form='constant'): '''Removes background from data data = [x,y] if sending poly fit params: p[0]*x**(N-1) + ... + p[N-1] return --> y - background ''' if fit is None: #estimate background from given form if form.lower() in alias_dict['constant']: p = min(y) elif form.lower() in alias_dict['linear']: p = np.linalg.solve([[1,x[0]],[1,x[-1]]], [y[0],y[-1]]) p = np.flipud(p) elif form.lower() in alias_dict['quadratic']: index = np.argmin(y) if index == 0: x3 = 2*x[0]-x[-1] y3 = y[-1] elif index == len(y)-1: x3 = 2*x[-1]-x[0] y3 = y[0] else: x3 = x[index] y3 = y[index] a = [[1,x[0],x[0]**2],[1,x[-1],x[-1]**2],[1,x3,x3**2]] b = [y[0],y[-1],y3] p = np.linalg.solve(a,b) p = np.flipud(p) else: print('Unknown background form') p = np.zeros((3)) elif isinstance(fit,FitResult): #get background from FitResult object if fit.bgform.lower() in alias_dict['constant']: p=1 elif fit.bgform.lower() in alias_dict['linear']: p=2 elif fit.bgform.lower() in alias_dict['quadratic']: p=3 else: p=1 bg = np.polyval(fit.popt[-p:], data[0]) elif any([type(fit) is z for z in [list,np.array]]): #background polynomial parameters supplied bg = np.polyval(fit,data[0]) else: #Unknown or error print('Unknown fit argument.') bg = 0 return data[1]-bg def gaussian(x,sigma,amp=1,x0=0,const=0,chirp=0,sg=1, fr=True): '''Gaussian distribution. x = independent variable sigma = sd (width parameter) x0 = centre position amp = amplitude const = y-offset chirp = chirp parameter sg = supergaussian number fr = Force Real - if chirp == 0 and fr the output is cast as real. - used for curve fitting (complex # dont work) Note: can be used for either field or intensity. Be careful of sigma definition. ''' f = amp*np.exp(-(1+1j*chirp)*((x-x0)**2/(2*sigma**2))**sg) + const if chirp==0 and fr: return np.real(f) else: return f def sech2(x,sigma,amp=1,x0=0,const=0,chirp=0,fr=True): '''Hyperbolic secant-squared distribution. x = independent variable sigma = width parameter x0 = centre position amp = amplitude const = y-offset chirp = chirp parameter ** check consistency fr = Force Real - if chirp == 0 and fr the output is cast as real. - used for curve fitting (complex # dont work) Note: this may be used to represent intensity of sech2 pulse. ''' f = amp*((1/np.cosh((x-x0)/sigma))**2)*np.exp(1j*chirp*(x-x0)**2/(2*sigma**2)) + const if chirp==0 and fr: return np.real(f) else: return f def sech(x,sigma,amp=1,x0=0,const=0,chirp=0,fr=True): '''Hyperbolic secant distribution. x = independent variable sigma = width parameter x0 = centre position amp = amplitude const = y-offset chirp = chirp parameter fr = Force Real - if chirp == 0 and fr the output is cast as real. - used for curve fitting (complex # dont work) Note: this may be used to represent electric field of sech2 pulse. ''' f = amp*(1/np.cosh((x-x0)/sigma))*np.exp(1j*chirp*(x-x0)**2/(2*sigma**2)) + const if chirp==0 and fr: return np.real(f) else: return f def lorentzian(x,sigma,amp=1,x0=0,const=0): '''Lorentzian distribution. x = independent variable sigma = width parameter x0 = centre position amp = amplitude const = y-offset ''' return amp*(sigma**2/((x-x0)**2+sigma**2)) + const def gaussian2D(xy_meshgrid,x0,y0,sigx,sigy,amp,const,theta=0): '''Generates a 2D gaussian surface of size (n x m). Inputs: xy_meshgrid = [x,y] x = meshgrid of x array y = meshgrid of y array where x and y are of size (n x m) n = y.shape[0] (or x.) = number of rows m = x.shape[1] (or y.) = number of columns x0,y0 = peak location sig_ = standard deviation in x and y, gaussian 1/e radius amp = amplitude const = offset (constant) theta = rotation parameter, 0 by default Output: g.ravel() = flattened array of gaussian amplitude data where g is the 2D array of gaussian amplitudes of size (n x m) ''' x = xy_meshgrid[0] y = xy_meshgrid[1] a = np.cos(theta)**2/(2*sigx**2) + np.sin(theta)**2/(2*sigy**2) b = -np.sin(2*theta)/(4*sigx**2) + np.sin(2*theta)/(4*sigy**2) c = np.sin(theta)**2/(2*sigx**2) + np.cos(theta)**2/(2*sigy**2) g = amp*np.exp(-(a*(x-x0)**2 -b*(x-x0)*(y-y0) + c*(y-y0)**2)) + const return g.ravel() def rk4(f, x, y0, const_args=[], abs_x=False): ''' functional form y'(x) = f(x,y,constants) f must be function, f(x,y,const_args) x = array y0 = initial condition, cont_args = additional constants required for f returns y, integrated array ''' N =
np.size(x)
numpy.size
import numpy as np from numpy.testing._private.utils import assert_ import pytest def test_sum_single_vector(backend): from csdl.examples.valid.ex_sum_single_vector import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 v1 = np.arange(n) desired_vector_sum = np.sum(v1) np.testing.assert_almost_equal(sim['single_vector_sum'], desired_vector_sum) assert sim['v1'].shape == (n, ) assert sim['single_vector_sum'].shape == (1, ) partials_error_vector_sum = sim.check_partials( includes=['comp_single_vector_sum'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_vector_sum, atol=1.e-6, rtol=1.e-6) def test_sum_single_matrix(backend): from csdl.examples.valid.ex_sum_single_matrix import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 6 M1 = np.arange(n * m).reshape((n, m)) desired_matrix_sum = np.sum(M1) np.testing.assert_almost_equal(sim['single_matrix_sum'], desired_matrix_sum) assert sim['M1'].shape == (n, m) assert sim['single_matrix_sum'].shape == (1, ) partials_error_vector_sum = sim.check_partials( includes=['comp_single_matrix_sum'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_vector_sum, atol=1.e-6, rtol=1.e-6) def test_sum_single_tensor(backend): from csdl.examples.valid.ex_sum_single_tensor import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 4 p = 5 q = 6 T1 = np.arange(n * m * p * q).reshape((n, m, p, q)) desired_tensor_sum = np.sum(T1) np.testing.assert_almost_equal(sim['single_tensor_sum'], desired_tensor_sum) assert sim['single_tensor_sum'].shape == (1, ) partials_error_tensor_sum = sim.check_partials( includes=['comp_single_tensor_sum'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_tensor_sum, atol=1.e-5, rtol=1.e-5) def test_sum_multiple_vector(backend): from csdl.examples.valid.ex_sum_multiple_vector import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 v1 = np.arange(n) v2 = np.arange(n, 2 * n) desired_vector_sum = v1 + v2 np.testing.assert_almost_equal(sim['multiple_vector_sum'], desired_vector_sum) assert sim['multiple_vector_sum'].shape == (n, ) partials_error_vector_sum = sim.check_partials( includes=['comp_multiple_vector_sum'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_vector_sum, atol=1.e-6, rtol=1.e-6) def test_sum_multiple_matrix(backend): from csdl.examples.valid.ex_sum_multiple_matrix import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 6 M1 = np.arange(n * m).reshape((n, m)) M2 = np.arange(n * m, 2 * n * m).reshape((n, m)) desired_matrix_sum = M1 + M2 np.testing.assert_almost_equal(sim['multiple_matrix_sum'], desired_matrix_sum) assert sim['multiple_matrix_sum'].shape == (n, m) partials_error_matrix_sum = sim.check_partials( includes=['comp_multiple_matrix_sum'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_matrix_sum, atol=1.e-6, rtol=1.e-6) def test_sum_multiple_tensor(backend): from csdl.examples.valid.ex_sum_multiple_tensor import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 6 p = 7 q = 10 T1 = np.arange(n * m * p * q).reshape((n, m, p, q)) T2 = np.arange(n * m * p * q, 2 * n * m * p * q).reshape( (n, m, p, q)) desired_tensor_sum = T1 + T2 np.testing.assert_almost_equal(sim['multiple_tensor_sum'], desired_tensor_sum) assert sim['multiple_tensor_sum'].shape == (n, m, p, q) partials_error_tensor_sum = sim.check_partials( includes=['comp_multiple_tensor_sum'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_tensor_sum, atol=1.e-5, rtol=1.e-5) def test_sum_single_matrix_along0(backend): from csdl.examples.valid.ex_sum_single_matrix_along0 import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 6 M1 = np.arange(n * m).reshape((n, m)) desired_single_matrix_sum_axis_0 = np.sum(M1, axis=0) np.testing.assert_almost_equal(sim['single_matrix_sum_along_0'], desired_single_matrix_sum_axis_0) assert sim['single_matrix_sum_along_0'].shape == (m, ) partials_error_single_matrix_axis_0 = sim.check_partials( includes=['comp_single_matrix_sum_along_0'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_single_matrix_axis_0, atol=1.e-6, rtol=1.e-6) def test_sum_single_matrix_along1(backend): from csdl.examples.valid.ex_sum_single_matrix_along1 import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 6 M1 = np.arange(n * m).reshape((n, m)) desired_single_matrix_sum_axis_1 = np.sum(M1, axis=1) np.testing.assert_almost_equal(sim['single_matrix_sum_along_1'], desired_single_matrix_sum_axis_1) assert sim['single_matrix_sum_along_1'].shape == (n, ) partials_error_single_matrix_axis_1 = sim.check_partials( includes=['comp_single_matrix_sum_along_1'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_single_matrix_axis_1, atol=1.e-6, rtol=1.e-6) def test_sum_multiple_matrix_along0(backend): from csdl.examples.valid.ex_sum_multiple_matrix_along0 import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 6 M1 = np.arange(n * m).reshape((n, m)) M2 = np.arange(n * m, 2 * n * m).reshape((n, m)) desired_multiple_matrix_sum_axis_0 = np.sum(M1 + M2, axis=0) np.testing.assert_almost_equal(sim['multiple_matrix_sum_along_0'], desired_multiple_matrix_sum_axis_0) partials_error_multiple_matrix_axis_0 = sim.check_partials( includes=['comp_multiple_matrix_sum_along_0'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_multiple_matrix_axis_0, atol=1.e-6, rtol=1.e-6) def test_sum_multiple_matrix_along1(backend): from csdl.examples.valid.ex_sum_multiple_matrix_along1 import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) n = 3 m = 6 M1 = np.arange(n * m).reshape((n, m)) M2 = np.arange(n * m, 2 * n * m).reshape((n, m)) desired_multiple_matrix_sum_axis_1 = np.sum(M1 + M2, axis=1) np.testing.assert_almost_equal(sim['multiple_matrix_sum_along_1'], desired_multiple_matrix_sum_axis_1) partials_error_multiple_matrix_axis_1 = sim.check_partials( includes=['comp_multiple_matrix_sum_along_1'], out_stream=None, compact_print=True, method='cs') sim.assert_check_partials(partials_error_multiple_matrix_axis_1, atol=1.e-6, rtol=1.e-6) def test_sum_concatenate_sums(backend): from csdl.examples.valid.ex_sum_concatenate import example exec('from {} import Simulator'.format(backend)) sim = example(eval('Simulator')) x = np.array([np.sum(np.arange(5)), np.sum(np.arange(4)), 0])
np.testing.assert_almost_equal(sim['sum_vector'], x)
numpy.testing.assert_almost_equal
import random from typing import Optional, Tuple import arcade import numpy as np from triple_vision import Settings as s from triple_vision.entities import Spike from triple_vision.utils import tile_to_pixels random.seed(1) class Map: def __init__(self, view: arcade.View, shape: Tuple[int, int]) -> None: self.view = view self.shape = shape self.AIR = 0 self.WALL = 1 self.FLOOR = 2 self.SPIKE = 3 self.GENERATIONS = 6 self.FILL_PROBABILITY = 0.2 self.SPIKE_PROBABILITY = 0.01 self.sprites: Optional[arcade.SpriteList] = None def generate(self) -> np.array: map_ = np.ones(self.shape) for i in range(self.shape[0]): for j in range(self.shape[1]): choice = random.uniform(0, 1) map_[i][j] = self.WALL \ if choice < self.FILL_PROBABILITY else self.FLOOR for gen in range(self.GENERATIONS): for i in range(self.shape[0]): for j in range(self.shape[1]): # Get walls that are 1 away from each index submap = map_[ max(i - 1, 0): min(i + 2, map_.shape[0]), max(j - 1, 0): min(j + 2, map_.shape[1]) ] flat_submap = submap.flatten() wall_count_1_away = len(np.where(flat_submap == self.WALL)[0]) floor_count_1_away = len(
np.where((flat_submap == self.FLOOR) | (flat_submap == self.SPIKE))
numpy.where
from typing import Any import numpy as np import tree class UniformBuffer(object): def __init__(self, min_size: int, max_size: int, traj_len: int): self._min_size = min_size self._max_size = max_size self._traj_len = traj_len self._timestep_storage = None self._n = 0 self._idx = 0 def extend(self, timesteps: Any): if self._timestep_storage is None: sample_timestep = tree.map_structure(lambda t: t[0], timesteps) self._timestep_storage = self._preallocate(sample_timestep) num_steps = timesteps.observation.shape[0] indices = np.arange(self._idx, self._idx + num_steps) % self._max_size tree.map_structure(lambda a, x: assign(a, indices, x), self._timestep_storage, timesteps) self._idx = (self._idx + num_steps) % self._max_size self._n = min(self._n + num_steps, self._max_size) def sample(self, batch_size: int): if batch_size + self._traj_len > self._n: return None start_indices =
np.random.choice(self._n - self._traj_len, batch_size, replace=False)
numpy.random.choice
""" Mask R-CNN Display and Visualization Functions. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by <NAME> """ import math import random import itertools import colorsys import numpy as np import IPython.display import tensorflow as tf import keras.backend as KB import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.lines as lines import skimage.util from skimage.measure import find_contours from PIL import Image from matplotlib.patches import Polygon from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import LinearLocator, FormatStrFormatter import mrcnn.utils as utils from mrcnn.datagen import load_image_gt ############################################################ # Visualization ############################################################ def get_ax(rows=1, cols=1, size=8): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Change the default size attribute to control the size of rendered images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax def random_colors(N, bright=True): """ Generate random colors. To get visually distinct colors, generate them in HSV space then convert to RGB. """ brightness = 1.0 if bright else 0.7 hsv = [(i / N, 1, brightness) for i in range(N)] colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) random.shuffle(colors) return colors def apply_mask(image, mask, color, alpha=0.5): """Apply the given mask to the image. """ for c in range(3): image[:, :, c] = np.where(mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c] * 255, image[:, :, c]) return image ##---------------------------------------------------------------------- ## display_image ## figsize : tuple of integers, optional: (width, height) in inches ## default: None ## If not provided, defaults to rc figure.figsize. ##---------------------------------------------------------------------- def display_image(image, title='', cmap=None, norm=None, interpolation=None, figsize=(10,10), ax=None): """ Display one image, optionally with titles. image: list or array of image tensors in HWC format. title: optional. A list of titles to display with each image. cols: number of images per row cmap: Optional. Color map to use. For example, "Blues". norm: Optional. A Normalize instance to map values to colors. interpolation: Optional. Image interporlation to use for display. """ plt.figure(figsize=figsize) # if title is None: title += "H x W={}x{}".format(image.shape[0], image.shape[1]) plt.title(title, fontsize=12) plt.imshow(image, cmap=cmap, norm=norm, interpolation=interpolation) ##---------------------------------------------------------------------- ## display_image ## figsize : tuple of integers, optional: (width, height) in inches ## default: None ## If not provided, defaults to rc figure.figsize. ##---------------------------------------------------------------------- def display_image_bw(image, title="B/W Display" , cmap=None, norm=None, interpolation=None, figsize=(10,10), ax=None): """ Display one image, optionally with titles. image: list or array of image tensors in HWC format. title: optional. A list of titles to display with each image. cols: number of images per row cmap: Optional. Color map to use. For example, "Blues". norm: Optional. A Normalize instance to map values to colors. interpolation: Optional. Image interporlation to use for display. """ plt.figure(figsize=figsize) plt.title(title, fontsize=12) arr = np.asarray(image) # print(type(image), image.shape) # print(type(arr), arr.shape) # plt.imshow(image.astype(np.uint8), cmap=cmap, # norm=norm, interpolation=interpolation) plt.imshow(arr, cmap='gray') ##---------------------------------------------------------------------- ## display_images ##---------------------------------------------------------------------- def display_images(images, titles=None, cols=4, cmap=None, norm=None, interpolation=None, width=14): """ Display the given set of images, optionally with titles. images: list or array of image tensors in HWC format. titles: optional. A list of titles to display with each image. cols: number of images per row cmap: Optional. Color map to use. For example, "Blues". norm: Optional. A Normalize instance to map values to colors. interpolation: Optional. Image interporlation to use for display. """ titles = titles if titles is not None else [""] * len(images) rows = len(images) // cols + 1 plt.figure(figsize=(width, width * rows // cols)) i = 1 for image, title in zip(images, titles): title += " H x W={}x{}".format(image.shape[0], image.shape[1]) plt.subplot(rows, cols, i) plt.title(title, fontsize=9) plt.axis('off') plt.imshow(image.astype(np.uint8), cmap=cmap, norm=norm, interpolation=interpolation) i += 1 plt.show() ##------------------------------------------------------------------------------------ ## display_training_batch() ##------------------------------------------------------------------------------------ def display_image_gt(dataset, config, image_ids, masks= False, only_classes = None, size=12): ''' display images in a mrcnn train_batch ''' from mrcnn.datagen import data_gen_simulate if not isinstance(image_ids, list): image_ids = [image_ids] for image_id in image_ids: image = dataset.load_image(image_id) # molded_image, image_meta, class_ids, bbox = load_image_gt(dataset, config, image_id) _, image_meta, _, _ = load_image_gt(dataset, config, image_id) mask, class_ids = dataset.load_mask(image_id) bbox = utils.extract_bboxes(mask) class_names = [str(dataset.class_names[class_id]) for class_id in class_ids] print(' Image_id : ', image_id, ' Reference: ', dataset.image_reference(image_id) , 'Coco Id:', dataset.image_info[image_id]['id']) print(' Image meta : ', image_meta[:10]) print(' Class ids : ', class_ids.shape, ' ' , class_ids) print(' Class Names : ', class_names) # display_top_masks(image, mask, class_ids, dataset.class_names) if masks: display_instances_with_mask(image, bbox, mask, class_ids, dataset.class_names, size =size) else: display_instances(image, bbox, class_ids, dataset.class_names, only_classes = only_classes, size=size) return ##------------------------------------------------------------------------------------ ## display_training_batch() ##------------------------------------------------------------------------------------ def display_training_batch(dataset, batch_x, masks= False): ''' display images in a mrcnn train_batch ''' # replaced following two lines with next line to avoid the need to pass model to this fuction # imgmeta_idx = mrcnn_model.keras_model.input_names.index('input_image_meta') # img_meta = train_batch_x[imgmeta_idx] img_meta = batch_x[1] for img_idx in range(img_meta.shape[0]): image_id = img_meta[img_idx,0] print('image id : ', image_id) image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) bbox = utils.extract_bboxes(mask) class_names = [str(dataset.class_names[class_id]) for class_id in class_ids] print(' Image_id : ', image_id, ' Reference: ', dataset.image_reference(image_id) , 'Coco Id:', dataset.image_info[image_id]['id']) print(' Image meta : ', img_meta[img_idx, :8]) print(' Class ids : ', class_ids.shape, ' ' , class_ids) print(' Class Names : ', class_names) # print('Classes (1: circle, 2: square, 3: triangle ): ',class_ids) if masks: display_top_masks(image, mask, class_ids, dataset.class_names) display_instances_with_mask(image, bbox, mask, class_ids, dataset.class_names) else: display_instances(image, bbox, class_ids, dataset.class_names) return ##---------------------------------------------------------------------- ## display_instances ##---------------------------------------------------------------------- def display_instances(image, boxes, class_ids, class_names, scores=None, title="", only_classes = None, figsize=(16, 16), ax=None, score_range = (-1.0, 1.0), size = 16): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box figsize: (optional) the size of the image. max_score: show instances with score less than this """ # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == class_ids.shape[0], " boxes.shape[0]: {:d} must be ==class_ids.shape[0]: {:d}".format(boxes.shape[0], class_ids.shape[0]) # assert boxes.shape[0] == class_ids.shape[0] # print(' display_instances() : Image shape: ', image.shape) if not ax: ax = get_ax(rows =1, cols = 1, size= size) # _, ax = plt.subplots(1, figsize=figsize) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) # ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): class_id = class_ids[i] if only_classes is not None: if class_id not in only_classes: continue if scores is not None: # print(' boxes ' ,i,' ' , boxes[i], 'score: ', scores[i], ' ', score_range) if scores[i] <= score_range[0] or scores[i] >= score_range[1]: continue color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label score = scores[i] if scores is not None else None if class_id >= 0 : label = "{:2d}-{:2d} {}".format(i,class_id, class_names[class_id]) else: label = "{:2d}-{:2d} {}".format(i,class_id, class_names[-class_id]) + ' (CROWD)' x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label t = ax.text(x1, y1 + 8, caption, color='k', size=8, backgroundcolor="w") t.set_bbox(dict(facecolor='w', alpha=0.5, edgecolor='w')) ax.imshow(masked_image.astype(np.uint8)) plt.show() return ##---------------------------------------------------------------------- ## display_instances_with_mask ##---------------------------------------------------------------------- def display_instances_with_mask(image, boxes, masks, class_ids, class_names, scores=None, title="", figsize=(16, 16), ax=None): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box figsize: (optional) the size of the image. max_score: show instances with score less than this """ # Number of instances # print(' display_instances WITH MASK() : Image shape: ', image.shape) N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] if not ax: _, ax = plt.subplots(1, figsize=figsize) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) # ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label score = scores[i] if scores is not None else None class_id = class_ids[i] # label = class_names[class_id] # if class_id >= 0 : # label = class_names[class_id] # else: # label = class_names[-class_id] + ' (CROWD)' # x = random.randint(x1, (x1 + x2) // 2) # caption = "{} {:.3f}".format(label, score) if score else label # ax.text(x1, y1 + 8, caption, color='k', size=11, backgroundcolor="w") if class_id >= 0 : label = "{:2d}-{:2d} {}".format(i,class_id, class_names[class_id]) else: label = "{:2d}-{:2d} {}".format(i,class_id, class_names[-class_id]) + ' (CROWD)' x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:.3f}".format(label, score) if score else label t = ax.text(x1, y1 + 8, caption, color='k', size=8, backgroundcolor="w") t.set_bbox(dict(facecolor='w', alpha=0.5, edgecolor='w')) # Mask mask = masks[:, :, i] masked_image = apply_mask(masked_image, mask, color) # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) for verts in contours: # Subtract the padding and flip (y, x) to (x, y) verts = np.fliplr(verts) - 1 p = Polygon(verts, facecolor="none", edgecolor=color) ax.add_patch(p) ax.imshow(masked_image.astype(np.uint8)) plt.show() return ##---------------------------------------------------------------------- ## display_instances from pr_scores ##---------------------------------------------------------------------- def display_instances_from_prscores(image, pr_scores, class_names, title="", only_classes = None, figsize=(16, 16), ax=None, score_range = (0.0, 1.0)): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box figsize: (optional) the size of the image. max_score: show instances with score less than this """ # Number of instances boxes = pr_scores[:,:4] class_ids = pr_scores[:,4].astype(int) scores = pr_scores[:,5] det_ind = pr_scores[:,6].astype(int) sequences = pr_scores[:,7].astype(int) N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == class_ids.shape[0], " boxes.shape[0]: {:d} must be ==class_ids.shape[0]: {:d}".format(boxes.shape[0], class_ids.shape[0]) print(' display_instances() : Image shape: ', image.shape) if not ax: _, ax = plt.subplots(1, figsize=figsize) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) # ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): class_id = class_ids[i] if only_classes is not None: if class_id not in only_classes: continue if scores is not None: if scores[i] <= score_range[0] or scores[i] >= score_range[1]: continue color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label score = scores[i] if scores is not None else None if det_ind[i] == -1: det_ttl = ' ADDED FP' else: det_ttl = '' if class_id >= 0 : label = class_names[class_id] + det_ttl else: label = class_names[-class_id] + ' (CROWD)' x = random.randint(x1, (x1 + x2) // 2) caption = "{:2d}-{} {:.4f}".format(class_id, label, score) if score else label ax.text(x1, y1 - 8, caption, color='k', size=9, backgroundcolor="w") ax.imshow(masked_image.astype(np.uint8)) plt.show() return ##---------------------------------------------------------------------- ## display_instances ##---------------------------------------------------------------------- def display_instances_two_scores(image, boxes, class_ids, class_names, scores1=None, scores2= None , title="", only_classes = None, figsize=(16, 16), ax=None, score_range = (-1.0, 1.0), size = 16): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box figsize: (optional) the size of the image. max_score: show instances with score less than this """ # Number of instances N = boxes.shape[0] if not N: print("\n*** No instances to display *** \n") else: assert boxes.shape[0] == class_ids.shape[0] if scores2 is not None : assert scores2.shape == scores1.shape # print(' display_instances() : Image shape: ', image.shape) if not ax: ax = get_ax(rows =1, cols = 1, size= size) # _, ax = plt.subplots(1, figsize=figsize) # Generate random colors colors = random_colors(N) # Show area outside image boundaries. height, width = image.shape[:2] ax.set_ylim(height + 10, -10) ax.set_xlim(-10, width + 10) # ax.axis('off') ax.set_title(title) masked_image = image.astype(np.uint32).copy() for i in range(N): class_id = class_ids[i] if only_classes is not None: if class_id not in only_classes: continue # if scores1 is not None: # print(' boxes ' ,i,' ' , boxes[i], 'score: ', scores[i], ' ', score_range) # if scores1[i] <= score_range[0] or scores1[i] >= score_range[1]: # continue color = colors[i] # Bounding box if not np.any(boxes[i]): # Skip this instance. Has no bbox. Likely lost in image cropping. continue y1, x1, y2, x2 = boxes[i] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=0.7, linestyle="dashed", edgecolor=color, facecolor='none') ax.add_patch(p) # Label score1 = scores1[i] if scores1 is not None else None score2 = scores2[i] if scores2 is not None else None if class_id >= 0 : label = "{:2d}-{:2d} {}".format(i,class_id, class_names[class_id]) else: label = "{:2d}-{:2d} {}".format(i,class_id, class_names[-class_id]) + ' (CROWD)' x = random.randint(x1, (x1 + x2) // 2) caption = "{} {:5.4f}".format(label, score1) if score1 else label caption += "--> {:5.4f}".format(score2) if score2 else '' t = ax.text(x1, y1 + 8, caption, color='k', size=8, backgroundcolor="w") t.set_bbox(dict(facecolor='w', alpha=0.5, edgecolor='w')) ax.imshow(masked_image.astype(np.uint8)) plt.show() return ##---------------------------------------------------------------------- ## draw_rois (along with the refined_rois) ##---------------------------------------------------------------------- # def draw_rois_with_refinements(image, rois, refined_rois, mask, class_ids, class_names, limit=10): def draw_rois_with_refinements(image, rois, refined_rois, class_ids, class_names, limit=0, ids = None, random = False, size = 16): """ rois: [n, 4 : {y1, x1, y2, x2}] list of anchors in image coordinates. refined_rois: [n, 4 : {y1, x1, y2, x2}] the same anchors but refined to fit objects better. """ masked_image = image.copy() # Pick random anchors in case there are too many. print(' rois.shape[0]: ',rois.shape[0], ' limit = ', limit) if limit == 0 : limit = max(rois.shape[0], limit) print(' limit : ', limit) if ids is None: ids = np.arange(limit, dtype=np.int32) if random: ids = np.random.choice(ids, limit, replace=False) if ids.shape[0] > limit else ids print(' ids : ', ids) fig, ax = plt.subplots(1,1, figsize=(size, size)) if rois.shape[0] > limit: plt.title("Showing {} random ROIs out of {}".format( len(ids), rois.shape[0])) else: plt.title("{} ROIs".format(len(ids))) # Show area outside image boundaries. ax.set_ylim(image.shape[0] + 20, -20) ax.set_xlim(-50, image.shape[1] + 20) # ax.axis('off') for i, id in enumerate(ids): # print('i: ', i, 'id :', id) color = np.random.rand(3) class_id = class_ids[id] # ROI y1, x1, y2, x2 = rois[id] p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, edgecolor=color if class_id else "gray", facecolor='none', linestyle="dashed") ax.add_patch(p) # Refined ROI if class_id: ry1, rx1, ry2, rx2 = refined_rois[id] p = patches.Rectangle((rx1, ry1), rx2 - rx1, ry2 - ry1, linewidth=2, edgecolor=color, facecolor='none') ax.add_patch(p) # Connect the top-left corners of the anchor and proposal for easy visualization ax.add_line(lines.Line2D([x1, rx1], [y1, ry1], color=color)) # Label label = class_names[class_id] ax.text(rx1, ry1 + 8, "{}".format(label), color='w', size=11, backgroundcolor="none") # Mask # m = utils.unmold_mask(mask[id], rois[id] # [:4].astype(np.int32), image.shape) # masked_image = apply_mask(masked_image, m, color) ax.imshow(masked_image) # Print stats print("Positive ROIs: ", class_ids[class_ids > 0].shape[0]) print("Negative ROIs: ", class_ids[class_ids == 0].shape[0]) print("Positive Ratio: {:.2f}".format( class_ids[class_ids > 0].shape[0] / class_ids.shape[0])) ##---------------------------------------------------------------------- ## draw rois proposals (w/o refinements) ##---------------------------------------------------------------------- def draw_rois(image, rois, class_ids, class_names, bbox_ids = None , limit=0, random = False, display_bg = False): """ anchors: [n, (y1, x1, y2, x2)] list of anchors in image coordinates. proposals: [n, 4] the same anchors but refined to fit objects better. bbox_ids : list of bbox ids that will be displayed. If not specified will use limit """ masked_image = image.copy() # Pick random anchors in case there are too many. print(' rois.shape[0]: ',rois.shape[0], ' limit = ', limit) if bbox_ids: pass else: bbox_ids = np.arange(rois.shape[0]) print(' num of bbox_ids : ', len(bbox_ids)) print(' limit to display : ', limit) if limit == 0 : limit = len(bbox_ids) else: limit = min(len(bbox_ids), limit) print(' limit to display : ', limit) # bbox_ids = np.arange(limit, dtype=np.int32) if random: bbox_ids =
np.random.choice(bbox_ids, limit, replace=False)
numpy.random.choice
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 12 11:43:06 2021 @author: student """ import pandas as pd import numpy as np import argparse import os import random import matplotlib.pyplot as plt from stellargraph.mapper import PaddedGraphGenerator from stellargraph.layer import DeepGraphCNN, GCNSupervisedGraphClassification from stellargraph import StellarGraph from sklearn import model_selection import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, MaxPooling2D, Dropout, Flatten, BatchNormalization from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping import pickle from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score from tensorflow.keras.utils import to_categorical # results directory RES_DIR = 'results/gcn' if not os.path.exists(RES_DIR): os.makedirs(RES_DIR) MODEL_DIR = 'models/gcn/' os.makedirs(MODEL_DIR, exist_ok=True) SEED = 5000 np.random.seed(SEED) random.seed(SEED) tf.random.set_seed(SEED) def _info(s): print('---') print(s) print('---') def threshold_proportional(W, p, copy=True): """ Convert values less than the threshold value to 0 Parameters ---------- W : 2D array, connevtivity matrix to be thresholded. p : float value between 0 and 1, Cell Value less than threshold value will be set to 0. copy : boolean, optional, The default is True. Raises ------ ValueError, If the threshold is not within 0 and 1. Returns ------- W : Thresholded 2D array, A matrix that does not contains negative values. """ if p >= 1 or p <= 0: raise ValueError("Threshold value should be between 0 and 1") if copy: W = W.copy() n = len(W) # number of nodes np.fill_diagonal(W, 0) # clear diagonal if np.all(W == W.T): # if symmetric matrix W[np.tril_indices(n)] = 0 # ensure symmetry is preserved ud = 2 # halve number of removed links else: ud = 1 ind =
np.where(W)
numpy.where
# -*- coding: utf-8 -*- """ Created on Fri Nov 20 09:24:50 2020 @author: Hugo Source for the sim https://medium.com/analytics-vidhya/modeling-the-simplest-biological-neuron-with-python-adda892c8384 https://neuronaldynamics.epfl.ch/online/Ch1.S3.html http://tips.vhlab.org/techniques-and-tricks/matlab/integrate-and-fire Choice for the default params http://neuralensemble.org/docs/PyNN/reference/neuronmodels.html """ import stim import plots import LIF import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from mpl_toolkits.mplot3d import Axes3D import fit def get_3d_quantifs(data): mean_spiketrains = [] std_spiketrains = [] for trial in data : mean_spiketrains.append(np.mean([len(x) for x in trial])) std_spiketrains.append(np.std([len(x) for x in trial])) tc_pars = fit.fit_gaussian(mean_spiketrains) fit_tc = fit.gaussian(np.linspace(-3, 3, 1000), tc_pars['mu'], tc_pars['sig'], tc_pars['scale']) return tc_pars['sig'], np.max(fit_tc) import matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 # Parameters ## Simulation parameters T = 50 # total simtime ; ms dt = 0.01 #timestep ; ms n_repeat = 2 # number of time we rerun the whole stimulation set, used for trial-to-trial variance ## LIF parameters, note that we scale everything later to speed up computations ## You probably don't want to touch this Rm = 1 # resistance (kOhm) Cm = 10 # capacitance (uF) tau_m = Rm*Cm # time constant (msec) refrac_time = 1. # refractory period (msec) Vth = 1. # spike threshold (V) ## Stimulation parameters n_pars = 6 #number of parameters, either contrast or bandwidth contrasts = np.linspace(1., 8., n_pars) #stimulation contrast, max = 5 is a good idea bandwidths = np.linspace(.3, .8, n_pars) # stimulation bandwidth, it's sigma of gaussian ## Finn parameters k = 3.5 # power law scale a = -.5 # power law exponent loc = .8 # noise normal law center scale = .5 # noise normal law var ## Bandwidth parameters k_bw = 3.5 # other neurons' power law scale a_bw = -0 # multiplier of bw on other neurons ## Plotting parameters labels = bandwidths #rescale for actual stim values colors = plt.cm.inferno(np.linspace(.9, .2, len(bandwidths))) #tc colormap # Initialization tot_steps = int(T/dt) # length of the time vector time = np.linspace(0, T+dt, tot_steps) # time vector # Stimulation, contrasts and bandwidths pwlaw = stim.power_law(k = k, x = contrasts, a = a) input_tcs = np.zeros((n_pars, n_pars), dtype = object) for i0, max_amp in enumerate(contrasts) : for i1, bw in enumerate(bandwidths) : inp = stim.generate_stim(mu = 0., sig = bw, max_amp = max_amp) inp *= pwlaw[i0] new_pwlaw = stim.power_law(k =
np.max(inp)
numpy.max
""" Module to build timelines, delta series from aggregated transactions This module provides the foundation types needed for real time analytics. It also includes logic to compute timeline statistics from aggreagated transactions Author: <NAME>, <NAME> """ import time import numpy import logging from collections import OrderedDict from xpedite.types.probe import compareProbes from xpedite.types.route import conflateRoutes LOGGER = logging.getLogger(__name__) TSC_EVENT_NAME = 'wall time' class Timeline(object): """A timeline is a sequence of events happening as time progresses""" def __init__(self, txn): """ Creates an instance of Timeline for the given transaction :param txn: Source transaction for this timeline :type data: xpedite.transaction.Transaction """ self.txn = txn self.tsc = txn[0].tsc self.txnId = txn.txnId self.points = [] self.endpoint = None self.inception = None def addTimePoint(self, timePoint): """ Adds a time point to this time line :param timePoint: A time point for an event hapenning at a specific point in time :type timePoint: xpedite.analytics.timeline.TimePoint """ self.points.append(timePoint) @property def duration(self): """Elapsed wall time (in micro seconds) for this timeline""" return self.endpoint.duration def __getitem__(self, index): """Returns a time point at a given index in this time line""" return self.points[index] def __len__(self): """ Returns the length of this time line. The length of a time line counts the number of timepoints in the line """ return len(self.points) def __repr__(self): """Returns str representation of a timeline""" pointStr = '\n\t'.join((str(point) for point in self.points)) return 'Timeline: id {} | ({})\n\t'.format(self.txnId, pointStr) def __eq__(self, other): return self.__dict__ == other.__dict__ class TimePoint(object): """A time point marks a specific instance of time in a time line""" def __init__(self, name, point=None, duration=None, pmcNames=None, deltaPmcs=None, topdownValues=None, data=None): """ Creates an instance of TimePoint :param name: The name of this time point :type name: str :param point: The absolute point in time, when an event occurred :type point: double :param duration: The total duration (in micro seconds) spanned by this time point :type duration: double :param pmcNames: The list of pmu event names captured by this timepoint :param deltaPmcs: The list of pmu event values captured by this timepoint :param topdownValues: The list of topdown values computed for this timepoint :param data: The 128 bit raw data captured by this timepoint """ self.name = name self.point = point self.duration = duration self.pmcNames = pmcNames self.deltaPmcs = deltaPmcs self.topdownValues = topdownValues self.data = data def __repr__(self): """Returns str representation of a TimePoint""" rep = 'TimePoint {0}: point {1:4,.3f} | duration {2:4,.3f}'.format(self.name, self.point, self.duration) if self.deltaPmcs: rep += ' | pmc {}'.format({self.pmcNames[i]: self.deltaPmcs[i] for i in range(len(self.deltaPmcs))}) return rep def __eq__(self, other): return self.__dict__ == other.__dict__ class DeltaSeries(object): """A series of duration (micro seconds) and pmu counter values""" def __init__(self, beginProbeName, endProbeName): """ Creates an instance of Duration Series A duration is a measure of time or pmu events, expended to execute code between a pair of probes :param beginProbeName: Name of the probe, that marks the beginning of this time period :type beginProbeName: str :param endProbeName: Name of the probe, that marks the end of this time period :type endProbeName: str """ self.beginProbeName = beginProbeName self.endProbeName = endProbeName self.series = [] self._count = 0 self._min = None self._max = None self._median = None self._mean = None self._standardDeviation = None self.numpyArray = None def _computeStats(self): """Computes statistics for a series of druation/counter values""" if self.series and self._count != len(self.series): self._count = len(self.series) self._min = min(self.series) self._max = max(self.series) self._median = numpy.median(self.series) self._mean = numpy.mean(self.series) self._standardDeviation = numpy.std(self.series) self.numpyArray =
numpy.array(self.series)
numpy.array
import unittest import numpy as np from . import plot import funcsfa class TestInvalidInputs(unittest.TestCase): def setUp(self): self.rand = np.random.RandomState(1968486074) self.n_factors = 9 self.f = funcsfa.SFA() self.n_samples = 221 self.n_features = 37 self.X_a = self.rand.normal(0, 1, (self.n_samples, 30)) self.X_b = self.rand.normal(0, 1, (self.n_samples, 7)) self.data_one = funcsfa.DataMatrix(self.X_a) self.data_two = funcsfa.StackedDataMatrix([ funcsfa.DataMatrix(self.X_a), funcsfa.DataMatrix(self.X_b)]) def test_l1_penalty_length_one_dt(self): self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=0.0) self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=0.0, l2=0.0) self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=[0.0], l2=0.0) self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=[0.0], l2=[0.0]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=[0.0, 0.1]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=[]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=[0.1, 0.2], l2=[0.1]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=[0.1, 0.2], l2=0.1) def test_l2_penalty_length_one_dt(self): self.f.fit(self.data_one, self.n_factors, max_iter=0, l1=0.0, l2=[0.0]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l2=[0.0, 0.1]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l2=[]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l2=[0.1, 0.2], l1=[0.1]) with self.assertRaises(Exception): self.f.fit(self.data_one, self.n_factors, max_iter=0, l2=[0.1, 0.2], l1=0.1) def test_more_factors_than_features(self): with self.assertRaises(Exception): self.f.fit(self.data_two, self.data_two.dt_n_features[0]+1, max_iter=0) with self.assertRaises(Exception): self.f.fit(self.data_two, self.data_two.dt_n_features[1]+1, max_iter=0) def test_invalid_transform(self): f = funcsfa.SFA() with self.assertRaises(Exception): f.transform(self.data_one) f.fit(self.data_one, self.n_factors, max_iter=10) f.transform(self.data_one) f.transform(self.data_one) with self.assertRaises(Exception): f.transform(self.data_two) with self.assertRaises(Exception): f.transform(self.data_two.data) class TestSingleDatatypeReproduceRandom(unittest.TestCase): def setUp(self): self.n_samples = 400 self.n_features = 2000 self.n_factors = 10 self.rand = np.random.RandomState(1968486074) self.B = self.rand.normal(0, 1, (self.n_features, self.n_factors)) Zvar = np.linspace(10, 1, self.n_factors) Zvar = Zvar / np.mean(Zvar) self.Z = self.rand.normal(0, np.sqrt(Zvar), (self.n_samples, self.n_factors)) self.X =
np.dot(self.Z, self.B.T)
numpy.dot
""" Title: io_helper.py Author: <NAME> Mail: <EMAIL>.tomko __at__ fmph.uniba.sk """ import gzip import json import numpy as np import multiprocessing import os import pickle def prepare_recording_vector(rec_vec, i): """ Prepares a recording vectors for saving. Parameters ---------- rec_vec : neuron.hoc.HocObject the recording vector Returns ------- vec : dict the recording vector as a dictionary """ vec = { 'section': rec_vec.section, 'segment_x': rec_vec.segment_x, 'vector': np.array(rec_vec.vector) } return vec class IOHelper: """ A class used to load and save data ... Attributes ---------- path_saving : str the path to the directory where the data is stored or will be saved path_settings : str the path to the synapses .json file npool : str, optional the number of pool processes (default multiprocessing.cpu_count() - 1) Methods ------- save_recordings(synapses, tw_vec, v_soma_vec, t_vec, dend_vecs, p_vec, d_vec, alpha_scount_vec, ta_vec, apc_vec, cai_vecs, cal_ica_vecs, ina_vecs, nmda_ica_vecs) Saves the recorded data prepare_dict_recording_vectors(vecs) Prepares a dictionary of recording vectors for saving. load_synapses() Loads setting from the synapses.json file. save_synapses(synapses) Saves synapses to a .json file. load_setting() Loads setting from the setting.json file. save_setting(setting) Saves setting to the setting.json file. """ def __init__(self, path_saving, path_settings): """ Parameters ---------- path_saving : str the path to the directory where the data will be saved path_settings : str the path to the directory with settings """ self.path_saving = path_saving self.path_settings = path_settings self.npool = multiprocessing.cpu_count() - 1 try: if not os.path.exists(self.path_saving): os.makedirs(self.path_saving) except OSError as e: if e.errno != 17: raise pass def save_recordings(self, synapses, tw_vec, v_soma_vec, t_vec, dend_vecs, p_vec, d_vec, alpha_scount_vec, ta_vec, apc_vec, cai_vecs, cal_ica_vecs, ina_vecs, nmda_ica_vecs): """ Saves the recorded data to a dictionary structures in binary files. Parameters ---------- synapses : dict the dictionary of synapses tw_vec : neuron.hoc.HocObject the time vector for synaptic weights v_soma_vec : neuron.hoc.HocObject the somatic voltage vector t_vec : neuron.hoc.HocObject the time vector for voltage dend_vecs : dict the dictionary containing voltage vectors from dendrites p_vec : neuron.hoc.HocObject the potentiation amplitude vector d_vec : neuron.hoc.HocObject the depression amplitude vector alpha_scount_vec : neuron.hoc.HocObject the integrated spike count vector ta_vec : neuron.hoc.HocObject the time vector for amplitudes apc_vec : neuron.hoc.HocObject the vector of times of fired action potentials cai_vecs : dict the dictionary containing intracellular calcium concentration vectors cal_ica_vecs : dict the dictionary containing CaL channel-mediated calcium current vectors ina_vecs : dict the dictionary containing sodium current vectors nmda_ica_vecs : dict the dictionary of NMDAR channel-mediated calcium current vectors """ # a dictionary of synapses synapses_dict = {} for sec in synapses: synapses_list = [] for syn in synapses[sec]: s = { 'name': str(syn.synapse), 'section': str(syn.section), 'segment_x': syn.segment_x, 'distance': syn.distance, 'weight': np.array(syn.weight_vec), 'input_spikes': np.array(syn.input_spikes), 'stimulated': syn.stimulated, 'receptor': syn.receptor, 'pathway': syn.pathway } synapses_list.append(s) synapses_dict[sec] = synapses_list print('Saving recordings...') # saving of synapses weights = {} weights['T'] = np.array(tw_vec) weights['synapses'] = synapses_dict pickle.dump(weights, gzip.GzipFile(self.path_saving + 'synapses.p', 'wb')) print('The synapses were saved in the directory: ' + self.path_saving) # saving of voltages voltages = {} voltages['T'] = np.array(t_vec) voltages['V_soma'] = np.array(v_soma_vec) voltages['APs'] = np.array(apc_vec) voltages['V_dends'] = self.prepare_dict_recording_vectors(vecs=dend_vecs) pickle.dump(voltages, gzip.GzipFile(self.path_saving + 'voltages.p', 'wb')) print('The voltages were saved in the directory: ' + self.path_saving) # saving of currents currents = {} currents['T'] =
np.array(t_vec)
numpy.array
import copy import sys import os import numpy as np import pdb sys.path.append('/home/acauligi/Software') from casadi import * from astrobee_strips import STRIPS, Node, Queue, get_plan from scp import update_f, update_A, update_B, slerp from double_integrator import compute_Ak, compute_Bk class AstrobeeTAMP: def __init__(self, Xi, Xref, mode='double_integrator'): self.operators = ['dock_objA_dockA', 'dock_objA_dockB', 'dock_objA_dockC', \ 'dock_objB_dockA', 'dock_objB_dockB', 'dock_objB_dockC', \ 'undock_objA_dockA', 'undock_objA_dockB', 'undock_objA_dockC', \ 'undock_objB_dockA', 'undock_objB_dockB', 'undock_objB_dockC', \ 'grasp_objA', 'grasp_objB'] self.N = 10 self.mode = mode self.Xi = Xi self.Xref = Xref if mode == 'double_integrator': self.n, self.m = 4, 2 else: self.n, self.m = 13, 6 self.dh = 0.05 self.Xprev, self.Uprev = None, None self.R = np.eye(self.m) # environment parameters self.dock_loc = {} self.dock_loc['A'] = np.array([10., 15.]) self.dock_loc['B'] = np.array([20., 15.]) self.dock_loc['C'] = np.array([30., 15.]) # robot parameters J = np.array([[0.1083, 0.0, 0.0], [0.0, 0.1083, 0.0], [0.0, 0.0, 0.1083]]) Jxx, Jyy, Jzz = np.diag(J) Jinv = np.linalg.inv(J) mass = 7.0 hard_limit_vel = 5000. # 0.50 hard_limit_accel = 1000. # 0.10 hard_limit_omega = 45*np.pi/180 hard_limit_alpha = 50*np.pi/180 self.arm_length = 0.1 self.params = {} self.params['mass'] = mass self.params['J'] = J self.params['hard_limit_vel'] = hard_limit_vel self.params['hard_limit_accel'] = hard_limit_accel self.params['hard_limit_omega'] = hard_limit_omega self.params['hard_limit_alpha'] = hard_limit_alpha self.params['dh'] = self.dh # state box constraints if self.mode == 'double_integrator': self.Xlb = np.array([-np.inf,-np.inf, -hard_limit_vel/np.sqrt(2),-hard_limit_vel/np.sqrt(2)]) self.Xub = np.array([np.inf,np.inf, hard_limit_vel/np.sqrt(2),hard_limit_vel/np.sqrt(2)]) # control box constraints Jmin = np.min(np.diag(J)) self.Ulb = np.array([-mass*hard_limit_accel/np.sqrt(2), -mass*hard_limit_accel/np.sqrt(2)]) self.Uub = np.array([mass*hard_limit_accel/np.sqrt(2), mass*hard_limit_accel/np.sqrt(2)]) else: self.Xlb = np.array([-np.inf,-np.inf,-np.inf, -1.0,-1.0,-1.0,-1.0, -hard_limit_vel/np.sqrt(3),-hard_limit_vel/np.sqrt(3),-hard_limit_vel/np.sqrt(3), -hard_limit_omega/np.sqrt(3),-hard_limit_omega/np.sqrt(3),-hard_limit_omega/np.sqrt(3)]) self.Xub = np.array([np.inf,np.inf,np.inf, 1.0,1.0,1.0,1.0, hard_limit_vel/np.sqrt(3),hard_limit_vel/np.sqrt(3),hard_limit_vel/np.sqrt(3), hard_limit_omega/np.sqrt(3),hard_limit_omega/np.sqrt(3),hard_limit_omega/np.sqrt(3)]) # control box constraints Jmin = np.min(np.diag(J)) self.Ulb = np.array([-mass*hard_limit_accel/np.sqrt(3), -mass*hard_limit_accel/np.sqrt(3), -mass*hard_limit_accel/np.sqrt(3), -Jmin*hard_limit_alpha/np.sqrt(3), -Jmin*hard_limit_alpha/np.sqrt(3), -Jmin*hard_limit_alpha/np.sqrt(3)]) self.Uub = np.array([mass*hard_limit_accel/np.sqrt(3), mass*hard_limit_accel/np.sqrt(3), mass*hard_limit_accel/np.sqrt(3), Jmin*hard_limit_alpha/np.sqrt(3), Jmin*hard_limit_alpha/np.sqrt(3), Jmin*hard_limit_alpha/np.sqrt(3)]) self.cost = 0. self.w, self.lbw, self.ubw = None, None, None self.g, self.lbg, self.ubg = None, None, None def init_straightline(self): N_plan = len(self.X) self.Xprev, self.Uprev = np.zeros((self.n, N_plan)), np.zeros((self.m, N_plan-1)) if self.mode == 'double_integrator': for ii in range(self.n): self.Xprev[ii,:] = np.linspace(self.Xi[ii], np.array(self.Xref)[ii], num=N_plan).flatten() else: for ii in range(3): self.Xprev[ii,:] = np.linspace(self.Xi[ii], np.array(self.Xref)[ii], num=N_plan).flatten() self.Xprev[7+ii,:] = np.linspace(self.Xi[7+ii], np.array(self.Xref)[7+ii], num=N_plan).flatten() self.Xprev[10+ii,:] = np.linspace(self.Xi[10+ii], np.array(self.Xref)[10+ii], num=N_plan).flatten() qi = self.Xi[3:7].flatten() qf =
np.array(self.Xref)
numpy.array
#============================================================================= # Project: SoPHI # File: phi_gen.py # Author: <NAME> (<EMAIL>) # Contributors: #----------------------------------------------------------------------------- # Description: #----------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt from scipy.signal import fftconvolve, tukey, savgol_filter from itertools import combinations from .tools import * import SPGPylibs.GENtools.plot_lib as plib # __all__ = ['bar', 'baz'] def shift(matrix, shift=[0, 0], fill_value=0): '''Shift operator Shift an image in 2D naively as in SOLO-PHI instrument. Faster and more efficient methods can be used in normal CPU. Input is a vector shift=[x,y] of x and y displacement +x -> positive; +y -> positive fill_value = float. This method does not have any boundary condition. ''' try: dimy, dimx = matrix.shape except: raise ValueError("Input is not 2D matrix") try: nx = shift[1] ny = shift[0] except: raise ValueError("Provided shift not in rigth format 'shift=[0, 0]' of not present") e = np.empty_like(matrix) if nx > 0: e[:nx, :] = fill_value e[nx:, :] = matrix[:-nx, :] elif nx < 0: e[nx:, :] = fill_value e[:nx, :] = matrix[-nx:, :] else: e = matrix s =
np.empty_like(matrix)
numpy.empty_like
from __future__ import division from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy import numpy as np from scipy.sparse import csr_matrix B = np.array([ [1,1,1,1], [1,1,1,0], [1,1,0,0], [1,0,0,0], ]) N = np.array([ [2,3,4,2], [2,3,4,2], [2,3,3,2], [2,1,3,4] ]) W = np.array([ [4,3,2,1], [3,2,1,0], [2,1,0,0], [1,0,0,0], ]) def test_jaccard_scipy(): """ Test Jaccard: scipy.spatial.dist.jaccard """ u = np.array([2,3,4,5]) v = np.array([2,3,4,2]) d = _jaccard_coef_scipy(u,v,min_support=1) assert (d == 0.75) def test_jaccard_binary(): """ Test Jaccard: binary (bitwise) coef """ u = np.array([1,1,1,1]) v = np.array([1,1,1,0]) d = _jaccard_coef_binary(u,v,min_support=1) assert (d == 0.75) def test_jaccard_set(): """ Test Jaccard: set coef """ u = np.array([4,3,2,1]) v = np.array([3,2,1,0]) d = _jaccard_coef_set(u,v,min_support=1) assert (d == 0.6) def test_jaccard_weighted(): """ Test Jaccard: weighted coef """ u = np.array([4,3,2,1]) v =
np.array([3,2,1,0])
numpy.array
import os import numpy as np from colorama import Back, Fore from config import cfg from dataset import detection_set from dataset.voc.pascal_voc import PascalVoc from dataset.coco.coco import COCO def get_dataset(dataset_sequence, params, mode='train', only_classes=False): only_cls_str = 'classes for ' if only_classes else '' print(Back.WHITE + Fore.BLACK + 'Loading {}image dataset...'.format(only_cls_str)) dataset_name = dataset_sequence.split('_')[0] if dataset_name == 'detect': dataset = detection_set.DetectionSet(params) short_name = 'det_set' print('Loaded Detection dataset.') elif dataset_name == 'voc': year = dataset_sequence.split('_')[1] image_set = dataset_sequence[(len(dataset_name) + len(year) + 2):] if 'devkit_path' in params: params['devkit_path'] = os.path.join(cfg.DATA_DIR, params['devkit_path']) else: print(Back.YELLOW + Fore.BLACK + 'WARNING! ' + 'Cannot find "devkit_path" in additional parameters. ' + 'Try to use default path (./data/VOCdevkit)...') params['devkit_path'] = os.path.join(cfg.DATA_DIR, 'VOCdevkit'+year) dataset = PascalVoc(image_set, year, params, only_classes) short_name = dataset_name + '_' + year print('Loaded {} PascalVoc {} {} dataset.'.format(only_cls_str, year, image_set)) elif dataset_name == 'coco': year = dataset_sequence.split('_')[1] image_set = dataset_sequence[(len(dataset_name) + len(year) + 2):] if 'data_path' in params: params['data_path'] = os.path.join(cfg.DATA_DIR, params['data_path']) else: print(Back.YELLOW + Fore.BLACK + 'WARNING! ' + 'Cannot find "data_path" in additional parameters. ' + 'Try to use default path (./data/COCO)...') params['data_path'] = os.path.join(cfg.DATA_DIR, 'COCO') params['dev_path'] = os.path.abspath(cfg.DATA_DIR) dataset = COCO(image_set, year, params, only_classes) short_name = dataset_name + '_' + year print('Loaded {}COCO {} {} dataset.'.format(only_cls_str, year, image_set)) else: raise NotImplementedError(Back.RED + 'Not implement for "{}" dataset!'.format(dataset_name)) if not only_classes: if mode == 'train' and cfg.TRAIN.USE_FLIPPED: print(Back.WHITE + Fore.BLACK + 'Appending horizontally-flipped ' + 'training examples...') dataset = _append_flipped_images(dataset) print('Done.') print(Back.WHITE + Fore.BLACK + 'Preparing image data...') dataset = _prepare_data(dataset) print('Done.') if mode == 'train': print(Back.WHITE + Fore.BLACK + 'Filtering image data ' + '(remove images without boxes)...') dataset = _filter_data(dataset) print('Done.') return dataset, short_name def _append_flipped_images(dataset): for i in range(len(dataset)): img = dataset.image_data[i].copy() img['index'] = len(dataset) img['id'] += '_f' img['flipped'] = True boxes = img['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = img['width'] - oldx2 - 1 boxes[:, 2] = img['width'] - oldx1 - 1 assert (boxes[:, 2] >= boxes[:, 0]).all() img['boxes'] = boxes """ do the same for selective search boxes """ ss_boxes = img['ss_boxes'].copy() oldx1 = ss_boxes[:, 0].copy() oldx2 = ss_boxes[:, 2].copy() ss_boxes[:, 0] = img['width'] - oldx2 - 1 ss_boxes[:, 2] = img['width'] - oldx1 - 1 assert (ss_boxes[:, 2] >= ss_boxes[:, 0]).all() img['ss_boxes'] = ss_boxes dataset.image_data.append(img) dataset._image_index.append(img['id']) return dataset def _prepare_data(dataset): for i in range(len(dataset)): # TODO: is this really need!? # max overlap with gt over classes (columns) max_overlaps = dataset.image_data[i]['gt_overlaps'].max(axis=1) # gt class that had the max overlap max_classes = dataset.image_data[i]['gt_overlaps'].argmax(axis=1) dataset.image_data[i]['max_classes'] = max_classes dataset.image_data[i]['max_overlaps'] = max_overlaps # sanity checks # max overlap of 0 => class should be zero (background) zero_inds = np.where(max_overlaps == 0)[0] assert all(max_classes[zero_inds] == 0) # max overlap > 0 => class should not be zero (must be a fg class) nonzero_inds =
np.where(max_overlaps > 0)
numpy.where
""" This file contains the methods used for estimating aberration prevalence in a two-echelon supply chain. See descriptions for particular inputs. """ ######### NEED TO ADD CAPACITY TO HANDLE DIFFERENT DIAGNOSTIC DEVICES @ DIFFERENT DATA POINTS import numpy as np import scipy.optimize as spo import scipy.stats as spstat import scipy.special as sps import time # THESE IMPORTS ARE FOR DEVELOPING NEW CODE, ETC.; # NEED TO BE CHANGED BACK TO THOSE BELOW BEFORE UPLOADING TO GITHUB # todo: Change these import references before submitting a new version of logistigate import sys import os SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, 'logistigate','mcmcsamplers'))) import adjustedNUTS as adjnuts import lmc as langevinMC import metrohastings as mh # THESE ARE FOR THE ACTUAL PACKAGE # todo: Use the below import references #import logistigate.mcmcsamplers.adjustedNUTS as adjnuts #import logistigate.mcmcsamplers.lmc as langevinMC #import logistigate.mcmcsamplers.metrohastings as mh #import nuts ########################### PRIOR CLASSES ########################### class prior_laplace: """ Defines the class instance of Laplace priors, with an associated mu (mean) and scale in the logit-transfomed [0,1] range, and the following methods: rand: generate random draws from the distribution lpdf: log-likelihood of a given vector lpdf_jac: Jacobian of the log-likelihood at the given vector lpdf_hess: Hessian of the log-likelihood at the given vector beta inputs may be a Numpy array of vectors """ def __init__(self, mu=sps.logit(0.1), scale=np.sqrt(5/2)): self.mu = mu self.scale = scale def rand(self, n=1): return np.random.laplace(self.mu, self.scale, n) def expitrand(self, n=1): # transformed to [0,1] space return sps.expit(np.random.laplace(self.mu, self.scale, n)) def lpdf(self,beta): if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) lik = -(1/self.scale) * np.sum(np.abs(beta - self.mu),axis=1) return np.squeeze(lik) def lpdf_jac(self,beta): if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) jac = -(1/self.scale) * np.squeeze(1*(beta>=self.mu) - 1*(beta<=self.mu)) return np.squeeze(jac) def lpdf_hess(self,beta): if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) k,n = len(beta[:,0]),len(beta[0]) hess = np.tile(np.zeros(shape=(n,n)),(k,1,1)) return np.squeeze(hess) class prior_normal: """ Defines the class instance of Normal priors, with an associated mu (mean) and var (variance) in the logit-transfomed [0,1], i.e. unbounded, range, and the following methods: rand: generate random draws from the distribution lpdf: log-likelihood of a given vector lpdf_jac: Jacobian of the log-likelihood at the given vector lpdf_hess: Hessian of the log-likelihood at the given vector beta inputs may be a Numpy array of vectors """ def __init__(self,mu=sps.logit(0.1),var=5): self.mu = mu self.var = var def rand(self, n=1): return np.random.normal(self.mu, np.sqrt(self.var), n) def expitrand(self, n=1): # transformed to [0,1] space return sps.expit(np.random.normal(self.mu, np.sqrt(self.var), n)) def lpdf(self,beta): if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) lik = -(1/(2*self.var)) * np.sum((beta - (self.mu))**2,axis=1) return np.squeeze(lik) def lpdf_jac(self,beta): if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) jac = -(1/self.var) * (beta - self.mu) return np.squeeze(jac) def lpdf_hess(self,beta): if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) k,n = len(beta[:,0]),len(beta[0]) hess = np.tile(np.zeros(shape=(n,n)),(k,1,1)) for i in range(k): hess[i] = np.diag( -(1/self.var) * beta[i]) return np.squeeze(hess) ########################### END PRIOR CLASSES ########################### ########################## UNTRACKED FUNCTIONS ########################## def Untracked_LogLike(beta,numVec,posVec,sens,spec,transMat): # for array of beta; beta should be [importers, outlets] if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) n,m = transMat.shape th, py = sps.expit(beta[:,:m]), sps.expit(beta[:,m:]) pMat = py + (1-py)*np.matmul(th,transMat.T) pMatTilde = sens*pMat+(1-spec)*(1-pMat) L = np.sum(np.multiply(posVec,np.log(pMatTilde))+np.multiply(np.subtract(numVec,posVec),\ np.log(1-pMatTilde)),axis=1) return np.squeeze(L) def Untracked_LogLike_Jac(beta,numVec,posVec,sens,spec,transMat): # betaVec should be [importers, outlets]; can be used with array beta if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) n,m = transMat.shape k = beta.shape[0] th, py = sps.expit(beta[:,:m]), sps.expit(beta[:,m:]) pMat = py + (1-py)*np.matmul(th,transMat.T) pMatTilde = sens*pMat+(1-spec)*(1-pMat) #Grab importers partials first, then outlets impPartials = (sens+spec-1)*np.sum( np.reshape([transMat]*k,(k,n,m))*\ np.reshape((th-th**2),(k,1,m))*np.tile(np.reshape((1-py),(k,n,1)),(m))*\ np.reshape((posVec[:,None]/pMatTilde.T-(numVec-posVec)[:,None]/(1-pMatTilde).T).T,(k,n,1)),axis=1) outletPartials = (sens+spec-1)*(1-np.matmul(transMat,th.T)).T*(py-py**2)*\ (posVec/pMatTilde-(numVec-posVec)/(1-pMatTilde)) return np.squeeze(np.concatenate((impPartials,outletPartials),axis=1)) def Untracked_LogLike_Hess(betaVec,numVec,posVec,sens,spec,transMat): # betaVec should be [importers, outlets]; NOT for array beta n,m = transMat.shape th = betaVec[:m] py = betaVec[m:] zVec = sps.expit(py)+(1-sps.expit(py))*np.matmul(transMat,sps.expit(th)) zVecTilde = sens*zVec+(1-spec)*(1-zVec) sumVec = np.matmul(transMat,sps.expit(th)) #initialize a Hessian matrix hess = np.zeros((n+m,n+m)) # get off-diagonal entries first; importer-outlet entries for triRow in range(n): for triCol in range(m): outBeta,impBeta = py[triRow],th[triCol] outP,impP = sps.expit(outBeta),sps.expit(impBeta) s,r=sens,spec c1 = transMat[triRow,triCol]*(s+r-1)*(sps.expit(impBeta)-sps.expit(impBeta)**2) yDat,nSam = posVec[triRow],numVec[triRow] elem = c1*(1-outP)*(yDat*( (s+r-1)*(-sumVec[triRow]*(outP**2-outP) - outP + outP**2) )\ /( s*(sumVec[triRow]*(1 - outP) + outP) +\ (1-r)*(-sumVec[triRow]*(1 - outP) + 1 - outP) )**2 -\ (nSam - yDat)*((-r + 1-s)*(-sumVec[triRow]*(-outP + outP**2)-outP+outP**2))\ /(-s*(sumVec[triRow]*(1 - outP) + outP) - (1-r)*(-sumVec[triRow]*(1 - outP) +\ 1 - outP) + 1)**2) +\ c1*(yDat/(s*(sumVec[triRow]*(1 - outP) + outP) + (-r + 1)*(-sumVec[triRow]*(1 - outP) +\ 1 - outP)) - (nSam - yDat)/( -s*(sumVec[triRow]*(1 - outP) +\ outP) - (1-r)*(-sumVec[triRow]*(1 - outP) + 1 - outP) + 1))*( outP**2 - outP) hess[m+triRow,triCol] = elem hess[triCol,m+triRow] = elem # get off-diagonals for importer-importer entries for triCol in range(m-1): for triCol2 in range(triCol+1,m): elem = 0 for i in range(n): nextPart = (sens+spec-1)*transMat[i,triCol]*(1-sps.expit(py[i]))*(sps.expit(th[triCol])-sps.expit(th[triCol])**2)*\ (-posVec[i]*(sens+spec-1)*(1-sps.expit(py[i]))*transMat[i,triCol2]*(sps.expit(th[triCol2]) - sps.expit(th[triCol2])**2) /\ (zVecTilde[i]**2) - (numVec[i]-posVec[i])*(sens+spec-1)*(1-sps.expit(py[i]))*transMat[i,triCol2]*(sps.expit(th[triCol2]) - sps.expit(th[triCol2])**2) /\ ((1-zVecTilde[i])**2) ) elem += nextPart hess[triCol,triCol2] = elem hess[triCol2,triCol] = elem # importer diagonals next impPartials = np.zeros(m) for imp in range(m): currPartial = 0 for outlet in range(n): outBeta,impBeta = py[outlet],th[imp] outP,impP = sps.expit(outBeta),sps.expit(impBeta) s,r=sens,spec c1 = transMat[outlet,imp]*(s+r-1)*(1-outP) c3 = (1-outP)*transMat[outlet,imp] yDat,nSam = posVec[outlet],numVec[outlet] currElem = c1*(yDat/(zVecTilde[outlet]) - (nSam - yDat)/(1-zVecTilde[outlet]))\ *(impP - 3*(impP**2) + 2*(impP**3)) +\ c1*(impP - impP**2)*(yDat*((s+r-1)*c3*(\ (impP**2)-impP) )/(zVecTilde[outlet])**2 -\ (nSam - yDat)*((s+r-1)*(c3*impP - c3*(impP**2)))/\ (1-zVecTilde[outlet])**2) currPartial += currElem impPartials[imp] = currPartial # outlet diagonals next outletPartials = np.zeros(n) for outlet in range(n): outBeta = py[outlet] outP = sps.expit(outBeta) s,r=sens,spec c1 = sumVec[outlet] c2 = (r + s - 1) yDat,nSam = posVec[outlet],numVec[outlet] currPartial = (1-c1)*(yDat/(zVecTilde[outlet]) -\ (nSam - yDat)/(1-zVecTilde[outlet]))*c2*(outP -\ 3*(outP**2) + 2*(outP**3)) + \ (1-c1)*(outP - outP**2 )*(yDat*(-c2*(c1*(-outP + outP**2 )+ outP -outP**2 ) )/\ (zVecTilde[outlet])**2 - (nSam - yDat)*(c2*(c1*(-outP + outP**2) +\ outP - outP**2 ))/( -s*(c1*(1 - outP) +\ outP) - (1-r)*(1-c1*(1 - outP) - outP) + 1 )**2)*c2 outletPartials[outlet] = currPartial diags = np.diag(np.concatenate((impPartials,outletPartials))) hess = (hess + diags) return hess def Untracked_NegLogLike(betaVec,numVec,posVec,sens,spec,transMat): return -1*Untracked_LogLike(betaVec,numVec,posVec,sens,spec,transMat) def Untracked_NegLogLike_Jac(betaVec,numVec,posVec,sens,spec,transMat): return -1*Untracked_LogLike_Jac(betaVec,numVec,posVec,sens,spec,transMat) def Untracked_NegLogLike_Hess(betaVec,numVec,posVec,sens,spec,transMat): return -1*Untracked_LogLike_Hess(betaVec,numVec,posVec,sens,spec,transMat) def Untracked_LogPost(beta,numVec,posVec,sens,spec,transMat,prior): return prior.lpdf(beta)\ +Untracked_LogLike(beta,numVec,posVec,sens,spec,transMat) def Untracked_LogPost_Grad(beta, nsamp, ydata, sens, spec, A,prior): return prior.lpdf_jac(beta)\ +Untracked_LogLike_Jac(beta,nsamp,ydata,sens,spec,A) def Untracked_LogPost_Hess(beta, nsamp, ydata, sens, spec, A,prior): return prior.lpdf_hess(beta)\ +Untracked_LogLike_Hess(beta,nsamp,ydata,sens,spec,A) def Untracked_NegLogPost(betaVec,numVec,posVec,sens,spec,transMat,prior): return -1*Untracked_LogPost(betaVec,numVec,posVec,sens,spec,transMat,prior) def Untracked_NegLogPost_Grad(beta, nsamp, ydata, sens, spec, A,prior): return -1*Untracked_LogPost_Grad(beta, nsamp, ydata, sens, spec, A,prior) def Untracked_NegLogPost_Hess(beta, nsamp, ydata, sens, spec, A,prior): return -1*Untracked_LogPost_Hess(beta, nsamp, ydata, sens, spec, A,prior) ######################## END UNTRACKED FUNCTIONS ######################## ########################### TRACKED FUNCTIONS ########################### def Tracked_LogLike(beta,numMat,posMat,sens,spec): # betaVec should be [importers, outlets]; can be used with array beta if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) n,m = numMat.shape k = beta.shape[0] th, py = sps.expit(beta[:,:m]), sps.expit(beta[:,m:]) pMat = np.reshape(np.tile(th,(n)),(k,n,m)) + np.reshape(np.tile(1-th,(n)),(k,n,m)) *\ np.transpose(np.reshape(np.tile(py,(m)),(k,m,n)),(0,2,1)) #each term is a k-by-n-by-m array pMatTilde = sens*pMat+(1-spec)*(1-pMat) L = np.sum(np.multiply(posMat,np.log(pMatTilde))+np.multiply(np.subtract(numMat,posMat),\ np.log(1-pMatTilde)),axis=(1,2)) #each term is a k-by-n-by-m array, with the n-by-m matrices then summed return np.squeeze(L) def Tracked_LogLike_Jac(beta, numMat, posMat, sens, spec): # betaVec should be [importers, outlets]; can be used with array beta if beta.ndim == 1: # reshape to 2d beta = np.reshape(beta,(1,-1)) n,m = numMat.shape k = beta.shape[0] th, py = sps.expit(beta[:,:m]), sps.expit(beta[:,m:]) pMat = np.reshape(np.tile(th,(n)),(k,n,m)) + np.reshape(np.tile(1-th,(n)),(k,n,m)) *\ np.transpose(np.reshape(np.tile(py,(m)),(k,m,n)),(0,2,1)) pMatTilde = sens*pMat+(1-spec)*(1-pMat) #Grab importers partials first, then outlets impPartials = (sens+spec-1)*np.sum(
np.reshape((th-th**2),(k,1,m))
numpy.reshape
# -*- coding: utf-8 -*- r"""Define an instrument for resolution calculations """ import numpy as np from scipy.linalg import block_diag as blkdiag from ..crystal import Sample from ..energy import Energy from .analyzer import Analyzer from .exceptions import ScatteringTriangleError from .general import GeneralInstrument from .monochromator import Monochromator from .plot import PlotInstrument from .tools import GetTau, _CleanArgs, _Dummy, _modvec, _scalar, _star, _voigt class TripleAxisInstrument(GeneralInstrument, PlotInstrument): u"""An object that represents a Triple Axis Spectrometer (TAS) instrument experimental configuration, including a sample. Parameters ---------- efixed : float, optional Fixed energy, either ei or ef, depending on the instrument configuration. Default: 14.7 sample : obj, optional Sample lattice constants, parameters, mosaic, and orientation (reciprocal-space orienting vectors). Default: A crystal with a,b,c = 6,7,8 and alpha,beta,gamma = 90,90,90 and orientation vectors u=[1 0 0] and v=[0 1 0]. hcol : list(4) Horizontal Soller collimations in minutes of arc starting from the neutron guide. Default: [40 40 40 40] vcol : list(4), optional Vertical Soller collimations in minutes of arc starting from the neutron guide. Default: [120 120 120 120] mono_tau : str or float, optional The monochromator reciprocal lattice vector in Å\ :sup:`-1`, given either as a float, or as a string for common monochromator types. Default: 'PG(002)' mono_mosaic : float, optional The mosaic of the monochromator in minutes of arc. Default: 25 ana_tau : str or float, optional The analyzer reciprocal lattice vector in Å\ :sup:`-1`, given either as a float, or as a string for common analyzer types. Default: 'PG(002)' ana_mosaic : float, optional The mosaic of the monochromator in minutes of arc. Default: 25 Attributes ---------- method moncor mono ana hcol vcol arms efixed sample orient1 orient2 infin beam detector monitor Smooth guide description_string Methods ------- calc_resolution calc_resolution_in_Q_coords calc_projections get_angles_and_Q get_lattice get_resolution_params get_resolution plot_projections plot_ellipsoid plot_instrument resolution_convolution resolution_convolution_SMA plot_slice """ def __init__(self, efixed=14.7, sample=None, hcol=None, vcol=None, mono='PG(002)', mono_mosaic=25, ana='PG(002)', ana_mosaic=25, **kwargs): if sample is None: sample = Sample(6, 7, 8, 90, 90, 90) sample.u = [1, 0, 0] sample.v = [0, 1, 0] if hcol is None: hcol = [40, 40, 40, 40] if vcol is None: vcol = [120, 120, 120, 120] self.mono = Monochromator(mono, mono_mosaic) self.ana = Analyzer(ana, ana_mosaic) self.hcol = np.array(hcol) self.vcol = np.array(vcol) self.efixed = efixed self.sample = sample self.orient1 = np.array(sample.u) self.orient2 = np.array(sample.v) self.detector = _Dummy('Detector') self.monitor = _Dummy('Monitor') self.guide = _Dummy('Guide') for key, value in kwargs.items(): setattr(self, key, value) def __repr__(self): return "Instrument('tas', engine='neutronpy', efixed={0})".format(self.efixed) def __eq__(self, right): self_parent_keys = sorted(list(self.__dict__.keys())) right_parent_keys = sorted(list(right.__dict__.keys())) if not np.all(self_parent_keys == right_parent_keys): return False for key, value in self.__dict__.items(): right_parent_val = getattr(right, key) if not np.all(value == right_parent_val): print(value, right_parent_val) return False return True def __ne__(self, right): return not self.__eq__(right) @property def mono(self): u"""A structure that describes the monochromator. Attributes ---------- tau : str or float The monochromator reciprocal lattice vector in Å\ :sup:`-1`. Instead of a numerical input one can use one of the following keyword strings: +------------------+--------------+-----------+ | String | τ | | +==================+==============+===========+ | Be(002) | 3.50702 | | +------------------+--------------+-----------+ | Co0.92Fe0.08(200)| 3.54782 | (Heusler) | +------------------+--------------+-----------+ | Cu(002) | 3.47714 | | +------------------+--------------+-----------+ | Cu(111) | 2.99913 | | +------------------+--------------+-----------+ | Cu(220) | 4.91642 | | +------------------+--------------+-----------+ | Cu2MnAl(111) | 1.82810 | (Heusler) | +------------------+--------------+-----------+ | Ge(111) | 1.92366 | | +------------------+--------------+-----------+ | Ge(220) | 3.14131 | | +------------------+--------------+-----------+ | Ge(311) | 3.68351 | | +------------------+--------------+-----------+ | Ge(511) | 5.76968 | | +------------------+--------------+-----------+ | Ge(533) | 7.28063 | | +------------------+--------------+-----------+ | PG(002) | 1.87325 | | +------------------+--------------+-----------+ | PG(004) | 3.74650 | | +------------------+--------------+-----------+ | PG(110) | 5.49806 | | +------------------+--------------+-----------+ | Si(111) | 2.00421 | | +------------------+--------------+-----------+ mosaic : int The monochromator mosaic in minutes of arc. vmosaic : int The vertical mosaic of monochromator in minutes of arc. If this field is left unassigned, an isotropic mosaic is assumed. dir : int Direction of the crystal (left or right, -1 or +1, respectively). Default: -1 (left-handed coordinate frame). rh : float Horizontal curvature of the monochromator in cm. rv : float Vertical curvature of the monochromator in cm. """ return self._mono @mono.setter def mono(self, value): self._mono = value @property def ana(self): u"""A structure that describes the analyzer and contains fields as in :attr:`mono` plus optional fields. Attributes ---------- thickness: float The analyzer thickness in cm for ideal-crystal reflectivity corrections (Section II C 3). If no reflectivity corrections are to be made, this field should remain unassigned or set to a negative value. Q : float The kinematic reflectivity coefficient for this correction. It is given by .. math:: Q = \\frac{4|F|**2}{V_0} \\frac{(2\\pi)**3}{\\tau**3}, where V0 is the unit cell volume for the analyzer crystal, F is the structure factor of the analyzer reflection, and τ is the analyzer reciprocal lattice vector. For PG(002) Q = 0.1287. Leave this field unassigned or make it negative if you don’t want the correction done. horifoc : bool A flag that is set to 1 if a horizontally focusing analyzer is used (Section II D). In this case ``hcol[2]`` (see below) is the angular size of the analyzer, as seen from the sample position. If the field is unassigned or equal to -1, a flat analyzer is assumed. Note that this option is only available with the Cooper-Nathans method. dir : int Direction of the crystal (left or right, -1 or +1, respectively). Default: -1 (left-handed coordinate frame). rh : float Horizontal curvature of the analyzer in cm. rv : float Vertical curvature of the analyzer in cm. """ return self._ana @ana.setter def ana(self, value): self._ana = value @property def method(self): """Selects the computation method. If ``method=0`` or left undefined, a Cooper-Nathans calculation is performed. For a Popovici calculation set ``method=1``. """ return self._method @method.setter def method(self, value): self._method = value @property def moncor(self): """Selects the type of normalization used to calculate ``R0`` If ``moncor=1`` or left undefined, ``R0`` is calculated in normalization to monitor counts (Section II C 2). 1/k\ :sub:`i` monitor efficiency correction is included automatically. To normalize ``R0`` to source flux (Section II C 1), use ``moncor=0``. """ return self._moncar @moncor.setter def moncor(self, value): self._moncar = value @property def hcol(self): r""" The horizontal Soller collimations in minutes of arc (FWHM beam divergence) starting from the in-pile collimator. In case of a horizontally-focusing analyzer ``hcol[2]`` is the angular size of the analyzer, as seen from the sample position. If the beam divergence is limited by a neutron guide, the corresponding element of :attr:`hcol` is the negative of the guide’s *m*-value. For example, for a 58-Ni guide ( *m* = 1.2 ) before the monochromator, ``hcol[0]`` should be -1.2. """ return self._hcol @hcol.setter def hcol(self, value): self._hcol = value @property def vcol(self): """The vertical Soller collimations in minutes of arc (FWHM beam divergence) starting from the in-pile collimator. If the beam divergence is limited by a neutron guide, the corresponding element of :attr:`vcol` is the negative of the guide’s *m*-value. For example, for a 58-Ni guide ( *m* = 1.2 ) before the monochromator, ``vcol[0]`` should be -1.2. """ return self._vcol @vcol.setter def vcol(self, value): self._vcol = value @property def arms(self): """distances between the source and monochromator, monochromator and sample, sample and analyzer, analyzer and detector, and monochromator and monitor, respectively. The 5th element is only needed if ``moncor=1`` """ return self._arms @arms.setter def arms(self, value): self._arms = value @property def efixed(self): """the fixed incident or final neutron energy, in meV. """ return self._efixed @efixed.setter def efixed(self, value): self._efixed = value @property def sample(self): """A structure that describes the sample. Attributes ---------- mosaic FWHM sample mosaic in the scattering plane in minutes of arc. If left unassigned, no sample mosaic corrections (section II E) are performed. vmosaic The vertical sample mosaic in minutes of arc. If left unassigned, isotropic mosaic is assumed. dir The direction of the crystal (left or right, -1 or +1, respectively). Default: -1 (left-handed coordinate frame). """ return self._sample @sample.setter def sample(self, value): self._sample = value @property def orient1(self): """Miller indexes of the first reciprocal-space orienting vector for the S coordinate system, as explained in Section II G. """ return self._sample.u @orient1.setter def orient1(self, value): self._sample.u = np.array(value) @property def orient2(self): """Miller indexes of the second reciprocal-space orienting vector for the S coordinate system, as explained in Section II G. """ return self._sample.v @orient2.setter def orient2(self, value): self._sample.v = np.array(value) @property def infin(self): """a flag set to -1 or left unassigned if the final energy is fixed, or set to +1 in a fixed-incident setup. """ return self._infin @infin.setter def infin(self, value): self._infin = value @property def guide(self): r"""A structure that describes the source """ return self._guide @guide.setter def guide(self, value): self._guide = value @property def detector(self): """A structure that describes the detector """ return self._detector @detector.setter def detector(self, value): self._detector = value @property def monitor(self): """A structure that describes the monitor """ return self._monitor @monitor.setter def monitor(self, value): self._monitor = value @property def Smooth(self): u"""Defines the smoothing parameters as explained in Section II H. Leave this field unassigned if you don’t want this correction done. * ``Smooth.E`` is the smoothing FWHM in energy (meV). A small number means “no smoothing along this direction”. * ``Smooth.X`` is the smoothing FWHM along the first orienting vector (x0 axis) in Å\ :sup:`-1`. * ``Smooth.Y`` is the smoothing FWHM along the y axis in Å\ :sup:`-1`. * ``Smooth.Z`` is the smoothing FWHM along the vertical direction in Å\ :sup:`-1`. """ return self._Smooth @Smooth.setter def Smooth(self, value): self._Smooth = value def get_lattice(self): r"""Extracts lattice parameters from EXP and returns the direct and reciprocal lattice parameters in the form used by _scalar.m, _star.m, etc. Returns ------- [lattice, rlattice] : [class, class] Returns the direct and reciprocal lattice sample classes Notes ----- Translated from ResLib 3.4c, originally authored by <NAME>, 1999-2007, Oak Ridge National Laboratory """ lattice = Sample(self.sample.a, self.sample.b, self.sample.c, np.deg2rad(self.sample.alpha), np.deg2rad(self.sample.beta), np.deg2rad(self.sample.gamma)) rlattice = _star(lattice)[-1] return [lattice, rlattice] def _StandardSystem(self): r"""Returns rotation matrices to calculate resolution in the sample view instead of the instrument view Attributes ---------- EXP : class Instrument class Returns ------- [x, y, z, lattice, rlattice] : [array, array, array, class, class] Returns the rotation matrices and real and reciprocal lattice sample classes Notes ----- Translated from ResLib 3.4c, originally authored by <NAME>, 1999-2007, Oak Ridge National Laboratory """ [lattice, rlattice] = self.get_lattice() orient1 = self.orient1 orient2 = self.orient2 modx = _modvec(orient1, rlattice) x = orient1 / modx proj = _scalar(orient2, x, rlattice) y = orient2 - x * proj mody = _modvec(y, rlattice) if len(np.where(mody <= 0)[0]) > 0: raise ScatteringTriangleError('Orienting vectors are colinear') y /= mody z = np.array([ x[1] * y[2] - y[1] * x[2], x[2] * y[0] - y[2] * x[0], -x[1] * y[0] + y[1] * x[0]], dtype=np.float64) proj = _scalar(z, x, rlattice) z -= x * proj proj = _scalar(z, y, rlattice) z -= y * proj modz = _modvec(z, rlattice) z /= modz return [x, y, z, lattice, rlattice] def calc_resolution_in_Q_coords(self, Q, W): r"""For a momentum transfer Q and energy transfers W, given experimental conditions specified in EXP, calculates the Cooper-Nathans or Popovici resolution matrix RM and resolution prefactor R0 in the Q coordinate system (defined by the scattering vector and the scattering plane). Parameters ---------- Q : ndarray or list of ndarray The Q vectors in reciprocal space at which resolution should be calculated, in inverse angstroms W : float or list of floats The energy transfers at which resolution should be calculated in meV Returns ------- [R0, RM] : list(float, ndarray) Resolution pre-factor (R0) and resolution matrix (RM) at the given reciprocal lattice vectors and energy transfers Notes ----- Translated from ResLib 3.4c, originally authored by <NAME>, 1999-2007, Oak Ridge National Laboratory """ CONVERT1 = np.pi / 60. / 180. / np.sqrt(8 * np.log(2)) CONVERT2 = 2.072 [length, Q, W] = _CleanArgs(Q, W) RM = np.zeros((length, 4, 4), dtype=np.float64) R0 = np.zeros(length, dtype=np.float64) RM_ = np.zeros((4, 4), dtype=np.float64) # the method to use method = 0 if hasattr(self, 'method'): method = self.method # Assign default values and decode parameters moncor = 1 if hasattr(self, 'moncor'): moncor = self.moncor alpha = np.array(self.hcol) * CONVERT1 beta = np.array(self.vcol) * CONVERT1 mono = self.mono etam = np.array(mono.mosaic) * CONVERT1 etamv = np.copy(etam) if hasattr(mono, 'vmosaic') and (method == 1 or method == 'Popovici'): etamv = np.array(mono.vmosaic) * CONVERT1 ana = self.ana etaa = np.array(ana.mosaic) * CONVERT1 etaav = np.copy(etaa) if hasattr(ana, 'vmosaic'): etaav = np.array(ana.vmosaic) * CONVERT1 sample = self.sample infin = -1 if hasattr(self, 'infin'): infin = self.infin efixed = self.efixed monitorw = 1. monitorh = 1. beamw = 1. beamh = 1. monow = 1. monoh = 1. monod = 1. anaw = 1. anah = 1. anad = 1. detectorw = 1. detectorh = 1. sshapes = np.repeat(np.eye(3, dtype=np.float64)[np.newaxis].reshape((1, 3, 3)), length, axis=0) sshape_factor = 12. L0 = 1. L1 = 1. L1mon = 1. L2 = 1. L3 = 1. monorv = 1.e6 monorh = 1.e6 anarv = 1.e6 anarh = 1.e6 if hasattr(self, 'guide'): beam = self.guide if hasattr(beam, 'width'): beamw = beam.width ** 2 / 12. if hasattr(beam, 'height'): beamh = beam.height ** 2 / 12. bshape = np.diag([beamw, beamh]) if hasattr(self, 'monitor'): monitor = self.monitor if hasattr(monitor, 'width'): monitorw = monitor.width ** 2 / 12. monitorh = monitorw if hasattr(monitor, 'height'): monitorh = monitor.height ** 2 / 12. monitorshape = np.diag([monitorw, monitorh]) if hasattr(self, 'detector'): detector = self.detector if hasattr(detector, 'width'): detectorw = detector.width ** 2 / 12. if hasattr(detector, 'height'): detectorh = detector.height ** 2 / 12. dshape = np.diag([detectorw, detectorh]) if hasattr(mono, 'width'): monow = mono.width ** 2 / 12. if hasattr(mono, 'height'): monoh = mono.height ** 2 / 12. if hasattr(mono, 'depth'): monod = mono.depth ** 2 / 12. mshape = np.diag([monod, monow, monoh]) if hasattr(ana, 'width'): anaw = ana.width ** 2 / 12. if hasattr(ana, 'height'): anah = ana.height ** 2 / 12. if hasattr(ana, 'depth'): anad = ana.depth ** 2 / 12. ashape = np.diag([anad, anaw, anah]) if hasattr(sample, 'shape_type'): if sample.shape_type == 'cylindrical': sshape_factor = 16. elif sample.shape_type == 'rectangular': sshape_factor = 12. if hasattr(sample, 'width') and hasattr(sample, 'depth') and hasattr(sample, 'height'): _sshape = np.diag([sample.depth, sample.width, sample.height]).astype(np.float64) ** 2 / sshape_factor sshapes = np.repeat(_sshape[np.newaxis].reshape((1, 3, 3)), length, axis=0) elif hasattr(sample, 'shape'): _sshape = sample.shape.astype(np.float64) / sshape_factor if len(_sshape.shape) == 2: sshapes = np.repeat(_sshape[np.newaxis].reshape((1, 3, 3)), length, axis=0) else: sshapes = _sshape if hasattr(self, 'arms') and method == 1: arms = self.arms L0, L1, L2, L3 = arms[:4] L1mon = np.copy(L1) if len(arms) > 4: L1mon = np.copy(arms[4]) if hasattr(mono, 'rv'): monorv = mono.rv if hasattr(mono, 'rh'): monorh = mono.rh if hasattr(ana, 'rv'): anarv = ana.rv if hasattr(ana, 'rh'): anarh = ana.rh taum = GetTau(mono.tau) taua = GetTau(ana.tau) horifoc = -1 if hasattr(self, 'horifoc'): horifoc = self.horifoc if horifoc == 1: alpha[2] = alpha[2] * np.sqrt(8. * np.log(2.) / 12.) sm = self.mono.dir ss = self.sample.dir sa = self.ana.dir for ind in range(length): sshape = sshapes[ind, :, :] # Calculate angles and energies w = W[ind] q = Q[ind] ei = efixed ef = efixed if infin > 0: ef = efixed - w else: ei = efixed + w ki = np.sqrt(ei / CONVERT2) kf = np.sqrt(ef / CONVERT2) thetam = np.arcsin(taum / (2. * ki)) * sm thetaa = np.arcsin(taua / (2. * kf)) * sa s2theta = np.arccos(np.complex((ki ** 2 + kf ** 2 - q ** 2) / (2. * ki * kf))) * ss if np.abs(np.imag(s2theta)) > 1e-12: raise ScatteringTriangleError( 'KI,KF,Q triangle will not close. Change the value of KFIX,FX,QH,QK or QL.') else: s2theta = np.real(s2theta) # correct sign of curvatures monorh = monorh * sm monorv = monorv * sm anarh = anarh * sa anarv = anarv * sa thetas = s2theta / 2. phi = np.arctan2(-kf * np.sin(s2theta), ki - kf * np.cos(s2theta)) # Calculate beam divergences defined by neutron guides alpha[alpha < 0] = -alpha[alpha < 0] * 0.1 * 60. * (2. * np.pi / ki) / 0.427 / np.sqrt(3.) beta[beta < 0] = -beta[beta < 0] * 0.1 * 60. * (2. * np.pi / ki) / 0.427 / np.sqrt(3.) # Redefine sample geometry psi = thetas - phi # Angle from sample geometry X axis to Q rot = np.matrix([[np.cos(psi), np.sin(psi), 0], [-np.sin(psi), np.cos(psi), 0], [0, 0, 1]], dtype=np.float64) # sshape=rot'*sshape*rot sshape = np.matrix(rot) * np.matrix(sshape) * np.matrix(rot).H # Definition of matrix G G = np.matrix( np.diag(1. / np.array([alpha[:2], beta[:2], alpha[2:], beta[2:]], dtype=np.float64).flatten() ** 2)) # Definition of matrix F F = np.matrix(np.diag(1. / np.array([etam, etamv, etaa, etaav], dtype=np.float64) ** 2)) # Definition of matrix A A = np.matrix([[ki / 2. / np.tan(thetam), -ki / 2. / np.tan(thetam), 0, 0, 0, 0, 0, 0], [0, ki, 0, 0, 0, 0, 0, 0], [0, 0, 0, ki, 0, 0, 0, 0], [0, 0, 0, 0, kf / 2. / np.tan(thetaa), -kf / 2. / np.tan(thetaa), 0, 0], [0, 0, 0, 0, kf, 0, 0, 0], [0, 0, 0, 0, 0, 0, kf, 0]], dtype=np.float64) # Definition of matrix C C = np.matrix([[0.5, 0.5, 0, 0, 0, 0, 0, 0], [0., 0., 1. / (2. * np.sin(thetam)), -1. / (2. * np.sin(thetam)), 0, 0, 0, 0], [0, 0, 0, 0, 0.5, 0.5, 0, 0], [0, 0, 0, 0, 0, 0, 1. / (2. * np.sin(thetaa)), -1. / (2. * np.sin(thetaa))]], dtype=np.float64) # Definition of matrix Bmatrix Bmatrix = np.matrix([[np.cos(phi), np.sin(phi), 0, -np.cos(phi - s2theta), -np.sin(phi - s2theta), 0], [-np.sin(phi), np.cos(phi), 0, np.sin(phi - s2theta), -np.cos(phi - s2theta), 0], [0, 0, 1, 0, 0, -1], [2. * CONVERT2 * ki, 0, 0, -2. * CONVERT2 * kf, 0, 0]], dtype=np.float64) # Definition of matrix S Sinv = np.matrix(blkdiag(np.array(bshape, dtype=np.float64), mshape, sshape, ashape, dshape)) # S-1 matrix S = Sinv.I # Definition of matrix T T = np.matrix([[-1. / (2. * L0), 0, np.cos(thetam) * (1. / L1 - 1. / L0) / 2., np.sin(thetam) * (1. / L0 + 1. / L1 - 2. / (monorh * np.sin(thetam))) / 2., 0, np.sin(thetas) / (2. * L1), np.cos(thetas) / (2. * L1), 0, 0, 0, 0, 0, 0], [0, -1. / (2. * L0 * np.sin(thetam)), 0, 0, (1. / L0 + 1. / L1 - 2. * np.sin(thetam) / monorv) / (2. * np.sin(thetam)), 0, 0, -1. / (2. * L1 * np.sin(thetam)), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, np.sin(thetas) / (2. * L2), -np.cos(thetas) / (2. * L2), 0, np.cos(thetaa) * (1. / L3 - 1. / L2) / 2., np.sin(thetaa) * (1. / L2 + 1. / L3 - 2. / (anarh * np.sin(thetaa))) / 2., 0, 1. / (2. * L3), 0], [0, 0, 0, 0, 0, 0, 0, -1. / (2. * L2 * np.sin(thetaa)), 0, 0, (1. / L2 + 1. / L3 - 2. * np.sin(thetaa) / anarv) / (2. * np.sin(thetaa)), 0, -1. / (2. * L3 * np.sin(thetaa))]], dtype=np.float64) # Definition of matrix D # Lots of index mistakes in paper for matrix D D = np.matrix([[-1. / L0, 0, -np.cos(thetam) / L0, np.sin(thetam) / L0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, np.cos(thetam) / L1, np.sin(thetam) / L1, 0, np.sin(thetas) / L1, np.cos(thetas) / L1, 0, 0, 0, 0, 0, 0], [0, -1. / L0, 0, 0, 1. / L0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -1. / L1, 0, 0, 1. / L1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, np.sin(thetas) / L2, -np.cos(thetas) / L2, 0, -np.cos(thetaa) / L2, np.sin(thetaa) / L2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, np.cos(thetaa) / L3, np.sin(thetaa) / L3, 0, 1. / L3, 0], [0, 0, 0, 0, 0, 0, 0, -1. / L2, 0, 0, 1. / L2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1. / L3, 0, 1. / L3]], dtype=np.float64) # Definition of resolution matrix M if method == 1 or method == 'popovici': K = S + T.H * F * T H = np.linalg.inv(D * np.linalg.inv(K) * D.H) Ninv = A * np.linalg.inv(H + G) * A.H else: H = G + C.H * F * C Ninv = A * np.linalg.inv(H) * A.H # Horizontally focusing analyzer if needed if horifoc > 0: Ninv = np.linalg.inv(Ninv) Ninv[3:5, 3:5] = np.matrix([[(np.tan(thetaa) / (etaa * kf)) ** 2, 0], [0, (1 / (kf * alpha[2])) ** 2]], dtype=np.float64) Ninv = np.linalg.inv(Ninv) Minv = Bmatrix * Ninv * Bmatrix.H M = np.linalg.inv(Minv) RM_ = np.copy(M) # Calculation of prefactor, normalized to source Rm = ki ** 3 / np.tan(thetam) Ra = kf ** 3 / np.tan(thetaa) R0_ = Rm * Ra * (2. * np.pi) ** 4 / (64. * np.pi ** 2 * np.sin(thetam) * np.sin(thetaa)) if method == 1 or method == 'popovici': # Popovici R0_ = R0_ * np.sqrt(np.linalg.det(F) / np.linalg.det(H + G)) else: # Cooper-Nathans (popovici Eq 5 and 9) R0_ = R0_ * np.sqrt(np.linalg.det(F) / np.linalg.det(H)) # Normalization to flux on monitor if moncor == 1: g = G[:4, :4] f = F[:2, :2] c = C[:2, :4] t = np.matrix([[-1. / (2. * L0), 0, np.cos(thetam) * (1. / L1mon - 1. / L0) / 2., np.sin(thetam) * (1. / L0 + 1. / L1mon - 2. / (monorh * np.sin(thetam))) / 2., 0, 0, 1. / (2. * L1mon)], [0, -1. / (2. * L0 * np.sin(thetam)), 0, 0, (1. / L0 + 1. / L1mon - 2. * np.sin(thetam) / monorv) / (2. * np.sin(thetam)), 0, 0]], dtype=np.float64) sinv = blkdiag(np.array(bshape, dtype=np.float64), mshape, monitorshape) # S-1 matrix s = np.linalg.inv(sinv) d = np.matrix([[-1. / L0, 0, -np.cos(thetam) / L0, np.sin(thetam) / L0, 0, 0, 0], [0, 0, np.cos(thetam) / L1mon, np.sin(thetam) / L1mon, 0, 0, 1. / L1mon], [0, -1. / L0, 0, 0, 1. / L0, 0, 0], [0, 0, 0, 0, -1. / L1mon, 0, 0]], dtype=np.float64) if method == 1 or method == 'popovici': # Popovici Rmon = Rm * (2 * np.pi) ** 2 / (8 * np.pi * np.sin(thetam)) * np.sqrt( np.linalg.det(f) / np.linalg.det(np.linalg.inv(d * np.linalg.inv(s + t.H * f * t) * d.H) + g)) else: # Cooper-Nathans Rmon = Rm * (2 * np.pi) ** 2 / (8 * np.pi * np.sin(thetam)) * np.sqrt( np.linalg.det(f) / np.linalg.det(g + c.H * f * c)) R0_ = R0_ / Rmon R0_ = R0_ * ki # 1/ki monitor efficiency # Transform prefactor to Chesser-Axe normalization R0_ = R0_ / (2. * np.pi) ** 2 * np.sqrt(np.linalg.det(RM_)) # Include kf/ki part of cross section R0_ = R0_ * kf / ki # Take care of sample mosaic if needed # [<NAME> & <NAME>, J. Appl. Phys. 42, 4736, (1971), eq 19] if hasattr(sample, 'mosaic'): etas = sample.mosaic * CONVERT1 etasv = np.copy(etas) if hasattr(sample, 'vmosaic'): etasv = sample.vmosaic * CONVERT1 R0_ = R0_ / np.sqrt((1 + (q * etas) ** 2 * RM_[2, 2]) * (1 + (q * etasv) ** 2 * RM_[1, 1])) Minv[1, 1] = Minv[1, 1] + q ** 2 * etas ** 2 Minv[2, 2] = Minv[2, 2] + q ** 2 * etasv ** 2 RM_ = np.linalg.inv(Minv) # Take care of analyzer reflectivity if needed [<NAME>, BNL] if hasattr(ana, 'thickness') and hasattr(ana, 'Q'): KQ = ana.Q KT = ana.thickness toa = (taua / 2.) / np.sqrt(kf ** 2 - (taua / 2.) ** 2) smallest = alpha[3] if alpha[3] > alpha[2]: smallest = alpha[2] Qdsint = KQ * toa dth = (np.arange(1, 201) / 200.) * np.sqrt(2. * np.log(2.)) * smallest wdth = np.exp(-dth ** 2 / 2. / etaa ** 2) sdth = KT * Qdsint * wdth / etaa / np.sqrt(2. * np.pi) rdth = 1. / (1 + 1. / sdth) reflec = sum(rdth) / sum(wdth) R0_ = R0_ * reflec R0[ind] = R0_ RM[ind] = RM_.copy() return [R0, RM] def calc_resolution(self, hkle): r"""For a scattering vector (H,K,L) and energy transfers W, given experimental conditions specified in EXP, calculates the Cooper-Nathans resolution matrix RMS and Cooper-Nathans Resolution prefactor R0 in a coordinate system defined by the crystallographic axes of the sample. Parameters ---------- hkle : list Array of the scattering vector and energy transfer at which the calculation should be performed Notes ----- Translated from ResLib, originally authored by <NAME>, 1999-2007, Oak Ridge National Laboratory """ self.HKLE = hkle [H, K, L, W] = hkle [length, H, K, L, W] = _CleanArgs(H, K, L, W) self.H, self.K, self.L, self.W = H, K, L, W [x, y, z, sample, rsample] = self._StandardSystem() del z, sample Q = _modvec([H, K, L], rsample) uq = np.vstack((H / Q, K / Q, L / Q)) xq = _scalar(x, uq, rsample) yq = _scalar(y, uq, rsample) tmat = np.array( [np.array([[xq[i], yq[i], 0, 0], [-yq[i], xq[i], 0, 0], [0, 0, 1., 0], [0, 0, 0, 1.]], dtype=np.float64) for i in range(len(xq))]) RMS = np.zeros((length, 4, 4), dtype=np.float64) rot = np.zeros((3, 3), dtype=np.float64) # Sample shape matrix in coordinate system defined by scattering vector sample = self.sample if hasattr(sample, 'shape'): samples = [] for i in range(length): rot = tmat[i, :3, :3] samples.append(np.matrix(rot) * np.matrix(sample.shape) * np.matrix(rot).H) self.sample.shape = np.array(samples) [R0, RM] = self.calc_resolution_in_Q_coords(Q, W) for i in range(length): RMS[i] =
np.matrix(tmat[i])
numpy.matrix
""" Created by: 6/1/17 On:jesseclark """ import pandas as pd import numpy as np from itertools import combinations import argparse import logging import copy logging.info('Starting logger for...') LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.DEBUG) def invert_dict(dict_in, append_list=False): """ Invert the key:values of a dict :param dict_in: dict to invert :param append_list: append to a list? (for non-uniqueness) :return: inverted dict """ if not append_list: return {val:key for key,val in dict_in.items()} else: dict_out = {val:[] for key,val in dict_in.items()} for key, val in dict_in.items(): dict_out[val].append(key) return dict_out def load_data(fname='SeatTest_New.xlsx'): """ Load the xlsx using pandas. :param fname: string location of the file to load :return: pandas object """ return pd.ExcelFile(fname) def get_names_teams_cur_seats(file_in, names='names'): """ Process the xlsx sheet, extracting the names and seats :param file_in: pandas object for the file, use load_data(fname) :param names: the name of the tab that contains the names :return: list of names, names:seats dict, names:teams dict """ # load the names portion of the sheet names_df = file_in.parse(names) # rename if nec if 'Full Name' in names_df.columns: names_df = names_df.rename(columns={'Full Name':'Names'}) if 'Seat' in names_df.columns: names_df = names_df.rename(columns={'Seat':'current seat'}) if 'Team' in names_df.columns: names_df = names_df.rename(columns={'Team':'Teams'}) # we sort here to set an order for constructing the X and dij names = sorted(names_df.Names.values.tolist()) # make the init names_Seats_dict names_seats_dict = {row[1]['Names']: row[1]['current seat'] for row in names_df[['Names', 'current seat']].reset_index(drop=True).iterrows()} # get the names-teams dict names_teams_dict = {row[1]['Names']: str(row[1]['Teams']) for row in names_df[['Names', 'Teams']].reset_index(drop=True).iterrows()} return names, names_seats_dict, names_teams_dict def create_seating_graph(seats_arr, excludes=('nan',0), inc_self=True): """ Create the graph of seats from the layout. :param seats_arr: np array of physical seating arrangement :param excludes: ignore entries in seats_arr that take these values (i.e. use 0 or nan for aisles) :param inc_self: include the seat number as a neighbiour to itself? :return: seats graph as a dict """ # which chairs are neighbours ni, nj = seats_arr.shape seats_graph = {} # loop through each seat for indi in range(ni): for indj in range(nj): # get current seat seat = seats_arr[indi, indj] if seat not in excludes: # now get the neighbours of the seat # here we consider the diagonals to be a neighbour ii = np.array([-1, 0, 1]) + indi jj = np.array([-1, 0, 1]) + indj # keep the indices within the bounds ii = ii[(ii >= 0) & (ii < ni)] jj = jj[(jj >= 0) & (jj < nj)] # loop through the indices inds = [(i, j) for i in ii for j in jj] neighbours = [seats_arr[ind] for ind in inds if seats_arr[ind] not in [seat]+list(excludes)] if inc_self: neighbours.append(seat) seats_graph[seat] = neighbours return seats_graph def get_seat_locations(file_in, seats='seat_map', more_connected=True): """ Process the seat locations portion of the xlsx sheet :param file_in: pandas object for the file, use load_data(fname) :param seats: name of the tab that contains the sheets :param more_connected: bool, remove aisles from seats when constructing connection graph? :return: list of seats, dict of seat locations (tuples), graph of seat connections, dict of seat-seat distances, numpy array of seat map """ # get seat locations from map and also all available seats (not just those occupied) seat_map_df = file_in.parse(seats, header=None) seats_arr = np.nan_to_num(np.array(seat_map_df, dtype=float)).astype(int) seats = sorted(list(seats_arr[np.where(seats_arr.astype(float) != 0)])) # a dict of the seat number and location seat_locations = {seat: (np.where(seats_arr == seat)[0][0], np.where(seats_arr == seat)[1][0]) for seat in seats} # we can make the seats have more neighbours by removing the aisles if more_connected: _seats_arr = seats_arr[np.where(seats_arr.sum(1) != 0), :].squeeze() _seats_arr = _seats_arr[:, np.where(_seats_arr.sum(0) != 0)].squeeze() else: _seats_arr = seats_arr seats_graph = create_seating_graph(_seats_arr, inc_self=False) # we want the distance from each seat to every other seat seat_distances = {} for seat1 in seats: distances = {} for seat2 in seats: p1 = np.array(seat_locations[seat1]) p2 = np.array(seat_locations[seat2]) distances[seat2] = abs(p1 - p2).sum() seat_distances[seat1] = distances return seats, seat_locations, seats_graph, seat_distances, seats_arr def get_person_person_distance(names_seats_dict, seat_distances, names): """ get person to person distances used for getting the cost of how far people have moved from each other can get names_seats_dict = X_to_names_seats_dict(X, names, seats) :param names_seats_dict: names:seats dict :param seat_distances: dict of seat-seat distances, indexed by seat name :param names: list of names :return: numpy array of person-person distances """ pij = np.zeros((len(names), len(names))) # loop through people and seats # use the sorted names list, this dictates the ordering for the matrix for ind1, name1 in enumerate(names): # get seat seat1 = names_seats_dict[name1] # get distances to all other people for ind2, name2 in enumerate(names): seat2 = names_seats_dict[name2] pij[ind1, ind2] = seat_distances[seat1][seat2] return pij def calc_dij(names, seats, seat_distances, names_seats_dict): """ calc the person-seat distances. :param names: list of names :param seats: list of seats :param seat_distances: dict of seat-seat distances :param names_seats_dict: names:seats dict of current arrangement :return: numpy array of person-seat distances """ # calc the dij matrix - ordered! 0 important dij = np.zeros((len(names), len(seats))) for ind1, name in enumerate(names): # get cur seat for name cur_seat = names_seats_dict[name] # get the distance to all other seats dists = [seat_distances[cur_seat][ind] for ind in seats] dij[ind1, :] = dists return dij def names_seats_dict_to_X(names_seats_dict, names=None, seats=None): """ Convert the dictionary of names:seats into allocation matrix Xij :param names_seats_dict: names:seats dict :param names: list of names, ordering dictates ordering of X, if none provided, defaults to sorted keys :param seats: list of seats :return: numpy array allocating person i to seat j Xij """ if names is None: names = sorted(names_seats_dict.keys()) if seats is None: seats = sorted(names_seats_dict.values()) X = np.zeros((len(names), len(seats))) for ind1, name in enumerate(names): # get the index of the name in seat ind2 = seats.index(names_seats_dict[name]) X[ind1, ind2] = 1 return X def X_to_names_seats_dict(X, names, seats): """ Inverse operation of names_seats_dict_to_X, create a names:seats dict from numpy allocation array Xij :param X: numpy array allocating person i to seat j Xij :param names: list of names, required for keys :param seats: list of seats :return: names:seats dict for current allocation """ # use normal dict so we still get key errors names_seats_dict = {} for ind1, name in enumerate(names): cur_seat_ind =
np.where(X[ind1, :] == 1)
numpy.where
import numpy as np import pycuda.driver as cuda import pycuda.autoinit from cuda_functions_sp import cu_matrix_kernel from image_functions import convolve_undersample import sys def numpy3d_to_array(np_array, allow_surface_bind=False, layered=True): d, h, w = np_array.shape descr = cuda.ArrayDescriptor3D() descr.width = w descr.height = h descr.depth = d descr.format = cuda.dtype_to_array_format(np_array.dtype) descr.num_channels = 1 descr.flags = 0 if allow_surface_bind: descr.flags = cuda.array3d_flags.SURFACE_LDST if layered: descr.flags = cuda.array3d_flags.ARRAY3D_LAYERED device_array = cuda.Array(descr) copy = cuda.Memcpy3D() copy.set_src_host(np_array) copy.set_dst_array(device_array) copy.width_in_bytes = copy.src_pitch = np_array.strides[1] copy.src_height = copy.height = h copy.depth = d copy() return device_array def array_to_numpy3d(cuda_array): descriptor = cuda_array.get_descriptor_3d() w = descriptor.width h = descriptor.height d = descriptor.depth shape = d, h, w dtype = array_format_to_dtype(descriptor.format) numpy_array = np.zeros(shape, dtype) copy = cuda.Memcpy3D() copy.set_src_array(cuda_array) copy.set_dst_host(numpy_array) itemsize = numpy_array.dtype.itemsize copy.width_in_bytes = copy.src_pitch = w * itemsize copy.src_height = copy.height = h copy.depth = d copy() return numpy_array def compute_matrix_and_vector_cuda(R, RB, T, Vinv, mask, kernelIndex, extendedBasis, kernelRadius, params, stamp_positions=None): # Import CUDA function to compute the matrix cu_compute_matrix = cu_matrix_kernel.get_function('cu_compute_matrix') cu_compute_vector = cu_matrix_kernel.get_function('cu_compute_vector') cu_compute_matrix_stamps = cu_matrix_kernel.get_function( 'cu_compute_matrix_stamps') cu_compute_vector_stamps = cu_matrix_kernel.get_function( 'cu_compute_vector_stamps') # Copy the reference, target and inverse variance images to # GPU texture memory RTV = np.array([R, RB, T, Vinv, mask]).astype(np.float32).copy() RTV_cuda = numpy3d_to_array(RTV) texref = cu_matrix_kernel.get_texref("tex") texref.set_array(RTV_cuda) texref.set_filter_mode(cuda.filter_mode.POINT) # Create a numpy array for matrix H dp = (params.pdeg + 1) * (params.pdeg + 2) / 2 ds = (params.sdeg + 1) * (params.sdeg + 2) / 2 db = (params.bdeg + 1) * (params.bdeg + 2) / 2 hs = (kernelIndex.shape[0] - 1) * ds + dp + db H = np.zeros([hs, hs]).astype(np.float32).copy() V = np.zeros(hs).astype(np.float32).copy() # Fill the elements of H print hs, ' * ', hs, ' elements' blockDim = (256, 1, 1) gridDim = (hs, hs, 1) k0 = kernelIndex[:, 0].astype(np.int32).copy() k1 = kernelIndex[:, 1].astype(np.int32).copy() if params.use_stamps: posx = np.float32(stamp_positions[:params.nstamps, 0].copy() - 1.0) posy = np.float32(stamp_positions[:params.nstamps, 1].copy() - 1.0) cu_compute_matrix_stamps(np.int32(params.pdeg), np.int32(params.sdeg), np.int32(params.bdeg), np.int32(R.shape[1]), np.int32(R.shape[0]), np.int32(params.nstamps), np.int32(params.stamp_half_width), cuda.In(posx), cuda.In(posy), cuda.In(k0), cuda.In(k1), cuda.In(extendedBasis), np.int32(kernelIndex.shape[0]), np.int32(kernelRadius), cuda.Out(H), block=blockDim, grid=gridDim, texrefs=[texref]) else: cu_compute_matrix(np.int32(params.pdeg), np.int32(params.sdeg), np.int32(params.bdeg), np.int32(R.shape[1]), np.int32(R.shape[0]), cuda.In(k0), cuda.In(k1), cuda.In(extendedBasis), np.int32(kernelIndex.shape[0]), np.int32(kernelRadius), cuda.Out(H), block=blockDim, grid=gridDim, texrefs=[texref]) # Fill the elements of V blockDim = (256, 1, 1) gridDim = (hs, 1, 1) if params.use_stamps: cu_compute_vector_stamps(np.int32(params.pdeg), np.int32(params.sdeg), np.int32(params.bdeg), np.int32(R.shape[1]), np.int32(R.shape[0]), np.int32(params.nstamps), np.int32(params.stamp_half_width), cuda.In(posx), cuda.In(posy), cuda.In(k0), cuda.In(k1), cuda.In(extendedBasis), np.int32(kernelIndex.shape[0]), np.int32(kernelRadius), cuda.Out(V), block=blockDim, grid=gridDim, texrefs=[texref]) else: cu_compute_vector(np.int32(params.pdeg), np.int32(params.sdeg), np.int32(params.bdeg), np.int32(R.shape[1]), np.int32(R.shape[0]), cuda.In(k0), cuda.In(k1), cuda.In(extendedBasis), np.int32(kernelIndex.shape[0]), np.int32(kernelRadius), cuda.Out(V), block=blockDim, grid=gridDim, texrefs=[texref]) return H, V, texref def compute_model_cuda(image_size, texref, c, kernelIndex, extendedBasis, params): # Import CUDA function to perform the convolution cu_compute_model = cu_matrix_kernel.get_function('cu_compute_model') # Create a numpy array for the model M M = np.zeros(image_size).astype(np.float32).copy() # Call the cuda function to perform the convolution blockDim = (256, 1, 1) gridDim = (image_size[1], image_size[0]) + (1,) k0 = kernelIndex[:, 0].astype(np.int32).copy() k1 = kernelIndex[:, 1].astype(np.int32).copy() cu_compute_model(np.int32(params.pdeg), np.int32(params.sdeg), np.int32(params.bdeg), cuda.In(k0), cuda.In(k1), cuda.In(extendedBasis), np.int32(kernelIndex.shape[0]), cuda.In(c), cuda.Out(M), block=blockDim, grid=gridDim, texrefs=[texref]) return M def photom_all_stars(diff, inv_variance, positions, psf_image, c, kernelIndex, extendedBasis, kernelRadius, params, star_group_boundaries=None, detector_mean_positions_x=None, detector_mean_positions_y=None): from astropy.io import fits # Read the PSF psf, psf_hdr = fits.getdata(psf_image, 0, header='true') print 'CIF psf_shape', psf.shape print 'CIF psf_sum = ', np.sum(psf) psf_height = psf_hdr['PSFHEIGH'] psf_x = psf_hdr['PSFX'] psf_y = psf_hdr['PSFY'] psf_size = psf.shape[1] psf_fit_rad = params.psf_fit_radius if params.psf_profile_type == 'gaussian': psf_sigma_x = psf_hdr['PAR1'] * 0.8493218 psf_sigma_y = psf_hdr['PAR2'] * 0.8493218 psf_parameters = np.array( [psf_size, psf_height, psf_sigma_x, psf_sigma_y, psf_x, psf_y, psf_fit_rad, params.gain]).astype(np.float32) profile_type = 0 elif params.psf_profile_type == 'moffat25': print 'params.psf_profile_type moffat25 not working yet. Exiting.' sys.exit(0) psf_sigma_x = psf_hdr['PAR1'] psf_sigma_y = psf_hdr['PAR2'] psf_sigma_xy = psf_hdr['PAR3'] psf_parameters = np.array( [psf_size, psf_height, psf_sigma_x, psf_sigma_y, psf_x, psf_y, psf_fit_rad, params.gain, psf_sigma_xy]).astype(np.float32) print 'psf_parameters', psf_parameters profile_type = 1 else: print 'params.psf_profile_type undefined' sys.exit(0) # Copy the difference and inverse variance images into GPU texture memory RR = np.array([diff, inv_variance]).astype(np.float32).copy() diff_cuda = numpy3d_to_array(RR) texref = cu_matrix_kernel.get_texref("tex") texref.set_array(diff_cuda) texref.set_filter_mode(cuda.filter_mode.POINT) # Call the CUDA function to perform the photometry. # Each block is one star. # Each thread is one column of the PSF, but 32 threads per warp nstars = positions.shape[0] gridDim = (int(nstars), 1, 1) blockDim = (16, 16, 1) k0 = kernelIndex[:, 0].astype(np.int32).copy() k1 = kernelIndex[:, 1].astype(np.int32).copy() positions = positions.reshape(-1, 2) if params.star_file_is_one_based: posx = np.float32(positions[:, 0].copy() - 1.0) posy = np.float32(positions[:, 1].copy() - 1.0) else: posx = np.float32(positions[:, 0].copy()) posy = np.float32(positions[:, 1].copy()) # psf_0 = convolve_undersample(psf[0]).astype(np.float32).copy() # psf_xd = convolve_undersample(psf[1]).astype(np.float32).copy()*0.0 # psf_yd = convolve_undersample(psf[2]).astype(np.float32).copy()*0.0 # psf_0 = psf[0].astype(np.float32).copy() # psf_xd = psf[1].astype(np.float32).copy()*0.0 # psf_yd = psf[2].astype(np.float32).copy()*0.0 psf_0 = psf.astype(np.float32).copy() psf_xd = psf.astype(np.float32).copy() * 0.0 psf_yd = psf.astype(np.float32).copy() * 0.0 flux = np.float32(posy.copy() * 0.0); dflux = np.float32(posy.copy() * 0.0); cu_photom = cu_matrix_kernel.get_function('cu_photom') try: cu_photom(np.int32(profile_type), np.int32(diff.shape[0]), np.int32(diff.shape[1]), np.int32(params.pdeg), np.int32(params.sdeg), np.int32(c.shape[0]), np.int32(kernelIndex.shape[0]), np.int32(kernelRadius), cuda.In(k0), cuda.In(k1), cuda.In(extendedBasis), cuda.In(psf_parameters), cuda.In(psf_0), cuda.In(psf_xd), cuda.In(psf_yd), cuda.In(posx), cuda.In(posy), cuda.In(c), cuda.Out(flux), cuda.Out(dflux), block=blockDim, grid=gridDim, texrefs=[texref]) except: print 'Call to cu_photom failed.' print 'psf_parameters', psf_parameters print 'size of posx, posy:', posx.shape, posy.shape print 'Parameters:' for par in dir(params): print par, getattr(params, par) print return flux, dflux def convolve_image_with_psf(psf_image, image1, image2, c, kernelIndex, extendedBasis, kernelRadius, params): from astropy.io import fits # Read the PSF psf, psf_hdr = fits.getdata(psf_image, 0, header='true') psf_height = psf_hdr['PSFHEIGH'] psf_x = psf_hdr['PSFX'] psf_y = psf_hdr['PSFY'] psf_size = psf.shape[1] psf_fit_rad = params.psf_fit_radius if params.psf_profile_type == 'gaussian': psf_sigma_x = psf_hdr['PAR1'] * 0.8493218 psf_sigma_y = psf_hdr['PAR2'] * 0.8493218 psf_parameters = np.array( [psf_size, psf_height, psf_sigma_x, psf_sigma_y, psf_x, psf_y, psf_fit_rad, params.gain]).astype(np.float32) profile_type = 0 elif params.psf_profile_type == 'moffat25': print 'params.psf_profile_type moffat25 not working yet. Exiting.' sys.exit(0) psf_sigma_x = psf_hdr['PAR1'] psf_sigma_y = psf_hdr['PAR2'] psf_sigma_xy = psf_hdr['PAR3'] psf_parameters = np.array( [psf_size, psf_height, psf_sigma_x, psf_sigma_y, psf_x, psf_y, psf_fit_rad, params.gain, psf_sigma_xy]).astype(np.float32) profile_type = 1 else: print 'params.psf_profile_type undefined' sys.exit(0) # Copy the images into GPU texture memory nx, ny = image1.shape RR = np.array([image1, image2]).astype(np.float32).copy() image_cuda = numpy3d_to_array(RR) texref = cu_matrix_kernel.get_texref("tex") texref.set_array(image_cuda) texref.set_filter_mode(cuda.filter_mode.POINT) # Call the CUDA function to perform the double convolution. # Each block is one image section. # Each thread is one pixel of the PSF, but 32 threads per warp cu_convolve = cu_matrix_kernel.get_function('convolve_image_psf') k0 = kernelIndex[:, 0].astype(np.int32).copy() k1 = kernelIndex[:, 1].astype(np.int32).copy() # psf_0 = convolve_undersample(psf[0]).astype(np.float32).copy() # psf_xd = convolve_undersample(psf[1]).astype(np.float32).copy()*0.0 # psf_yd = convolve_undersample(psf[2]).astype(np.float32).copy()*0.0 psf_0 = psf.astype(np.float32).copy() psf_xd = psf.astype(np.float32).copy() * 0.0 psf_yd = psf.astype(np.float32).copy() * 0.0 image_section_size = 32 convolved_image1 = (0.0 * image1).astype(np.float32) convolved_image2 = (0.0 * image1).astype(np.float32) gridDim = (int((nx - 1) / image_section_size + 1), int((ny - 1) / image_section_size + 1), 1) blockDim = (16, 16, 1) cu_convolve(np.int32(profile_type), np.int32(nx), np.int32(ny), np.int32(image_section_size), np.int32(image_section_size), np.int32(params.pdeg), np.int32(params.sdeg), np.int32(c.shape[0]),
np.int32(kernelIndex.shape[0])
numpy.int32
from sparse_cnn_tensorflow.sparse_data_value import SparseDataValue import numpy as np def test_simple_dense_int_array(): dense = np.array( [ [[1, 2], [0, 0], [0, 0]], [[0, 0], [5, 6], [6, 7]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [16, 17]] ] ) sparse = SparseDataValue(dense) assert sparse.dense_shape == (4, 3, 2) np.testing.assert_array_equal(sparse.ground_state, np.zeros(2, dtype=np.int64)) np.testing.assert_array_equal(sparse.H, np.array([[0, 0], [1, 1], [1, 2], [3, 2]])) np.testing.assert_array_equal(sparse.M, np.array([[1, 2], [5, 6], [6, 7], [16, 17]])) def test_simple_dense_float32_array(): dense = np.array( [ [[1.432, 2.654], [0, 0], [0, 0]], [[0, 0], [5.327, 6.777], [6.112, 7.123]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [16.853, 17.352]] ] ).astype(np.float32) sparse = SparseDataValue(dense) assert sparse.dense_shape == (4, 3, 2) np.testing.assert_array_equal(sparse.ground_state, np.zeros(2, dtype=np.int64)) np.testing.assert_array_equal(sparse.H, np.array([[0, 0], [1, 1], [1, 2], [3, 2]])) np.testing.assert_array_almost_equal( sparse.M, np.array([[1.432, 2.654], [5.327, 6.777], [6.112, 7.123], [16.853, 17.352]]) ) def test_simple_sparse_to_dense(): dense = np.array( [ [[1.432, 2.654], [0, 0], [0, 0]], [[0, 0], [5.327, 6.777], [6.112, 7.123]], [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [16.853, 17.352]] ] ).astype(np.float32) sparse = SparseDataValue(dense) np.testing.assert_almost_equal(dense, sparse.to_dense()) def test_large_dense_to_dense():
np.random.seed(1)
numpy.random.seed
"""Sky brightnes approzimation using Zernike polynomials The form and notation used here follow: <NAME>., <NAME>., <NAME>., <NAME>. & VSIA Standards Taskforce Members. Vision science and its applications. Standards for reporting the optical aberrations of eyes. J Refract Surg 18, S652-660 (2002). """ # imports from math import factorial import logging import os import warnings from glob import glob from functools import lru_cache import numpy as np import pandas as pd from numexpr import NumExpr from sklearn.linear_model import LinearRegression import scipy.optimize from scipy.interpolate import interp1d import palpy import healpy import rubin_sim.utils as utils from rubin_sim.data import get_data_dir # constants logging.basicConfig(format="%(asctime)s %(message)s") LOGGER = logging.getLogger(__name__) TELESCOPE = utils.Site("LSST") SIDEREAL_TIME_SAMPLES_RAD = np.radians(np.arange(361, dtype=float)) BANDS = ("u", "g", "r", "i", "z", "y") # exception classes # interface functions def fit_pre(npy_fname, npz_fname, *args, **kwargs): """Fit Zernike coefficients to a pre-computed data set Parameters ---------- npy_fname : `str` File name of the SkyBrightessPre <MJD>_<MDJ>.npy file npz_fname : `str` File name of the SkyBrightessPre <MJD>_<MDJ>.npz file other arguments are passed to the ZernikeSky constructor. Returns ------- zernike_coeffs : `pd.DataFrame` A DataFrame with the coefficients, indexed by band and mjd. """ # Load the pre-computed data npz = np.load(npz_fname, allow_pickle=True) npz_hdr = npz["header"][()] npz_data = npz["dict_of_lists"][()] pre_sky = np.load(npy_fname, allow_pickle=True) mjds = npz_data["mjds"] alt = npz_hdr["alt"] az = npz_hdr["az"] zernike_coeffs_by_band = [] zernike_sky = ZernikeSky(*args, **kwargs) for band in pre_sky.dtype.fields.keys(): LOGGER.info("Starting %s band", band) zernike_coeff_arrays = [] for mjd_idx, mjd in enumerate(mjds): zernike_coeff_arrays.append( zernike_sky.fit_coeffs(alt, az, pre_sky[band][mjd_idx], mjd) ) if mjd_idx % 1000 == 0: msg = f"Finished {mjd_idx*100.0/float(len(mjds)):.2f}%" LOGGER.debug(msg) zernike_coeffs_by_band.append( pd.DataFrame( zernike_coeff_arrays, columns=np.arange(len(zernike_coeff_arrays[0])), index=pd.MultiIndex.from_arrays( [np.full_like(mjds, band, dtype=type(band)), mjds], names=["band", "mjd"], ), ) ) zernike_coeffs = pd.concat(zernike_coeffs_by_band) return zernike_coeffs def bulk_zernike_fit(data_dir, out_fname, *args, **kwargs): """Fit Zernike coeffs to all SkyBrightnessPre files in a directory. Parameters ---------- data_dir : `str` Name of the directory in which to look for SkyBrightnessPre data files. out_fname: `str` Name of the file in which to save fit coefficients. other arguments are passed to the ZernikeSky constructor. Returns ------- zernike_coeffs : `pd.DataFrame` A DataFrame with the coefficients, indexed by band and mjd. """ zernike_coeff_batches = [] for npz_fname in glob(os.path.join(data_dir, "?????_?????.npz")): LOGGER.info("Processing %s", npz_fname) npy_fname = os.path.splitext(npz_fname)[0] + ".npy" zernike_coeff_batch = fit_pre(npy_fname, npz_fname, *args, **kwargs) zernike_coeff_batches.append(zernike_coeff_batch) zernike_coeffs = pd.concat(zernike_coeff_batches) zernike_coeffs.sort_index(level="mjd", inplace=True) if out_fname is not None: zernike_coeffs.to_hdf(out_fname, "zernike_coeffs", complevel=6) zernike_sky = ZernikeSky(*args, **kwargs) zernike_metadata = pd.Series( {"order": zernike_sky.order, "max_zd": zernike_sky.max_zd} ) zernike_metadata.to_hdf(out_fname, "zernike_metadata") return zernike_coeffs # classes class ZernikeSky: """Zernike sky approximator. Parameters ---------- order : `int`, optional The order of the Zernike polynomial to use. Default is 6. nside : `int`, optional The nside of the healpix array to pre-compute Zernike Z terms for. Default is 32. max_zd : `float`, optional The maximum zenith distance, in degrees. This value will correspond to rho=1 in the Thibos et al. (2002) notation. Default is 67. dtype : `type`: optional The numpy type to use for all calculations. Default is `np.float64`. """ def __init__(self, order=6, nside=32, max_zd=67, dtype=np.float64): self.order = order self.dtype = dtype self.nside = nside # Sets the value of zd where rho (radial coordinate of the # unit disk in which Zernike polynomials are orthogonal) = 1 self.max_zd = max_zd # a list of functions to calculate big Z given rho, phi, # following eqn 1 of Thibos et al. (2002). The jth element of # the list returns the jth Z, following the indexing # convertions of Thibos et al. eqn 4. # # Should switch to using functools.cached_property in python 3.8 self._z_function = self._build_z_functions() # A function that calculates the full Zernike approximation, # taking rho and phi as arguments. # # numexpr can only compile functions with a limited number of # arguments. If the order is too high, sum the terms # separately if order <= 7: self._zern_function = self._build_zern_function() else: self._zern_function = self._compute_sky_by_sum # big Z values for all m,n at all rho, phi in the # pre-defined healpix coordinate, following eqn 1 of Thibos et # al. (2002) The array returned should be indexed with j, # Should switch to using functools.cached_property in python 3.8 self.healpix_z = self._compute_healpix_z() self._interpolate_healpix_z = interp1d( SIDEREAL_TIME_SAMPLES_RAD, self.healpix_z, axis=0, kind="nearest" ) # A pd.DataFrame of zernike coeffs, indexed by mjd, providing the # Zernike polynomial coefficients for the approximation of the # sky at that time. That is, self._coeffs[5, 3] is the # j=3 coefficient of the approximation of the sky at # mjd=self.mjds[5], where j is defined as in Thibos et al. eqn 4. self._coeffs = pd.DataFrame() def load_coeffs(self, fname, band): """Load Zernike coefficients from a file. Parameters ---------- fname : `str` The file name of the hdf5 file with the Zernike coeffs. band : `str` The band to load. """ zernike_metadata = pd.read_hdf(fname, "zernike_metadata") assert self.order == zernike_metadata["order"] assert self.max_zd == zernike_metadata["max_zd"] all_zernike_coeffs = pd.read_hdf(fname, "zernike_coeffs") self._coeffs = all_zernike_coeffs.loc[band] self._coeff_calc_func = interp1d( self._coeffs.index.values, self._coeffs.values, axis=0 ) def compute_sky(self, alt, az, mjd=None): """Estimate sky values Parameters ---------- alt : `np.ndarray`, (N) An array of altitudes above the horizon, in degrees az : `np.ndarray`, (N) An array of azimuth coordinates, in degrees mjd : `float` The time (floating point MJD) at which to estimate the sky. Returns ------- `np.ndarray` (N) of sky brightnesses (mags/asec^2) """ rho = self._calc_rho(alt) phi = self._calc_phi(az) result = self._zern_function(rho, phi, *tuple(self.coeffs(mjd))) return result def _compute_sky_by_sum(self, rho, phi, *coeffs): z = self._compute_z(rho, phi) if len(z.shape) == 2: result = np.sum(np.array(coeffs) * z, axis=1) else: result = np.sum(np.array(coeffs) * z) return result def compute_healpix(self, hpix, mjd=None): """Estimate sky values Parameters ---------- hpix : `int`, (N) Array of healpix indexes of the desired coordinates. mjd : `float` The time (floating point MJD) at which to estimate the sky. Returns ------- `np.ndarray` (N) of sky brightnesses (mags/asec^2) """ interpolate_healpix_z = self._interpolate_healpix_z gmst = palpy.gmst(mjd) mjd_healpix_z = interpolate_healpix_z(gmst) # mjd_healpix_z = self.healpix_z[int(np.degrees(gmst))] if hpix is None: result = np.sum(self.coeffs(mjd) * mjd_healpix_z, axis=1) else: result = np.sum(self.coeffs(mjd) * mjd_healpix_z[hpix], axis=1) return result def coeffs(self, mjd): """Zerinke coefficients at a time Parameters ---------- mjd : `float` The time (floating point MJD) at which to estimate the sky. Returns ------- `np.ndarray` of Zernike coefficients following the OSA/ANSI indexing convention described in Thibos et al. (2002). """ if len(self._coeffs) == 1: these_coeffs = self._coeffs.loc[mjd] else: calc_these_coeffs = self._coeff_calc_func these_coeffs = calc_these_coeffs(mjd) return these_coeffs def fit_coeffs(self, alt, az, sky, mjd, min_moon_sep=10, maxdiff=False): """Fit Zernike coefficients to a set of points Parameters ---------- alt : `np.ndarray`, (N) An array of altitudes above the horizon, in degrees az : `np.ndarray`, (N) An array of azimuth coordinates, in degrees sky : `np.ndarray`, (N) An array of sky brightness values (mags/asec^2) mjd : `float` The time (floating point MJD) at which to estimate the sky. maxdiff : `bool` Minimize the maximum difference between the estimate and data, rather than the default RMS. """ # Do not fit too close to the moon alt_rad, az_rad = np.radians(alt), np.radians(az) gmst_rad = palpy.gmst(mjd) lst_rad = gmst_rad + TELESCOPE.longitude_rad moon_ra_rad, moon_decl_rad, moon_diam = palpy.rdplan( mjd, 3, TELESCOPE.longitude_rad, TELESCOPE.latitude_rad ) moon_ha_rad = lst_rad - moon_ra_rad moon_az_rad, moon_el_rad = palpy.de2h( moon_ha_rad, moon_decl_rad, TELESCOPE.latitude_rad ) moon_sep_rad = palpy.dsepVector( np.full_like(az_rad, moon_az_rad), np.full_like(alt_rad, moon_el_rad), az_rad, alt_rad, ) moon_sep = np.degrees(moon_sep_rad) rho = self._calc_rho(alt) phi = self._calc_phi(az) good_points = np.logical_and(rho <= 1.0, moon_sep > min_moon_sep) rho = rho[good_points] phi = phi[good_points] sky = sky[good_points] alt = alt[good_points] az = az[good_points] num_points = len(alt) assert len(az) == num_points assert len(sky) == num_points z = np.zeros((num_points, self._number_of_terms), dtype=self.dtype) for j in np.arange(self._number_of_terms): compute_z = self._z_function[j] z[:, j] = compute_z(rho, phi) # If the points being fit were evenly distributed across the sky, # we might be able to get away with a multiplication rather than # a linear regression, but we might be asked to fit masked data zern_fit = LinearRegression(fit_intercept=False).fit(z, sky) fit_coeffs = zern_fit.coef_ if maxdiff: def max_abs_diff(test_coeffs): max_resid = np.max( np.abs(np.sum(test_coeffs * z, axis=1) - sky) ) return max_resid min_fit = scipy.optimize.minimize(max_abs_diff, fit_coeffs) fit_coeffs = min_fit.x self._coeffs = pd.DataFrame( [fit_coeffs], columns=np.arange(len(fit_coeffs)), index=pd.Index([mjd], name="mjd"), ) return fit_coeffs def _compute_healpix_z(self): # Compute big Z values for all m,n at all rho, phi in the # pre-defined healpix coordinate, following eqn 1 of Thibos et # al. (2002) The array returned should be indexed with j, # following the conventions of eqn 4. sphere_npix = healpy.nside2npix(self.nside) sphere_ipix = np.arange(sphere_npix) ra, decl = healpy.pix2ang(self.nside, sphere_ipix, lonlat=True) num_st = len(SIDEREAL_TIME_SAMPLES_RAD) healpix_z = np.full( [num_st, sphere_npix, self._number_of_terms], np.nan ) for st_idx, gmst_rad in enumerate(SIDEREAL_TIME_SAMPLES_RAD): lst_rad = gmst_rad + TELESCOPE.longitude_rad ha_rad = lst_rad - np.radians(ra) az_rad, alt_rad = palpy.de2hVector( ha_rad, np.radians(decl), TELESCOPE.latitude_rad ) sphere_az, sphere_alt = np.degrees(az_rad), np.degrees(alt_rad) # We only need the half sphere above the horizen visible_ipix = sphere_ipix[sphere_alt > 0] alt, az = sphere_alt[visible_ipix], sphere_az[visible_ipix] rho = self._calc_rho(alt) phi = self._calc_phi(az) healpix_z[st_idx, visible_ipix] = self._compute_z(rho, phi) return healpix_z def _compute_horizan_healpix_z(self): # Compute big Z values for all m,n at all rho, phi in the # pre-defined healpix coordinate, following eqn 1 of Thibos et # al. (2002) The array returned should be indexed with j, # following the conventions of eqn 4. sphere_npix = healpy.nside2npix(self.nside) sphere_ipix = np.arange(sphere_npix) sphere_az, sphere_alt = healpy.pix2ang( self.nside, sphere_ipix, lonlat=True ) # We only need the half sphere above the horizen ipix = sphere_ipix[sphere_alt > 0] alt, phi_deg = sphere_alt[ipix], sphere_az[ipix] rho = self._calc_rho(alt) rho, phi = (90.0 - alt) / self.max_zd, np.radians(phi_deg) healpix_z = self._compute_z(rho, phi) return healpix_z def _compute_z(self, rho, phi): # Compute big Z values for all m,n at rho, phi # following eqn 1 of Thibos et al. (2002) # The array returned should be indexed with j, # following the conventions of eqn 4. try: npix = len(rho) z = np.zeros((npix, self._number_of_terms), dtype=self.dtype) for j in np.arange(self._number_of_terms): compute_z = self._z_function[j] z[:, j] = compute_z(rho, phi) except TypeError: z = np.zeros(self._number_of_terms, dtype=self.dtype) for j in np.arange(self._number_of_terms): compute_z = self._z_function[j] z[j] = compute_z(rho, phi) return z def _build_z_functions(self): z_functions = [] for j in np.arange(self._number_of_terms): z_functions.append(self._make_z_function(j)) return z_functions def _build_zern_function(self): coeffs = [f"c{j}" for j in np.arange(self._number_of_terms)] expression = "" for j, coeff in enumerate(coeffs): zern_z_expr = self._make_z_expression(j) if zern_z_expr == "(1)": term = f"{coeff}" else: term = f"{coeff}*({zern_z_expr})" if expression == "": expression = term else: expression += f" + {term}" arg_types = [] if expression.find("rho") >= 0: arg_types.append(("rho", self.dtype),) if expression.find("phi") >= 0: arg_types.append(("phi", self.dtype),) for coeff in coeffs: arg_types.append((coeff, self.dtype),) arg_types = tuple(arg_types) zern_function = NumExpr(expression, arg_types) return zern_function @property def _number_of_terms(self): n_terms = np.sum(np.arange(self.order) + 1) return n_terms def _make_r_expression(self, m, n): if (n - m) % 2 == 1: return 0 assert n >= m assert m >= 0 m = int(m) n = int(n) num_terms = 1 + (n - m) // 2 expression = "(" for k in range(num_terms): # From eqn 2 of Thibos et al. (2002) coeff = (((-1) ** k) * factorial(n - k)) / ( factorial(k) * factorial(int((n + m) / 2 - k)) * factorial(int((n - m) / 2 - k)) ) assert coeff == int(coeff) coeff = int(coeff) power = n - 2 * k if len(expression) > 1: expression += " + " if power == 0: expression += f"{coeff}" elif power == 1: expression += f"{coeff}*rho" else: expression += f"{coeff}*rho**{power}" expression += ")" return expression def _make_z_expression(self, j=None, mprime=None, n=None): if j is None: assert mprime is not None assert n is not None else: assert mprime is None assert n is None # From eqn 5 in Thibos et al. (2002) n = np.ceil((-3 + np.sqrt(9 + 8 * j)) / 2).astype(int) # From eqn 6 in Thibos et al. (2002) mprime = 2 * j - n * (n + 2) m = np.abs(mprime) r = self._make_r_expression(m, n) # From eqn. 3 of Thibos et al. 2002, again delta = 1 if m == 0 else 0 big_nsq = 2 * (n + 1) / (1 + delta) assert int(big_nsq) == big_nsq big_nsq = int(big_nsq) if mprime == 0: expression = f"sqrt({big_nsq})*{r}" elif mprime > 0: expression = f"sqrt({big_nsq})*{r}*cos({m}*phi)" elif mprime < 0: expression = f"sqrt({big_nsq})*{r}*sin({m}*phi)" else: assert False return expression def _make_z_function(self, j=None, mprime=None, n=None): expression = self._make_z_expression(j, mprime, n) arg_types = [] if expression.find("rho") >= 0: arg_types.append(("rho", self.dtype),) if expression.find("phi") >= 0: arg_types.append(("phi", self.dtype),) arg_types = tuple(arg_types) raw_z_function = NumExpr(expression, arg_types) # Create functions with dummy arguments so that # terms that do not require both phi and rho can # still accept them, such that all z_functions # can be called in the same way. if len(arg_types) == 0: def z_function(rho=None, phi=None): return raw_z_function() elif len(arg_types) == 1: def z_function(rho, phi=None): return raw_z_function(rho) else: z_function = raw_z_function return z_function def _calc_rho(self, alt): zd = 90.0 - alt if np.isscalar(alt) and zd > self.max_zd: return np.nan rho = zd / self.max_zd if not np.isscalar(alt): rho[zd > self.max_zd] = np.nan return rho def _calc_phi(self, az): phi = np.radians(az) return phi class SkyBrightnessPreData: """Manager for raw pre-computed sky brightness data Parameters ---------- base_fname : `str` Base name for data files to load. bands: `List` [`str`] Name of bands to read. pre_data_dir : `str` Name of source directory for pre-computed sky brightness data. max_num_mjds : `int` If there are more than this number of MJDs in the requested data files, sample this many out of the total. """ def __init__( self, fname_base, bands, pre_data_dir=None, max_num_mjds=None ): if pre_data_dir is None: try: self.pre_data_dir = os.environ["SIMS_SKYBRIGHTNESS_DATA"] except KeyError: self.pre_data_dir = "." else: self.pre_data_dir = pre_data_dir self.fname_base = fname_base self.max_num_mjds = max_num_mjds self.times = None self.sky = None self.metadata = {} self.load(fname_base, bands) def load(self, fname_base, bands="ugrizy"): """Load pre-computed sky values. Parameters ---------- base_fname : `str` Base name for data files to load. bands: `List` [`str`] Name of bands to read. """ npz_fname = os.path.join(self.pre_data_dir, fname_base + "." + "npz") npy_fname = os.path.join(self.pre_data_dir, fname_base + "." + "npy") npz = np.load(npz_fname, allow_pickle=True) npz_hdr = npz["header"][()] npz_data = npz["dict_of_lists"][()] pre_sky = np.load(npy_fname, allow_pickle=True) alt = npz_hdr["alt"] az = npz_hdr["az"] alt_rad, az_rad = np.radians(alt), np.radians(az) self.metadata = npz_hdr self.times = pd.DataFrame( { k: npz_data[k] for k in npz_data.keys() if npz_data[k].shape == npz_data["mjds"].shape } ) read_mjds = len(self.times) if self.max_num_mjds is not None: read_mjd_idxs = pd.Series(np.arange(read_mjds)) mjd_idxs = read_mjd_idxs.sample(self.max_num_mjds) else: mjd_idxs = np.arange(read_mjds) skies = [] for mjd_idx in mjd_idxs: mjd = npz_data["mjds"][mjd_idx] gmst_rad = palpy.gmst(mjd) lst_rad = gmst_rad + TELESCOPE.longitude_rad ha_rad, decl_rad = palpy.dh2eVector( az_rad, alt_rad, TELESCOPE.latitude_rad ) ra_rad = (lst_rad - ha_rad) % (2 * np.pi) moon_ra_rad = npz_data["moonRAs"][mjd_idx] moon_decl_rad = npz_data["moonDecs"][mjd_idx] moon_ha_rad = lst_rad - moon_ra_rad moon_az_rad, moon_el_rad = palpy.de2h( moon_ha_rad, moon_decl_rad, TELESCOPE.latitude_rad ) moon_sep = palpy.dsepVector( np.full_like(az_rad, moon_az_rad), np.full_like(alt_rad, moon_el_rad), az_rad, alt_rad, ) for band in bands: skies.append( pd.DataFrame( { "band": band, "mjd": npz_data["mjds"][mjd_idx], "gmst": np.degrees(gmst_rad), "lst": np.degrees(lst_rad), "alt": alt, "az": az, "ra": np.degrees(ra_rad), "decl": np.degrees(decl_rad), "moon_ra": np.degrees( npz_data["moonRAs"][mjd_idx] ), "moon_decl": np.degrees( npz_data["moonDecs"][mjd_idx] ), "moon_alt": np.degrees( npz_data["moonAlts"][mjd_idx] ), "moon_az": np.degrees(moon_az_rad), "moon_sep": np.degrees(moon_sep), "sun_ra": np.degrees(npz_data["sunRAs"][mjd_idx]), "sun_decl": np.degrees( npz_data["sunDecs"][mjd_idx] ), "sun_alt": np.degrees( npz_data["sunAlts"][mjd_idx] ), "sky": pre_sky[band][mjd_idx], } ) ) self.sky = pd.concat(skies).set_index( ["band", "mjd", "alt", "az"], drop=False ) self.sky.sort_index(inplace=True) if self.max_num_mjds is not None: self.times = self.times.iloc[mjd_idxs] def __getattr__(self, name): return self.metadata[name] class SkyModelZernike: """Interface to zernike sky that is more similar to SkyModelPre Parameters ---------- data_file : `str`, optional File name from which to load Zernike coefficients. Default None uses default data directory. """ def __init__(self, data_file=None, **kwargs): if data_file is None: if "SIMS_SKYBRIGHTNESS_DATA" in os.environ: data_dir = os.environ["SIMS_SKYBRIGHTNESS_DATA"] else: data_dir = os.path.join(get_data_dir(), "sims_skybrightness_pre") data_file = os.path.join(data_dir, "zernike", "zernike.h5") zernike_metadata = pd.read_hdf(data_file, "zernike_metadata") order = int(zernike_metadata["order"]) if 'order' in kwargs: assert order == kwargs['order'] else: kwargs['order'] = order max_zd = zernike_metadata["max_zd"] if 'max_zd' in kwargs: assert max_zd == kwargs['max_zd'] else: kwargs['max_zd'] = max_zd self.zernike_model = {} for band in BANDS: sky = ZernikeSky(**kwargs) sky.load_coeffs(data_file, band) self.zernike_model[band] = sky self.nside = sky.nside def returnMags( self, mjd, indx=None, badval=healpy.UNSEEN, filters=["u", "g", "r", "i", "z", "y"], extrapolate=False, ): """ Return a full sky map or individual pixels for the input mjd Parameters ---------- mjd : float Modified Julian Date to interpolate to indx : List of int(s) (None) indices to interpolate the sky values at. Returns full sky if None. If the class was instatiated with opsimFields, indx is the field ID, otherwise it is the healpix ID. badval : float (-1.6375e30) Mask value. Defaults to the healpy mask value. filters : list List of strings for the filters that should be returned. extrapolate : bool (False) In indx is set, extrapolate any masked pixels to be the same as the nearest non-masked value from the full sky map. Returns ------- sbs : dict A dictionary with filter names as keys and np.arrays as values which hold the sky brightness maps in mag/sq arcsec. """ sky_brightness = {} sun_el = _calc_sun_el(mjd) if sun_el > 0: warnings.warn('Requested MJD between sunrise and sunset') if indx is None: nside = self.zernike_model[filters[0]].nside npix = healpy.nside2npix(nside) else: npix = len(indx) for band in filters: sky_brightness[band] = np.full(npix, badval) return sky_brightness if extrapolate: raise NotImplementedError for band in filters: band_brightness = self.zernike_model[band].compute_healpix( indx, mjd ) badval_idxs = np.where(~
np.isfinite(band_brightness)
numpy.isfinite
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den =
N.array([1,1,1])
numpy.array
import numpy as np import os import argparse from tqdm import tqdm import textwrap from src.video import get_video_info from src.frame_generator import FrameGenerator from src.grid_optical_flow import get_grid_flow, get_grid_centres import pandas as pd import logging from report_segmentation import render_report import cv2 logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(message)s") def parseargs(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description=textwrap.dedent( '''classify video frames stationary or moving based on optical flow''')) parser.add_argument('--video', '-v', type=str, help="path to the videofile") parser.add_argument('--threshold', '-t', type=float, help="The threshold parameter for segmentation") parser.add_argument("--output-dir", "-o", type=str, help="Folder where the segmentation and plots are saved") parser.add_argument( "--grid-size", "-g", nargs="+", type=int, help="A touple representing the ncols and nrows of the grid.", ) args = parser.parse_args() return args def segment(video, output_dir, grid_size, threshold): _, _, fps, _, h, w = get_video_info(video) fg = FrameGenerator(video, show_video_info=True, use_rgb=False) # center and normalize grid centres frame_iterator = iter(fg) p_frame = next(frame_iterator) p_frame = cv2.cvtColor(p_frame, cv2.COLOR_BGR2GRAY) segmentation = pd.DataFrame() logging.info("Segment video {}".format(video)) out_file = os.path.join(output_dir, "segmented.mp4") fourcc = cv2.VideoWriter_fourcc(*'XVID') writer = cv2.VideoWriter(out_file, fourcc, 25.0, (200,200)) total_optical_flow = None for i, frame in tqdm(enumerate(frame_iterator), desc="playing video", unit="frame", total=len(fg) - 1): original_frame = np.array(frame) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) optical_flow = get_grid_flow(p_frame, frame, grid_size) if total_optical_flow is None: total_optical_flow = optical_flow else: total_optical_flow += optical_flow magnitudes = np.sqrt(np.sum(
np.power(total_optical_flow, 2)
numpy.power
# -*- coding: utf-8 -*- """ Created on Thu Jan 12 15:31:55 2017 @author: <NAME>, <NAME>, <NAME> """ from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt from scipy.linalg import sqrtm from pyUSID.io.hdf_utils import get_auxiliary_datasets from pyUSID.viz.plot_utils import set_tick_font_size def do_bayesian_inference(i_meas, bias, freq, num_x_steps=251, r_extra=110, gam=0.03, e=10.0, sigma=10., sigmaC=1., num_samples=2E3, show_plots=False, econ=False): """ this function accepts a Voltage vector and current vector and returns a Bayesian inferred result for R(V) and capacitance Used for solving the situation I = V/R(V) + CdV/dt to recover R(V) and C, where C is constant. Parameters ---------- i_meas : 1D array or list current values, should be in nA bias : 1D array or list voltage values freq : float frequency of applied waveform num_x_steps : unsigned int (Optional, Default = 251) Number of steps in x vector (interpolating V) r_extra : float (Optional, default = 220 [Ohms]) Extra resistance in the RC circuit that will provide correct current and resistance values gam : float (Optional, Default = 0.03) gamma value for reconstruction e : float (Optional, Default = 10.0) Ask Kody sigma : float (Optional, Default = 10.0) Ask Kody sigmaC : float (Optional, Default = 1.0) Ask Kody num_samples : unsigned int (Optional, Default = 1E4) Number of samples. 1E+4 is more than sufficient show_plots : Boolean (Optional, Default = False) Whether or not to show plots econ : Boolean (Optional, Default = False) Whether or not extra datasets are returned. Turn this on when running on multiple datasets Returns ------- results_dict : Dictionary Dictionary iterms are 'x' : 1D float array. Voltage vector interpolated with num_samples number of points 'm' : Ask Kody 'mR' : 1D float array. Bayesian inference of the resistance. This is the one you want 'vR' : 2D float array. varaiance ? of inferred resistance 'Irec' : 1D array or float. Reconstructed current without capacitance 'Sigma' : Ask Kody 'cValue' : float. Capacitance value 'm2R' : Ask Kody 'SI' : Ask Kody Written by <NAME> (Matlab) and translated to Python by <NAME> """ num_samples = int(num_samples) num_x_steps = int(num_x_steps) if num_x_steps % 2 == 0: num_x_steps += 1 # Always keep it odd # Organize, set up the problem t_max = 1. / freq t = np.linspace(0, t_max, len(bias)) dt = t[2] - t[1] dv = np.diff(bias) / dt dv = np.append(dv, dv[-1]) max_volts = max(bias) # num_x_steps = int(round(2 * round(max_volts / dx, 1) + 1, 0)) x = np.linspace(-max_volts, max_volts, num_x_steps) dx = x[1] - x[0] # M = len(x) num_volt_points = len(bias) # Build A A = np.zeros(shape=(num_volt_points, num_x_steps + 1)) for j in range(num_volt_points): ix = int(round(np.floor((bias[j] + max_volts) / dx) + 1)) ix = min(ix, len(x) - 1) ix = max(ix, 1) A[j, ix] = bias[j] * (bias[j] - x[ix - 1]) / (x[ix] - x[ix - 1]) A[j, ix - 1] = bias[j] * (1. - (bias[j] - x[ix - 1]) / (x[ix] - x[ix - 1])) A[:, num_x_steps] = dv + r_extra * bias # generate simulated observations Lapt = (-1. * np.diag((t[:-1]) ** 0, -1) - np.diag(t[:-1] ** 0, 1) + 2. * np.diag(t ** 0, 0)) / dt / dt Lapt[0, 0] = 1. / dt / dt Lapt[-1, -1] = 1. / dt / dt O = (1. / gam ** 2) * (np.eye(num_volt_points)) # noise_term = np.linalg.lstsq(sqrtm(O),np.random.randn(N,1))[0] # y = IV_point # Itrue + noise_term.ravel() Lap = (-1. * np.diag((x[:-1]) ** 0, -1) - np.diag(x[:-1] ** 0, 1) + 2. * np.diag(x ** 0, 0)) / dx / dx Lap[0, 0] = 1. / dx / dx Lap[-1, -1] = 1. / dx / dx m0 = 3. * np.ones((num_x_steps, 1)) m0 = np.append(m0, 0) P0 = np.zeros(shape=(num_x_steps + 1, num_x_steps + 1)) P0[:num_x_steps, :num_x_steps] = 1. / sigma ** 2 * (1. * np.eye(num_x_steps) + np.linalg.matrix_power(Lap, 3)) P0[num_x_steps, num_x_steps] = 1. / sigmaC ** 2 """ There is a SERIOUS problem with numpy, especially linear algebra. Parallelism is wasted on just this one line! See single_rank_single_node log in the output folder https://github.com/joblib/joblib/issues/575 """ Sigma = np.linalg.inv(np.dot(A.T, np.dot(O, A)) + P0) m = np.dot(Sigma, (np.dot(A.T, np.dot(O, i_meas)) + np.dot(P0, m0))) # Reconstructed current Irec = np.dot(A, m) # This includes the capacitance # Draw samples from S # SI = (np.matlib.repmat(m[:M], num_samples, 1).T) + np.dot(sqrtm(Sigma[:M, :M]), np.random.randn(M, num_samples)) SI = np.tile(m[:num_x_steps], (num_samples, 1)).T + np.dot(sqrtm(Sigma[:num_x_steps, :num_x_steps]), np.random.randn(num_x_steps, num_samples)) # approximate mean and covariance of R mR = 1. / num_samples * np.sum(1. / SI, 1) m2R = 1. / num_samples * np.dot(1. / SI, (1. / SI).T) # m2R=1./num_samples*(1./SI)*(1./SI).T # vR=m2R-np.dot(mR,mR.T) vR = m2R - mR * mR.T cValue = m[-1] if econ: results_dict = {'x': x, 'mR': mR, 'vR': np.diag(vR), 'Irec': Irec, 'cValue': cValue} else: results_dict = {'x': x, 'm': m, 'mR': mR, 'vR': vR, 'Irec': Irec, 'Sigma': Sigma, 'cValue': cValue, 'm2R': m2R, 'SI': SI} if show_plots: # Do some plotting plt.figure(101) plt.plot(x, mR, 'b', linewidth=3) plt.plot(x, mR + np.sqrt(np.diag(vR)), 'r-', linewidth=3) plt.plot(x, mR - np.sqrt(
np.diag(vR)
numpy.diag
from keras.models import load_model import glob import os from skimage.io import imread, imsave from skimage.transform import resize import cv2 import matplotlib.pyplot as plt from create_individual_lettuce_train_data import construct_ground_truth, fix_noise from skimage.color import rgb2grey, grey2rgb from skimage.draw import circle, line, set_color from skimage.util.shape import view_as_windows import numpy as np # write function to load the images. def load_field_data(): dataset_name = '20160823_Gs_NDVI_1000ft_2-148_1/' #dataset_name = '20160816_Gs_Wk33_NDVI_1000ft_Shippea_Hill_211-362' image_path = '../AirSurf/Jennifer Manual Counts/ground_truth/Processed for Batch Analysis/' + dataset_name ground_truth_path = '../AirSurf/Jennifer Manual Counts/ground_truth/' + dataset_name names = [] train_X = [] position_Y = [] files = glob.glob(ground_truth_path + "*.txt") for ind, textfile in enumerate(files): image_Y = ground_truth_path image = image_path for txt in os.path.splitext(os.path.basename(textfile))[:-1]: image += txt image_Y += txt image += '.txt_sub_img.tif' if not os.path.isfile(image): continue img = fix_noise(cv2.cvtColor(cv2.imread(image), cv2.COLOR_BGR2RGB)) img = rgb2grey(img) name = "./CONVERTED/"+os.path.basename(textfile)+".tif" img_y = imread(image_Y + ".tif") img = resize(img, (img_y.shape[0], img_y.shape[1], 1)) positions = construct_ground_truth(img_y) names.append(name) train_X.append(img) position_Y.append(positions) return names, np.array(train_X), np.array(position_Y) #given the img, and the model. Slide along the image, extracting plots and counting the lettuces. def sliding_window_count(img, model, stride=10): img = img.reshape(img.shape[:2]) img = np.pad(img, stride+1, mode='constant') todraw = grey2rgb(img.copy()) ##reshape it from 900,900,1 to 900,900 plt.imshow(todraw) plt.show() img = img.reshape((img.shape[0], img.shape[1], 1)) print(img.shape) w, h = img.shape[:2] l = 20 #count the number of predicted ones. lettuce_count = 0 kernel = 9 for x in range(kernel, w-l, stride): for y in range(kernel, h-l, stride): regions = [] inds = [] for x1 in range(x-kernel, x+kernel): for y1 in range(y-kernel, y+kernel): regions.append(img[x1:x1 + l, y1:y1 + l]) inds.append((x1, y1)) print(x1) print(y1) inds = np.array(inds) pred = model.predict(np.array(regions), verbose=0) #count lettuce predictions in this kernel region. args = np.argmax(pred, axis=1) #count the number of 1's, in the arg list. count = np.count_nonzero(args) #75% of preds are for a lettuce. if count >= float(inds.shape[0]) * 0.75: #find the index of the best pred best_arg = np.argmax(pred[:1]) x_1, y_1 = inds[best_arg] todraw[circle(x_1,y_1,5,shape=todraw.shape)] = (1,0,0) lettuce_count += 1 return lettuce_count, todraw #given the img, and the model. Slide along the image, extracting plots and counting the lettuces. def sliding_window_count_vectorised(img, model, length=20, stride=3, probability_threshold = 0.95): #img = img.reshape(img.shape[:2]) #img = np.pad(img, stride, mode='constant') img = img.reshape((img.shape[0], img.shape[1], 1)) #count the number of predicted ones. lettuce_count = 0 boxes = [] probs = [] if min(img.shape[:2]) < length: return np.array(boxes), np.array(probs) im4D = view_as_windows(img, (length,length,1), step=(stride,stride,1)) im3d = im4D.reshape(-1,length,length,1) #from a given index, we should be able to convert it back into a 2d co-ord. preds = model.predict(im3d, verbose=0) xs = np.arange(0, img.shape[0]-length+1, step=stride) ys = np.arange(0, img.shape[1]-length+1, step=stride) #unravel the predictions, and construct the bounding boxes from the indexes. for index, pred in enumerate(preds): if np.argmax(pred) == 1: probability = np.max(pred) if probability < probability_threshold: continue probs.append(probability) #deconstruct index into x,y. x,y = np.unravel_index(index, im4D.shape[:2]) #need to then map back to the stride params from original image. x = xs[x] y = ys[y] boxes.append([x,y,x+length,y+length]) return np.array(boxes), np.array(probs) #given the img, and the model. Slide along the image, extracting plots and counting the lettuces. def sliding_window_count_simple(img, model, stride=5): img = img.reshape(img.shape[:2]) img = np.pad(img, stride, mode='constant') img = img.reshape((img.shape[0], img.shape[1], 1)) w, h = img.shape[:2] l = 20 #count the number of predicted ones. lettuce_count = 0 boxes = [] probs = [] for x in range(stride, w-l, stride): for y in range(stride, h-l, stride): pred = model.predict(np.array([img[x:x+l,y:y+l]]), verbose=0) if np.argmax(pred) == 1: probs.append(np.max(pred)) boxes.append([x,y,x+l,y+l]) return boxes, probs # Malisiewicz et al. def non_max_suppression_fast(boxes, probabilities, overlapThresh): # if there are no boxes, return an empty list if len(boxes) == 0: return [] # if the bounding boxes integers, convert them to floats -- # this is important since we'll be doing a bunch of divisions if boxes.dtype.kind == "i": boxes = boxes.astype("float") # initialize the list of picked indexes pick = [] # grab the coordinates of the bounding boxes x1 = boxes[:,0] y1 = boxes[:,1] x2 = boxes[:,2] y2 = boxes[:,3] # compute the area of the bounding boxes and sort the bounding # boxes by the bottom-right y-coordinate of the bounding box area = (x2 - x1 + 1) * (y2 - y1 + 1) idxs = np.argsort(probabilities) # sort bounding box based on predictions. # keep looping while some indexes still remain in the indexes # list while len(idxs) > 0: # grab the last index in the indexes list and add the # index value to the list of picked indexes last = len(idxs) - 1 i = idxs[last] pick.append(i) # find the largest (x, y) coordinates for the start of # the bounding box and the smallest (x, y) coordinates # for the end of the bounding box xx1 = np.maximum(x1[i], x1[idxs[:last]]) yy1 = np.maximum(y1[i], y1[idxs[:last]]) xx2 = np.minimum(x2[i], x2[idxs[:last]]) yy2 = np.minimum(y2[i], y2[idxs[:last]]) # compute the width and height of the bounding box w = np.maximum(0, xx2 - xx1 + 1) h = np.maximum(0, yy2 - yy1 + 1) # compute the ratio of overlap overlap = (w * h) / area[idxs[:last]] # delete all indexes from the index list that have idxs = np.delete(idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0]))) # return only the bounding boxes that were picked using the # integer data type return boxes[pick].astype("int"), probabilities[pick] def draw_boxes(im, boxs, color=(1,0,0)): for (x1, y1, x2, y2) in boxs: set_color(im, circle(abs((x2+x1))/2.0, abs(y2+y1)/2.0, radius=(abs(y2 - y1) + 1.0) / 2.0), color) return im def draw_boxes_please(im, boxs, color=(1,0,0), width=0): for (x1, y1, x2, y2) in boxs: up_thick_line(im, x1, y1, x1, y2, color, width) horizontal_thick_line(im, x1, y1, x2, y1, color, width) up_thick_line(im, x2, y2, x2, y1, color, width) horizontal_thick_line(im, x1, y2, x2, y2, color, width) return im def up_thick_line(im, x1,y1,x2,y2, color, width=5): if width == 0: set_color(im, line(x1, y1, x2, y2), color) else: for i in range(-width, width): set_color(im, line(x1+i, y1, x2+i, y2), color) def horizontal_thick_line(im, x1,y1,x2,y2, color, width=5): if width == 0: set_color(im, line(x1, y1, x2, y2), color) for i in range(-width, width): set_color(im, line(x1, y1+i, x2, y2+i), color) def draw_circles(im, boxs, radius=10): print(boxs) for (x1, y1) in boxs: set_color(im, circle((10 + x1), int(10 + y1), radius=radius), (1, 0, 0)) return im def test_model(): loaded_model = load_model('./trained_model_new2.h5') names, train_X, position_Y, = load_field_data() all_data = [] stride = 5 length = 20 print("loaded") overlap = 0.18 y_hat = [] y = [] for name, train, positions in zip(names, train_X, position_Y): boxes, probs = sliding_window_count_vectorised(train, loaded_model, length, stride) boxes, _ = non_max_suppression_fast(boxes, probs, overlap) # 18% #all_data.append((boxes, probs)) y_hat.append(boxes.shape[0]) y.append(positions.shape[0]) print(name, positions.shape[0], boxes.shape[0]) '''for name, train, positions, (boxes, probs) in zip(names, train_X, position_Y, all_data): boxes,_ = non_max_suppression_fast(boxes, probs, overlap) # 18% img = np.pad(train.copy().reshape(train.shape[:2]), stride, mode='constant') img = grey2rgb(img) ##reshape it from 900,900,1 to 900,900 img = draw_boxes(img, boxes) plt.imshow(img) plt.show()''' from sklearn.metrics import r2_score score = r2_score(y, y_hat) print(score) plt.figure(figsize=(10, 10)) plt.title("Cumulative mean of the average across all sub images for both manual and automatic \nR2 = " + str(score)) plt.scatter(y, y_hat, s=24) plt.xlabel("Manual counts") plt.ylabel("Automatic counts") plt.savefig("train_data_pairwise.png") plt.close() plt.show() ''' overlap = 0.2 old_overlap = 0.2 learning_rate = 0.1 changed = True while changed: zipped = list(zip(train_X, position_Y, all_data)) random.shuffle(zipped) for train, positions, (boxes, probs) in zipped: boxes = non_max_suppression_fast(boxes, probs, overlap) #20% img = np.pad(train.copy().reshape(train.shape[:2]), stride, mode='constant') img = grey2rgb(img) ##reshape it from 900,900,1 to 900,900 img = draw_boxes(img, boxes) plt.imshow(img) plt.show() y_hat = boxes.shape[0] y = positions.shape[0] error = y_hat - y sigmoid_error = 1/(1+math.e**-error) sign = np.sign(error) * -1 ##learningrate * our current overlap* propotional to the sigmoid error* with the direction we want to change overlap += (learning_rate*overlap*sigmoid_error*sign) print(overlap) if overlap == old_overlap: changed = False old_overlap = overlap ''' ''' print(image.shape[:2]) for i, (x,y,radius) in enumerate(position_Y[index]): im = image[x - radius:x + radius, y - radius:y + radius] if im.shape[0] == 20 and im.shape[1] == 20: print(loaded_model.predict_classes(np.array([im]))) plt.imshow(im.reshape(im.shape[:2])) plt.show() break ''' def create_bounding_box_figure(): loaded_model = load_model('./trained_model_new2.h5') all_data = [] stride = 2 length = 20 img = imread("C:/Users/bostroma/Documents/LettuceProject/CONVERTED_positives/20160823_Gs_NDVI_1000ft_2-148_1_modified.tif_934_2177_1234_2477.txt.tif")[0:8,12:27] plt.imshow(img) plt.show() train = resize(img, (24,45,1)) boxes, probs = sliding_window_count_vectorised(train, loaded_model, length, stride) box, prob = non_max_suppression_fast(boxes, probs, 0.18) train = grey2rgb(train.reshape(train.shape[:2])) #draw_boxes_please(train.copy(), boxes) #plt.axis("off") plt.imshow(train) plt.show() #plt.axis("off") import matplotlib.patches as mpatches N = len(boxes) import colorsys def hsv2rgb(h, s, v): return tuple(i for i in colorsys.hsv_to_rgb(h, s, v)) HSV_tuples = [(x * 1.0 / N, 0.5, 0.5) for x in range(N - 1, -1, -1)] # blue,green,red colors = np.array(list(map(lambda x: hsv2rgb(*x), HSV_tuples))) print(colors) im = train.copy() width = 0 for (x1, y1, x2, y2), color in zip(boxes, colors): up_thick_line(im, x1, y1, x1, y2, color, width) horizontal_thick_line(im, x1, y1, x2, y1, color, width) up_thick_line(im, x2, y2, x2, y1, color, width) horizontal_thick_line(im, x1, y2, x2, y2, color, width) plt.imshow(im) legend = [] for color, p in zip(colors,probs): legend.append(mpatches.Patch(color=color, label="%.4f"%p)) plt.legend(handles=legend) plt.show() im = train.copy() width = 0 colors = [colors[2]] box = [boxes[2]] probs = [probs[2]] for (x1, y1, x2, y2), color in zip(box, colors): up_thick_line(im, x1, y1, x1, y2, color, width) horizontal_thick_line(im, x1, y1, x2, y1, color, width) up_thick_line(im, x2, y2, x2, y1, color, width) horizontal_thick_line(im, x1, y2, x2, y2, color, width) plt.imshow(im) legend = [] for color, p in zip(colors,probs): legend.append(mpatches.Patch(color=color, label="%.4f"%p)) plt.legend(handles=legend) plt.show() return def create_bounding_box_quadrant(): file_name = "bottom_field_cropped" whole_field = imread("greyscale_images/"+file_name + ".png")[:, :, :3] l = 250 stride = 5 box_length = 20 h, w = whole_field.shape[:2] boxes = [] for x in range(0, h, l-box_length): for y in range(0, w, l-box_length): boxes.append((x,y,x+l,y+l)) print(boxes) whole_field = draw_boxes_please(grey2rgb(whole_field), np.array(boxes), color=(255,255,0), width=5) plt.imshow(whole_field) plt.show() imsave("quadrants.png", resize(whole_field, np.divide(whole_field.shape,(10,10,1)).astype(np.int))) #construct sub image, and do sliding window quadrant. l = 60 index = 5 s1 = slice(boxes[index][0],boxes[index][2]) s2 = slice(boxes[index][1],boxes[index][3]) whole_field = whole_field[s1,s2,:] whole_field = resize(whole_field, (whole_field.shape[0]*3, whole_field.shape[1]*3)) plt.imshow(whole_field) plt.show() boxes = [] h, w = whole_field.shape[:2] for x in range(0, h, 9): for y in range(0, w, 9): boxes.append((x,y,x+l,y+l)) whole_field = draw_boxes_please(whole_field,
np.array(boxes)
numpy.array
# encoding: utf-8 # # @Author: <NAME>, <NAME> # @Date: Nov 15, 2021 # @Filename: ism.py # @License: BSD 3-Clause # @Copyright: <NAME>, <NAME> import os.path from astropy import units as u from astropy import constants as c import numpy as np from astropy.io import fits, ascii from astropy.table import Table from scipy.special import sph_harm from astropy.wcs import WCS from astropy.wcs.utils import proj_plane_pixel_scales from astropy.coordinates import SkyCoord from astropy.modeling.models import Sersic2D from dataclasses import dataclass import sys if (sys.version_info[0]+sys.version_info[1]/10.) < 3.8: from backports.cached_property import cached_property else: from functools import cached_property from scipy.ndimage.interpolation import map_coordinates from scipy.interpolate import interp1d, interp2d import lvmdatasimulator from lvmdatasimulator import log import progressbar from joblib import Parallel, delayed from astropy.convolution import convolve_fft, kernels from lvmdatasimulator.utils import calc_circular_mask, convolve_array, set_default_dict_values, \ ism_extinction, check_overlap, assign_units fluxunit = u.erg / (u.cm ** 2 * u.s * u.arcsec ** 2) velunit = u.km / u.s def brightness_inhomogeneities_sphere(harm_amplitudes, ll, phi_cur, theta_cur, rho, med, radius, thickness): """ Auxiliary function producing the inhomogeneities on the brightness distribution for the Cloud of Bubble objects using the spherical harmonics. """ brt = theta_cur * 0 for m in np.arange(-ll, ll + 1): brt += (harm_amplitudes[m + ll * (ll + 1) - 1] * sph_harm(m, ll, phi_cur, theta_cur).real * med * (1 - np.sqrt(abs(rho.value ** 2 / radius.value ** 2 - (1 - thickness / 2) ** 2)))) return brt def sphere_brt_in_line(brt_3d, rad_3d, rad_model, flux_model): """ Auxiliary function computing the brightness of the Cloud or Bubble at given radii and in given line according to the Cloudy models """ p = interp1d(rad_model, flux_model, fill_value='extrapolate', assume_sorted=True) return p(rad_3d) * brt_3d def interpolate_sphere_to_cartesian(spherical_array, x_grid=None, y_grid=None, z_grid=None, rad_grid=None, theta_grid=None, phi_grid=None, pxscale=1. * u.pc): """ Auxiliary function to project the brightness or velocities from the spherical to cartesian coordinates """ x, y, z = np.meshgrid(x_grid, y_grid, z_grid, indexing='ij') phi_c, theta_c, rad_c = xyz_to_sphere(x, y, z, pxscale=pxscale) ir = interp1d(rad_grid, np.arange(len(rad_grid)), bounds_error=False) ith = interp1d(theta_grid, np.arange(len(theta_grid))) iphi = interp1d(phi_grid, np.arange(len(phi_grid))) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_iphi = iphi(phi_c.ravel()) cart_data = map_coordinates(spherical_array, np.vstack([new_ir, new_ith, new_iphi]), order=1, mode='constant', cval=0) return cart_data.reshape([len(x_grid), len(y_grid), len(z_grid)]).T def limit_angle(value, bottom_limit=0, top_limit=np.pi): """ Auxiliary function to limit the angle values to the range of [0, pi] """ value[value < bottom_limit] += (top_limit - bottom_limit) value[value > top_limit] -= (top_limit - bottom_limit) return value def xyz_to_sphere(x, y, z, pxscale=1. * u.pc): """ Auxiliary function to map the coordinates from cartesian to spherical system """ phi_c = np.arctan2(y, x) rad_c = (np.sqrt(x ** 2 + y ** 2 + z ** 2)) rad_c[rad_c == 0 * u.pc] = 1e-3 * pxscale theta_c = (np.arccos(z / rad_c)) phi_c = limit_angle(phi_c, 0 * u.radian, 2 * np.pi * u.radian) theta_c = limit_angle(theta_c, 0 * u.radian, np.pi * u.radian) return phi_c, theta_c, rad_c def find_model_id(file=lvmdatasimulator.CLOUDY_MODELS, check_id=None, params=lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']): """ Checks the input parameters of the pre-computed Cloudy model and return corresponding index in the grid """ with fits.open(file) as hdu: if check_id is None: if params is None: check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning(f'Default Cloudy model will be used (id = {check_id})') else: summary_table = Table(hdu['Summary'].data) indexes = np.arange(len(summary_table)).astype(int) rec_table = np.ones(shape=len(summary_table), dtype=bool) def closest(rec, prop, val): unique_col = np.unique(summary_table[prop][rec]) if isinstance(val, str): res = unique_col[unique_col == val] if len(res) == 0: return "" return res else: return unique_col[np.argsort(np.abs(unique_col - val))[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue rec_table = rec_table & (summary_table[p] == closest(indexes, p, params[p])) indexes = np.flatnonzero(rec_table) if len(indexes) == 0: break if len(indexes) == 0 or len(indexes) == len(summary_table): check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' 'Default Cloudy model will be used (id = {0})'.format(check_id)) elif len(indexes) == 1: check_id = summary_table['Model_ID'][indexes[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue if params[p] != summary_table[p][indexes[0]]: log.warning(f'Use the closest pre-computed Cloudy model with id = {check_id}') break else: check_id = summary_table['Model_ID'][indexes[0]] log.warning(f'Select one of the closest pre-computed Cloudy model with id = {check_id}') # # for cur_ext in range(len(hdu)): # if cur_ext == 0: # continue # found = False # for p in params: # if p == 'id': # continue # precision = 1 # if p == 'Z': # precision = 2 # if np.round(params[p], precision) != np.round(hdu[cur_ext].header[p], precision): # break # else: # found = True # if found: # return cur_ext, check_id # check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] # log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' # 'Default Cloudy model will be used (id = {0})'.format(check_id)) extension_index = None while extension_index is None: extension_index = [cur_ext for cur_ext in range(len(hdu)) if ( check_id == hdu[cur_ext].header.get('MODEL_ID'))] if len(extension_index) == 0: if check_id == lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use the first one in the grid instead'.format(check_id)) extension_index = 1 else: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use default ({1}) instead'.format(check_id, lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'])) check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] extension_index = None else: extension_index = extension_index[0] return extension_index, check_id @dataclass class Nebula: """ Base class defining properties of every nebula type. By itself it describes the rectangular nebula (e.g. DIG) Constructed nebula has 4 dimensions, where 4th derive its appearance in different lines (if spectrum_id is None, or if it is dark nebula => only one line) """ xc: int = None # Center of the region in the field of view, pix yc: int = None # Center of the region in the field of view, pix x0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix y0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix pix_width: int = None # full width of cartesian grid, pix (should be odd) pix_height: int = None # full height of cartesian grid, pix (should be odd) width: u.pc = 0 * u.pc # width of the nebula in pc (not used if pix_width is set up) height: u.pc = 0 * u.pc # height of the nebula in pc (not used if pix_height is set up) pxscale: u.pc = 0.01 * u.pc # pixel size in pc spectrum_id: int = None # ID of a template Cloudy emission spectrum for this nebula n_brightest_lines: int = None # limit the number of the lines to the first N brightest sys_velocity: velunit = 0 * velunit # Systemic velocity turbulent_sigma: velunit = 10 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF max_brightness: fluxunit = 1e-15 * fluxunit max_extinction: u.mag = 0 * u.mag perturb_scale: int = 0 * u.pc # Spatial scale of correlated perturbations perturb_amplitude: float = 0.1 # Maximal amplitude of perturbations _npix_los: int = 1 # full size along line of sight in pixels nchunks: int = -1 # number of chuncks to use for the convolution. If negative, select automatically vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the nebula vel_pa: u.degree = 0 # Position angle of the kinematical axis (for the velocity gradient or rotation velocity) def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula def _assign_all_units(self): whole_list_properties = ['pxscale', 'sys_velocity', 'turbulent_sigma', 'max_brightness', 'max_extinction', 'perturb_scale', 'radius', 'PA', 'length', 'width', 'vel_gradient', 'r_eff', 'vel_rot', 'expansion_velocity', 'spectral_axis', 'vel_pa'] whole_list_units = [u.pc, velunit, velunit, fluxunit, u.mag, u.pc, u.pc, u.degree, u.pc, u.pc, (velunit / u.pc), u.kpc, velunit, velunit, velunit, u.degree] cur_list_properties = [] cur_list_units = [] for prp, unit in zip(whole_list_properties, whole_list_units): if hasattr(self, prp): cur_list_properties.append(prp) cur_list_units.append(unit) assign_units(self, cur_list_properties, cur_list_units) def _assign_position_params(self, conversion_type='rect'): if conversion_type == 'rect': for v in ['height', 'width']: if self.__getattribute__(f'pix_{v}') is None: val = np.round((self.__getattribute__(v) / self.pxscale).value / 2.).astype(int) * 2 + 1 else: val = np.round(self.__getattribute__(f'pix_{v}') / 2.).astype(int) * 2 + 1 setattr(self, f'pix_{v}', val) elif conversion_type == 'ellipse': self.pix_width = (np.round(np.abs(self.radius / self.pxscale * np.sin(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.radius / self.pxscale * np.cos(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'galaxy': self.pix_width = (np.round(np.abs(self.r_max * np.sin(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.r_max * np.cos(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'cylinder': self.pix_width = (np.ceil((self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value self.pix_height = (np.ceil((self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((self.pix_width - 1) / 2).astype(int) self.y0 = self.yc - np.round((self.pix_height - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((self.pix_width - 1) / 2).astype(int) self.yc = self.y0 + np.round((self.pix_height - 1) / 2).astype(int) @cached_property def _cartesian_x_grid(self): return np.arange(self.pix_width) * self.pxscale @cached_property def _cartesian_y_grid(self): return np.arange(self.pix_height) * self.pxscale @cached_property def _cartesian_z_grid(self): return np.arange(self._npix_los) * self.pxscale @cached_property def _max_density(self): return self.max_extinction * (1.8e21 / (u.cm ** 2 * u.mag)) @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ brt = np.ones(shape=(self.pix_height, self.pix_width, self._npix_los), dtype=float) / self._npix_los if (self.perturb_scale > 0) and (self.perturb_amplitude > 0): pertscale = (self.perturb_scale / self.pxscale).value perturb = np.random.uniform(-1, 1, (self.pix_height, self.pix_width) ) * self.perturb_amplitude / self._npix_los xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) f = np.exp(-2 * (xx ** 2 + yy ** 2) / pertscale) perturb = 4 / np.sqrt(np.pi) / pertscale * np.fft.ifft2(np.fft.fft2(perturb) * np.fft.fft2(f)).real brt += (perturb[:, :, None] - np.median(perturb)) return brt @cached_property def _brightness_4d_cartesian(self): """ Derive the brightness (or density) distribution of the nebula for each emission line in cartesian coordinates """ if self.spectrum_id is None or self.linerat_constant: flux_ratios = np.array([1.]) else: with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: flux_ratios = hdu[self.spectrum_id].data[1:, 1] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(flux_ratios)): indexes_sorted = np.argsort(flux_ratios)[::-1] flux_ratios = flux_ratios[indexes_sorted[: self.n_brightest_lines]] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] return self._brightness_3d_cartesian[None, :, :, :] * flux_ratios[:, None, None, None] @cached_property def brightness_skyplane(self): """ Project the 3D nebula onto sky plane (for emission or continuum sources) """ if self.max_brightness > 0: norm_max = self.max_brightness else: norm_max = 1 map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * norm_max @cached_property def brightness_skyplane_lines(self): """ Project the 3D emission nebula line onto sky plane (return images in each emission line) """ if self.max_brightness > 0: map2d = np.nansum(self._brightness_4d_cartesian, 3) return map2d / np.nanmax(map2d[self._ref_line_id, :, :]) * self.max_brightness else: return None @cached_property def extinction_skyplane(self): """ Project the 3D nebula onto sky plane (for dark clouds) """ if self.max_extinction > 0: map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * self._max_density / (1.8e21 / (u.cm ** 2 * u.mag)) else: return None @cached_property def vel_field(self): return self._get_2d_velocity() # if vel_field is None: # return np.atleast_1d(self.sys_velocity) # else: # return vel_field + self.sys_velocity def _get_2d_velocity(self): if hasattr(self, 'vel_gradient') and (self.vel_gradient is not None) and (self.vel_gradient != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) vel_field = (- (xx - (self.pix_width - 1) / 2) * np.sin(self.vel_pa) + (yy - (self.pix_height - 1) / 2) * np.cos(self.vel_pa)) * self.pxscale * self.vel_gradient return vel_field else: return None # @cached_property # def line_profile(self): # lprf = np.zeros(shape=len(self.los_velocity), dtype=float) # lprf[np.floor(len(lprf) / 2.).astype(int)] = 1. # return lprf @dataclass class Rectangle(Nebula): """ Class defining a simple rectangular component. This is equal to Nebula, but no perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Ellipse(Nebula): """ Class defining a simple elliptical component. No perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF radius: u.pc = 1.0 * u.pc # Radius along the major axis of the ellipse (or radius of the circle) PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 1. # ratio of minor/major axes def __post_init__(self): self._assign_all_units() self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.ones(shape=(self.pix_height, self.pix_width), dtype=np.float32) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value rmin = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 brt[rec] = 0 brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class Circle(Ellipse): """ Class defining a simple circular component. """ def __post_init__(self): self._assign_all_units() self.ax_ratio = 1. self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Filament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth. If it is emission-type filament, then also maximal brightness is required. Velocity gradient also can be set up """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament def __post_init__(self): self._assign_all_units() self._assign_position_params(conversion_type='cylinder') self._npix_los = 1 self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.zeros_like(xx, dtype=np.float32) xct = (xx - (self.pix_width - 1) / 2) * np.cos(self.PA + 90 * u.degree) + \ (yy - (self.pix_height - 1) / 2) * np.sin(self.PA + 90 * u.degree) yct = (xx - (self.pix_width - 1) / 2) * np.sin(self.PA + 90 * u.degree) - \ (yy - (self.pix_height - 1) / 2) * np.cos(self.PA + 90 * u.degree) rad = ((self.width / self.pxscale).value / 2.) len_px = ((self.length / self.pxscale).value / 2.) rec = (np.abs(yct) <= rad) & (np.abs(xct) <= len_px) brt[rec] = np.sqrt(1. - (yct[rec] / rad) ** 2) brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class _ObsoleteFilament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth if it is emission-type filament, then maximal brightness NB: this class is obsolete, but might be considered later in case of implementation of varying line ratios """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the filament (to be added) _theta_bins: int = 50 _rad_bins: int = 0 _h_bins: int = 2 _npix_los: int = 101 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.width.to(u.pc).value / self.pxscale.to(u.pc).value * 5).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.y0 = self.yc - np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.yc = self.y0 + np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _theta_grid(self): return np.linspace(0, 2 * np.pi, self._theta_bins) @cached_property def _h_grid(self): return np.linspace(0, self.length, self._h_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.width / 2, self._rad_bins) @cached_property def _cartesian_y_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.sin(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.cos(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_x_grid(self): return np.linspace(-1.01, 1.01, self._npix_los) * self.width / 2 @cached_property def _brightness_3d_cylindrical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.width / 2] h: float -- height [0, self.length] Returns: 3D cube of normalized brightness in theta-rad-h grid; total brightness = 1 """ rho, theta, h = np.meshgrid(self._rad_grid, self._theta_grid, self._h_grid, indexing='ij') brt = np.ones_like(theta) brt[rho > (self.width / 2)] = 0 norm = np.sum(brt) if norm > 0: brt = brt / np.sum(brt) return brt @cached_property def _brightness_3d_cartesian(self): x, y, z = np.meshgrid(self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, indexing='ij') h_c = -y * np.sin(self.PA) + z * np.cos(self.PA) theta_c = np.arctan2(y * np.cos(self.PA) + z * np.sin(self.PA), x) rad_c = np.sqrt(x ** 2 + (y * np.cos(self.PA) + z * np.sin(self.PA)) ** 2) rad_c[rad_c == 0 * u.pc] = 1e-3 * self.pxscale theta_c = limit_angle(theta_c, 0 * u.radian, 2 * np.pi * u.radian) ir = interp1d(self._rad_grid, np.arange(self._rad_bins), bounds_error=False) ith = interp1d(self._theta_grid, np.arange(self._theta_bins)) ih = interp1d(self._h_grid, np.arange(self._h_bins), bounds_error=False) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_ih = ih(h_c.ravel()) cart_data = map_coordinates(self._brightness_3d_cylindrical, np.vstack([new_ir, new_ith, new_ih]), order=1, mode='constant', cval=0) return cart_data.reshape([len(self._cartesian_x_grid), len(self._cartesian_y_grid), len(self._cartesian_z_grid)]).T @dataclass class Galaxy(Nebula): """ Class defining the galaxy object (set up it as Sersic2D profile assuming it has continuum and emission components) """ PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 0.7 # ratio of minor/major axes r_eff: u.kpc = 1 * u.kpc # Effective radius in kpc rad_lim: float = 3. # Maximum radius for calculations (in R_eff) n: float = 1. # Sersic index vel_rot: velunit = 0 * velunit # Rotational velocity (not implemented yet) def __post_init__(self): self._assign_all_units() self._npix_los = 1 self.r_max = self.r_eff.to(u.pc).value / self.pxscale.to(u.pc).value * self.rad_lim self._assign_position_params(conversion_type='galaxy') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value mod = Sersic2D(amplitude=1, r_eff=(self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value, n=self.n, x_0=(self.pix_width - 1) / 2, y_0=(self.pix_height - 1) / 2, ellip=1 - self.ax_ratio, theta=angle) brt = mod(xx, yy) xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value rmin = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio mask = np.ones_like(brt, dtype=np.float32) rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 mask[rec] = 0 mask = convolve_fft(mask, kernels.Gaussian2DKernel(3.), fill_value=0, allow_huge=True) brt = brt * mask brt = brt.reshape(self.pix_height, self.pix_width, 1) return brt def _get_2d_velocity(self): if hasattr(self, 'vel_rot') and (self.vel_rot is not None) and (self.vel_rot != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rad = np.sqrt(xct ** 2 + yct ** 2) vel_field = np.zeros_like(xx, dtype=np.float32) * velunit rec = rad > 0 vel_field[rec] = self.vel_rot * np.sqrt(1 - self.ax_ratio ** 2) * xct[rec] / rad[rec] return vel_field else: return None @dataclass class DIG(Nebula): """ Class defining the DIG component. For now it is defined just by its brightness (constant) """ max_brightness: fluxunit = 1e-17 * fluxunit vel_gradient: (velunit / u.pc) = 0 @dataclass class Cloud(Nebula): """Class of an isotropic spherical gas cloud without any ionization source. Defined by its position, radius, density, maximal optical depth""" radius: u.pc = 1.0 * u.pc max_brightness: fluxunit = 0 * fluxunit max_extinction: u.mag = 2.0 * u.mag thickness: float = 1.0 perturb_degree: int = 0 # Degree of perturbations (max. degree of spherical harmonics for cloud) linerat_constant: bool = False # True if the ratio of line fluxes shouldn't change across the nebula _phi_bins: int = 90 _theta_bins: int = 90 _rad_bins: int = 0 _npix_los: int = 100 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.radius.to(u.pc).value / self.pxscale.to(u.pc).value * 3).astype(int) delta = np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - delta self.y0 = self.yc - delta elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + delta self.yc = self.y0 + delta self._ref_line_id = 0 @cached_property def _theta_grid(self): return np.linspace(0, np.pi, self._theta_bins) @cached_property def _phi_grid(self): return np.linspace(0, 2 * np.pi, self._phi_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.radius, self._rad_bins) @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.02 * self.radius / self.pxscale).astype(int) return np.linspace(-npix, npix, 2 * npix + 1) * self.pxscale @cached_property def _cartesian_y_grid(self): return self._cartesian_z_grid.copy() @cached_property def _cartesian_x_grid(self): return np.linspace(-1.02, 1.02, self._npix_los) * self.radius @cached_property def _brightness_3d_spherical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 3D cube of normalized brightness in theta-phi-rad grid; total brightness = 1 """ rho, theta, phi = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') brt = np.ones_like(theta) brt[rho < (self.radius * (1 - self.thickness))] = 0 brt[rho > self.radius] = 0 med = np.median(brt[brt > 0]) if self.perturb_degree > 0: phi_cur = limit_angle(phi + np.random.uniform(0, 2 * np.pi, 1), 0, 2 * np.pi) theta_cur = limit_angle(theta + np.random.uniform(0, np.pi, 1), 0, np.pi) harm_amplitudes = self.perturb_amplitude * np.random.randn(self.perturb_degree * (self.perturb_degree + 2)) brt += np.nansum(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(brightness_inhomogeneities_sphere) (harm_amplitudes, ll, phi_cur, theta_cur, rho, med, self.radius, self.thickness) for ll in np.arange(1, self.perturb_degree + 1)), axis=0) brt[brt < 0] = 0 if med > 0: brt = brt / np.nansum(brt) return brt @cached_property def _brightness_4d_spherical(self): """ Method to calculate brightness of the cloud at given theta, phi and radii for each line theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 4D cube of brightness in line-theta-phi-rad grid; normalized to the total brightness in Halpha """ s = self._brightness_3d_spherical.shape if self.spectrum_id is None or self.linerat_constant: return self._brightness_3d_spherical.reshape((1, s[0], s[1], s[2])) rho, _, _ = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: radius = hdu[self.spectrum_id].data[0, 2:] * (self.thickness * self.radius) + \ self.radius * (1 - self.thickness) fluxes = hdu[self.spectrum_id].data[1:, 2:] radius = np.insert(radius, 0, self.radius * (1 - self.thickness)) fluxes =
np.insert(fluxes, 0, fluxes[:, 0], axis=1)
numpy.insert
# license: Copyright (C) 2018 NVIDIA Corporation. All rights reserved. # Licensed under the CC BY-NC-SA 4.0 license # (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). # this code simulate the approximate motion required # all time unit are picoseconds (1 picosec = 1e-12 sec) import sys sys.path.insert(0,'../pipe/') import numpy as np import os, json, glob import imageio import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from utils import * from tof_class import * import pdb import pickle import time import scipy.misc from scipy import sparse import scipy.interpolate from copy import deepcopy import multiprocessing from kinect_spec import * import cv2 from numpy import linalg as LA from tensorflow.contrib import learn from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib tf.logging.set_verbosity(tf.logging.INFO) from vis_flow import * from kinect_init import * PI = 3.14159265358979323846 raw_depth_new = 0 flg = False dtype = tf.float32 def gen_approx_motion(scene_ns, array_dir, tof_cam, text_flg = False, do_vis = True): global flg # first loading each scene, and we will combine them then meass = [] depths = [] msks = [] vs = [] v_flg = False while (v_flg == False): v_flg = True # first loading each scene, and we will combine them then meass = [] depths = [] msks = [] vs = [] Ps = [] for scene_n in scene_ns: print('Augmenting scene', scene_n) ## load all data # if the raw file does not exist, just find one and use if not os.path.exists(array_dir+scene_n[-16:]+'.pickle'): scenes = glob.glob(array_dir+'*.pickle') with open(scenes[0],'rb') as f: data = pickle.load(f) cam = data['cam'] # separately read the true depth and true rendering with open(scene_n[0:-16]+'gt/'+scene_n[-16::],'rb') as f: gt=np.fromfile(f, dtype=np.float32) depth_true = np.reshape(gt,(cam['dimy']*4,cam['dimx']*4)) with open(scene_n[0:-16]+'ideal/'+scene_n[-16::],'rb') as f: meas_gt=np.fromfile(f, dtype=np.int32) meas_gt = np.reshape(meas_gt,(cam['dimy'],cam['dimx'],9)).astype(np.float32) else: with open(array_dir+scene_n[-16::]+'.pickle','rb') as f: data = pickle.load(f) program = data['program'] cam = data['cam'] cam_t = data['cam_t'] scene = data['scene'] depth_true = data['depth_true'] prop_idx = data['prop_idx'] prop_s = data['prop_s'] res_gt = tof_cam.process_gt_delay_vig_dist_surf_mapmax(cam, prop_idx, prop_s, scene, depth_true) meas_gt = res_gt['meas'] # directly read pregenerate raw measurement with open(scene_n[0:-16]+'full/'+scene_n[-16::],'rb') as f: meas=np.fromfile(f, dtype=np.int32) meas = np.reshape(meas,(cam['dimy'],cam['dimx'],9)).astype(np.float32) msk = kinect_mask().astype(np.float32) meas = [meas[:,:,i]*msk for i in range(meas.shape[2])] meas = np.stack(meas,-1) meas = meas / tof_cam.cam['map_max'] # meas = meas[::-1,:,:] meas_gt = [meas_gt[:,:,i]*msk for i in range(meas_gt.shape[2])] meas_gt = np.stack(meas_gt,-1) meas_gt = meas_gt / tof_cam.cam['map_max'] # reduce the resolution of the depth depth_true[np.where(depth_true==0)] = np.nan # deal with the mix problem at edge depth_true_s = scipy.misc.imresize(\ depth_true,\ meas.shape[0:2],\ mode='F'\ ) depth_true_s = tof_cam.dist_to_depth(depth_true_s) depth_true_s[np.where(np.isnan(depth_true_s))] = 0 # load the mask and classification with open(scene_n[0:-16]+'msk'+'/'+scene_n[-16:],'rb') as f: msk_array=np.fromfile(f, dtype=np.float32) msk_array = np.reshape(msk_array,(cam['dimy'],cam['dimx'],4)) msk = {} msk['background'] = msk_array[:,:,0] msk['edge'] = msk_array[:,:,1] msk['noise'] = msk_array[:,:,2] msk['reflection'] = msk_array[:,:,3] # compute mask msk_true_s = msk['background'] * msk['edge'] true = np.stack([depth_true_s,msk_true_s],2) true = np.concatenate([true, meas_gt], 2) msk = msk_true_s if text_flg == True: # add textures (simply multiply a ratio) # WARNING: IF YOU WANT TO USE TEXTURES # CREATE A DIRECTORY: # ../FLAT/kinect/list/textures-curet/ # PUT THE TEXTURE IMAGES (.png format) INTO IT # add textures (simply multiply a ratio) texts = glob.glob('../FLAT/kinect/list/textures-curet/'+'*.png') idx = np.random.choice(len(texts),1,replace=False)[0] im_text = cv2.imread(texts[idx],0).astype(np.float32) im_text /= 255. lo = np.random.uniform(0,1) # random range hi = np.random.uniform(lo,1) im_text = im_text * (hi-lo) + lo im_text = scipy.misc.imresize(im_text,meas.shape[0:2],mode='F') im_text = np.expand_dims(im_text,-1) # apply the texture meas = meas * im_text meas_gt = meas_gt * im_text # compute the camera matrix xx,yy = np.meshgrid(np.arange(depth_true_s.shape[1]), np.arange(depth_true_s.shape[0])) ratio = depth_true_s.shape[1] fov = 0.7 xx = (xx.flatten() - (xx.shape[1]-1)/2)/ratio yy = (yy.flatten() - (yy.shape[0]-1)/2)/ratio xx = xx * fov yy = yy * fov depth_f = depth_true_s.flatten() idx = np.where(depth_f != 0) xx = xx[idx] yy = yy[idx] depth_f = depth_f[idx] idx = np.random.choice(len(depth_f),2000,replace=False) xx = xx[idx] yy = yy[idx] depth_f = depth_f[idx] pts_3d = np.stack([xx*depth_f, yy*depth_f, depth_f, np.ones(depth_f.shape)],-1) pts_2d = np.stack([xx, yy, np.ones(depth_f.shape)],-1) # use the DLT algorithm a00 = np.zeros(pts_3d.shape) a01 = -pts_2d[:,2:3]*pts_3d a02 = pts_2d[:,1:2]*pts_3d a10 = -a01 a11 = np.zeros(pts_3d.shape) a12 = -pts_2d[:,0:1]*pts_3d a20 = -a02 a21 = -a12 a22 = np.zeros(pts_3d.shape) a0 = np.concatenate([a00, a01, a02],1) a1 = np.concatenate([a10, a11, a12],1) a2 = np.concatenate([a20, a21, a22],1) A = np.concatenate([a0, a1, a2], 0) U,s,vh=np.linalg.svd(A, full_matrices =False) v = vh.T P = np.reshape(v[:,-1],[3,4]) pts_2d_reproj = np.matmul(pts_3d,P.T) pts_2d_reproj /= pts_2d_reproj[:,-1::] reproj_err = np.sum(np.abs(pts_2d_reproj - pts_2d)) print('Reprojection error:',reproj_err) # randomly generating the 6 affine transform parameters max_pix = 5 max_mov_m = 0.03 mov = 10 while (np.abs(mov).max() >= max_mov_m): th1 = np.random.normal(0.0,0.01,[3,3]) th1[0,0]+=1 th1[1,1]+=1 th1[2,2]+=1 th2 = np.random.normal(0.0,.01,[3,1]) th3 = np.array([[0,0,0,1]]) th = np.concatenate([th1,th2],1) th = np.concatenate([th,th3],0) Y = pts_3d[:,0] X = pts_3d[:,1] Z = pts_3d[:,2] pts_3d_new = np.matmul(pts_3d, th.T) mov = np.sqrt(np.sum((pts_3d_new - pts_3d)**2,1)) # append the data meass.append(meas) depths.append(depth_true_s) msks.append(msk) vs.append(th) Ps.append(P) # move the object and combine them by channel y = np.arange(meass[0].shape[0]) x = np.arange(meass[0].shape[1]) xx, yy = np.meshgrid(x,y) meass_new = [] meass_old = [] vys_new = [] vxs_new = [] vys_inv = [] vxs_inv = [] msks_new = [] depths_new = [] mid = 4 for i in range(9): meas_v = [] meas_old_v = [] depth_v = [] msk_v = [] depth_old_v = [] vy_v = [] vx_v = [] vy_inv = [] vx_inv = [] for j in range(len(meass)): # constant transformation # notice that the velocity is inversed here th = vs[j] th = LA.matrix_power(th, i-mid) # xx_p = (xx - (xx.shape[1]-1)/2)/ratio yy_p = (yy - (yy.shape[0]-1)/2)/ratio zz_p = depths[j] xx_p = xx_p * fov * zz_p yy_p = yy_p * fov * zz_p xx_p = xx_p.flatten() yy_p = yy_p.flatten() zz_p = zz_p.flatten() idx = np.where(zz_p != 0) yy_p = yy_p[idx] xx_p = xx_p[idx] zz_p = zz_p[idx] # prepare teh data meas_f = meass[j][:,:,i].flatten() meas_f = meas_f[idx] depth_f = depths[j].flatten() depth_f = depth_f[idx] msk_f = msks[j].flatten() msk_f = msk_f[idx] # do the transformation pts_3d = np.stack([yy_p, xx_p, zz_p, np.ones(xx_p.shape)],-1) pts_2d_raw = np.stack([(yy.flatten())[idx], (xx.flatten())[idx]],-1) pts_2d = np.stack([yy_p / zz_p, xx_p / zz_p],-1) pts_3d_new = np.matmul(pts_3d, th.T) P = Ps[j] pts_2d_new = np.matmul(pts_3d_new,P.T) pts_2d_new = pts_2d_new[:,0:2]/pts_2d_new[:,2:3] y_p = pts_2d_new[:,0] / fov * ratio + (xx.shape[0]-1)/2 x_p = pts_2d_new[:,1] / fov * ratio + (xx.shape[1]-1)/2 pts_2d_new_raw = np.stack([y_p, x_p],-1) pts = np.stack([yy.flatten(), xx.flatten()],-1) # cut off the regions outside idx = np.where((y_p<(yy.shape[0]-1))*(y_p>0)*(x_p<(xx.shape[1]-1))*(x_p>0)) y_pc = y_p[idx] x_pc = x_p[idx] # add a map of zeros zero_map = np.zeros(xx.shape) zero_map[(np.floor(y_pc).astype(np.int32),np.floor(x_pc).astype(np.int32))] = 1 zero_map[(np.ceil(y_pc).astype(np.int32),np.floor(x_pc).astype(np.int32))] = 1 zero_map[(np.floor(y_pc).astype(np.int32),np.ceil(x_pc).astype(np.int32))] = 1 zero_map[(np.ceil(y_pc).astype(np.int32),np.ceil(x_pc).astype(np.int32))] = 1 y_zero = yy[np.where(zero_map==0)] x_zero = xx[np.where(zero_map==0)] val_nan = np.nan*x_zero pts_2d_zero = np.stack([y_zero, x_zero],-1) pts_2d_new_full = np.concatenate([pts_2d_new_raw, pts_2d_zero],0) meas_f = np.concatenate([meas_f, val_nan],0) depth_f = np.concatenate([depth_f, val_nan],0) msk_f = np.concatenate([msk_f, val_nan],0) f1 = scipy.interpolate.griddata(pts_2d_new_full,meas_f,pts) meas_v.append(np.reshape(f1, xx.shape)) meas_old_v.append(meass[j][:,:,i]) f2 = scipy.interpolate.griddata(pts_2d_new_full,depth_f,pts) depth_v.append(np.reshape(f2, xx.shape)) depth_old_v.append(depths[j]) f3 = scipy.interpolate.griddata(pts_2d_new_full,msk_f,pts) msk_v.append(np.reshape(f3, xx.shape)) # add the velocity vy_v.append(np.zeros(yy.shape)) vy_v[-1][(pts_2d_raw[:,0],pts_2d_raw[:,1])] = pts_2d_new_raw[:,0] - pts_2d_raw[:,0] vx_v.append(np.ones(xx.shape)) vx_v[-1][(pts_2d_raw[:,0],pts_2d_raw[:,1])] = pts_2d_new_raw[:,1] - pts_2d_raw[:,1] # mask out those regions that interpolates with the background msk_v[-1][np.where(msk_v[-1]<0.999)] = 0 # combine the raw measurement based on depth msk_v = np.stack(msk_v, -1) meas_v = np.stack(meas_v, -1) meas_old_v = np.stack(meas_old_v, -1) depth_v = np.stack(depth_v, -1) depth_old_v = np.stack(depth_old_v, -1) vy_v = np.stack(vy_v, -1) vx_v = np.stack(vx_v, -1) # combine depth_v[np.where(np.isnan(depth_v))] = 999999999 idx = np.argmin(depth_v, -1) pts = [yy.flatten(), xx.flatten(), idx.flatten()] meas_new = np.reshape(meas_v[pts], xx.shape) vy_new = np.reshape(vy_v[pts], xx.shape) vx_new = np.reshape(vx_v[pts], xx.shape) msk_new = np.reshape(msk_v[pts], xx.shape) depth_new = np.reshape(depth_v[pts], xx.shape) # remove the msk_new[np.where(np.isnan(msk_new))] = 0 meas_new[np.where(np.isnan(meas_new))] = 0 depth_old_v[np.where(depth_old_v == 0)] = 999999999 idx = np.nanargmin(depth_old_v, -1) pts = [yy.flatten(), xx.flatten(), idx.flatten()] vy_inv = np.reshape(vy_v[pts], xx.shape) vx_inv = np.reshape(vx_v[pts], xx.shape) meas_old = np.reshape(meas_old_v[pts], xx.shape) meass_new.append(meas_new) vys_new.append(vy_new) vxs_new.append(vx_new) msks_new.append(msk_new) depths_new.append(depth_new) vys_inv.append(vy_inv) vxs_inv.append(vx_inv) meass_old.append(meas_old) meas_all = np.stack(meass_new, -1) meas_all = meas_all[20:-20,:,:] meas_old_all =
np.stack(meass_old, -1)
numpy.stack
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2018 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # <NAME> - http://herve.niderb.fr """Speech activity detection""" import numpy as np from .base import LabelingTask from .base import LabelingTaskGenerator class SpeechActivityDetectionGenerator(LabelingTaskGenerator): """Batch generator for training speech activity detection Parameters ---------- precomputed : `pyannote.audio.features.Precomputed` Precomputed features overlap : bool, optional Switch to 3 classes "non-speech vs. one speaker vs. 2+ speakers". Defaults to 2 classes "non-speech vs. speech". duration : float, optional Duration of sub-sequences. Defaults to 3.2s. batch_size : int, optional Batch size. Defaults to 32. per_epoch : float, optional Total audio duration per epoch, in seconds. Defaults to one hour (3600). parallel : int, optional Number of prefetching background generators. Defaults to 1. Each generator will prefetch enough batches to cover a whole epoch. Set `parallel` to 0 to not use background generators. Usage ----- # precomputed features >>> from pyannote.audio.features import Precomputed >>> precomputed = Precomputed('/path/to/mfcc') # instantiate batch generator >>> batches = SpeechActivityDetectionGenerator(precomputed) # evaluation protocol >>> from pyannote.database import get_protocol >>> protocol = get_protocol('Etape.SpeakerDiarization.TV') # iterate over training set >>> for batch in batches(protocol, subset='train'): >>> # batch['X'] is a (batch_size, n_samples, n_features) numpy array >>> # batch['y'] is a (batch_size, n_samples, 1) numpy array >>> pass """ def __init__(self, precomputed, overlap=False, **kwargs): super(SpeechActivityDetectionGenerator, self).__init__( precomputed, exhaustive=True, **kwargs) self.overlap = overlap def postprocess_y(self, Y): """Generate labels for speech activity detection Parameters ---------- Y : (n_samples, n_speakers) numpy.ndarray Discretized annotation returned by `pyannote.audio.util.to_numpy`. Returns ------- y : (n_samples, 1) numpy.ndarray See also -------- `pyannote.audio.util.to_numpy` """ # number of speakers for each frame speaker_count = np.sum(Y, axis=1, keepdims=True) # mark speech regions as such speech =
np.int64(speaker_count > 0)
numpy.int64
import logging import time import unittest import numpy as np import os from neurolib.models.aln import ALNModel from neurolib.models.fhn import FHNModel from neurolib.optimize.exploration import BoxSearch from neurolib.utils.parameterSpace import ParameterSpace import neurolib.utils.functions as func from neurolib.utils.loadData import Dataset import neurolib.optimize.exploration.explorationUtils as eu import neurolib.utils.pypetUtils as pu import neurolib.utils.paths as paths import string import random def randomString(stringLength=10): """Generate a random string of fixed length """ letters = string.ascii_lowercase return "".join(random.choice(letters) for i in range(stringLength)) class TestExplorationSingleNode(unittest.TestCase): """ ALN single node exploration. """ def test_single_node(self): start = time.time() model = ALNModel() parameters = ParameterSpace({"mue_ext_mean": np.linspace(0, 3, 2), "mui_ext_mean": np.linspace(0, 3, 2)}) search = BoxSearch(model, parameters, filename="test_single_nodes.hdf") search.run() search.loadResults() for i in search.dfResults.index: search.dfResults.loc[i, "max_r"] = np.max( search.results[i]["rates_exc"][:, -int(1000 / model.params["dt"]) :] ) end = time.time() logging.info("\t > Done in {:.2f} s".format(end - start)) class TestExplorationBrainNetwork(unittest.TestCase): """ FHN brain network simulation with BOLD simulation. """ def test_fhn_brain_network_exploration(self): ds = Dataset("hcp") model = FHNModel(Cmat=ds.Cmat, Dmat=ds.Dmat) model.params.duration = 10 * 1000 # ms model.params.dt = 0.2 model.params.bold = True parameters = ParameterSpace( { "x_ext": [
np.ones((model.params["N"],))
numpy.ones
import collections import numpy as np from .base import ClassifierModule, LMModule, NERModule, MRCModule from ..model.base import ClsDecoder, BinaryClsDecoder, SeqClsDecoder, SeqClsCrossDecoder, MRCDecoder from ..model.bert import BERTEncoder, BERTDecoder, BERTConfig, create_instances_from_document, create_masked_lm_predictions, get_decay_power from ..model.crf import CRFDecoder, viterbi_decode from ..token import WordPieceTokenizer from ..third import tf from .. import com class BERTClassifier(ClassifierModule): """ Single-label classifier on BERT. """ _INFER_ATTRIBUTES = { "max_seq_length": "An integer that defines max sequence length of input tokens", "label_size": "An integer that defines number of possible labels of outputs", "init_checkpoint": "A string that directs to the checkpoint file used for initialization", } def __init__( self, config_file, vocab_file, max_seq_length=128, label_size=None, init_checkpoint=None, output_dir=None, gpu_ids=None, drop_pooler=False, do_lower_case=True, truncate_method="LIFO", ): self.__init_args__ = locals() super(ClassifierModule, self).__init__(init_checkpoint, output_dir, gpu_ids) self.batch_size = 0 self.max_seq_length = max_seq_length self.label_size = label_size self.truncate_method = truncate_method self._drop_pooler = drop_pooler self._id_to_label = None self.bert_config = BERTConfig.from_json_file(config_file) self.tokenizer = WordPieceTokenizer(vocab_file, do_lower_case) self.decay_power = get_decay_power(self.bert_config.num_hidden_layers) if "[CLS]" not in self.tokenizer.vocab: self.tokenizer.add("[CLS]") self.bert_config.vocab_size += 1 tf.logging.info("Add necessary token `[CLS]` into vocabulary.") if "[SEP]" not in self.tokenizer.vocab: self.tokenizer.add("[SEP]") self.bert_config.vocab_size += 1 tf.logging.info("Add necessary token `[SEP]` into vocabulary.") def convert(self, X=None, y=None, sample_weight=None, X_tokenized=None, is_training=False, is_parallel=False): self._assert_legal(X, y, sample_weight, X_tokenized) if is_training: assert y is not None, "`y` can't be None." if is_parallel: assert self.label_size, "Can't parse data on multi-processing when `label_size` is None." n_inputs = None data = {} # convert X if X or X_tokenized: tokenized = False if X else X_tokenized input_ids, input_mask, segment_ids = self._convert_X(X_tokenized if tokenized else X, tokenized=tokenized) data["input_ids"] = np.array(input_ids, dtype=np.int32) data["input_mask"] = np.array(input_mask, dtype=np.int32) data["segment_ids"] = np.array(segment_ids, dtype=np.int32) n_inputs = len(input_ids) if n_inputs < self.batch_size: self.batch_size = max(n_inputs, len(self._gpu_ids)) # convert y if y: label_ids = self._convert_y(y) data["label_ids"] = np.array(label_ids, dtype=np.int32) # convert sample_weight if is_training or y: sample_weight = self._convert_sample_weight(sample_weight, n_inputs) data["sample_weight"] = np.array(sample_weight, dtype=np.float32) return data def _convert_X(self, X_target, tokenized): # tokenize input texts segment_input_tokens = [] for idx, sample in enumerate(X_target): try: segment_input_tokens.append(self._convert_x(sample, tokenized)) except Exception: raise ValueError("Wrong input format (line %d): \"%s\". " % (idx, sample)) input_ids = [] input_mask = [] segment_ids = [] for idx, segments in enumerate(segment_input_tokens): _input_tokens = ["[CLS]"] _input_ids = [] _input_mask = [1] _segment_ids = [0] com.truncate_segments(segments, self.max_seq_length - len(segments) - 1, truncate_method=self.truncate_method) for s_id, segment in enumerate(segments): _segment_id = min(s_id, 1) _input_tokens.extend(segment + ["[SEP]"]) _input_mask.extend([1] * (len(segment) + 1)) _segment_ids.extend([_segment_id] * (len(segment) + 1)) _input_ids = self.tokenizer.convert_tokens_to_ids(_input_tokens) # padding for _ in range(self.max_seq_length - len(_input_ids)): _input_ids.append(0) _input_mask.append(0) _segment_ids.append(0) input_ids.append(_input_ids) input_mask.append(_input_mask) segment_ids.append(_segment_ids) return input_ids, input_mask, segment_ids def _convert_x(self, x, tokenized): if not tokenized: # deal with general inputs if isinstance(x, str): return [self.tokenizer.tokenize(x)] # deal with multiple inputs return [self.tokenizer.tokenize(seg) for seg in x] # deal with tokenized inputs if isinstance(x[0], str): return [x] # deal with tokenized and multiple inputs return x def _convert_y(self, y): label_set = set(y) # automatically set `label_size` if self.label_size: assert len(label_set) <= self.label_size, "Number of unique `y`s exceeds `label_size`." else: self.label_size = len(label_set) # automatically set `id_to_label` if not self._id_to_label: self._id_to_label = list(label_set) try: # Allign if user inputs continual integers. # e.g. [2, 0, 1] self._id_to_label = list(sorted(self._id_to_label)) except Exception: pass if len(self._id_to_label) < self.label_size: self._id_to_label = list(range(self.label_size)) # automatically set `label_to_id` for prediction self._label_to_id = {label: index for index, label in enumerate(self._id_to_label)} label_ids = [self._label_to_id[label] for label in y] return label_ids def _set_placeholders(self, target, on_export=False, **kwargs): self.placeholders = { "input_ids": com.get_placeholder(target, "input_ids", [None, self.max_seq_length], tf.int32), "input_mask": com.get_placeholder(target, "input_mask", [None, self.max_seq_length], tf.int32), "segment_ids": com.get_placeholder(target, "segment_ids", [None, self.max_seq_length], tf.int32), "label_ids": com.get_placeholder(target, "label_ids", [None], tf.int32), } if not on_export: self.placeholders["sample_weight"] = com.get_placeholder(target, "sample_weight", [None], tf.float32) def _forward(self, is_training, split_placeholders, **kwargs): encoder = BERTEncoder( bert_config=self.bert_config, is_training=is_training, input_ids=split_placeholders["input_ids"], input_mask=split_placeholders["input_mask"], segment_ids=split_placeholders["segment_ids"], drop_pooler=self._drop_pooler, **kwargs, ) encoder_output = encoder.get_pooled_output() decoder = ClsDecoder( is_training=is_training, input_tensor=encoder_output, label_ids=split_placeholders["label_ids"], label_size=self.label_size, sample_weight=split_placeholders.get("sample_weight"), scope="cls/seq_relationship", **kwargs, ) return decoder.get_forward_outputs() def _get_fit_ops(self, as_feature=False): ops = [self._tensors["preds"], self._tensors["losses"]] if as_feature: ops.extend([self.placeholders["label_ids"]]) return ops def _get_fit_info(self, output_arrays, feed_dict, as_feature=False): if as_feature: batch_labels = output_arrays[-1] else: batch_labels = feed_dict[self.placeholders["label_ids"]] # accuracy batch_preds = output_arrays[0] accuracy =
np.mean(batch_preds == batch_labels)
numpy.mean
import logging import numpy as np from matplotlib.patches import Ellipse, FancyArrow from mot.common.state import Gaussian logging.getLogger("matplotlib").setLevel(logging.WARNING) class BasicPlotter: @staticmethod def plot_point( ax, x, y, label=None, marker="o", color="b", marker_size=50, ): scatter = ax.scatter(x, y, marker=marker, color=color, label=label, s=marker_size, edgecolors="k") return scatter @staticmethod def plot_covariance_ellipse(ax, mean, covariance, color="b"): assert mean.shape == (2,), f"mean has {mean.shape} shape" covariance = covariance[:2, :2] assert covariance.shape == (2, 2), f"covariance has {covariance.shape} shape" lambda_, v = np.linalg.eig(covariance) lambda_ = np.sqrt(lambda_) ell_width, ell_height = lambda_[0] * 2, lambda_[1] * 2 ell_angle = np.rad2deg(
np.arccos(v[0, 0])
numpy.arccos
from atm import reference import numpy as np from utils import geo def calc_atm_loss(freq_hz, gas_path_len_m=0, rain_path_len_m=0, cloud_path_len_m=0, atmosphere=None, pol_angle=0, el_angle=0): """ Ref: ITU-R P.676-11(09/2016) Attenuation by atmospheric gases ITU-R P.840-6 (09/2013) Attenuation due to clouds and fog ITU-R P.838-3 (03/2005) Specific attenuation model for rain for use in prediction methods Ported from MATLAB Code <NAME> 16 March 2021 :param freq_hz: Frequency [Hz] :param gas_path_len_m: Path length for gas loss [m] [default = 0] :param rain_path_len_m: Path length for rain loss [m] [default = 0] :param cloud_path_len_m: Path length for cloud loss [m] [default = 0] :param atmosphere: atm.reference.Atmosphere object (if not provided, standard atmosphere will be generated) :param pol_angle: Polarization angle [radians], 0 for Horizontal, pi/2 for Vertical, between 0 and pi for slant. [default = 0] :param el_angle: Elevation angle of the path under test [default = 0] :return: loss along the path due to atmospheric absorption [dB, one-way] """ if atmosphere is None: # Default atmosphere is the standard atmosphere at sea level, with no # fog/clouds or rain. atmosphere = reference.get_standard_atmosphere(0) # Compute loss coefficients if np.any(gas_path_len_m > 0): coeff_ox, coeff_water = get_gas_loss_coeff(freq_hz, atmosphere.press, atmosphere.water_vapor_press, atmosphere.temp) coeff_gas = coeff_ox + coeff_water else: coeff_gas = 0 if np.any(rain_path_len_m > 0) and np.any(atmosphere.rainfall) > 0: coeff_rain = get_rain_loss_coeff(freq_hz, pol_angle, el_angle, atmosphere.rainfall) else: coeff_rain = 0 if np.any(cloud_path_len_m > 0) and np.any(atmosphere.cloud_dens) > 0: coeff_cloud = get_fog_loss_coeff(freq_hz, atmosphere.cloud_dens, atmosphere.temp) else: coeff_cloud = 0 # Compute loss components loss_gass_db = coeff_gas * gas_path_len_m / 1.0e3 loss_rain_db = coeff_rain * rain_path_len_m / 1.0e3 loss_cloud_db = coeff_cloud * cloud_path_len_m / 1.0e3 return loss_gass_db + loss_rain_db + loss_cloud_db def calc_zenith_loss(freq_hz, alt_start_m=0, zenith_angle_deg=0): """ # Computes the cumulative loss from alt_start [m] to zenith (100 km # altitude), for the given frequencies (freq) in Hz and angle from zenith # zenith_angle, in degrees. # # Does not account for refraction of the signal as it travels through the # atmosphere; assumes a straight line propagation at the given zenith # angle. Ported from MATLAB Code <NAME> 17 March 2021 :param freq_hz: Carrier frequency [Hz] :param alt_start_m: Starting altitude [m] :param zenith_angle_deg: Angle between line of sight and zenith (straight up) [deg] :return zenith_loss: Cumulative loss to the edge of the atmosphere [dB] :return zenith_loss_o: Cumulative loss due to dry air [dB] :return zenith_loss_w: Cumulative loss due to water vapor [dB] """ # Add a new first dimension to all the inputs (if they're not scalar) if np.size(freq_hz) > 1: freq_hz = np.expand_dims(freq_hz, axis=0) if np.size(alt_start_m) > 1: alt_start_m = np.expand_dims(alt_start_m, axis=0) if np.size(zenith_angle_deg) > 1: zenith_angle_deg = np.expand_dims(zenith_angle_deg, axis=0) # Make Altitude Layers # From ITU-R P.676-11(12/2017), layers should be set at exponential intervals num_layers = 922 # Used for ceiling of 100 km layer_delta = .0001*np.exp(np.arange(num_layers)/100) # Layer thicknesses [km], eq 21 layer_delta = np.reshape(layer_delta, (num_layers, 1)) layer_top = np.cumsum(layer_delta) # [km] layer_bottom = layer_top - layer_delta # [km] layer_mid = (layer_top+layer_bottom)/2 # Drop layers below alt_start alt_start_km = alt_start_m / 1e3 layer_mask = layer_top >= min(alt_start_km) layer_bottom = layer_bottom[layer_mask] layer_mid = layer_mid[layer_mask] layer_top = layer_top[layer_mask] # Lookup standard atmosphere for each band atmosphere = reference.get_standard_atmosphere(layer_mid*1e3) # Compute loss coefficient for each band ao, aw = get_gas_loss_coeff(freq_hz, atmosphere.P, atmosphere.e, atmosphere.T) # Account for off-nadir paths and partial layers el_angle_deg = 90 - zenith_angle_deg layer_delta_eff = geo.compute_slant_range(max(layer_bottom, alt_start_km), layer_top, el_angle_deg, True) np.place(layer_delta_eff, layer_top <= alt_start_km, 0) # Set all layers below alt_start_km to zero # Zenith Loss by Layer (loss to pass through each layer) zenith_loss_by_layer_oxygen = ao*layer_delta_eff zenith_loss_by_layer_water = aw*layer_delta_eff # Cumulative Zenith Loss # Loss from ground to the bottom of each layer zenith_loss_o = np.squeeze(
np.sum(zenith_loss_by_layer_oxygen, axis=0)
numpy.sum
""" Tests for dcmstack.dcmstack """ import sys from os import path from glob import glob from hashlib import sha256 from nose.tools import ok_, eq_, assert_raises from copy import deepcopy import numpy as np import dicom from dicom import datadict import nibabel as nb from nibabel.orientations import aff2axcodes test_dir = path.dirname(__file__) src_dir = path.normpath(path.join(test_dir, '../src')) sys.path.insert(0, src_dir) import dcmstack def test_key_regex_filter(): filt = dcmstack.make_key_regex_filter(['test', 'another'], ['2', 'another test']) ok_(filt('test', 1)) ok_(filt('test another', 1)) ok_(filt('another tes', 1)) ok_(not filt('test2', 1)) ok_(not filt('2 another', 1)) ok_(not filt('another test', 1)) class TestReorderVoxels(object): def setUp(self): self.vox_array = np.arange(16).reshape((2, 2, 2, 2)) self.affine = np.eye(4) def test_invalid_vox_order(self): assert_raises(ValueError, dcmstack.reorder_voxels, self.vox_array, self.affine, 'lra', ) assert_raises(ValueError, dcmstack.reorder_voxels, self.vox_array, self.affine, 'rpil', ) assert_raises(ValueError, dcmstack.reorder_voxels, self.vox_array, self.affine, 'lrz', ) def test_invalid_vox_array(self): assert_raises(ValueError, dcmstack.reorder_voxels,
np.eye(2)
numpy.eye
import os import pathlib from datetime import datetime from functools import wraps from pathos.multiprocessing import Pool import numpy as np from scipy import linalg as splin from scipy import sparse as spsparse from scipy.optimize import minimize import h5py import cupy as cp from geoist import gridder from geoist.pfm import prism from geoist.inversion.mesh import PrismMesh from geoist.others import walsh from geoist.others import toeplitz as tptz from geoist.others import utils print_level = -1 # control indentation of prints. last_print_level = -2 # A helper decorator print time consumption of f. def timeit(f): @wraps(f) def wrap(*args,**kwargs): global print_level global last_print_level print_level += 1 if print_level == last_print_level: print('') print(' '*4*print_level+'calling {}'.format(f.__name__)) st = datetime.now() res = f(*args,**kwargs) ed = datetime.now() print(' '*4*print_level+'{} completed in {}'.format(f.__name__,ed-st)) last_print_level = print_level print_level -= 1 return res return wrap def free_gpu(): '''free up gpu memory consumption''' mempool = cp.get_default_memory_pool() pinned_mempool = cp.get_default_pinned_memory_pool() mempool.free_all_blocks() pinned_mempool.free_all_blocks() class SmoothOperator: def __init__(self,reverse=False): self.axis = {'x':-1,'y':-2,'z':-3} if reverse: self.axis = {'x':-3,'y':-2,'z':-1} def diff(self,v,along='dx'): for axis_i in axis_list[1:]: slices = [slice(None)]*v.ndim slices[self.axis[axis_i]] = slice(-1,None,-1) return np.diff(v[tuple(slices)],axis=self.axis[axis_i]) def rdiff(self,v,along='dx'): for axis_i in axis_list[1:]: slices = [slice(None)]*v.ndim slices[self.axis[axis_i]] = 0 shape = [-1]*v.ndim shape[self.axis[axis_i]] = 1 prepend=np.zeros_like(v[tuple(slices)].reshape(tuple(shape))) append=np.zeros_like(v[tuple(slices)].reshape(tuple(shape))) return np.diff(v, axis=self.axis[axis_i], prepend=prepend, append=append) class AbicLSQOperator(tptz.LSQOperator): '''An operator doing matrix vector multiplication. The matrix is: $\alpha_g G^TG + \sum \alpha_i W^TB_i^TB_iW$. Where $\alpha$'s are weights, $G$ is kernel matrix, $W$ is depth constraint, $B_i$'s are other constrains. ''' def __init__(self, toep, depth_constraint=None, dxyz_constraint=None, refer_constraint=None, weights=None): super().__init__(toep) self.weights = weights self.depth_constraint = depth_constraint self.refer_constraint = refer_constraint self.dxyz_constraint = dxyz_constraint if self.weights is None: self.weights = {'bound':1,'obs':1,'depth':1,'refer':1,'dx':1,'dy':1,'dz':1} def matvec(self,v): tmp = self.gtoep.matvec(v) tmp = self.weights['obs']*self.gtoep.rmatvec(tmp) if 'depth' in self.weights.keys(): v = self.depth_constraint*v if 'refer' in self.weights.keys(): tmp += self.weights['refer']*self.weights['depth']*self.depth_constraint*self.refer_constraint**2*v if not self.dxyz_constraint is None: spaces = {'dz':self.nx*self.ny*(self.nz-1), 'dy':self.nx*(self.ny-1), 'dx':self.nx-1} for key,constraint in self.dxyz_constraint.items(): if not key in self.weights.keys(): continue tmp2 = v.reshape(-1,*constraint.shape) fft_comp = list(range(tmp2.ndim))[1:] tmp2 = self.xp.fft.ifftn(self.xp.fft.fftn(tmp2,axes=fft_comp)*constraint,axes=fft_comp).real slices = [slice(None)]*tmp2.ndim slices[-1] = slice(spaces[key],None) tmp2[tuple(slices)] = 0 tmp2 = self.xp.real(self.xp.fft.ifftn(self.xp.fft.fftn(tmp2,axes=fft_comp)*self.xp.conj(constraint),axes=fft_comp)) if v.ndim == 1: tmp += self.weights[key]*self.weights['depth']*self.depth_constraint*tmp2.ravel() else: tmp += self.weights[key]*self.weights['depth']*self.depth_constraint*tmp2.reshape(v.shape[0],-1) return tmp class GravInvAbicModel: def __init__(self, nzyx=[4,4,4], smooth_components=['dx','dy','dz'], depth_constraint=None, model_density=None, refer_density=None, weights=None, source_volume=None, smooth_on='m', data_dir='/data/gravity_inversion'): self._nz,self._ny,self._nx = nzyx self.smooth_on = smooth_on self.dxyz_shapes = {'dx':(self._nz,self._ny,self._nx), 'dy':(self._nz,self._nx*self._ny), 'dz':(self._nx*self._ny*self._nz,)} self.dxyz_spaces = {'dx':self._nx-1, 'dy':self._nx*(self._ny-1), 'dz':self._nx*self._ny*(self._nz-1)} self.data_dir = data_dir self.gen_model_name() self.nobsx = nzyx[2] self.nobsy = nzyx[1] self.source_volume = source_volume if model_density is None: self._model_density = None else: self._model_density = model_density.ravel() self._smooth_components = smooth_components self.constraints = dict() self.constraints_val = dict() if depth_constraint is None: self.constraints['depth'] = np.ones(np.prod(nzyx)) self.constraints_val['depth'] = None else: self.constraints['depth'] = (depth_constraint.reshape(-1,1)*np.ones((1,self._nx*self._ny))).ravel() self.constraints_val['depth'] = 0 if refer_density is None: self.constraints['refer'] = None self.constraints_val['refer'] = None else: self.constraints['refer'] = np.ones(self._nx*self._ny*self._nz) self.constraints_val['refer'] = refer_density.ravel() self._weights = weights if not 'depth' in self._weights.keys(): self._weights['depth'] = 1.0 self._gen_dxyz_constraint() self.kernel_op = None self.abic_val = 0 self.log_total_det_val = 0 self.log_prior_det_val = 0 self.log_obs_det_val = 0 self.min_u_val = 0 self.min_density = -1.0e4 self.max_density = 1.0e4 @property def source_volume(self): return self._source_volume @source_volume.setter def source_volume(self,value): self._source_volume = value self.gen_mesh() def gen_model_name(self): self.model_name = '{}x{}x{}'.format(self._nx,self._ny,self._nz) self.fname = pathlib.Path(self.data_dir)/pathlib.Path(self.model_name+'.h5') @property def weights(self): return self._weights @weights.setter def weights(self,values): self._weights = values if not self.kernel_op is None: self.kernel_op.weights = self._weights @property def smooth_components(self): return self._smooth_components @smooth_components.setter def smooth_components(self,values): self._smooth_components = values self._gen_dxyz_constraint() if not self.kernel_op is None: self.kernel_op.dxyz_constraint = self.dxyz_constraint @timeit def _gen_dxyz_constraint(self): '''first generate multi-level circulant matrix, constraint of dx is a part of it. then calculate it's eigenvalues. self._dx stores the eigenvalues finally. When multiply it with a vector, specific element should be discarded''' self.dxyz_constraint = dict() for component in self._smooth_components: tmp = np.zeros(self.nx*self.ny*self.nz) tmp[0] = 1 tmp[self.dxyz_spaces[component]] = -1 tmp = tmp.reshape(self.dxyz_shapes[component]) self.dxyz_constraint[component] = np.fft.fftn(tmp) self.constraints[component] = self.dxyz_constraint[component] @property def refer_density(self): return self.constraints_val['refer'].reshape(self._nz,self._ny,self._nx) @refer_density.setter def refer_density(self,value): self.constraints_val['refer'] = value.ravel() @property def nx(self): return self._nx @nx.setter def nx(self,value): self._nx = value self.nobsx = self._nx self.gen_model_name() if not self.constraints['depth'] is None: self.constraints['depth'] = self.constraints['depth'].reshape(self._nz,-1)[:,0]*np.ones((1,self._nx*self._ny)) self.constraints['depth'] = self.constraints['depth'].ravel() self.constraints['refer'] = np.ones(self._nx*self._ny*self._nz) @property def ny(self): return self._ny @ny.setter def ny(self,value): self._ny = value self.nobsy = self._ny self.gen_model_name() if not self.constraints['depth'] is None: self.constraints['depth'] = self.constraints['depth'].reshape(self._nz,-1)[:,0]*np.ones((1,self._nx*self._ny)) self.constraints['depth'] = self.constraints['depth'].ravel() self.constraints['refer'] = np.ones(self._nx*self._ny*self._nz) @property def nz(self): return self._nz @nz.setter def nz(self,value): self._nz = value self.gen_model_name() self.constraints['refer'] = np.ones(self._nx*self._ny*self._nz) print("Warning: nz changed. \nDon't forget setting depth constraints.") @property def model_density(self): return(self._model_density.reshape(self.nz,self.ny,self.nx)) @model_density.setter def model_density(self,value): self._model_density = value.ravel() def gen_mesh(self,height = -1): shape = (self._nz, self._ny, self._nx) self.mesh = PrismMesh(self._source_volume, shape) density = np.ones(shape)*1.0e3 self.mesh.addprop('density', density.ravel()) # generate obs grid # coordinate: x North-South,y East-West # gridder is in the order: (nx,ny) self.obs_area = (self._source_volume[0]+0.5*self.mesh.dims[0], self._source_volume[1]-0.5*self.mesh.dims[0], self._source_volume[2]+0.5*self.mesh.dims[1], self._source_volume[3]-0.5*self.mesh.dims[1]) obs_shape = (self.nobsx, self.nobsy) self.xp, self.yp, self.zp = gridder.regular(self.obs_area, obs_shape, z=height) def _gen_walsh_matrix(self): print('generating walsh_matrix') if os.path.exists(self.fname): with h5py.File(self.fname,mode='r') as f: if not 'walsh_matrix' in f.keys(): have_walsh_matrix = False else: have_walsh_matrix = True else: have_walsh_matrix = False if have_walsh_matrix: return walsh_matrix = walsh.walsh_matrix(self._nx*self._ny*self._nz, normalized=True, ordering='sequence2', nxyz=(self._nx,self._ny,self._nz)) walsh_matrix = walsh_matrix.astype(np.float32) step = self._nx*self._ny*self._nz//4 components = ['0','1','2','3'] with h5py.File(self.fname,mode='a') as f: fgroup = f.create_group('walsh_matrix') for i in range(4): fgroup.create_dataset(components[i],data=walsh_matrix[i*step:(i+1)*step,:]) def gen_kernel(self): def calc_kernel(i): return prism.gz(self.xp[0:1],self.yp[0:1],self.zp[0:1],[self.mesh[i]]) with Pool(processes=16) as pool: kernel0 = pool.map(calc_kernel,range(len(self.mesh))) self.kernel0 = np.array(kernel0).reshape(self.nz,self.ny,self.nx) self.kernel_op = AbicLSQOperator(self.kernel0, depth_constraint=self.constraints['depth'], dxyz_constraint=self.dxyz_constraint, refer_constraint=self.constraints['refer'], weights=self._weights) def _dxyzvec(self,vec=None,key=None): res = vec.reshape(-1,*self.dxyz_shapes[key]) axes = np.arange(1,res.ndim) res = np.fft.ifftn(np.fft.fftn(res,axes=axes)*self.dxyz_constraint[key],axes=axes).real slices = [slice(None)]*res.ndim slices[-1] = slice(0,self.dxyz_spaces[key]) if vec.ndim == 1: return res[tuple(slices)].ravel() else: return res[tuple(slices)].reshape(vec.shape[0],-1) def _diagvec(self,vec=None,diag=None): if vec.ndim == 1: return vec * diag else: return vec * diag.reshape(1,-1) @timeit def walsh_transform(self,keys=None): if keys is None: keys = ['kernel'] + list(self.constraints.keys()) else: keys = keys is_stored = dict() for key in keys: is_stored[key] = False if os.path.exists(self.fname): with h5py.File(self.fname,mode='r') as f: for key in keys: try: if '3' in f[key].keys(): is_stored[key] = True if key == 'depth': res = f['depth']['constraint'][:] - self.constraints['depth'] res = np.linalg.norm(res)/np.linalg.norm(self.constraints['depth']) if res > 1.0e-3: is_stored[key] = False except KeyError: continue self._gen_walsh_matrix() logn = int(np.ceil(np.log2(self._nx*self._ny*self._nz))) norm_walsh = 1./(np.sqrt(2)**logn) blocks = ['0','1','2','3'] matvec_op = {'kernel':self.kernel_op.gtoep.matvec, 'dx': lambda x: self._dxyzvec(x,key='dx'), 'dy': lambda x: self._dxyzvec(x,key='dy'), 'dz': lambda x: self._dxyzvec(x,key='dz'), 'refer': lambda x: self._diagvec(x,diag=self.constraints['refer']), 'depth': lambda x: self._diagvec(x,diag=np.sqrt(self.constraints['depth'])) } is_stored['refer'] = True for key in keys: if is_stored[key]: print('walsh transformation of {} already exists.'.format(key)) continue print('performing walsh transformation on {}.'.format(key)) step = self.nx*self.ny*self.nz // 4 if key == 'depth': step = self._nz with h5py.File(self.fname,mode='a') as f: try: del f[key] except KeyError: pass dxyz_group = f.create_group(key) walsh_group = f['walsh_matrix'] for i in range(4): print("\t progress {}/4".format(i)) part_walsh = walsh_group[blocks[i]][:] if key == 'depth': part_walsh = walsh_group[blocks[i]][:self._nz] part_walsh = matvec_op[key](part_walsh) with cp.cuda.Device(2): res = cp.zeros((step,step)) j = 0 while j*step < part_walsh.shape[1]: tmp_block_gpu = cp.asarray(part_walsh[:,j*step:(j+1)*step]) res += tmp_block_gpu @ tmp_block_gpu.T j += 1 res = cp.asnumpy(res) if key in self._smooth_components: res[np.abs(res)<1.0e-1*norm_walsh] = 0. tmp_block_gpu = None mempool = cp.get_default_memory_pool() pinned_mempool = cp.get_default_pinned_memory_pool() mempool.free_all_blocks() pinned_mempool.free_all_blocks() dxyz_group.create_dataset(blocks[i],data=res) if ('depth' in keys) and (not is_stored['depth']): with h5py.File(self.fname,mode='a') as f: try: del f['depth_constraint'] except KeyError: pass dxyz_group = f['depth'] dxyz_group.create_dataset('constraint',data=self.constraints['depth']) @property def depth_constraint(self): return(self.constraints['depth'].reshape(self._nz,-1)[:,0]) @depth_constraint.setter def depth_constraint(self,value): self.constraints['depth'] = (value.reshape(-1,1)*np.ones((1,self._nx*self._ny))).ravel() @timeit def forward(self,model_density=None): if model_density is None: model_density = self._model_density else: model_density = model_density.ravel() self.obs_data = self.kernel_op.gtoep.matvec(model_density) def _gen_rhs(self): self.rhs = self._weights['obs']*self.kernel_op.gtoep.rmatvec(self.obs_data) if 'depth' in self._weights.keys(): v = self.constraints['depth']*self.constraints_val['refer'] if 'refer' in self._weights.keys(): self.rhs += (self._weights['refer'] *self._weights['depth'] *self.constraints['depth'] *v) if self.smooth_on == 'm-m0': if not self.dxyz_constraint is None: for key,constraint in self.dxyz_constraint.items(): if not key in self._weights.keys(): continue tmp2 = v.reshape(-1,*constraint.shape) fft_comp = list(range(tmp2.ndim))[1:] tmp2 = np.fft.ifftn(np.fft.fftn(tmp2,axes=fft_comp)*constraint,axes=fft_comp).real slices = [slice(None)]*tmp2.ndim slices[-1] = slice(self.dxyz_spaces[key],None) tmp2[tuple(slices)] = 0 tmp2 = np.real(np.fft.ifftn(np.fft.fftn(tmp2,axes=fft_comp)*np.conj(constraint),axes=fft_comp)) if v.ndim == 1: self.rhs += self._weights[key]*self._weights['depth']*self.constraints['depth']*tmp2.ravel() else: self.rhs += self._weights[key]*self._weights['depth']*self.constraints['depth']*tmp2.reshape(v.shape[0],-1) @timeit def do_linear_solve(self): self._gen_rhs() self.solution = spsparse.linalg.cg(self.kernel_op,self.rhs,tol=1.0e-5)[0] @timeit def calc_min_u(self,solved=False,x=None): if x is None: if not solved: self.do_linear_solve() x = self.solution self.min_u_val = self._weights['obs']*np.linalg.norm(self.kernel_op.gtoep.matvec(x) - self.obs_data)**2 if ('refer' in self._weights.keys()) and (self.smooth_on == 'm-m0'): v = x - self.constraints_val['refer'] else: v = x if 'depth' in self._weights.keys(): v = np.sqrt(self._weights['depth'])*self.constraints['depth']*v if not self.dxyz_constraint is None: for key,constraint in self.dxyz_constraint.items(): if not key in self._weights.keys(): continue tmp2 = np.fft.ifftn( np.fft.fftn(v.reshape(constraint.shape))*constraint ).real slices = [slice(None)]*constraint.ndim slices[-1] = slice(0,self.dxyz_spaces[key]) self.min_u_val += self._weights[key]*np.linalg.norm(tmp2[tuple(slices)].ravel())**2 if 'refer' in self._weights.keys(): v = x - self.constraints_val['refer'] if 'depth' in self._weights.keys(): v = np.sqrt(self._weights['depth'])*self.constraints['depth']*v self.min_u_val += self._weights['refer'] *np.linalg.norm(v)**2 return self.min_u_val def bound_constraint_u(self,x=None): self.calc_min_u(x=x,solved=True) log_barrier = np.sum(np.log(x-self.min_density) + np.log(self.max_density-x)) return self.min_u_val - 2.*self._weights['bound']*log_barrier def bound_jac_u(self,x=None): res = 0. res += self._weights['obs']*(self.kernel_op.gtoep.matvec(x) - self.obs_data) if ('refer' in self._weights.keys()) and (self.smooth_on == 'm-m0'): v = x - self.constraints_val['refer'] else: v = x if 'depth' in self._weights.keys(): v = self._weights['depth']*self.constraints['depth']*v if not self.dxyz_constraint is None: for key,constraint in self.dxyz_constraint.items(): if not key in self._weights.keys(): continue tmp2 = np.fft.ifftn( np.fft.fftn(v.reshape(constraint.shape))*constraint ).real slices = [slice(None)]*constraint.ndim slices[-1] = slice(0,self.dxyz_spaces[key]) res += self._weights[key]*tmp2[tuple(slices)].ravel() if 'refer' in self._weights.keys(): v = x - self.constraints_val['refer'] if 'depth' in self._weights.keys(): v = self._weights['depth']*self.constraints['depth']*v res += self._weights['refer'] *v res += self._weights['bound']*(1./(self.max_density-x) - 1./(x-self.min_density)) return 2.*res def bound_hessp_u(self,x,v): res = self.kernel_op.matvec(v) hess_diag = 1./(self.max_density-x)**2 + 1./(x-self.min_density)**2 res += self._weights['bound']*hess_diag*v return 2.*res def bound_optimize(self,x0=None): if x0 is None: if 'refer' in self._weights.keys(): x0 = self.constraints_val['refer'] else: x0 = np.zeros(self._nx*self._ny*self._nz) self.solution = minimize(self.bound_constraint_u, x0, method='Newton-CG', jac=self.bound_jac_u, hessp=self.bound_hessp_u) def calc_res(self): self.residuals = dict() self.stds = dict() self.residuals['obs'] = np.linalg.norm(self.kernel_op.gtoep.matvec(self.solution)-self.obs_data)**2 self.stds['obs'] = np.std(self.kernel_op.gtoep.matvec(self.solution)-self.obs_data) for key in self.dxyz_constraint.keys(): try: tmp2 = self.solution.reshape(self.dxyz_constraint[key].shape) if ('refer' in self.constraints_val.keys()) and (self.smooth_on == 'm-m0'): tmp2 -= self.constraints_val['refer'].reshape(self.dxyz_constraint[key].shape) tmp2 = np.fft.ifftn(
np.fft.fftn(tmp2)
numpy.fft.fftn
import numpy as np from tidepool_data_science_models.models.simple_metabolism_model import SimpleMetabolismModel def get_bgri(bg_df): # Calculate LBGI and HBGI using equation from # <NAME>., & <NAME>. (2009) bgs = bg_df.copy() bgs[bgs < 1] = 1 # this is added to take care of edge case BG <= 0 transformed_bg = 1.509 * ((np.log(bgs) ** 1.084) - 5.381) risk_power = 10 * (transformed_bg) ** 2 low_risk_bool = transformed_bg < 0 high_risk_bool = transformed_bg > 0 rlBG = risk_power * low_risk_bool rhBG = risk_power * high_risk_bool LBGI = np.mean(rlBG) HBGI = np.mean(rhBG) BGRI = LBGI + HBGI return LBGI, HBGI, BGRI def lbgi_risk_score(lbgi): if lbgi > 10: risk = 4 elif lbgi > 5: risk = 3 elif lbgi > 2.5: risk = 2 elif lbgi > 0: risk = 1 else: risk = 0 return risk def hbgi_risk_score(hbgi): if hbgi > 18: risk = 4 elif hbgi > 9: risk = 3 elif hbgi > 4.5: risk = 2 elif hbgi > 0: risk = 1 else: risk = 0 return risk def get_dka_risk_hours(temp_basals, iob_array, sbr): # Use refactor of metabolism model metab_model = SimpleMetabolismModel( insulin_sensitivity_factor=0, carb_insulin_ratio=0 ) steady_state_iob = metab_model.get_steady_state_iob_from_sbr( sbr, use_fda_submission_constant=True ) fifty_percent_steady_state_iob = steady_state_iob / 2 indices_with_less_50percent_sbr_iob = iob_array < fifty_percent_steady_state_iob hours_with_less_50percent_sbr_iob = (
np.sum(indices_with_less_50percent_sbr_iob)
numpy.sum
import math from math import log2, exp import numpy as np import torch from torch import nn from torch.nn.functional import softplus import torch.nn.functional as F from torch.autograd import grad from typing import List, Callable, Union, Any, TypeVar, Tuple # from torch import tensor as Tensor Tensor = TypeVar('torch.tensor') from CALAE.loss.hessian_penalty import hessian_penalty from CALAE.metrics.perceptual import PerceptualLoss import lpips import piq def zero_centered_gradient_penalty(real_samples, real_prediction): """ Computes zero-centered gradient penalty for E, D """ grad_outputs = torch.ones_like(real_prediction, requires_grad=True) squared_grad_wrt_x = grad(outputs=real_prediction, inputs=real_samples, grad_outputs=grad_outputs,\ create_graph=True, retain_graph=True)[0].pow(2) return squared_grad_wrt_x.view(squared_grad_wrt_x.shape[0], -1).sum(dim=1).mean() def loss_discriminator(E, D, alpha, real_samples, fake_samples, gamma=10, use_bce=False, enable_hessian_real=False, enable_hessian_fake=False, hessian_layers_fake=[-2], hessian_layers_real=[-2]): E_r = E(real_samples, alpha) E_f = E(fake_samples, alpha) real_prediction, fake_prediction = D(E_r), D(E_f) if use_bce: loss = adv_loss(real_prediction, 1) loss += adv_loss(fake_prediction, 0) else: # Minimize negative = Maximize positive (Minimize incorrect D predictions for real data, # minimize incorrect D predictions for fake data) loss = (F.softplus(-real_prediction) + F.softplus(fake_prediction)).mean() if gamma > 0: loss += zero_centered_gradient_penalty(real_samples, real_prediction).mul(gamma/2) return loss def loss_discriminator_img(D, real_samples, fake_samples, gamma=10, use_bce=False): real_prediction = D(real_samples) fake_prediction = D(fake_samples) if use_bce: loss = adv_loss(real_prediction, 1) loss += adv_loss(fake_prediction, 0) else: # Minimize negative = Maximize positive (Minimize incorrect D predictions for real data, # minimize incorrect D predictions for fake data) loss = (F.softplus(-real_prediction) + F.softplus(fake_prediction)).mean() if gamma > 0: loss += zero_centered_gradient_penalty(real_samples, real_prediction).mul(gamma/2) return loss def loss_generator(E, D, alpha, fake_samples, enable_hessian=True, hessian_layers=[-1,-2], current_layer=[-1], hessian_weight=0.01): # Hessian applied to E here # Minimize negative = Maximize positive (Minimize correct D predictions for fake data) E_z = E(fake_samples, alpha) loss = softplus(-D(E_z)).mean() if enable_hessian: for layer in hessian_layers: h_loss = hessian_penalty(E, z=fake_samples, alpha=alpha, return_norm=layer) * hessian_weight if layer in current_layer: h_loss = h_loss * alpha loss += h_loss return loss def loss_avg_generator(G, G_avg, F_z, scale, alpha, loss_fn, bbox=None): # Hessian applied to G here G_z = G(F_z, scale, alpha, bbox=bbox) G_avg_z = G_avg(F_z, scale, alpha, bbox=bbox) loss = loss_fn(G_z, G_avg_z) return loss def loss_generator_consistency(fake, real, loss_fn=None, use_perceptual=False, use_ssim=True, ssim_weight=1, use_ssim_tv=False, use_sobel=True, sobel_weight=1, use_sobel_tv=False, sobel_fn=None): if loss_fn: if use_perceptual: scale = fake.shape[2] p_scale = scale if scale < 32 else 32 p_func = perceptual_loss[p_scale] if p_func is None: p_func = PerceptualLoss(ilayer=percep_layer_lookup[p_scale]) perceptual_loss[scale] = p_func loss = loss_fn(p_func(fake), p_func(real)) else: loss = loss_fn(fake, real) else: loss = 0 if use_ssim: s_loss = ssim_loss(fake, real) * ssim_weight if use_ssim_tv: s_loss = s_loss / total_variation(fake) loss *= s_loss if use_sobel: sobel_real = sobel(real) sobel_fake = sobel(fake) if use_sobel_tv: sobel_real = sobel_real / total_variation(fake) sobel_fake = sobel_fake / total_variation(fake) if sobel_fn: sobel_loss = sobel_fn(sobel_real, sobel_fake) else: sim, cs = ssim(sobel_real, sobel_fake, window_size=11, size_average=True, full=True, val_range=2) sim = (1 - sim) / 2 cs = (1 - cs) / 2 sobel_loss = (sim + cs) ** cs loss += sobel_loss * sobel_weight return loss def loss_autoencoder(F, G, E, scale, alpha, z, loss_fn, labels=None, use_tv=False, tv_weight=0.001, permute_regularize=False, bbox=None): # Hessian applied to G here F_z = F(z, scale, z2=None, p_mix=0) # Autoencoding loss in latent space G_z = G(F_z, scale, alpha, bbox=bbox) E_z = E(G_z, alpha) #E_z = E_z.reshape(E_z.shape[0], 1, E_z.shape[1]).repeat(1, F_z.shape[1], 1) F_x = F_z[:,0,:] if labels is not None: if permute_regularize: perm = torch.randperm(E_z.shape[0], device=E_z.device) E_z_hat = torch.index_select(E_z, 0, perm) F_x_hat = torch.index_select(F_x, 0, perm) F_hat = torch.cat([F_x, F_x_hat], 0) E_hat = torch.cat([E_z, E_z_hat], 0) loss = loss_fn(F_hat, E_hat, labels) else: loss = loss_fn(F_x, E_z, labels) else: loss = loss_fn(F_x, E_z) if use_tv: loss += total_variation(G_z) * tv_weight return loss ################################################################################ #### H E S S I A N ############################################################# ###################------------------------------------------------------------- # GENERATOR def loss_generator_hessian(G, F, z, scale, alpha, scale_alpha=False, hessian_layers=[3], current_layer=[0], hessian_weight=0.01): loss = hessian_penalty(G, z=F(z, scale, z2=None, p_mix=0), scale=scale, alpha=alpha, return_norm=hessian_layers) if current_layer in hessian_layers or scale_alpha: loss = loss * alpha return loss * hessian_weight # ENCODER def loss_encoder_hessian(E, samples, alpha, scale_alpha=False, hessian_layers=[-1,-2], current_layer=[-1], hessian_weight=0.01): loss = hessian_penalty(E, z=samples, alpha=alpha, return_norm=hessian_layers) if current_layer in hessian_layers or scale_alpha: loss = loss * alpha return loss * hessian_weight ################################################################################ #### F O U R I E R ############################################################# ###################------------------------------------------------------------- def fft_loss(x, y, dim=2, diff_fn=lambda x,y: torch.abs(x-y)): xf = torch.rfft(x, 3) yf = torch.rfft(y, 3) diff = diff_fn(xf[dim], yf[dim]) loss = diff.mean() return loss ################################################################################ #### S T A N D A R D ########################################################### #####################----------------------------------------------------------- # Generally applicable losses? def msle(x, y): return (torch.log(x) - torch.log(y)).pow(2).mean() def mse(x, y): return (x - y).pow(2).mean() def mae(x, y): return torch.abs(x - y).mean() def logcosh(x, y): diff = x - y loss = (diff + 1e-12).cosh().log() return loss.mean() def xtanh(x, y): diff = x - y loss = diff.tanh() * diff return loss.mean() def xsigmoid(x, y): diff = x - y loss = 1 + (-diff).exp() loss = loss - diff loss = 2 * diff / loss return loss.mean() #return torch.mean(2 * diff / (1 + torch.exp(-diff)) - diff) def correlation(x, y): delta = torch.abs(x - y) loss = torch.mean((delta[:-1] * delta[1:]).sum(1)) return loss # Simple BCE Discriminator target def adv_loss(logits, target): assert target in [1, 0] targets = torch.full_like(logits, fill_value=target) loss = F.binary_cross_entropy_with_logits(logits, targets) return loss #################################################################################### #### P E R C E P T U A L ########################################################### #########################----------------------------------------------------------- ## Perceptual Loss percep_layer_lookup = { 4: 4, 8: 9, 16: 16, 32: 23 } perceptual_loss = { 4: None, 8: None, 16: None, 32: None, } def percep_loss(x, y, scale): p_scale = scale if scale < 32 else 32 p_func = perceptual_loss[p_scale] if p_func is None: p_func = PerceptualLoss(ilayer=percep_layer_lookup[p_scale]) perceptual_loss[scale] = p_func loss = p_func(x) - p_func(y) loss = loss.pow(2) loss = loss.mean() return loss ###################################################################################### ### FAMOS losses - https://github.com/zalandoresearch/famos/blob/master/utils.py ##### ##some image level content loss def contentLoss(a, b, netR, loss_type): def nr(x): return (x**2).mean() return x.abs().mean() if loss_type==0: a = avgG(a) b = avgG(b) return nr(a.mean(1) - b.mean(1)) if loss_type==1: a = avgP(a) b = avgP(b) return nr(a.mean(1) - b.mean(1)) if loss_type==10: return nr(netR(a)-netR(b)) if loss_type==100: return nr(netR(a)-b) if loss_type == 101: return nr(avgG(netR(a)) - avgG(b)) if loss_type == 102: return nr(avgP(netR(a)) - avgP(b)) if loss_type == 103: return nr(avgG(netR(a)).mean(1) - avgG(b).mean(1)) raise Exception("NYI") def GaussKernel(sigma,wid=None): if wid is None: wid =2 * 2 * sigma + 1+10 def gaussian(x, mu, sigma): return np.exp(-(float(x) - float(mu)) ** 2 / (2 * sigma ** 2)) def make_kernel(sigma): # kernel radius = 2*sigma, but minimum 3x3 matrix kernel_size = max(3, int(wid)) kernel_size = min(kernel_size,150) mean = np.floor(0.5 * kernel_size) kernel_1d = np.array([gaussian(x, mean, sigma) for x in range(kernel_size)]) # make 2D kernel np_kernel = np.outer(kernel_1d, kernel_1d).astype(dtype=np.float32) # normalize kernel by sum of elements kernel = np_kernel / np.sum(np_kernel) return kernel ker = make_kernel(sigma) a = np.zeros((3,3,ker.shape[0],ker.shape[0])).astype(dtype=np.float32) for i in range(3): a[i,i] = ker return a device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") gsigma=1.##how much to blur - larger blurs more ##+"_sig"+str(gsigma) gwid=61 kernel = torch.FloatTensor(GaussKernel(gsigma,wid=gwid)).to(device) def avgP(x): return nn.functional.avg_pool2d(x,int(16)) def avgG(x): pad=nn.functional.pad(x,(gwid//2,gwid//2,gwid//2,gwid//2),'reflect')##last 2 dimensions padded return nn.functional.conv2d(pad,kernel)##reflect pad should avoid border artifacts ######################################################################################## #### T O T A L - V A R I A T I O N ##################################################### ###################################----------------------------------------------------- def tv_loss(x, y, loss_fn): loss = loss_fn(total_variation(x), total_variation(y)) return loss #absolute difference in X and Y directions def total_variation(y): return torch.mean(torch.abs(y[:, :, :, :-1] - y[:, :, :, 1:])) + torch.mean(torch.abs(y[:, :, :-1, :] - y[:, :, 1:, :])) ##2D array of the edges of C channels image def tvArray(x): border1 = x[:, :, :-1] - x[:, :, 1:] border1 = torch.cat([border1.abs().sum(1).unsqueeze(1), x[:, :1, :1] * 0], 2) ##so square with extra 0 line border2 = x[:, :, :, :-1] - x[:, :, :, 1:] border2 = torch.cat([border2.abs().sum(1).unsqueeze(1), x[:, :1, :, :1] * 0], 3) border = torch.cat([border1, border2], 1) return border ########################################################################################## #### G R A M ############################################################################# #############----------------------------------------------------------------------------- def gram_loss(x, y): loss = gramMatrix(x, x).exp() - gramMatrix(y, y).exp() loss = loss.abs() loss = loss.mean() return loss def gram_matrix(y): (b, ch, h, w) = y.size() features = y.view(b, ch, w * h) features_t = features.transpose(1, 2) gram = features.bmm(features_t) / (ch * h * w) return gram ##negative gram matrix def gramMatrix(x,y=None,sq=True,bEnergy=False): if y is None: y = x B, CE, width, height = x.size() hw = width * height energy = torch.bmm(x.permute(2, 3, 0, 1).view(hw, B, CE), y.permute(2, 3, 1, 0).view(hw, CE, B), ) energy = energy.permute(1, 2, 0).view(B, B, width, height) if bEnergy: return energy sqX = (x ** 2).sum(1).unsqueeze(0) sqY = (y ** 2).sum(1).unsqueeze(1) d=-2 * energy + sqX + sqY if not sq: return d##debugging gram = -torch.clamp(d, min=1e-10)#.sqrt() return gram ########################################################################################## #### P E A K - S I G N A L - N O I S E - R A T I O ####################################### ###################################################--------------------------------------- ## PSNR def psnr(img1, img2): diff = img1 - img2 mse = np.mean(diff ** 2 ) if mse == 0: return 100 PIXEL_MAX = 255.0 return 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) ########################################################################################## #### S S I M ############################################################################# #############----------------------------------------------------------------------------- ## SSIM def ssim_loss(x, y): loss = 1 - ssim(x, y) loss = loss / 2 return loss def ssim_yuv_loss(x, y): loss = 1 - ssim(x, y) loss = loss / 2 return loss def msssim_loss(x, y): loss = 1 - ms_ssim(x, y) loss = loss / 2 return loss def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) return gauss/gauss.sum() def create_window(window_size, channel=1): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() return window def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=2): # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). if val_range is None: if torch.max(img1) > 128: max_val = 255 else: max_val = 1 if torch.min(img1) < -0.5: min_val = -1 else: min_val = 0 L = max_val - min_val else: L = val_range padd = 0 (_, channel, height, width) = img1.size() if window is None: real_size = min(window_size, height, width) window = create_window(real_size, channel=channel).to(img1.device) mu1 = F.conv2d(img1, window, padding=padd, groups=channel) mu2 = F.conv2d(img2, window, padding=padd, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2 C1 = (0.01 * L) ** 2 C2 = (0.03 * L) ** 2 v1 = 2.0 * sigma12 + C2 v2 = sigma1_sq + sigma2_sq + C2 cs = torch.mean(v1 / v2) # contrast sensitivity ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) if size_average: ret = ssim_map.mean() else: ret = ssim_map.mean(1).mean(1).mean(1) if full: return ret, cs return ret def ms_ssim(X_a, X_b, window_size=11, size_average=True, C1=0.01**2, C2=0.03**2): """ Taken from Po-Hsun-Su/pytorch-ssim """ channel = X_a.size(1) def gaussian(sigma=1.5): gauss = torch.Tensor( [math.exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum() def create_window(): _1D_window = gaussian(window_size).unsqueeze(1) _2D_window = _1D_window.mm( _1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = torch.Tensor( _2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window.cuda() window = create_window() mu1 = torch.nn.functional.conv2d(X_a, window, padding=window_size // 2, groups=channel) mu2 = torch.nn.functional.conv2d(X_b, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = torch.nn.functional.conv2d( X_a * X_a, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = torch.nn.functional.conv2d( X_b * X_b, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = torch.nn.functional.conv2d( X_a * X_b, window, padding=window_size // 2, groups=channel) - mu1_mu2 ssim_map = (((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) ########################################################################################## #### S O B E L ########################################################################### ###############--------------------------------------------------------------------------- ## Sobel def ssim_sobel_loss(x, y, window_size=11, size_average=True, val_range=2, normalize=True): x_sobel = sobel(x) y_sobel = sobel(y) sim, cs = ssim(x_sobel, y_sobel, window_size=window_size, size_average=size_average, full=True, val_range=val_range) sim = (1 - sim) / 2 cs = (1 - cs) / 2 loss = (sim + cs) ** cs return loss def ssim_sobel_loss_broke(x, y, window_size=11, size_average=True, val_range=2, normalize=True): x_sobel = sobel(x) y_sobel = sobel(y) mssim = [] mcs = [] sim, cs = ssim(x, y, window_size=window_size, size_average=size_average, full=True, val_range=val_range) mssim.append(((sim + 1) / 2)) mcs.append(((cs + 1) / 2)) sim, cs = ssim(x_sobel, y_sobel, window_size=window_size, size_average=size_average, full=True, val_range=val_range) mssim.append(((sim + 1) / 2)) mcs.append(((cs + 1) / 2)) x_sobel_0 = x * x_sobel[:, 0, ...].reshape(x_sobel.shape[0], 1, x_sobel.shape[2], x_sobel.shape[3]) y_sobel_0 = y * y_sobel[:, 0, ...].reshape(y_sobel.shape[0], 1, y_sobel.shape[2], y_sobel.shape[3]) sim, cs = ssim(x_sobel_0, y_sobel_0, window_size=window_size, size_average=size_average, full=True, val_range=val_range) mssim.append(((sim + 1) / 2)) mcs.append(((cs + 1) / 2)) x_sobel_1 = x * x_sobel[:, 1, ...].reshape(x_sobel.shape[0], 1, x_sobel.shape[2], x_sobel.shape[3]) y_sobel_1 = y * y_sobel[:, 1, ...].reshape(y_sobel.shape[0], 1, y_sobel.shape[2], y_sobel.shape[3]) sim, cs = ssim(x_sobel_1, y_sobel_1, window_size=window_size, size_average=size_average, full=True, val_range=val_range) mssim.append(((sim + 1) / 2)) mcs.append(((cs + 1) / 2)) x_sobel_3 = x - (x_sobel_0 * x_sobel_1) y_sobel_3 = y - (y_sobel_0 * y_sobel_1) sim, cs = ssim(x_sobel_3, y_sobel_3, window_size=window_size, size_average=size_average, full=True, val_range=val_range) mssim.append(((sim + 1) / 2)) mcs.append(((cs + 1) / 2)) mssim = torch.stack(mssim) mcs = torch.stack(mcs) loss = torch.prod(mssim ** mcs) return loss def sobel_correlation_loss(x, y): x_sobel = sobel(x) y_sobel = sobel(y) return correlation(x_sobel, y_sobel) def sobel(img): #N,C,_,_ = img.size() grad_y, grad_x = sobel_grad(img) return torch.cat((grad_y, grad_x), dim=1) def sobel_grad(img, stride=1, padding=1): img = torch.mean(img, 1, True) fx =
np.array([[1,0,-1],[2,0,-2],[1,0,-1]])
numpy.array
from PIL import ImageGrab, Image from collections import Counter import numpy as np import re import pytesseract import cv2 from imutils.contours import sort_contours pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract" def snap_shot_to_file(rect, file): pic = ImageGrab.grab((rect.left, rect.top, rect.right, rect.bottom)) pic.save(file) def snap_shot(rect): return np.asarray(ImageGrab.grab((rect.left, rect.top, rect.right, rect.bottom))) def draw_bbox(img_array, bbox, out_img): #img_array = np.asarray(Image.open(img)) height, width = img_array.shape[:2] left, top, right, bottom = bbox right = min(right, width - 1) bottom = min(bottom, height - 1) region_img = np.zeros((height, width, 3), dtype="uint8") for row in range(height): for col in range(width): region_img[row][col] = img_array[row][col] # 画线 for col in range(left, right): region_img[top][col] = (255, 0, 0) region_img[bottom][col] = (255, 0, 0) for row in range(top, bottom): region_img[row][left] = (255, 0, 0) region_img[row][right] = (255, 0, 0) Image.fromarray(region_img).save(out_img) LEFT_MOST = 20 RIGHT_MOST = -20 MAX_SEARCH_ROW = 100 def _is_possible_bg(pixel): return pixel[0] == pixel[1] and pixel[1] == pixel[2] and pixel[0] > 200\ and pixel[0] != 255 def get_comment_bg(img_array): height, width = img_array.shape[:2] col = 10 counter = Counter() for row in range(height-50, height-5): if _is_possible_bg(img_array[row][col]): counter[tuple(img_array[row][col])] += 1 top = counter.most_common(1) if top: return top[0][0] else: return None def locate_start_row(img_array, debug_fn=None, bg_color=None): if bg_color is None: bg_color = [255, 255, 255] height, width = img_array.shape[:2] col = 10 found = False for row in range(5, height-5): if not np.all(img_array[row, col] == bg_color): found = True break if not found: return 200 row += 5 if debug_fn: draw_bbox(img_array, (0, row, width-1, row+1), debug_fn + "-start-row.png") return row def locate_content_bottom(img_array, start_row, debug_fn=None, bg_color=None, bg_color2=None): if bg_color is None: bg_color = [255, 255, 255] if bg_color2 is None: bg_color2 = [242, 242, 242] height, width = img_array.shape[:2] col = 10 has_content = False for row in range(start_row, height-5): if np.all(img_array[row, col] == bg_color): has_content = True elif np.all(img_array[row, col] == bg_color2): break if debug_fn: draw_bbox(img_array, (0, row, width-1, row+1), debug_fn + ".png") if not has_content: return -1 return row def ocr(img): options = "-l {} --psm {}".format("chi_sim", "7") text = pytesseract.image_to_string(img, config=options) return text def _extract_template(img, thrshold=200, kernel=12, debug_fn=None): bgr_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) gray = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY) ret, thresh1 = cv2.threshold(gray, thrshold, 255, cv2.THRESH_BINARY_INV) rect_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel, kernel)) # Appplying dilation on the threshold image dilation = cv2.dilate(thresh1, rect_kernel, iterations=1) # Finding contours contours, hierarchy = cv2.findContours(dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours = sort_contours(contours, method="left-to-right")[0] template = None for i, cnt in enumerate(contours): x, y, w, h = cv2.boundingRect(cnt) if debug_fn: cv2.rectangle(bgr_img, (x, y), (x + w, y + h), (0, 255, 0), 2) region = img[y:y+h, x:x+w] text = _clear_text(ocr(region)) if debug_fn: print(text) if '分享' in text: if i > 0: prev_region = contours[i - 1] else: prev_region = contours[i] x_prev, y_prev, w_prev, h_prev = cv2.boundingRect(prev_region) y_min = min(y, y_prev) y_max = max(y + h, y_prev + h_prev) x_min = x_prev x_max = x + w template = img[y_min:y_max, x_min:x_max] print("x, {}:{}; y, {}:{}".format(x_min, x_max, y_min, y_max)) loc_x, loc_y = find_img(img, template, reverse=True) print("loc_x={}, loc_y={}".format(loc_x, loc_y)) break if debug_fn: cv2.imwrite(debug_fn+"-template.png", bgr_img) return template def find_img(large_array, small_array, reverse=False, start_x=None, end_x=None, start_y=None, end_y=None): """ 在大图(large_array)中搜索小图(small_array)的位置,精确的像素级匹配 :param large_array: 待搜索的大图的numpyarray :param small_array: 被搜索的小图的numpyarray :param reverse: 是否从后(右下往左上)往前搜索 :param start_x: 搜索大图的x(width)坐标的起点(包括) :param end_x: 搜索大图的x坐标的终点(不包含) :param start_y: 搜索大图的y坐标的起点(包括) :param end_y: 搜索大图的y坐标的终点(不包含) :return: (x, y) tuple,找到的坐标(width, height)。如果找不到 返回(-1, -1) """ small_height, small_width = small_array.shape[:2] large_height, large_width = large_array.shape[:2] search_end_x = large_width - small_width + 1 search_end_y = large_height - small_height + 1 if end_x is not None and end_x <= large_width: search_end_x = end_x - small_width + 1 if end_y is not None and end_y <= large_height: search_end_y = end_y - small_height + 1 search_start_x = 0 if start_x is None else start_x search_start_y = 0 if start_y is None else start_y if reverse: for x in range(search_end_x - 1, search_start_x - 1, -1): for y in range(search_end_y - 1, search_start_y - 1, -1): x2 = x + small_width y2 = y + small_height pic = large_array[y:y2, x:x2] test = (pic == small_array) if test.all(): return x, y else: for x in range(search_start_x, search_end_x): for y in range(search_start_y, search_end_y): x2 = x + small_width y2 = y + small_height pic = large_array[y:y2, x:x2] test = (pic == small_array) if test.all(): return x, y return -1, -1 def _process_share_template(img_array, template_img, bottom, debug_fn): if debug_fn: print("模板抽取服务号") try: x, y = find_img(img_array, template_img, reverse=False) except: Image.fromarray(img_array).save("err1.png") Image.fromarray(template_img).save("err2.png") x, y = -1, -1 if x == -1: if debug_fn: Image.fromarray(img_array).save(debug_fn+"-large.png") Image.fromarray(template_img).save(debug_fn + "-small.png") return -1, None h, _ = template_img.shape[:2] _, w = img_array.shape[:2] if debug_fn: draw_bbox(img_array, (x, y, x+w, y+h), debug_fn + "-1-1.png") return y, img_array[y:y+h, x:x+w] def _process_share_without_template(img_array, bottom, bg_color, debug_fn, width, ext_template): if debug_fn: print("无模板抽取分享") for r in range(bottom - 1, bottom - MAX_SEARCH_ROW, -1): # 找到第一行非全白背景的行,此行内容是分享 if not np.all(img_array[r][LEFT_MOST:RIGHT_MOST] == bg_color): break if debug_fn: draw_bbox(img_array, (0, r, width - 1, r + 1), debug_fn + "-1.png") for r2 in range(r - 1, r - MAX_SEARCH_ROW, -1): if np.all(img_array[r2][LEFT_MOST:RIGHT_MOST] == bg_color): break if debug_fn: draw_bbox(img_array, (0, r2, width - 1, r2 + 1), debug_fn + "-2.png") # r2-r是分享行 share_arr = img_array[r2:r, :] share_img = Image.fromarray(share_arr) if ext_template: template_img = _extract_template(share_arr, debug_fn=debug_fn) else: template_img = None if debug_fn and template_img is not None: share_img.save(debug_fn + "-2-2.png") x, y = find_img(img_array, template_img, reverse=True) print("x={}, y={}".format(x, y)) return r2, template_img, share_img def extract_counts(is_fuwuhao, img_array, bottom, debug_fn=None, bg_color=None, template_img=None): if bg_color is None: bg_color = [255, 255, 255] height, width = img_array.shape[:2] if not is_fuwuhao or template_img is None: r2, template_img, share_img = _process_share_without_template(img_array, bottom, bg_color, debug_fn, width, is_fuwuhao) else: # 服务号并且template不为空 r2, share_img = _process_share_template(img_array, template_img, bottom, debug_fn) if r2 == -1: if debug_fn: print("can't find by template!!!") r2, template_img, share_img = _process_share_without_template(img_array, bottom, bg_color, debug_fn, width, False) text = ocr(share_img) star, share = _extract_share(text) for r3 in range(r2-1, r2-MAX_SEARCH_ROW, -1): if not np.all(img_array[r3][LEFT_MOST:RIGHT_MOST] == bg_color): break if debug_fn: draw_bbox(img_array, (0, r3, width - 1, r3 + 1), debug_fn + "-3.png") for r4 in range(r3-1, r3-MAX_SEARCH_ROW, -1): if
np.all(img_array[r4][LEFT_MOST:RIGHT_MOST] == bg_color)
numpy.all
import librosa from conv_stft import STFT import torch import numpy as np from torch.nn import MSELoss def _prepare_audio(input_audio, device): audio = torch.FloatTensor(input_audio) if len(audio.shape) < 2: audio = audio.unsqueeze(0) audio = audio.to(device) return audio def _prepare_network(device, win_len=1024, win_hop=512, fft_len=1024, window='hann'): stft = STFT( win_len=win_len, win_hop=win_hop, fft_len=fft_len, win_type=window ).to(device) return stft def _test_stft_on_signal(input_audio, atol, device): audio = _prepare_audio(input_audio, device) for i in range(10): fft_len = 2**i for j in range(i): win_hop = 2**j stft = _prepare_network(device, win_len=fft_len, win_hop=win_hop, fft_len=fft_len) output = stft(audio) output = output.cpu().data.numpy()[..., :] _audio = audio.cpu().data.numpy()[..., :] assert (np.mean((output - _audio) ** 2) < atol) def test_stft(): # White noise test_audio = [] seed = np.random.RandomState(0) x1 = seed.randn(2 ** 15) test_audio.append((x1, 1e-10)) # Sin wave x2 = np.sin(np.linspace(-np.pi, np.pi, 2 ** 15)) test_audio.append((x2, 1e-10)) # Music file x3 = librosa.load(librosa.util.example_audio_file(), duration=1.0)[0] test_audio.append((x3, 1e-10)) device = ['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu'] for x, atol in test_audio: for d in device: _test_stft_on_signal(x, atol, d) def test_against_librosa_stft(): audio = librosa.load(librosa.util.example_audio_file(), duration=10.0, offset=30)[0] for i in range(8, 12): filter_length = 2**i for j in range(4, i): hop_length = 2**j librosa_stft = librosa.stft(audio, n_fft=filter_length, hop_length=hop_length) _magnitude =
np.abs(librosa_stft)
numpy.abs
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import scipy import scipy.stats # BCES fitting # =============== def bces(y1,y1err,y2,y2err,cerr): """ Does the entire regression calculation for 4 slopes: OLS(Y|X), OLS(X|Y), bisector, orthogonal. Fitting form: Y=AX+B. Usage: >>> a,b,aerr,berr,covab=bces(x,xerr,y,yerr,cov) Output: - a,b : best-fit parameters a,b of the linear regression - aerr,berr : the standard deviations in a,b - covab : the covariance between a and b (e.g. for plotting confidence bands) Arguments: - x,y : data - xerr,yerr: measurement errors affecting x and y - cov : covariance between the measurement errors (all are arrays) v1 Mar 2012: ported from bces_regress.f. Added covariance output. <NAME> """ # Arrays holding the code main results for each method: # Elements: 0-Y|X, 1-X|Y, 2-bisector, 3-orthogonal a,b,avar,bvar,covarxiz,covar_ba=np.zeros(4),np.zeros(4),np.zeros(4),np.zeros(4),np.zeros(4),np.zeros(4) # Lists holding the xi and zeta arrays for each method above xi,zeta=[],[] # Calculate sigma's for datapoints using length of conf. intervals sig11var = np.mean( y1err**2 ) sig22var = np.mean( y2err**2 ) sig12var = np.mean( cerr ) # Covariance of Y1 (X) and Y2 (Y) covar_y1y2 = np.mean( (y1-y1.mean())*(y2-y2.mean()) ) # Compute the regression slopes a[0] = (covar_y1y2 - sig12var)/(y1.var() - sig11var) # Y|X a[1] = (y2.var() - sig22var)/(covar_y1y2 - sig12var) # X|Y a[2] = ( a[0]*a[1] - 1.0 + np.sqrt((1.0 + a[0]**2)*(1.0 + a[1]**2)) ) / (a[0]+a[1]) # bisector if covar_y1y2<0: sign = -1. else: sign = 1. a[3] = 0.5*((a[1]-(1./a[0])) + sign*np.sqrt(4.+(a[1]-(1./a[0]))**2)) # orthogonal # Compute intercepts for i in range(4): b[i]=y2.mean()-a[i]*y1.mean() # Set up variables to calculate standard deviations of slope/intercept xi.append( ( (y1-y1.mean()) * (y2-a[0]*y1-b[0]) + a[0]*y1err**2 ) / (y1.var()-sig11var) ) # Y|X xi.append( ( (y2-y2.mean()) * (y2-a[1]*y1-b[1]) - y2err**2 ) / covar_y1y2 ) # X|Y xi.append( xi[0] * (1.+a[1]**2)*a[2] / ((a[0]+a[1])*np.sqrt((1.+a[0]**2)*(1.+a[1]**2))) + xi[1] * (1.+a[0]**2)*a[2] / ((a[0]+a[1])*np.sqrt((1.+a[0]**2)*(1.+a[1]**2))) ) # bisector xi.append( xi[0] * a[3]/(a[0]**2*np.sqrt(4.+(a[1]-1./a[0])**2)) + xi[1]*a[3]/np.sqrt(4.+(a[1]-1./a[0])**2) ) # orthogonal for i in range(4): zeta.append( y2 - a[i]*y1 - y1.mean()*xi[i] ) for i in range(4): # Calculate variance for all a and b avar[i]=xi[i].var()/xi[i].size bvar[i]=zeta[i].var()/zeta[i].size # Sample covariance obtained from xi and zeta (paragraph after equation 15 in AB96) covarxiz[i]=np.mean( (xi[i]-xi[i].mean()) * (zeta[i]-zeta[i].mean()) ) # Covariance between a and b (equation after eq. 15 in AB96) covar_ab=covarxiz/y1.size return a,b,np.sqrt(avar),np.sqrt(bvar),covar_ab def bootstrap(v): """ Constructs Monte Carlo simulated data set using the Bootstrap algorithm. Usage: >>> bootstrap(x) where x is either an array or a list of arrays. If it is a list, the code returns the corresponding list of bootstrapped arrays assuming that the same position in these arrays map the same "physical" object. """ if type(v)==list: vboot=[] # list of boostrapped arrays n=v[0].size iran=scipy.random.randint(0,n,n) # Array of random indexes for x in v: vboot.append(x[iran]) else: # if v is an array, not a list of arrays n=v.size iran=scipy.random.randint(0,n,n) # Array of random indexes vboot=v[iran] return vboot def bcesboot(y1,y1err,y2,y2err,cerr,nsim=10000): """ Does the BCES with bootstrapping. Usage: >>> a,b,aerr,berr,covab=bcesboot(x,xerr,y,yerr,cov,nsim) :param x,y: data :param xerr,yerr: measurement errors affecting x and y :param cov: covariance between the measurement errors (all are arrays) :param nsim: number of Monte Carlo simulations (bootstraps) :returns: a,b -- best-fit parameters a,b of the linear regression :returns: aerr,berr -- the standard deviations in a,b :returns: covab -- the covariance between a and b (e.g. for plotting confidence bands) .. note:: this method is definitely not nearly as fast as bces_regress.f. Needs to be optimized. Maybe adapt the fortran routine using f2python? """ import tqdm print("Bootstrapping progress:") """ My convention for storing the results of the bces code below as matrixes for processing later are as follow: simulation-method y|x x|y bisector orthogonal sim0 ... Am = sim1 ... sim2 ... sim3 ... """ for i in tqdm.tqdm(range(nsim)): [y1sim,y1errsim,y2sim,y2errsim,cerrsim]=bootstrap([y1,y1err,y2,y2err,cerr]) asim,bsim,errasim,errbsim,covabsim=bces(y1sim,y1errsim,y2sim,y2errsim,cerrsim) if i==0: # Initialize the matrixes am,bm=asim.copy(),bsim.copy() else: am=np.vstack((am,asim)) bm=np.vstack((bm,bsim)) if True in np.isnan(am): am,bm=checkNan(am,bm) # Bootstrapping results a=np.array([ am[:,0].mean(),am[:,1].mean(),am[:,2].mean(),am[:,3].mean() ]) b=np.array([ bm[:,0].mean(),bm[:,1].mean(),bm[:,2].mean(),bm[:,3].mean() ]) # Error from unbiased sample variances erra,errb,covab=np.zeros(4),np.zeros(4),np.zeros(4) for i in range(4): erra[i]=np.sqrt( 1./(nsim-1) * ( np.sum(am[:,i]**2)-nsim*(am[:,i].mean())**2 )) errb[i]=np.sqrt( 1./(nsim-1) * ( np.sum(bm[:,i]**2)-nsim*(bm[:,i].mean())**2 )) covab[i]=1./(nsim-1) * ( np.sum(am[:,i]*bm[:,i])-nsim*am[:,i].mean()*bm[:,i].mean() ) return a,b,erra,errb,covab def checkNan(am,bm): """ Sometimes, if the dataset is very small, the regression parameters in some instances of the bootstrapped sample may have NaNs i.e. failed regression (I need to investigate this in more details). This method checks to see if there are NaNs in the bootstrapped fits and remove them from the final sample. """ import nmmn.lsd idel=nmmn.lsd.findnan(am[:,2]) print("Bootstrapping error: regression failed in",np.size(idel),"instances. They were removed.") return np.delete(am,idel,0),np.delete(bm,idel,0) # Methods which make use of parallelization # =========================================== def ab(x): """ This method is the big bottleneck of the parallel BCES code. That's the reason why I put these calculations in a separate method, in order to distribute this among the cores. In the original BCES method, this is inside the main routine. Argument: [y1,y1err,y2,y2err,cerr,nsim] where nsim is the number of bootstrapping trials sent to each core. :returns: am,bm : the matrixes with slope and intercept where each line corresponds to a bootrap trial and each column maps a different BCES method (ort, y|x etc). Be very careful and do not use lambda functions when calling this method and passing it to multiprocessing or ipython.parallel! I spent >2 hours figuring out why the code was not working until I realized the reason was the use of lambda functions. """ y1,y1err,y2,y2err,cerr,nsim=x[0],x[1],x[2],x[3],x[4],x[5] for i in range(int(nsim)): [y1sim,y1errsim,y2sim,y2errsim,cerrsim]=bootstrap([y1,y1err,y2,y2err,cerr]) asim,bsim,errasim,errbsim,covabsim=bces(y1sim,y1errsim,y2sim,y2errsim,cerrsim) if i==0: # Initialize the matrixes am,bm=asim.copy(),bsim.copy() else: am=np.vstack((am,asim)) bm=np.vstack((bm,bsim)) return am,bm def bcesp(y1,y1err,y2,y2err,cerr,nsim=10000): """ Parallel implementation of the BCES with bootstrapping. Divide the bootstraps equally among the threads (cores) of the machine. It will automatically detect the number of cores available. Usage: >>> a,b,aerr,berr,covab=bcesp(x,xerr,y,yerr,cov,nsim) :param x,y: data :param xerr,yerr: measurement errors affecting x and y :param cov: covariance between the measurement errors (all are arrays) :param nsim: number of Monte Carlo simulations (bootstraps) :returns: a,b - best-fit parameters a,b of the linear regression :returns: aerr,berr - the standard deviations in a,b :returns: covab - the covariance between a and b (e.g. for plotting confidence bands) .. seealso:: Check out ~/work/projects/playground/parallel python/bcesp.py for the original, testing, code. I deleted some line from there to make the "production" version. * v1 Mar 2012: serial version ported from bces_regress.f. Added covariance output. * v2 May 3rd 2012: parallel version ported from nemmen.bcesboot. .. codeauthor: <NAME> """ import time # for benchmarking import multiprocessing print("BCES,", nsim,"trials... ") tic=time.time() # Find out number of cores available ncores=multiprocessing.cpu_count() # We will divide the processing into how many parts? n=2*ncores """ Must create lists that will be distributed among the many cores with structure core1 <- [y1,y1err,y2,y2err,cerr,nsim/n] core2 <- [y1,y1err,y2,y2err,cerr,nsim/n] etc... """ pargs=[] # this is a list of lists! for i in range(n): pargs.append([y1,y1err,y2,y2err,cerr,nsim/n]) # Initializes the parallel engine pool = multiprocessing.Pool(processes=ncores) # multiprocessing package """ Each core processes ab(input) return matrixes Am,Bm with the results of nsim/n presult[i][0] = Am with nsim/n lines presult[i][1] = Bm with nsim/n lines """ presult=pool.map(ab, pargs) # multiprocessing pool.close() # close the parallel engine # vstack the matrixes processed from all cores i=0 for m in presult: if i==0: # Initialize the matrixes am,bm=m[0].copy(),m[1].copy() else: am=
np.vstack((am,m[0]))
numpy.vstack
from __future__ import division import pytest import datetime import numpy as np from numpy import pi, cos, sin from numpy.testing import assert_array_equal, assert_allclose import pyamps from pyamps.amps import AMPS, get_B_space, get_B_ground @pytest.fixture() def amps_model(model_coeff): model_args = [ 0.4, # v 100.6, # By 200.7, # Bz 0.11, # tilt 75.2 # F107 ] model_kwargs = dict( minlat=71.2, maxlat=85.1, height=90.1, dr=4, M0=8, resolution=21 ) try: model = AMPS(*model_args, **model_kwargs) except Exception: # allow test_init to fail instead model = None return model, model_args, model_kwargs class Test_AMPS(object): def test_init(self, amps_model): model, m_args, m_kwargs = amps_model model = AMPS(*m_args, **m_kwargs) model_vectors = pyamps.model_utils.get_model_vectors(*m_args) assert_allclose(model.tor_s, model_vectors[1]) assert_allclose(model.pol_c, model_vectors[2]) assert_array_equal(model.tor_keys, model_vectors[5]) assert model.N == 2 assert model.M == 2 assert model.plotgrid_scalar[0].shape == (m_kwargs['resolution'], m_kwargs['resolution']) def test_update_model(self, amps_model): model, m_args, m_kwargs = amps_model old_tor_c = model.tor_c.copy() m_args[0] += 1 model.update_model(*m_args) new_tor_c = model.tor_c with pytest.raises(AssertionError): assert_allclose(old_tor_c, new_tor_c, atol=1e-5) def test__get_vectorgrid(self, amps_model): model, _, _ = amps_model mlat, mlt = model._get_vectorgrid() mlat_, mlt_, mlt_res = pyamps.plot_utils.equal_area_grid(dr=model.dr, M0=model.M0) assert (np.abs(mlat) >= model.minlat).all() assert (-model.maxlat <= mlat).all() and (mlat <= model.maxlat).all() assert (0 <= mlt).all() and (mlt <= 24).all() assert mlat.shape == mlt.shape def test__get_scalargrid(self, amps_model): model, _, m_kwargs = amps_model resolution = m_kwargs['resolution'] + 1 mlat, mlt = model._get_scalargrid(resolution) assert model.scalar_resolution == resolution assert mlat.shape == mlt.shape assert mlat.shape == (2 * resolution**2, 1) assert (np.abs(mlat) >= model.minlat).all() assert (-model.maxlat <= mlat).all() and (mlat <= model.maxlat).all() assert (0 <= mlt).all() and (mlt <= 24).all() def test_calculate_matrices(self, amps_model): model, _, m_kwargs = amps_model assert model.tor_sinmphi_scalar.shape == (882, 5) assert model.pol_dP_vector.shape == (160, 5) assert_allclose(model.tor_sinmphi_vector[2], [0.000000, 0.471397, 0.000000, 0.471397, 0.831470],atol=1e-6) assert_allclose(model.pol_cosmphi_vector[0], [1.000000, 0.995185, 1.000000, 0.995185, 0.980785], atol=1e-6) assert_allclose(model.pol_P_scalar[1], [0.950489, 0.310759, 0.855143, 0.511601, 0.083633], atol=1e-6) assert_allclose(model.tor_dP_vector[5], [0.309017, -0.951057, 0.881678, -1.401259, -0.509037], atol=1e-6) @pytest.mark.parametrize("mlat, mlt", [(np.array([60.]), np.array([0.])), (np.array([71.]), np.array([6.]))]) def test_toroidal_scalar(self, amps_model, mlat, mlt): model, _, m_kwargs = amps_model mlt2r = np.pi / 12 P, dP = pyamps.sh_utils.legendre(model.N, model.M, 90 - mlat) T = 0 for i, (n, m) in enumerate(model.keys_T): T += P[n, m] * (model.tor_c[i] * cos(m * mlt * mlt2r) + model.tor_s[i] * sin(m * mlt * mlt2r)) assert_allclose(T, model.get_toroidal_scalar(mlat, mlt)) assert_allclose(np.split(model.get_toroidal_scalar(), 2)[0], model.get_toroidal_scalar(*model.plotgrid_scalar)) pass @pytest.mark.parametrize("mlat, mlt", [(np.array([60.]), np.array([0.])), (np.array([71.]), np.array([6.]))]) def test_poloidal_scalar(self, amps_model, mlat, mlt): model, _, m_kwargs = amps_model mlt2r = pi / 12 REFRE = 6371.2 P, dP = pyamps.sh_utils.legendre(model.N, model.M, 90 - mlat) V = 0 for i, (n, m) in enumerate(model.keys_P): V += (REFRE / (REFRE + m_kwargs['height']))**(n + 1) * P[n, m] * ( model.pol_c[i] * cos(m * mlt * mlt2r) + model.pol_s[i] * sin(m * mlt * mlt2r)) V *= REFRE assert_allclose(V, model.get_poloidal_scalar(mlat, mlt)) assert_allclose(np.split(model.get_poloidal_scalar(), 2)[0], model.get_poloidal_scalar(*model.plotgrid_scalar)) pass @pytest.mark.parametrize("mlat, mlt", [(np.array([[60.]]), np.array([[0.]])), (np.array([[71.]]), np.array([[6.]]))]) def test_get_divergence_free_current_function(self, amps_model, mlat, mlt): model, _, m_kwargs = amps_model mlt2r = pi / 12 REFRE = 6371.2 MU0 = pi * 4e-7 P, dP = pyamps.sh_utils.legendre(model.N, model.M, 90 - mlat) Psi = 0 for i, (n, m) in enumerate(model.keys_P): Psi += (REFRE / (REFRE + m_kwargs['height']))**(n + 1) \ * (2 * n + 1) / n * P[n, m] * ( model.pol_c[i] * cos(m * mlt * mlt2r) + model.pol_s[i] * sin(m * mlt * mlt2r)) Psi *= -REFRE / MU0 * 1e-9 assert_allclose(Psi, model.get_divergence_free_current_function(mlat, mlt)) assert_allclose(np.split(model.get_divergence_free_current_function(), 2)[0].reshape( m_kwargs['resolution'],m_kwargs['resolution']), model.get_divergence_free_current_function(*model.plotgrid_scalar)) pass @pytest.mark.parametrize("mlat, mlt", [(
np.array([[60.]])
numpy.array
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset import faiss from transformers.configuration_bart import BartConfig from transformers.configuration_dpr import DPRConfig from transformers.configuration_rag import RagConfig from transformers.retrieval_rag import CustomHFIndex, RagRetriever from transformers.testing_utils import ( require_datasets, require_faiss, require_sentencepiece, require_tokenizers, require_torch, ) from transformers.tokenization_bart import BartTokenizer from transformers.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.tokenization_dpr import DPRQuestionEncoderTokenizer from transformers.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES @require_faiss @require_datasets class RagRetrieverTest(TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() self.retrieval_vector_size = 8 # DPR tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer") os.makedirs(dpr_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer") os.makedirs(bart_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) def get_bart_tokenizer(self) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) def get_dummy_dataset(self): dataset = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)], } ) dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT) return dataset def get_dummy_canonical_hf_index_retriever(self): dataset = self.get_dummy_dataset() config = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), ) with patch("transformers.retrieval_rag.load_dataset") as mock_load_dataset: mock_load_dataset.return_value = dataset retriever = RagRetriever( config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) return retriever def get_dummy_custom_hf_index_retriever(self, from_disk: bool): dataset = self.get_dummy_dataset() config = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name="custom", ) if from_disk: config.passages_path = os.path.join(self.tmpdirname, "dataset") config.index_path = os.path.join(self.tmpdirname, "index.faiss") dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss")) dataset.drop_index("embeddings") dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset")) del dataset retriever = RagRetriever( config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) else: retriever = RagRetriever( config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), index=CustomHFIndex(config.retrieval_vector_size, dataset), ) return retriever def get_dummy_legacy_index_retriever(self): dataset = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1), 2 * np.ones(self.retrieval_vector_size + 1)], } ) dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT) index_file_name = os.path.join(self.tmpdirname, "hf_bert_base.hnswSQ8_correct_phi_128.c_index") dataset.save_faiss_index("embeddings", index_file_name + ".index.dpr") pickle.dump(dataset["id"], open(index_file_name + ".index_meta.dpr", "wb")) passages_file_name = os.path.join(self.tmpdirname, "psgs_w100.tsv.pkl") passages = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(passages, open(passages_file_name, "wb")) config = RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name="legacy", index_path=self.tmpdirname, ) retriever = RagRetriever( config, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer() ) return retriever def test_canonical_hf_index_retriever_retrieve(self): n_docs = 1 retriever = self.get_dummy_canonical_hf_index_retriever() hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(doc_dicts), 2) self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]), n_docs) self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]]) def test_canonical_hf_index_retriever_save_and_from_pretrained(self): retriever = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.retrieval_rag.load_dataset") as mock_load_dataset: mock_load_dataset.return_value = self.get_dummy_dataset() retriever.save_pretrained(tmp_dirname) retriever = RagRetriever.from_pretrained(tmp_dirname) self.assertIsInstance(retriever, RagRetriever) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) out = retriever.retrieve(hidden_states, n_docs=1) self.assertTrue(out is not None) def test_custom_hf_index_retriever_retrieve(self): n_docs = 1 retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32 ) retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size)) self.assertEqual(len(doc_dicts), 2) self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"]) self.assertEqual(len(doc_dicts[0]["id"]), n_docs) self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]]) def test_custom_hf_index_retriever_save_and_from_pretrained(self): retriever = self.get_dummy_custom_hf_index_retriever(from_disk=False) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(tmp_dirname) retriever = RagRetriever.from_pretrained(tmp_dirname) self.assertIsInstance(retriever, RagRetriever) hidden_states = np.array( [np.ones(self.retrieval_vector_size), -
np.ones(self.retrieval_vector_size)
numpy.ones
import dask.array as da import numpy as np import pytest from skimage import set_backend from skimage import filters from uskimage_demo import dask_backend modes = ['wrap', 'reflect', 'nearest', 'mirror', 'constant'] @pytest.mark.parametrize('channel_axis', [None, 0, -1]) @pytest.mark.parametrize('coerce_input', [False, True]) @pytest.mark.parametrize('dask_input', [False, True]) @pytest.mark.parametrize('mode', modes) def test_gaussian(channel_axis, coerce_input, dask_input, mode): image = np.random.randn(1024, 512) chunks = (256, 256) if channel_axis is not None: n_channels = 3 image = np.stack((image,) * n_channels, axis=channel_axis) chunks = list(chunks) chunks.insert(channel_axis % image.ndim, n_channels) chunks = tuple(chunks) sigma = (1.5, 1.0) expected_output = filters.gaussian( image, sigma=sigma, mode=mode, channel_axis=channel_axis) if dask_input: image = da.asarray(image, chunks=chunks) only = (coerce_input == True or dask_input == True) with set_backend(dask_backend, coerce=coerce_input, only=only): out = filters.gaussian(image, mode=mode, sigma=sigma, channel_axis=channel_axis) if dask_input or coerce_input: assert isinstance(out, da.Array) if dask_input: assert out.chunksize == chunks out = out.compute() assert isinstance(out, np.ndarray) np.testing.assert_allclose(expected_output, out) @pytest.mark.parametrize('channel_axis', [None, 0, -1]) @pytest.mark.parametrize('coerce_input', [False, ]) @pytest.mark.parametrize('dask_input', [False, True]) @pytest.mark.parametrize('mode', ['reflect']) def test_difference_of_gaussians(channel_axis, coerce_input, dask_input, mode): image =
np.random.randn(1024, 512)
numpy.random.randn
""" Function and classes used to identify barcodes """ from typing import * import pandas as pd import numpy as np import pickle import logging from sklearn.neighbors import NearestNeighbors # from pynndescent import NNDescent from pathlib import Path from itertools import groupby from pysmFISH.logger_utils import selected_logger from pysmFISH.data_models import Output_models from pysmFISH.errors import Registration_errors class simplify_barcodes_reference(): """Utility Class use to convert excels files with codebook info in smaller size pandas dataframe/parquet files to pass to dask workers during the processing. This utility function must be run before running the experiment analysis. The pipeline require the output of this function. """ def __init__(self, barcode_fpath: str): """Class initialization Args: barcode_fpath (str): Path to the xlsx file with the codebook """ self.barcode_fpath = Path(barcode_fpath) self.barcode_fname = self.barcode_fpath.stem @staticmethod def format_codeword(codeword: str): """[summary] Args: codeword (str): codeword representing a gene Returns: byte: codeword converted in byte representation """ str_num = codeword.split('[')[-1].split(']')[0] converted_codeword = np.array([int(el) for el in list(str_num)]).astype(np.int8) converted_codeword = converted_codeword.tobytes() return converted_codeword def convert_codebook(self): used_gene_codebook_df = pd.read_excel(self.barcode_fpath) # used_gene_codebook_df = pd.read_parquet(self.barcode_fpath) self.codebook_df = used_gene_codebook_df.loc[:,['Barcode','Gene']] self.codebook_df.rename(columns = {'Barcode':'Code'}, inplace = True) self.codebook_df.Code = self.codebook_df.Code.apply(lambda x: self.format_codeword(x)) self.codebook_df.to_parquet(self.barcode_fpath.parent / (self.barcode_fname + '.parquet')) def dots_hoods(coords: np.ndarray,pxl: int)->np.ndarray: """Function that calculate the coords of the peaks searching neighborhood for identifying the barcodes. Args: coords (np.ndarray): coords of the identified peaks pxl (int): size of the neighborhood in pixel Returns: np.ndarray: coords that define the neighborhood (r_tl,r_br,c_tl,c_tr) """ r_tl = coords[:,0]-pxl r_br = coords[:,0]+pxl c_tl = coords[:,1]-pxl c_tr = coords[:,1]+pxl r_tl = r_tl[:,np.newaxis] r_br = r_br[:,np.newaxis] c_tl = c_tl[:,np.newaxis] c_tr = c_tr[:,np.newaxis] chunks_coords = np.hstack((r_tl,r_br,c_tl,c_tr)) chunks_coords = chunks_coords.astype(int) return chunks_coords def extract_dots_images(barcoded_df: pd.DataFrame,registered_img_stack: np.ndarray, experiment_fpath: str, metadata: dict): """Function used to extract the images corresponding to a barcode after running the decoding identification. It can save the images but to avoid increasing too much the space occupied by a processed experiment an array with the maximum intensity value of the pxl in each round is calculated and saved Args: barcoded_df (pd.DataFrame): Dataframe with decoded barcodes for a specific field of view. registered_img_stack (np.ndarray): Preprocessed image of a single field of view the imaging round correspond to the z-stack position experiment_fpath (str): Path to the folder of the experiment to process metadata (dict): Overall experiment info """ round_intensity_labels = ['bit_' + str(el) +'_intensity' for el in np.arange(1,int(metadata['total_rounds'])+1)] if isinstance(registered_img_stack, np.ndarray) and (barcoded_df.shape[0] >1): experiment_fpath = Path(experiment_fpath) barcodes_names = barcoded_df['barcode_reference_dot_id'].values coords = barcoded_df.loc[:, ['r_px_registered', 'c_px_registered']].to_numpy() barcodes_extraction_resolution = barcoded_df['barcodes_extraction_resolution'].values[0] chunks_coords = dots_hoods(coords,barcodes_extraction_resolution) chunks_coords[chunks_coords<0]=0 chunks_coords[chunks_coords>registered_img_stack.shape[1]]= registered_img_stack.shape[1] for idx in np.arange(chunks_coords.shape[0]): selected_region = registered_img_stack[:,chunks_coords[idx,0]:chunks_coords[idx,1]+1,chunks_coords[idx,2]:chunks_coords[idx,3]+1] if selected_region.size >0: max_array = selected_region.max(axis=(1,2)) barcoded_df.loc[barcoded_df.dot_id == barcodes_names[idx],round_intensity_labels] = max_array # for channel in channels: # all_regions[channel] = {} # all_max[channel] = {} # img_stack = registered_img_stack[channel] # trimmed_df_channel = trimmed_df.loc[trimmed_df.channel == channel] # if trimmed_df_channel.shape[0] >0: # barcodes_names = trimmed_df_channel['barcode_reference_dot_id'].values # coords = trimmed_df_channel.loc[:, ['r_px_registered', 'c_px_registered']].to_numpy() # barcodes_extraction_resolution = trimmed_df_channel['barcodes_extraction_resolution'].values[0] # chunks_coords = dots_hoods(coords,barcodes_extraction_resolution) # chunks_coords[chunks_coords<0]=0 # chunks_coords[chunks_coords>img_stack.shape[1]]= img_stack.shape[1] # for idx in np.arange(chunks_coords.shape[0]): # selected_region = img_stack[:,chunks_coords[idx,0]:chunks_coords[idx,1]+1,chunks_coords[idx,2]:chunks_coords[idx,3]+1] # if selected_region.size >0: # max_array = selected_region.max(axis=(1,2)) # # all_regions[channel][barcodes_names[idx]]= selected_region # all_max[channel][barcodes_names[idx]]= max_array # barcoded_df.loc[barcoded_df.dot_id == barcodes_names[idx],round_intensity_labels] = max_array # fpath = experiment_fpath / 'tmp' / 'combined_rounds_images' / (experiment_name + '_' + channel + '_img_dict_fov_' + str(fov) + '.pkl') # pickle.dump(all_regions,open(fpath,'wb')) # fpath = experiment_fpath / 'results' / (experiment_name + '_barcodes_max_array_dict_fov_' + str(fov) + '.pkl') # pickle.dump(all_max,open(fpath,'wb')) else: barcoded_df.loc[:,round_intensity_labels] = np.nan return barcoded_df def identify_flipped_bits(codebook: pd.DataFrame, gene: str, raw_barcode: ByteString)-> Tuple[ByteString, ByteString]: """Utility function used to identify the position of the bits that are flipped after the nearest neighbors and the definition of the acceptable hamming distance for a single dot. Args: codebook (pd.DataFrame): Codebook used for the decoding gene (str): Name of the gene identified raw_barcode (ByteString): identifide barcode from the images Returns: Tuple[ByteString, ByteString]: (flipped_position, flipping_direction) """ gene_barcode_str =codebook.loc[codebook.Gene == gene, 'Code'].values[0] gene_barcode = np.frombuffer(gene_barcode_str, np.int8) raw_barcode = np.frombuffer(raw_barcode, np.int8) flipped_positions = np.where(raw_barcode != gene_barcode)[0].astype(np.int8) flipping_directions = (gene_barcode[flipped_positions] - raw_barcode[flipped_positions]).astype(np.int8) # flipped_positions = flipped_positions.tobytes() # flipping_directions = flipping_directions.tobytes() return flipped_positions,flipping_directions def define_flip_direction(codebook_dict: dict,experiment_fpath: str, output_df: pd.DataFrame): """Function used to determinethe the position of the bits that are flipped after the nearest neighbors and the definition of the acceptable hamming distance for fov. Args: codebook (dict): Codebooks used for the decoding experiment_fpath (str): Path to the folder of the experiment to process output_df (pd.DataFrame): Dataframe with the decoded results for the specific fov. """ if output_df.shape[0] > 1: correct_hamming_distance = 0 selected_hamming_distance = 3 / output_df.iloc[0].barcode_length experiment_fpath = Path(experiment_fpath) experiment_name = experiment_fpath.stem channels = codebook_dict.keys() all_evaluated = [] for channel in channels: codebook = codebook_dict[channel] fov = output_df.fov_num.values[0] trimmed_df = output_df.loc[(output_df.dot_id == output_df.barcode_reference_dot_id) & (output_df.channel == channel) & (output_df['hamming_distance'] > correct_hamming_distance) & (output_df['hamming_distance'] < selected_hamming_distance), ['barcode_reference_dot_id', 'decoded_genes', 'raw_barcodes','hamming_distance']] trimmed_df = trimmed_df.dropna(subset=['decoded_genes']) trimmed_df.loc[:,('flip_and_direction')] = trimmed_df.apply(lambda x: identify_flipped_bits(codebook,x.decoded_genes,x.raw_barcodes),axis=1) trimmed_df['flip_position'] = trimmed_df['flip_and_direction'].apply(lambda x: x[0]) trimmed_df['flip_direction'] = trimmed_df['flip_and_direction'].apply(lambda x: x[1]) trimmed_df.drop(columns=['flip_and_direction'],inplace=True) all_evaluated.append(trimmed_df) all_evaluated = pd.concat(all_evaluated,axis=0,ignore_index=True,inplace=True) fpath = experiment_fpath / 'results' / (experiment_name + '_' + channel + '_df_flip_direction_fov' + str(fov) + '.parquet') all_evaluated.to_parquet(fpath) # return trimmed_df def chunk_dfs(dataframes_list: list, chunk_size: int): """ Functions modified from https://stackoverflow.com/questions/45217120/how-to-efficiently-join-merge-concatenate-large-data-frame-in-pandas yields n dataframes at a time where n == chunksize """ dfs = [] for f in dataframes_list: dfs.append(f) if len(dfs) == chunk_size: yield dfs dfs = [] if dfs: yield dfs def merge_with_concat(dfs: list)->pd.DataFrame: """Utility function used to merge dataframes Args: dsf (list): List with the dataframe to merge Returns: pd.DataFrame: Merged dataframe """ # dfs = (df.set_index(col, drop=True) for df in dfs) merged = pd.concat(dfs, axis=0, join='outer', copy=False) return merged """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def extract_barcodes_NN_fast_multicolor(registered_counts_df: pd.DataFrame, analysis_parameters: Dict, codebook_df: pd.DataFrame, metadata:dict)-> Tuple[pd.DataFrame,pd.DataFrame]: """Function used to extract the barcodes from the registered counts using nearest neighbour. if there is a problem with the registration the barcode assigned will be 0*barcode_length Args: registered_counts_df (pd.Dataframe): Fov counts after registration analysis_parameters (Dict): Parameters for data processing codebook_df (pd.DataFrame): codebook used to deconvolve the barcode Returns: Tuple[pd.DataFrame,pd.DataFrame]: (barcoded_round, all_decoded_dots_df) """ logger = selected_logger() barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] barcode_length = metadata['barcode_length'] registration_errors = Registration_errors() stitching_channel = metadata['stitching_channel'] registered_counts_df.dropna(subset=['dot_id'],inplace=True) # Starting level for selection of dots dropping_counts = registered_counts_df.copy(deep=True) all_decoded_dots_list = [] barcoded_round = [] if registered_counts_df['r_px_registered'].isnull().values.any(): all_decoded_dots_df = pd.DataFrame(columns = registered_counts_df.columns) all_decoded_dots_df['decoded_genes'] = np.nan all_decoded_dots_df['hamming_distance'] = np.nan all_decoded_dots_df['number_positive_bits'] = np.nan all_decoded_dots_df['barcode_reference_dot_id'] = np.nan all_decoded_dots_df['raw_barcodes'] = np.nan all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution # Save barcoded_round and all_decoded_dots_df return registered_counts_df, all_decoded_dots_df else: for ref_round_number in np.arange(1,barcode_length+1): #ref_round_number = 1 reference_round_df = dropping_counts.loc[dropping_counts.round_num == ref_round_number,:] # Step one (all dots not in round 1) compare_df = dropping_counts.loc[dropping_counts.round_num!=ref_round_number,:] if (not reference_round_df.empty): if not compare_df.empty: nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_round_df[['r_px_registered','c_px_registered']]) dists, indices = nn.kneighbors(compare_df[['r_px_registered','c_px_registered']], return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_distances_below_resolution = np.where(dists <= barcodes_extraction_resolution)[0] comp_idx = idx_distances_below_resolution ref_idx = indices[comp_idx].flatten() # Subset the dataframe according to the selected points # The reference selected will have repeated points comp_selected_df = compare_df.iloc[comp_idx] ref_selected_df = reference_round_df.iloc[ref_idx] # The size of ref_selected_df w/o duplicates may be smaller of reference_round_df if # some of the dots in reference_round_df have no neighbours # Test approach where we get rid of the single dots comp_selected_df.loc[:,'barcode_reference_dot_id'] = ref_selected_df['dot_id'].values ref_selected_df_no_duplicates = ref_selected_df.drop_duplicates() ref_selected_df_no_duplicates.loc[:,'barcode_reference_dot_id'] = ref_selected_df_no_duplicates['dot_id'].values # Collect singletons # Remeber that this method works only because there are no duplicates inside the dataframes # https://stackoverflow.com/questions/48647534/python-pandas-find-difference-between-two-data-frames if reference_round_df.shape[0] > ref_selected_df_no_duplicates.shape[0]: singletons_df = pd.concat([reference_round_df,ref_selected_df_no_duplicates]).drop_duplicates(keep=False) singletons_df.loc[:,'barcode_reference_dot_id'] = singletons_df['dot_id'].values barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates,singletons_df], axis=0,ignore_index=False) else: barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates], axis=0,ignore_index=False) # barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates,singletons_df], axis=0,ignore_index=False) barcoded_round_grouped = barcoded_round.groupby('barcode_reference_dot_id') compare_df = compare_df.drop(comp_selected_df.index) dropping_counts = compare_df else: # Collecting singleton of last bit reference_round_df.loc[:,'barcode_reference_dot_id'] = reference_round_df['dot_id'].values barcoded_round_grouped = reference_round_df.groupby('barcode_reference_dot_id') ref_selected_df_no_duplicates = reference_round_df for brdi, grp in barcoded_round_grouped: barcode = np.zeros([barcode_length],dtype=np.int8) barcode[grp.round_num.values.astype(np.int8)-1] = 1 #hamming_dist, index_gene = nn_sklearn.kneighbors(barcode.reshape(1, -1), return_distance=True) #gene= codebook_df.loc[index_gene.reshape(index_gene.shape[0]),'Gene'].tolist() barcode = barcode.tostring() if len(ref_selected_df_no_duplicates) != 0: ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'raw_barcodes'] = barcode #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'decoded_gene_name'] = gene #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'hamming_distance'] = hamming_dist.flatten()[0] #fish_counts.loc[grp.index,'barcode_reference_dot_id'] = brdi #fish_counts.loc[grp.index,'raw_barcodes'] = barcode #dists, index = nn_sklearn.kneighbors(all_barcodes, return_distance=True) all_decoded_dots_list.append(ref_selected_df_no_duplicates) if all_decoded_dots_list: all_decoded_dots_df = pd.concat(all_decoded_dots_list,ignore_index=False) codebook_df = convert_str_codebook(codebook_df,'Code') codebook_array = make_codebook_array(codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) all_barcodes = np.vstack(all_decoded_dots_df.raw_barcodes.map(lambda x: np.frombuffer(x, np.int8)).values) dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() all_decoded_dots_df.loc[:,'decoded_genes'] = genes all_decoded_dots_df.loc[:,'hamming_distance'] = dists_arr all_decoded_dots_df.loc[:,'number_positive_bits'] = all_barcodes.sum(axis=1) all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution else: all_decoded_dots_df = pd.DataFrame(columns = registered_counts_df.columns) all_decoded_dots_df['decoded_genes'] = np.nan all_decoded_dots_df['hamming_distance'] = np.nan all_decoded_dots_df['number_positive_bits'] = np.nan all_decoded_dots_df['barcode_reference_dot_id'] = np.nan all_decoded_dots_df['raw_barcodes'] = np.nan all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution # Save barcoded_round and all_decoded_dots_df return barcoded_round, all_decoded_dots_df # TODO Remove all the functions below ######## ------------------------------------------------------------------- class extract_barcodes_NN(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df,file_tags,status:str): self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = experiment_config['Barcode_length'] self.counts = counts self.logger = selected_logger() self.codebook_df = codebook_df self.file_tags = file_tags self.status = status self.registration_errors = Registration_errors() @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan # ref_idx = indices[idx_selected_coords_compare] # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x:
np.frombuffer(x, np.int8)
numpy.frombuffer
from __future__ import print_function, division import unittest, numpy as np from pyscf import gto, tddft, scf from pyscf.nao import bse_iter from pyscf.nao import polariz_freq_osc_strength from pyscf.data.nist import HARTREE2EV class KnowValues(unittest.TestCase): def test_0147_bse_h2o_rks_pz(self): """ Interacting case """ mol=gto.M(verbose=0,atom='O 0 0 0;H 0 0.489 1.074;H 0 0.489 -1.074',basis='cc-pvdz',) gto_hf = scf.RKS(mol) gto_hf.kernel() gto_td = tddft.TDDFT(gto_hf) gto_td.nstates = 95 gto_td.kernel() omegas =
np.arange(0.0, 2.0, 0.01)
numpy.arange
#!/usr/bin/python ######################################################################################################################## # # Copyright (c) 2014, Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ######################################################################################################################## """ADC library """ import laygo import numpy as np import os #import logging;logging.basicConfig(level=logging.DEBUG) def generate_tap(laygen, objectname_pfix, placement_grid, routing_grid_m1m2_thick, devname_tap_boundary, devname_tap_body, m=1, origin=np.array([0,0]), transform='R0'): """generate a tap primitive""" pg = placement_grid rg_m1m2_thick = routing_grid_m1m2_thick # placement itapbl0 = laygen.place("I" + objectname_pfix + 'BL0', devname_tap_boundary, pg, xy=origin, transform=transform) itap0 = laygen.relplace(name = "I" + objectname_pfix + '0', templatename = devname_tap_body, gridname = pg, refinstname = itapbl0.name, shape=np.array([m, 1]), transform=transform) itapbr0 = laygen.relplace(name = "I" + objectname_pfix + 'BR0', templatename = devname_tap_boundary, gridname = pg, refinstname = itap0.name, transform=transform) #power route laygen.route(None, laygen.layers['metal'][2], xy0=np.array([0, 0]), xy1=np.array([0, 0]), gridname0=rg_m1m2_thick, refinstname0=itap0.name, refpinname0='TAP0', refinstindex0=np.array([0, 0]), refinstname1=itap0.name, refpinname1='TAP1', refinstindex1=np.array([m-1, 0]) ) for i in range(1-1, int(m/2)+0): laygen.via(None, np.array([0, 0]), refinstname=itap0.name, refpinname='TAP0', refinstindex=np.array([2*i, 0]), gridname=rg_m1m2_thick) return [itapbl0, itap0, itapbr0] def generate_boundary(laygen, objectname_pfix, placement_grid, devname_bottom, devname_top, devname_left, devname_right, shape_bottom=None, shape_top=None, shape_left=None, shape_right=None, transform_bottom=None, transform_top=None, transform_left=None, transform_right=None, origin=np.array([0, 0])): #generate a boundary structure to resolve boundary design rules pg = placement_grid #parameters if shape_bottom == None: shape_bottom = [np.array([1, 1]) for d in devname_bottom] if shape_top == None: shape_top = [np.array([1, 1]) for d in devname_top] if shape_left == None: shape_left = [np.array([1, 1]) for d in devname_left] if shape_right == None: shape_right = [np.array([1, 1]) for d in devname_right] if transform_bottom == None: transform_bottom = ['R0' for d in devname_bottom] if transform_top == None: transform_top = ['R0' for d in devname_top] if transform_left == None: transform_left = ['R0' for d in devname_left] if transform_right == None: transform_right = ['R0' for d in devname_right] #bottom dev_bottom=[] dev_bottom.append(laygen.place("I" + objectname_pfix + 'BNDBTM0', devname_bottom[0], pg, xy=origin, shape=shape_bottom[0], transform=transform_bottom[0])) for i, d in enumerate(devname_bottom[1:]): dev_bottom.append(laygen.relplace(name = "I" + objectname_pfix + 'BNDBTM'+str(i+1), templatename = d, gridname = pg, refinstname = dev_bottom[-1].name, shape=shape_bottom[i+1], transform=transform_bottom[i+1])) dev_left=[] dev_left.append(laygen.relplace(name = "I" + objectname_pfix + 'BNDLFT0', templatename = devname_left[0], gridname = pg, refinstname = dev_bottom[0].name, direction='top', shape=shape_left[0], transform=transform_left[0])) for i, d in enumerate(devname_left[1:]): dev_left.append(laygen.relplace(name = "I" + objectname_pfix + 'BNDLFT'+str(i+1), templatename = d, gridname = pg, refinstname = dev_left[-1].name, direction='top', shape=shape_left[i+1], transform=transform_left[i+1])) dev_right=[] dev_right.append(laygen.relplace(name = "I" + objectname_pfix + 'BNDRHT0', templatename = devname_right[0], gridname = pg, refinstname = dev_bottom[-1].name, direction='top', shape=shape_right[0], transform=transform_right[0])) for i, d in enumerate(devname_right[1:]): dev_right.append(laygen.relplace(name = "I" + objectname_pfix + 'BNDRHT'+str(i+1), templatename = d, gridname = pg, refinstname = dev_right[-1].name, direction='top', shape=shape_right[i+1], transform=transform_right[i+1])) dev_top=[] dev_top.append(laygen.relplace(name = "I" + objectname_pfix + 'BNDTOP0', templatename = devname_top[0], gridname = pg, refinstname = dev_left[-1].name, direction='top', shape=shape_top[0], transform=transform_top[0])) for i, d in enumerate(devname_top[1:]): dev_top.append(laygen.relplace(name = "I" + objectname_pfix + 'BNDTOP'+str(i+1), templatename = d, gridname = pg, refinstname = dev_top[-1].name, shape=shape_top[i+1], transform=transform_top[i+1])) #dev_right=[] return [dev_bottom, dev_top, dev_left, dev_right] def generate_clkdis_cell(laygen, objectname_pfix, logictemp_lib, working_lib, grid, origin=np.array([0, 0]), num_bits=5, phy_width=20.16, num_capsw_dmy=10, num_dff_dmy=90, len_cal=30, len_capsw=10, m_clki=2, y1_clki=5, y2_clki=10, m_clko=2, y1_clko=25, y2_clko=10, num_vss_vleft=2, num_vdd_vleft=2, num_vss_vright=3, num_vdd_vright=3, num_vss_h=4, num_vdd_h=4, m_tgate=4, m_dff=2, m_inv1=2, m_inv2=4): """generate cap driver """ pg = grid['pg'] rg_m1m2 = grid['rg_m1m2'] rg_m1m2_thick = grid['rg_m1m2_thick'] rg_m2m3 = grid['rg_m2m3'] rg_m2m3_thick = grid['rg_m2m3_thick'] rg_m2m3_thick2 = grid['rg_m2m3_thick2'] rg_m3m4 = grid['rg_m3m4'] rg_m3m4_dense = grid['rg_m3m4_dense'] rg_m3m4_thick2 = grid['rg_m3m4_thick2'] rg_m4m5 = grid['rg_m4m5'] rg_m5m6 = grid['rg_m5m6'] rg_m6m7 = grid['rg_m6m7'] ''' phy_width = 20.16 #in um num_capsw_dmy = 10 #capsw left dummy number num_dff_dmy = 90 #dff left dummy number len_cal = 30 #calibration input length len_capsw = 10 #cap control output length #clock input m_clki = 2 y1_clki = 5 y2_clki = 10 #clock output m_clko = 2 y1_clko = 25 y2_clko = 10 #virtically vss and vdd metals num_vss_vleft = 2 num_vdd_vleft = 2 num_vss_vright = 3 num_vdd_vright = 3 ''' m_in=3 m_out=3 #Get width for pg grid width =laygen.grids.get_absgrid_coord_x(gridname=pg, x=phy_width) #Half width, using for clock put output at the center of the cell half_width=width/2 #####Place Boundary #Calculate size of boundary cell bnd_left_size_x = laygen.get_xy(obj=laygen.get_template(name='nmos4_fast_left', libname=tech + '_microtemplates_dense'), gridname=pg)[0] bnd_right_size_x = laygen.get_xy(obj=laygen.get_template(name='nmos4_fast_right', libname=tech + '_microtemplates_dense'), gridname=pg)[0] tap4_size_x = laygen.get_xy(obj=laygen.get_template(name='ptap_fast_space_nf4', libname=tech + '_microtemplates_dense'), gridname=pg)[0] #Caluclate number of top and bottom cells bnd_m = width - bnd_left_size_x - bnd_right_size_x ##This is all the numbe of the cells, using a lot in code!! #print(bnd_m) [bnd_bottom, bnd_top, bnd_left, bnd_right]=generate_boundary(laygen, objectname_pfix='BND0', placement_grid=pg, devname_bottom = ['boundary_bottomleft', 'boundary_bottom', 'boundary_bottomright'], shape_bottom = [np.array([1, 1]), np.array([bnd_m, 1]), np.array([1, 1])], devname_top = ['boundary_topleft', 'boundary_top', 'boundary_topright'], shape_top = [np.array([1, 1]), np.array([bnd_m, 1]), np.array([1, 1])], devname_left = ['ptap_fast_left', 'nmos4_fast_left', 'pmos4_fast_left', 'ntap_fast_left', 'pmos4_fast_left', 'nmos4_fast_left', 'ptap_fast_left', ], transform_left=['R0', 'R0', 'R0', 'MX', 'MX', 'MX', 'MX', ], devname_right=['ptap_fast_right', 'nmos4_fast_right', 'pmos4_fast_right', 'ntap_fast_right', 'pmos4_fast_right', 'nmos4_fast_right', 'ptap_fast_right',], transform_right = ['R0', 'R0', 'R0', 'MX', 'MX', 'MX', 'MX',], origin=np.array([0, 0])) #####Placing all the rows ##Bottom ptap row ptap0_0 = laygen.relplace(name='I'+objectname_pfix+'PTAP0_0', templatename='ptap_fast_space_nf4', gridname=pg, refinstname=bnd_left[0].name, template_libname=tech+'_microtemplates_dense') ptap0_1= laygen.relplace(name='I'+objectname_pfix+'PTAP0_1', templatename='ptap_fast_center_nf1', gridname=pg, refinstname=ptap0_0.name, template_libname=tech+'_microtemplates_dense', shape=np.array([bnd_m-2*tap4_size_x, 1])) ptap0_2 = laygen.relplace(name='I'+objectname_pfix+'PTAP0_2', templatename='ptap_fast_space_nf4', gridname=pg, refinstname=ptap0_1.name, template_libname=tech+'_microtemplates_dense') ##CAP switch row #Calculate coodinate of sw_dmy0 bnd_left_1_y=laygen.get_xy(obj =bnd_left[1], gridname=pg)[1] #y coodinate sw_dmy_xy=np.array([bnd_left_size_x, bnd_left_1_y]) #xy coodinate #Place sw_dmy0 and capsw0 sw_dmy0= laygen.place(name='I'+objectname_pfix+'SWDM0', templatename='space_1x', gridname=pg, xy=sw_dmy_xy, template_libname=logictemp_lib, shape=np.array([num_capsw_dmy, 1])) capsw0=laygen.relplace(name='I'+objectname_pfix+'SW0', templatename='cap_sw_array', gridname=pg, refinstname=sw_dmy0.name, template_libname='clk_dis_generated') #Calculate number of sw_dmy1 capsw0_size_x = laygen.get_xy(obj=laygen.get_template(name='cap_sw_array', libname='clk_dis_generated'), gridname=pg)[0] sw_dmy1_m = bnd_m-num_capsw_dmy-capsw0_size_x #Place sw_dmy1 sw_dmy1= laygen.relplace(name='I'+objectname_pfix+'SWDM1', templatename='space_1x', gridname=pg, refinstname=capsw0.name, template_libname=logictemp_lib, shape=np.array([sw_dmy1_m, 1])) ##Mitddle ntap row ntap0_0= laygen.relplace(name='I'+objectname_pfix+'NTAP0_0', templatename='ntap_fast_space_nf4', gridname=pg, refinstname=bnd_left[3].name, template_libname=tech+'_microtemplates_dense', shape=np.array([1, 1]), transform='MX') ntap0_1= laygen.relplace(name='I'+objectname_pfix+'NTAP0_1', templatename='ntap_fast_center_nf1', gridname=pg, refinstname=ntap0_0.name, template_libname=tech+'_microtemplates_dense', shape=np.array([bnd_m-2*tap4_size_x, 1]), transform='MX') ntap0_2= laygen.relplace(name='I'+objectname_pfix+'NTAP0_2', templatename='ntap_fast_space_nf4', gridname=pg, refinstname=ntap0_1.name, template_libname=tech+'_microtemplates_dense', shape=np.array([1, 1]), transform='MX') ##DFF row #Calculate coodinate of dff_dmy0 bnd_left_5_y = laygen.get_xy(obj =bnd_left[5], gridname=pg)[1] #y coodinate dff_dmy0_xy = np.array([bnd_left_size_x, bnd_left_5_y]) #xy coodinate #Place dff_dmy0, tgated0, dff0, inv0, and inv1 dff_dmy0 = laygen.place(name='I'+objectname_pfix+'DFFDM0', templatename='space_1x', gridname=pg, xy=dff_dmy0_xy, template_libname=logictemp_lib, shape=np.array([num_dff_dmy, 1]), transform='MX') tgated0=laygen.relplace(name='I'+objectname_pfix+'TGD0', templatename='tgate_dn_'+str(m_tgate)+'x', gridname=pg, refinstname=dff_dmy0.name, template_libname=logictemp_lib, transform='R180') dff0=laygen.relplace(name='I'+objectname_pfix+'DFF0', templatename='dff_strsth_ckb_'+str(m_dff)+'x', gridname=pg, refinstname=tgated0.name, template_libname=tech+'_logic_templates', transform='MX') inv0=laygen.relplace(name='I'+objectname_pfix+'INV0', templatename='inv_'+str(m_inv1)+'x', gridname=pg, refinstname=dff0.name, template_libname=tech+'_logic_templates', transform='MX') inv1=laygen.relplace(name='I'+objectname_pfix+'INV1', templatename='inv_'+str(m_inv2)+'x', gridname=pg, refinstname=inv0.name, template_libname=tech+'_logic_templates', transform='MX') #Calculate number of dff_dmy1 inv1_x = laygen.get_xy(obj =inv1, gridname=pg)[0] m_inv1_x = laygen.get_xy(obj=laygen.get_template(name='inv_' + str(m_inv2) + 'x', libname=tech + '_logic_templates'), gridname=pg)[0] bnd_right_5_x = laygen.get_xy(obj =bnd_right[5], gridname=pg)[0] #y coodinate dff_dmy1_m = bnd_right_5_x-(inv1_x+m_inv1_x) ##Calculate coodinate of dff_dmy1 dff_dmy1_x = inv1_x+m_inv1_x dff_dmy1_xy = np.array([dff_dmy1_x, bnd_left_5_y]) dff_dmy1= laygen.place(name='I'+objectname_pfix+'DFFDM1', templatename='space_1x', gridname=pg, xy=dff_dmy1_xy, template_libname=logictemp_lib, shape=np.array([dff_dmy1_m, 1]), transform='MX') ##Top ptap row ptap1_0 = laygen.relplace(name='I'+objectname_pfix+'PTAP1_0', templatename='ptap_fast_space_nf4', gridname=pg, refinstname=bnd_left[6].name, template_libname=tech+'_microtemplates_dense', transform='MX') ptap1_1= laygen.relplace(name='I'+objectname_pfix+'PTAP1_1', templatename='ptap_fast_center_nf1', gridname=pg, refinstname=ptap1_0.name, template_libname=tech+'_microtemplates_dense', shape=np.array([bnd_m-2*tap4_size_x, 1]), transform='MX') ptap1_2 = laygen.relplace(name='I'+objectname_pfix+'PTAP1_2', templatename='ptap_fast_space_nf4', gridname=pg, refinstname=ptap1_1.name, template_libname=tech+'_microtemplates_dense', transform='MX') #####Route and Pin #Connection between DFFs, tage_up and inverts #route from dff_O to inv0_I dff0_O_xy = laygen.get_inst_pin_xy(dff0.name, 'O', rg_m3m4)[0] dff0_O_y = dff0_O_xy[1] inv0_I_xy = laygen.get_inst_pin_xy(inv0.name, 'I', rg_m3m4)[0] laygen.route_vhv(laygen.layers['metal'][3], laygen.layers['metal'][4], dff0_O_xy, inv0_I_xy, dff0_O_y, rg_m3m4) #route from inv0_O to inv1_I inv0_O_xy = laygen.get_inst_pin_xy(inv0.name, 'O', rg_m3m4)[0] inv1_I_xy = laygen.get_inst_pin_xy(inv1.name, 'I', rg_m3m4)[0] laygen.route_vhv(laygen.layers['metal'][3], laygen.layers['metal'][4], inv0_O_xy, inv1_I_xy, dff0_O_y-1, rg_m3m4) #route from inv1_O to tgated_EN inv1_O_xy = laygen.get_inst_pin_xy(inv1.name, 'O', rg_m3m4)[0] tgated_EN_xy = laygen.get_inst_pin_xy(tgated0.name, 'EN', rg_m3m4)[0] laygen.route_vhv(laygen.layers['metal'][3], laygen.layers['metal'][4], inv1_O_xy, tgated_EN_xy, dff0_O_y-5, rg_m3m4) #route from inv0_O to tgated_ENB inv0_O_xy = laygen.get_inst_pin_xy(inv0.name, 'O', rg_m3m4)[0] tgated_ENB_xy = laygen.get_inst_pin_xy(tgated0.name, 'ENB', rg_m3m4)[0] laygen.route_vhv(laygen.layers['metal'][3], laygen.layers['metal'][4], inv0_O_xy, tgated_ENB_xy, dff0_O_y-6, rg_m3m4) #route from dff0_CLKB to tgated_IN dff0_CLKB_xy = laygen.get_inst_pin_xy(dff0.name, 'CLKB', rg_m3m4)[0] tgated_I_xy = laygen.get_inst_pin_xy(tgated0.name, 'I_' + str(m_in - 1), rg_m3m4)[0] laygen.route_vhv(laygen.layers['metal'][3], laygen.layers['metal'][4], dff0_CLKB_xy, tgated_I_xy, dff0_O_y-1, rg_m3m4) for i in range(m_in): clkiv=laygen.via(None, np.array([tgated_I_xy[0]+2*i, dff0_O_y-1]), gridname=rg_m3m4) #I/O and Pin #I Pin i_xy=laygen.get_inst_pin_xy(dff0.name, 'I', rg_m3m4) ipp=laygen.route(None, laygen.layers['metal'][3], xy0=np.array([0,0]), xy1=np.array([0,1]), gridname0=rg_m3m4, refinstname0=dff0.name, refpinname0='I', refinstindex0=np.array([0, 0]), refinstname1=dff0.name, refpinname1='I', refinstindex1=np.array([0, 0]) ) laygen.boundary_pin_from_rect(ipp, gridname=rg_m3m4, name='I', layer=laygen.layers['pin'][3], size=1, direction='top') #O Pin o_xy=laygen.get_inst_pin_xy(dff0.name, 'O', rg_m3m4) opp=laygen.route(None, laygen.layers['metal'][3], xy0=np.array([0,0]), xy1=np.array([0,1]), gridname0=rg_m3m4, refinstname0=inv1.name, refpinname0='O', refinstindex0=np.array([0, 0]), refinstname1=inv1.name, refpinname1='O', refinstindex1=np.array([0, 0]) ) laygen.boundary_pin_from_rect(opp, gridname=rg_m3m4, name='O', layer=laygen.layers['pin'][3], size=1, direction='top') #CAL signal and pin for i in range(num_bits): capswp0=laygen.route(None, laygen.layers['metal'][3], xy0=np.array([0,0]), xy1=np.array([0, len_cal]), gridname0=rg_m3m4, refinstname0=capsw0.name, refpinname0='EN<'+str(i)+'>', refinstindex0=np.array([0, 0]), refinstname1=capsw0.name, refpinname1='EN<'+str(i)+'>', refinstindex1=np.array([0, 0]) ) laygen.boundary_pin_from_rect(capswp0, gridname=rg_m3m4, name='CAL<' + str(i) + '>', layer=laygen.layers['pin'][3], size=1, direction='top') #CAPSW signal and pin for i in range(num_bits): ctrlp0=laygen.route(None, laygen.layers['metal'][3], xy0=np.array([0,0]), xy1=np.array([0,-1*len_capsw]), gridname0=rg_m3m4, refinstname0=capsw0.name, refpinname0='VO<'+str(i)+'>', refinstindex0=np.array([0, 0]), refinstname1=capsw0.name, refpinname1='VO<'+str(i)+'>', refinstindex1=np.array([0, 0]) ) laygen.boundary_pin_from_rect(ctrlp0, gridname=rg_m3m4, name='CAPSW<' + str(i) + '>', layer=laygen.layers['pin'][3], size=1, direction='bottom') clki_x = laygen.get_inst_pin_xy(tgated0.name, 'I_0', rg_m3m4)[0] clkp_x = laygen.grids.get_absgrid_coord_x(gridname=rg_m4m5, x=phy_width/2) ##Create muti tracks to clki and create pin for i in range(m_clki): for j in range(m_in): clkiv=laygen.via(None, np.array([clki_x[0]-2*j, clki_x[1]+y1_clki+2*i]), gridname=rg_m3m4) laygen.route(None, laygen.layers['metal'][3], xy0=np.array([clki_x[0]-2*j, clki_x[1]]), xy1=np.array([clki_x[0]-2*j, clki_x[1]+y1_clki+2*(m_clki-1)]), gridname0=rg_m3m4) if i==0 and j==m_in-1: v_xy=laygen.get_xy(obj = clkiv, gridname = rg_m4m5) clki_d=clkp_x-v_xy[0] for j in range(m_clki): [clkh, clkv]=laygen.route_hv(laygen.layers['metal'][4], laygen.layers['metal'][5], np.array([v_xy[0]-1, v_xy[1]+2*i]), np.array([v_xy[0]+clki_d+m_clki/2-2*j+1,v_xy[1]+y2_clki]), rg_m4m5) if (i==0): laygen.boundary_pin_from_rect(clkv, gridname=rg_m4m5, name='CLKI_' + str(j), layer=laygen.layers['pin'][5], size=1, direction='top', netname='CLKI') #laygen.boundary_pin_from_rect(clkv, gridname=rg_m4m5, pinname='CLKI', layer=laygen.layers['pin'][5], size=1, direction='top') clko_x = laygen.get_inst_pin_xy(tgated0.name, 'O_0', rg_m3m4)[0] ##Create muti tracks to clko and create pin for i in range(m_clko): for j in range(m_out): clkov=laygen.via(None, np.array([clko_x[0]+2*j, clko_x[1]-y1_clko-2*i]), gridname=rg_m3m4) laygen.route(None, laygen.layers['metal'][3], xy0=np.array([clko_x[0]+2*j, clko_x[1]]), xy1=np.array([clko_x[0]+2*j, clko_x[1]-y1_clko-2*(m_clko-1)]), gridname0=rg_m3m4) if i==0 and j==0: v_xy=laygen.get_xy(obj = clkov, gridname = rg_m4m5) clko_d=clkp_x-v_xy[0] for j in range(m_clko): [clkh, clkv]=laygen.route_hv(laygen.layers['metal'][4], laygen.layers['metal'][5], np.array([v_xy[0]-1, v_xy[1]-2*i]), np.array([v_xy[0]+clko_d-m_clko/2+2*j,v_xy[1]-y2_clko]), rg_m4m5) if (i==0): laygen.boundary_pin_from_rect(clkv, gridname=rg_m4m5, name='CLKO_' + str(j), layer=laygen.layers['pin'][5], size=1, direction='bottom', netname='CLKO') #####VSS and VDD ##Bottom ptap row #Generate horizental metal vss0_y = laygen.get_inst_pin_xy(ptap0_1.name, 'TAP0', rg_m1m2_thick)[0][1] rvss0 = laygen.route(None, laygen.layers['metal'][2], xy0=np.array([0, vss0_y]), xy1=np.array([width, vss0_y]), gridname0=rg_m1m2_thick) vss0_1_y = laygen.get_inst_pin_xy(sw_dmy0.name, 'VSS', rg_m1m2)[0][1] rvss0_1 = laygen.route(None, laygen.layers['metal'][2], xy0=np.array([0, vss0_1_y]), xy1=np.array([width, vss0_1_y]), gridname0=rg_m1m2) #Generate thick viaes for i in range(0, bnd_m-2, 2): laygen.via(None, np.array([0, 0]), refinstname=ptap0_1.name, refpinname='TAP0', refinstindex=np.array([i-tap4_size_x+1, 0]), gridname=rg_m1m2_thick) #Generate left cotacts and metals for i in range(0, num_capsw_dmy, 2): laygen.via(None, np.array([0, 3]), refinstname=ptap0_1.name, refpinname='TAP0', refinstindex=np.array([i-tap4_size_x+1, 0]), gridname=rg_m1m2) laygen.route(None, laygen.layers['metal'][1], xy0=
np.array([0, 0])
numpy.array
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import pickle import gzip np.set_printoptions(threshold=np.inf) f = open('data/ACML_Movies.csv', 'r') movie_strngs = f.read() movie_strngs = movie_strngs.split('\n') movie_strngs = movie_strngs[1:] movie_strngs = movie_strngs[:-1] ratings = [] for strng in movie_strngs: split_strng = strng.split(',') rate = np.array([int(d) for d in split_strng]) ratings.append(rate) ratings = np.array(ratings) ratings = ratings[:, 1:] test_ratings = np.copy(ratings[-11:]) ratings = ratings[:-11] weights = np.random.uniform(-0.3, 0.3, (20,35*5)) learn_rate = 0.01 epochs = 400 def sigmoid(x): out = np.zeros(x.shape) for i in range(out.shape[0]): if x[i] >= 0: out[i] = 1/(1+np.exp(-x[i])) else: out[i] = np.exp(x[i])/(1+
np.exp(x[i])
numpy.exp