prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# coding: utf-8 # # Imaging and deconvolution demonstration # This script makes a fake data set and then deconvolves it. Finally the full and residual visibility are plotted. # In[1]: import os import sys sys.path.append(os.path.join('..', '..')) from rascil.data_models.parameters import rascil_path results_dir = rascil_path('test_results') from matplotlib import pylab pylab.rcParams['figure.figsize'] = (8.0, 8.0) pylab.rcParams['image.cmap'] = 'rainbow' import numpy from astropy.coordinates import SkyCoord, EarthLocation, AltAz from astropy import units as u from astropy.wcs.utils import pixel_to_skycoord from matplotlib import pyplot as plt from processing_library.util.coordinate_support import * from rascil.processing_components.image.iterators import image_raster_iter from rascil.processing_components.visibility.base import create_visibility from rascil.processing_components.skycomponent.operations import create_skycomponent from rascil.processing_components.image.operations import show_image, export_image_to_fits from rascil.processing_components.image.deconvolution import deconvolve_cube, restore_cube from rascil.processing_components.visibility.iterators import vis_timeslice_iter from rascil.processing_components.simulation.configurations import create_named_configuration from rascil.processing_components.simulation.testing_support import create_test_image from rascil.processing_components.imaging.base import create_image_from_visibility from rascil.processing_components.imaging.base import advise_wide_field from rascil.workflows.serial.imaging.imaging_serial import invert_list_serial_workflow, predict_list_serial_workflow from rascil.data_models.polarisation import PolarisationFrame import logging log = logging.getLogger() log.setLevel(logging.DEBUG) log.addHandler(logging.StreamHandler(sys.stdout)) mpl_logger = logging.getLogger("matplotlib") mpl_logger.setLevel(logging.WARNING) # In[2]: pylab.rcParams['figure.figsize'] = (6.0, 6.0) pylab.rcParams['image.cmap'] = 'rainbow' # Construct LOW core configuration # In[3]: def plotuvw(uvwcoord, x=0, y=1, z=2): plt.clf() plt.plot(uvwcoord[:,x], uvwcoord[:,y], '.', color='b') plt.show() # In[5]: def xyz_to_uvw(xyz, ha, dec): """ Rotate :math:`(x,y,z)` positions in earth coordinates to :math:`(u,v,w)` coordinates relative to astronomical source position :math:`(ha, dec)`. Can be used for both antenna positions as well as for baselines. Hour angle and declination can be given as single values or arrays of the same length. Angles can be given as radians or astropy quantities with a valid conversion. :param xyz: :math:`(x,y,z)` co-ordinates of antennas in array :param ha: hour angle of phase tracking centre (:math:`ha = ra - lst`) :param dec: declination of phase tracking centre. """ x, y, z = numpy.hsplit(xyz, 3) # pylint: disable=unbalanced-tuple-unpacking # Two rotations: # 1. by 'ha' along the z axis # 2. by '90-dec' along the u axis u = x * numpy.cos(ha) - y * numpy.sin(ha) v0 = x * numpy.sin(ha) + y * numpy.cos(ha) w = z * numpy.sin(dec) - v0 * numpy.cos(dec) lat = 180.0 * numpy.arctan2(v0,z) / numpy.pi v = z * numpy.cos(dec) + v0 *
numpy.sin(dec)
numpy.sin
#!/usr/bin/env python3 import matplotlib.pyplot as plt import numpy as np from scipy.signal import periodogram from scipy.spatial import distance from scipy.stats import norm from sympy.combinatorics.graycode import GrayCode # Carrier signal f_c = 100.0 t_c = 1.0 / f_c # Sampling rate f_s = 10000.0 t_s = 1.0 / f_s # MPSK Parameters Tb = 0.01 Eb = 0.001 def bits_to_symbols(msg, k): bucket_of_buckets = [] for i in range(k): bucket_of_buckets.append(msg[i::k]) symbols = np.array(bucket_of_buckets) return symbols def constellation_angles(M): return np.arange(0.0, 2.0 * np.pi, 2.0 * np.pi / M) def graycode(k): return list(GrayCode(k).generate_gray()) def generate_constellation_table(constellation, gray_code): constellation_table = {} for i, code in enumerate(gray_code): constellation_table[code] = constellation[i] return constellation_table def generate_theta_vector(symbols, constellation_table): theta = np.zeros(np.size(symbols, axis=1), dtype="float") for j in range(np.size(symbols, axis=1)): bits = [] for i in range(np.size(symbols, axis=0)): bits.append(symbols[i, j]) bits_str = "" for bit in bits: bits_str += str(bit) theta[j] = constellation_table[bits_str] return theta def generate_I_Q_signals(theta): A = np.sqrt(Eb) I = A * np.cos(theta) # in-phase component Q = A * np.sin(theta) # quadrature component return I, Q def plot_constellation_diagram(I, Q): plt.figure() # Makes it look like a circle instead of an ellipse plt.axes().set_aspect("equal", "datalim") # Time vector for sine and cosine t_csd = np.linspace(0.0, 2.0 * np.math.pi, 100) plt.plot( np.sqrt(Eb) * np.sin(t_csd), np.sqrt(Eb) * np.cos(t_csd) ) # sqrt(Eb)*sin and sqrt(Eb)*cos plt.plot(I, Q, "ro", markersize=12) plt.grid() plt.title("Constellation diagram for QPSK", fontsize=14) plt.tick_params(labelsize=12) plt.show() def modulate_signal(symbols, I, Q): t = np.linspace(0.0, Tb, int(Tb * f_s)) modulated_signal = np.empty( np.size(symbols, axis=1) * len(t), dtype="float") phi_1 = np.sqrt(2 / Tb) * np.cos(2.0 * np.math.pi * f_c * t) phi_2 = np.sqrt(2 / Tb) * np.sin(2.0 * np.math.pi * f_c * t) for k in range(np.size(symbols, axis=1)): # Calculates modulated signal for each symbol # Page 12, Lecture 16 modulated_signal[k * len(t): (k + 1) * len(t) ] = I[k] * phi_1 - Q[k] * phi_2 return modulated_signal def plot_modulated_signal(symbols, modulated_signal): # Time vector for symbols # t_sym = np.arange(0.0, np.size(symbols, axis=1)*2.0*t_c, t_s) t_sym = np.linspace( 0, np.size(symbols, axis=1) * Tb, int(np.size(symbols, axis=1) * Tb * f_s) ) plt.figure() plt.title("MPSK", fontsize=14) plt.xlabel("t", fontsize=14) plt.ylabel("Amplitude", fontsize=14) plt.tick_params(labelsize=12) plt.plot(t_sym, modulated_signal) plt.show() def add_noise(modulated_signal): # Noise ns = len(modulated_signal) noise = np.random.normal(size=ns) f, psd = periodogram(noise, f_s) # Plot noise # fig, ax = plt.subplots(2,1) # ax[0].plot(noise) # ax[1].plot(f, psd) psd_av = np.mean(psd) N0 = 2 * psd_av # modulated_signal += noise return N0, modulated_signal def generate_decoding_table(gray_code, constellation_table): decoding_table = {} for code in gray_code: amp = np.zeros(2, dtype="float") amp[0] =
np.cos(constellation_table[code])
numpy.cos
"""Functions for generating random data with injected relationships""" from itertools import product import os import json import re import random import numpy as np from numpy import random as rd from scipy.special import comb from ntp.util.util_kb import load_from_list def gen_relationships(n_pred, n_rel, body_predicates=1): """ Generates random relationships between predicates of the form goal predicate <-- {set of body predicates}. Goal predicates have a higher number than body predicates. Args: n_pred: number of total predicates n_rel: number of relationships body_predicates: number of body predicates for each relationship Returns: Dict, entries where keys are goal predicates and values are list of body predicates """ relationship_dict = {} n_rel_possible = comb(n_pred, body_predicates + 1) pred_probs = [comb(i, body_predicates)/n_rel_possible for i in range(n_pred)] relationship_head_array = list(
rd.choice(n_pred, size=n_rel, replace=False, p=pred_probs)
numpy.random.choice
import numpy as np import matplotlib.pyplot as plt import os import skimage import tensorflow as tf from .sac import td_target from .sac_classifier import SACClassifier from softlearning.misc.utils import mixup from softlearning.models.utils import flatten_input_structure from maml.meta_nml import MetaNML from model import VAE, MetaMNISTConvModel as MetaConvModel from notebook_helpers import * import torch MAZE_LOW = -6 MAZE_HIGH = 6 N_BINS = (MAZE_HIGH - MAZE_LOW) * 2 class VICE(SACClassifier): """Varitational Inverse Control with Events (VICE) References ---------- [1] Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, NIPS 2018. """ def __init__( self, *args, positive_on_first_occurence=False, active_query_frequency=None, gradient_penalty_weight=0, death_reward=0, sparse_goal=None, append_qpos=False, use_meta_nml=False, use_laplace_smoothing_rewards=False, recompute_rewards=False, laplace_smoothing_weight=1, meta_nml_train_on_positives=False, meta_nml_train_every_k=1, meta_nml_reset_frequency=0, meta_nml_negatives_only=False, meta_nml_add_vice_reward=False, meta_nml_do_metatraining=True, meta_nml_shuffle_states=False, n_initial_classifier_train_steps=1, meta_nml_checkpoint_frequency=100, meta_nml_layers=[2048, 2048], meta_nml_num_finetuning_layers=None, meta_nml_uniform_train_data=False, meta_nml_use_preprocessor=False, meta_nml_custom_embedding_key=None, meta_nml_use_vae=False, meta_nml_vae_model=None, meta_nml_train_vae=False, meta_nml_train_embedding_frequency=None, num_initial_train_embedding_epochs=800, meta_nml_train_embedding_epochs=50, meta_nml_reward_type='probs', # Options are {'probs', 'log_probs'} meta_train_sample_size=128, meta_test_sample_size=1000, meta_task_batch_size=1, accumulation_steps=16, meta_test_batch_size=16, num_initial_meta_epochs=10, num_meta_epochs=1, nml_grad_steps=1, points_per_meta_task=1, equal_pos_neg_test=True, dist_weight_thresh=None, query_point_weight=1, test_strategy='all', **kwargs ): self._active_query_frequency = active_query_frequency self._gradient_penalty_weight = gradient_penalty_weight self._append_qpos = append_qpos self._sparse_goal = sparse_goal self._death_reward = death_reward self._use_laplace_smoothing_rewards = use_laplace_smoothing_rewards self._recompute_rewards = recompute_rewards self._laplace_smoothing_weight = laplace_smoothing_weight self._use_meta_nml = use_meta_nml self._meta_nml_checkpoint_frequency = meta_nml_checkpoint_frequency self._meta_nml_train_every_k = meta_nml_train_every_k self._meta_nml_reward_type = meta_nml_reward_type self._meta_nml_reset_frequency = meta_nml_reset_frequency self._meta_nml_train_on_positives = meta_nml_train_on_positives self._meta_nml_uniform_train_data = meta_nml_uniform_train_data self._meta_nml_negatives_only = meta_nml_negatives_only self._meta_nml_add_vice_reward = meta_nml_add_vice_reward self._meta_nml_shuffle_states = meta_nml_shuffle_states self._meta_nml_use_preprocessor = meta_nml_use_preprocessor self._meta_nml_custom_embedding_key = meta_nml_custom_embedding_key self._meta_nml_use_vae = meta_nml_use_vae self._meta_nml_train_vae = meta_nml_train_vae self._meta_nml_train_embedding_frequency = meta_nml_train_embedding_frequency self._meta_nml_train_embedding_epochs = meta_nml_train_embedding_epochs self._num_initial_train_embedding_epochs = num_initial_train_embedding_epochs self._n_initial_classifier_train_steps = n_initial_classifier_train_steps super(VICE, self).__init__(*args, **kwargs) print(f"[VICE] Epoch length: {self._epoch_length}") if self._use_laplace_smoothing_rewards: self.rewards_matrix = np.repeat(0.5, N_BINS * N_BINS).reshape((N_BINS, N_BINS)) self._from_vision = 'pixels' in self._classifier.observation_keys if self._use_meta_nml: vae_kwargs = {} input_dim = 0 if self._from_vision: # Using a convolutional network for image inputs vae_kwargs['model'] = MetaConvModel(2, in_channels=3) print(f"[MetaNML] Using convolutional network for classifier") print(vae_kwargs['model']) else: # Using a feedforward network. Figure out what the input dimension # should be based on the classifier observation keys (or preprocessor embedding dim) if self._meta_nml_use_preprocessor: assert hasattr(self._classifier, "observations_preprocessors"), \ "Must define a preprocessor for the reward classifier" \ + " when setting meta_nml_use_preprocessor=True" self._preprocessor = tf.keras.Model(inputs=self._classifier.layers[0].input, outputs=self._classifier.layers[1].output) self._init_preprocessor_outputs() input_dim = self._classifier.layers[1].output.shape[-1] else: input_dim = self._concat_classifier_obs({ key: self._goal_examples[key][0,None] for key in self._goal_examples }).shape[-1] print(f"[MetaNML] Using feedforward classifier, input dimension {input_dim}") if meta_nml_vae_model: model_vae = VAE(img_channels=3) model_vae.load_state_dict(torch.load(meta_nml_vae_model)) model_vae.cuda() vae_kwargs['model_vae'] = model_vae vae_kwargs['embedding_type'] = 'vae' vae_kwargs['num_finetuning_layers'] = 2 print(f"[MetaNML] Loaded VAE weights from {meta_nml_vae_model}") if meta_nml_custom_embedding_key: print(f"[MetaNML] Using custom embedding key: {meta_nml_custom_embedding_key}") vae_kwargs['embedding_type'] = 'custom' self.meta_nml_kwargs = { **vae_kwargs, "hidden_sizes": list(meta_nml_layers), "input_dim": input_dim, "points_per_task": points_per_meta_task, "equal_pos_neg_test": equal_pos_neg_test and not meta_nml_negatives_only, "dist_weight_thresh": dist_weight_thresh, "query_point_weight": query_point_weight, "do_metalearning": meta_nml_do_metatraining, "train_vae": meta_nml_train_vae, "num_finetuning_layers": meta_nml_num_finetuning_layers, } self.meta_nml = MetaNML(**self.meta_nml_kwargs) self._meta_train_sample_size = meta_train_sample_size self._meta_test_sample_size = meta_test_sample_size self._meta_task_batch_size = meta_task_batch_size self._accumulation_steps = accumulation_steps self._meta_test_batch_size = meta_test_batch_size self._num_initial_meta_epochs = num_initial_meta_epochs self._num_meta_epochs = num_meta_epochs self._nml_grad_steps = nml_grad_steps self._test_strategy = test_strategy self._positive_on_first_occurence = positive_on_first_occurence if positive_on_first_occurence: env = self._training_environment.unwrapped # self._seen_states = set() self._seen_states = [ [False for _ in range(env.n_bins + 1)] for _ in range(env.n_bins + 1) ] # def _init_extrinsic_reward(self): # classifier_inputs = flatten_input_structure({ # name: tf.exp(self._placeholders['observations'][name]) # for name in self._classifier.observation_keys # }) # observation_log_p = self._classifier(classifier_inputs) # self._reward_t = self._unscaled_ext_reward = observation_log_p def _use_fixed_rewards(self): return self._use_meta_nml or self._use_laplace_smoothing_rewards def _init_classifier_reward(self): classifier_inputs = flatten_input_structure({ name: self._placeholders['observations'][name] for name in self._classifier.observation_keys }) observation_logits = self._classifier(classifier_inputs) if self._meta_nml_reward_type == 'logits': self._clf_reward = observation_logits elif self._meta_nml_reward_type == 'probs': self._clf_reward = tf.nn.sigmoid(observation_logits) else: raise NotImplementedError( f"Unknown meta-NML reward type: {self._meta_nml_reward_type}") def _init_preprocessor_outputs(self): classifier_inputs = flatten_input_structure({ name: self._placeholders['observations'][name] for name in self._classifier.observation_keys }) self._preprocessor_outputs = self._preprocessor(classifier_inputs) def _init_extrinsic_reward(self): if self._use_fixed_rewards(): if self._meta_nml_add_vice_reward or self._meta_nml_use_preprocessor: self._init_classifier_reward() # Don't include classifier reward evaluation in the computation graph, # because meta-NML is very expensive. Instead, we'll compute the rewards # directly when the states are sampled (by using ClassifierSampler), # and store them as `learned_rewards` in the replay pool. self._reward_t = self._unscaled_ext_reward = self._placeholders['learned_rewards'] else: super(VICE, self)._init_extrinsic_reward() def _get_feed_dict(self, iteration, batch): feed_dict = super(VICE, self)._get_feed_dict(iteration, batch) if 'learned_rewards' in batch: if self._recompute_rewards: # Recompute rewards with the most recent classifier params feed_dict[self._placeholders['learned_rewards']] = self.get_reward(batch['observations'])[:,None] # else: # # Include the stale classifier rewards, which were assigned when states were first encountered # feed_dict[self._placeholders['learned_rewards']] = batch['learned_rewards'] return feed_dict def _get_episode_reward_feed_dict(self, episodes): feed_dict = super(VICE, self)._get_episode_reward_feed_dict(episodes) if self._use_fixed_rewards(): feed_dict[self._placeholders['learned_rewards']] = np.concatenate([ episode['learned_rewards'] for episode in episodes ]) return feed_dict def _get_classifier_feed_dict(self): negatives = self.sampler.random_batch( self._classifier_batch_size )['observations'] if self._positive_on_first_occurence: # Still things left to explore env = self._training_environment.unwrapped first_occ_idxs = [] for i in range(len(negatives[next(iter(negatives))])): x_d, y_d = env._discretize_observation({ key: val[i] for key, val in negatives.items() }) if not self._seen_states[x_d][y_d]: # if (x_d, y_d) not in self._seen_states: first_occ_idxs.append(i) # self._seen_states.add((x_d, y_d)) self._seen_states[x_d][y_d] = True # DEBUG: Testing with the same negatives pool for each training iteration # negatives = type(self._pool.data)( # (key[1], value[:self._classifier_batch_size]) # for key, value in self._pool.data.items() # if key[0] == 'observations') rand_positive_ind = np.random.randint( self._goal_examples[next(iter(self._goal_examples))].shape[0], size=self._classifier_batch_size) positives = { key: values[rand_positive_ind] for key, values in self._goal_examples.items() } if self._positive_on_first_occurence: positives = { key: np.concatenate([val, negatives[key][first_occ_idxs]], axis=0) for key, val in positives.items() } labels_batch = np.zeros( (self._classifier_batch_size + (self._classifier_batch_size + len(first_occ_idxs)), 2), dtype=np.int32) labels_batch[:self._classifier_batch_size, 0] = 1 labels_batch[self._classifier_batch_size:, 1] = 1 else: labels_batch = np.zeros( (2 * self._classifier_batch_size, 2), dtype=np.int32) labels_batch[:self._classifier_batch_size, 0] = 1 labels_batch[self._classifier_batch_size:, 1] = 1 observations_batch = { key: np.concatenate((negatives[key], positives[key]), axis=0) # for key in self._classifier.observation_keys for key in self._policy.observation_keys } if self._mixup_alpha > 0: observations_batch, labels_batch = mixup( observations_batch, labels_batch, alpha=self._mixup_alpha) feed_dict = { **{ self._placeholders['observations'][key]: observations_batch[key] # for key in self._classifier.observation_keys for key in self._policy.observation_keys }, self._placeholders['labels']: labels_batch, } return feed_dict def _init_placeholders(self): super()._init_placeholders() self._placeholders['labels'] = tf.placeholder( tf.int32, shape=(None, 2), name='labels', ) if self._use_fixed_rewards(): self._placeholders['learned_rewards'] = tf.placeholder( tf.float32, shape=(None, 1), name='learned_rewards', ) def _init_classifier_update(self): if (self._use_fixed_rewards() and not self._meta_nml_add_vice_reward and not self._meta_nml_use_preprocessor): return classifier_inputs = flatten_input_structure({ name: self._placeholders['observations'][name] for name in self._classifier.observation_keys }) log_p = self._classifier(classifier_inputs) policy_inputs = flatten_input_structure({ name: self._placeholders['observations'][name] for name in self._policy.observation_keys }) sampled_actions = self._policy.actions(policy_inputs) log_pi = self._policy.log_pis(policy_inputs, sampled_actions) # pi / (pi + f), f / (f + pi) log_pi_log_p_concat = tf.concat([log_pi, log_p], axis=1) self._classifier_loss_t = tf.reduce_mean( tf.compat.v1.losses.softmax_cross_entropy( self._placeholders['labels'], log_pi_log_p_concat, ) ) self._classifier_training_op = self._get_classifier_training_op() def _concat_classifier_obs(self, batch, shuffle=True): if self._meta_nml_shuffle_states and shuffle: states = discretized_states( batch['state_observation'], bins=N_BINS, low=MAZE_LOW, high=MAZE_HIGH ) results = (np.hstack([self._random_mapping_x[states[:,0]][:,None], self._random_mapping_y[states[:,1]][:,None]]) - 8) / 2 return results if self._meta_nml_use_vae or self._meta_nml_custom_embedding_key: return batch['pixels'].transpose((0, 3, 1, 2)) return np.hstack([batch[name] for name in self._classifier.observation_keys]) def _get_laplace_obs(self, batch): if self._meta_nml_use_vae or self._meta_nml_custom_embedding_key: return batch['state_observation'] else: return self._concat_classifier_obs(batch, shuffle=False) def _sample_negatives(self, size): batch = self.sampler.random_batch(size)['observations'] if self._meta_nml_use_preprocessor: # If using a preprocessor, we train & evaluate meta-NML on the embedding # given by the preprocessor instead of the raw inputs. negatives = self._compute_preprocessor_embedding(batch) else: negatives = self._concat_classifier_obs(batch) labels = np.zeros(len(negatives)) if self._meta_nml_custom_embedding_key: return negatives.astype(np.float32), labels, batch[self._meta_nml_custom_embedding_key] else: return negatives.astype(np.float32), labels def _sample_positives(self, size, shuffle=True, for_laplace=False): rand_positive_ind = np.random.randint( self._goal_examples[next(iter(self._goal_examples))].shape[0], size=size) if for_laplace: return self._goal_examples['state_observation'][rand_positive_ind] batch = { key: values[rand_positive_ind] for key, values in self._goal_examples.items() if key in self._classifier.observation_keys } if self._meta_nml_use_preprocessor: # If using a preprocessor, we train & evaluate meta-NML on the embedding # given by the preprocessor instead of the raw inputs. positives = self._compute_preprocessor_embedding(batch) else: positives = self._concat_classifier_obs(batch, shuffle=shuffle) if self._meta_nml_custom_embedding_key: return (positives.astype(np.float32), np.ones(len(positives)), self._goal_examples[self._meta_nml_custom_embedding_key][rand_positive_ind]) else: return positives.astype(np.float32), np.ones(len(positives)) def _sample_meta_test_batch(self, size): if self._meta_nml_negatives_only: return self._sample_negatives(size) else: negatives = self._sample_negatives(size // 2) positives = self._sample_positives(size // 2) return tuple(np.concatenate([a, b], axis=0) for a, b in zip(negatives, positives)) def _get_grid_vals(self): n_bins = (MAZE_HIGH - MAZE_LOW) * 2 grid_vals =
np.arange(n_bins * n_bins)
numpy.arange
# -*- coding: utf-8 -*- # Copyright (c) <NAME> # Distributed under the terms of the MIT License. """Utilities for scaling the capture coefficient. This module provides various utilities that are necessary to scale the capture coefficient to the final value. """ from itertools import groupby from typing import Optional, Tuple, Union import numpy as np from numpy.polynomial.laguerre import laggauss from pymatgen.io.vasp.outputs import Wavecar from scipy import constants as const from scipy.optimize import curve_fit try: from numba import njit except ModuleNotFoundError: def njit(*args, **kwargs): # pylint: disable=W0613 """Fake njit when numba can't be found.""" def _njit(func): return func return _njit def sommerfeld_parameter( T: Union[float, np.ndarray], Z: int, m_eff: float, eps0: float, method: str = 'Integrate' ) -> Union[float, np.ndarray]: """Compute the sommerfeld parameter. Computes the sommerfeld parameter at a given temperature using the definitions in R. Pässler et al., phys. stat. sol. (b) 78, 625 (1976). We assume that theta_{b,i}(T) ~ T. Parameters ---------- T : float, np.array(dtype=float) temperature in K Z : int Z = Q / q where Q is the charge of the defect and q is the charge of the carrier. Z < 0 corresponds to attractive centers and Z > 0 corresponds to repulsive centers m_eff : float effective mass of the carrier in units of m_e (electron mass) eps0 : float static dielectric constant method : str specify method for evaluating sommerfeld parameter ('Integrate' or 'Analytic'). The default is recommended as the analytic equation may introduce significant errors for the repulsive case at high T. Returns ------- float, np.array(dtype=float) sommerfeld factor evaluated at the given temperature """ if Z == 0: return 1. if method.lower()[0] == 'i': kT = const.k * T m = m_eff * const.m_e eps = (4 * np.pi * const.epsilon_0) * eps0 f = -2 * np.pi * Z * m * const.e**2 / const.hbar**2 / eps def s_k(k): return f / k / (1 - np.exp(-f / k)) t = 0. x, w = laggauss(64) for ix, iw in zip(x, w): t += iw * np.sqrt(ix) * s_k(np.sqrt(2 * m * kT * ix) / const.hbar) return t / np.sum(w * np.sqrt(x)) # that 4*pi from Gaussian units.... theta_b = np.pi**2 * (m_eff * const.m_e) * const.e**4 / \ (2 * const.k * const.hbar**2 * (eps0 * 4*np.pi*const.epsilon_0)**2) zthetaT = Z**2 * theta_b / T if Z < 0: return 4 * np.sqrt(zthetaT / np.pi) return (8 / np.sqrt(3)) * \ zthetaT**(2/3) * np.exp(-3 * zthetaT**(1/3)) @njit(cache=True) def find_charge_center(density: np.ndarray, lattice: np.ndarray) -> np.ndarray: """Compute the center of the charge density. Parameters ---------- density : np.array density of the wavecar returned by wavecar.fft_mesh lattice : np.array lattice to use to compute PBC Returns ------- np.array position of the center in cartesian coordinates """ avg = np.zeros(3) for i in range(density.shape[0]): for j in range(density.shape[1]): for k in range(density.shape[2]): avg += np.dot(np.array((i, j, k)) / np.array(density.shape), lattice) * density[(i, j, k)] return avg / np.sum(density) @njit(cache=True) def distance_PBC(a: np.ndarray, b: np.ndarray, lattice: np.ndarray) -> float: """Compute the distance between a and b on the lattice with periodic BCs. Parameters ---------- a, b : np.array points in cartesian coordinates lattice : np.array lattice to use to compute PBC Returns ------- float distance """ min_dist = np.inf for i in [-1, 0, 1]: for j in [-1, 0, 1]: for k in [-1, 0, 1]: R = np.dot(np.array((i, j, k), dtype=np.float64), lattice) dist = np.linalg.norm(a - b + R) min_dist = dist if dist < min_dist else min_dist return min_dist @njit(cache=True) def radial_distribution( density: np.ndarray, point: np.ndarray, lattice: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Compute the radial distribution. Computes the radial distribution of the density around the given point with the defined lattice. Parameters ---------- density : np.array density of the wavecar returned by wavecar.fft_mesh point : np.array position of the defect in cartesian coordinates lattice : np.array lattice to use to compute PBC Returns ------- r : np.array array of radii that the density corresponds to n : np.array array of densities at the corresponding radii """ N = density.shape[0] * density.shape[1] * density.shape[2] r, n = (np.zeros(N), np.zeros(N)) m = 0 for i in range(density.shape[0]): for j in range(density.shape[1]): for k in range(density.shape[2]): r[m] = distance_PBC(np.dot( np.array((i, j, k), dtype=np.float64) / np.array(density.shape), lattice ), point, lattice) n[m] = density[(i, j, k)] m += 1 return r, n def charged_supercell_scaling_VASP( wavecar_path: str, bulk_index: int, def_index: int = -1, def_coord: Optional[np.ndarray] = None, cutoff: float = 0.02, limit: float = 5., spin: int = 0, kpoint: int = 1, fig=None, full_range=False ) -> float: """ Estimate the interaction between the defect and bulk wavefunction. This function estimates the interaction between the defect and bulk wavefunction due to spurious effects as a result of using a charged supercell. The radial distribution of the bulk wavefunction is compared to a perfectly homogenous wavefunction to estimate the scaling. Either def_index or def_coord must be specified. If you get wonky results with def_index, try using def_coord as there may be a problem with finding the defect position if the defect charge is at the boundary of the cell. Parameters ---------- wavecar_path : str path to the WAVECAR file that contains the relevant wavefunctions def_index, bulk_index : int index of the defect and bulk wavefunctions in the WAVECAR file def_coord : np.array(dim=(3,)) cartesian coordinates of defect position cutoff : float cutoff for determining zero slope regions limit : float upper limit for windowing procedure spin : int spin channel to read from (0 - up, 1 - down) kpoint : int kpoint to read from (defaults to the first kpoint) fig : matplotlib.figure.Figure optional figure object to plot diagnostic information (recommended) full_range : bool determines if full range of first plot is shown Returns ------- float estimated scaling value to apply to the capture coefficient """ if def_index == -1 and def_coord is None: raise ValueError('either def_index or def_coord must be specified') wavecar = Wavecar(wavecar_path) # compute relevant things if def_coord is None: psi_def = wavecar.fft_mesh(spin=spin, kpoint=kpoint-1, band=def_index-1) fft_psi_def = np.fft.ifftn(psi_def) den_def = np.abs(np.conj(fft_psi_def) * fft_psi_def) / \ np.abs(np.vdot(fft_psi_def, fft_psi_def)) def_coord = find_charge_center(den_def, wavecar.a) psi_bulk = wavecar.fft_mesh(spin=spin, kpoint=kpoint-1, band=bulk_index-1) fft_psi_bulk = np.fft.ifftn(psi_bulk) return charged_supercell_scaling(fft_psi_bulk, wavecar.a, def_coord, cutoff=cutoff, limit=limit, fig=fig, full_range=full_range) def charged_supercell_scaling( wavefunc: np.ndarray, lattice: np.ndarray, def_coord: np.ndarray, cutoff: float = 0.02, limit: float = 5., fig=None, full_range=False ) -> float: """ Estimate the interaction between the defect and bulk wavefunction. This function estimates the interaction between the defect and bulk wavefunction due to spurious effects as a result of using a charged supercell. The radial distribution of the bulk wavefunction is compared to a perfectly homogenous wavefunction to estimate the scaling. Parameters ---------- wavefunc : np.array(dim=(NX, NY, NZ)) bulk wavefunction in real-space on a NX by NY by NZ FFT grid lattice : np.array(dim=(3, 3)) real-space lattice vectors for your system def_coord : np.array(dim=(3,)) cartesian coordinates of defect position cutoff : float cutoff for determining zero slope regions limit : float upper limit for windowing procedure fig : matplotlib.figure.Figure optional figure object to plot diagnostic information (recommended) full_range : bool determines if full range of first plot is shown Returns ------- float estimated scaling value to apply to the capture coefficient """ volume = np.dot(lattice[0, :], np.cross(lattice[1, :], lattice[2, :])) den_bulk = np.abs(np.conj(wavefunc) * wavefunc) / \ np.abs(np.vdot(wavefunc, wavefunc)) r, density = radial_distribution(den_bulk, def_coord, lattice) # fitting procedure def f(x, alpha): return alpha * (4 * np.pi / 3 / volume) * x**3 sind = np.argsort(r) R, int_den = (r[sind], np.cumsum(density[sind])) uppers = np.linspace(1., limit, 500) alphas = np.array([ curve_fit(f, R[(R >= 0.) & (R <= u)], int_den[(R >= 0.) & (R <= u)])[0][0] for u in uppers ]) # find possible plateaus and return earliest one zeros = np.where(np.abs(
np.gradient(alphas, uppers)
numpy.gradient
""" This module handles experimental data, by fitting a growth and death rate for each condition separately. """ from os.path import join, dirname, abspath import pandas import numpy as np import pymc3 as pm import theano.tensor as T fitKwargs = {"tune": 3000, "progressbar": False, "target_accept": 0.9} def theanoCore(timeV, div, deathRate, apopfrac, d): """ Assemble the core growth model. """ # Make a vector of time and one for time-constant values timeV = T._shared(timeV) constV = T.ones_like(timeV) # pylint: disable=no-member # Calculate the growth rate GR = T.outer(div - deathRate, constV) # cGDd is used later cGRd = T.outer(deathRate * apopfrac, constV) / (GR + d) # b is the rate straight to death b = T.outer(deathRate * (1 - apopfrac), constV) lnum = T.exp(GR * timeV) # Number of early apoptosis cells at start is 0.0 eap = cGRd * (lnum - T.exp(-d * timeV)) # Calculate dead cells via apoptosis and via necrosis deadnec = b * (lnum - 1) / GR deadapop = d * cGRd * (lnum - 1) / GR + cGRd * (T.exp(-d * timeV) - 1) return (lnum, eap, deadapop, deadnec) def convSignal(lnum, eap, deadapop, deadnec, conversions): """ Sums up the cell populations to link number of cells to image area. """ conv, offset = conversions confl_exp = (lnum + eap + deadapop + deadnec) * conv[0] apop_exp = (eap + deadapop) * conv[1] + offset[0] dna_exp = (deadapop + deadnec) * conv[2] + offset[1] return (confl_exp, apop_exp, dna_exp) def conversionPriors(conv0): """ Sets the various fluorescence conversion priors. """ # Set up conversion rates confl_conv = pm.Lognormal("confl_conv", np.log(conv0), 0.1) apop_conv = pm.Lognormal("apop_conv", np.log(conv0) - 2.06, 0.1) dna_conv = pm.Lognormal("dna_conv", np.log(conv0) - 1.85, 0.1) # Priors on conv factors pm.Lognormal("confl_apop", -2.06, 0.0647, observed=apop_conv / confl_conv) pm.Lognormal("confl_dna", -1.85, 0.125, observed=dna_conv / confl_conv) pm.Lognormal("apop_dna", 0.222, 0.141, observed=dna_conv / apop_conv) # Offset values for apop and dna apop_offset = pm.Lognormal("apop_offset",
np.log(0.1)
numpy.log
from numpy import ( logspace, linspace, geomspace, dtype, array, sctypes, arange, isnan, ndarray, sqrt, nextafter, stack, errstate ) from numpy.testing import ( assert_, assert_equal, assert_raises, assert_array_equal, assert_allclose, ) class PhysicalQuantity(float): def __new__(cls, value): return float.__new__(cls, value) def __add__(self, x): assert_(isinstance(x, PhysicalQuantity)) return PhysicalQuantity(float(x) + float(self)) __radd__ = __add__ def __sub__(self, x): assert_(isinstance(x, PhysicalQuantity)) return PhysicalQuantity(float(self) - float(x)) def __rsub__(self, x): assert_(isinstance(x, PhysicalQuantity)) return PhysicalQuantity(float(x) - float(self)) def __mul__(self, x): return PhysicalQuantity(float(x) * float(self)) __rmul__ = __mul__ def __div__(self, x): return PhysicalQuantity(float(self) / float(x)) def __rdiv__(self, x): return PhysicalQuantity(float(x) / float(self)) class PhysicalQuantity2(ndarray): __array_priority__ = 10 class TestLogspace: def test_basic(self): y = logspace(0, 6) assert_(len(y) == 50) y = logspace(0, 6, num=100)
assert_(y[-1] == 10 ** 6)
numpy.testing.assert_
import math import re import os from sys import flags import time import numpy as np import sympy as sp import itertools import json import matplotlib.pyplot as plt from scipy.linalg import sqrtm def convert(o): if isinstance(o, np.int64): return int(o) raise TypeError def fBose(x, pole, resi): return 1 / x + 0.5 + sum(2.0 * resi[i] * x / (x**2 + pole[i]**2) for i in range(len(pole))) def tseig(D, E): mat = np.diag(E, -1) + np.diag(D, 0) + np.diag(E, 1) return -np.sort(-np.linalg.eigvalsh(mat)) def MSD(N, BoseFermi=1): if BoseFermi == 1: pole = np.array([2 * (i + 1) * np.pi for i in range(N)]) resi = np.ones(N, dtype=float) return pole, resi elif BoseFermi == 2: pole = np.array([(2 * i + 1) * np.pi for i in range(N)]) resi = np.ones(N, dtype=float) return pole, resi def PSD(N, BoseFermi=1, pade=1): if N < 0 or BoseFermi < 1 or BoseFermi > 2 or pade < 0 or pade > 3: raise ValueError("N or BoseFermi or pade has wrong value!") if pade == 0: return MSD(N, BoseFermi) elif pade == 1 or pade == 2: pole, resi = [], [] if N > 0: M = 2 * N + pade // 2 temp = 3.0 if BoseFermi == 1 else 1.0 diag = np.zeros(M, dtype=float) doff = np.array([ 1.0 / math.sqrt((temp + 2.0 * i) * (temp + 2.0 * (i + 1))) for i in range(M - 1) ]) pole = 2.0 / tseig(diag, doff)[:N] pol2 = np.array([x * x for x in pole]) M -= 1 temp = 5.0 if BoseFermi == 1 else 3.0 diag = np.zeros(M, dtype=float) doff = np.array([ 1.0 / math.sqrt((temp + 2.0 * i) * (temp + 2.0 * (i + 1))) for i in range(M - 1) ]) M //= 2 eig2 = np.power(2.0 / tseig(diag, doff)[:M], 2) scaling = 0.0 if BoseFermi == 1: scaling = N*(2.0*N+3.0) if pade == 1 else 1.0 / \ (4.0*(N+1.0)*(2.0*N+3.0)) elif BoseFermi == 2: scaling = N*(2.0*N+1.0) if pade == 1 else 1.0 / \ (4.0*(N+1.0)*(2.0*N+1.0)) resi = np.zeros(N, dtype=float) for j in range(N): if pade == 2: temp = 0.5 * scaling * (eig2[j] - pol2[j]) elif pade == 1: if j == N - 1: temp = 0.5 * scaling else: temp = 0.5*scaling * \ (eig2[j]-pol2[j])/(pol2[N-1]-pol2[j]) for k in range(M): temp *= (eig2[k]-pol2[j]) / \ (pol2[k]-pol2[j]) if k != j else 1.0 resi[j] = temp rn, tn = 0.0, 0.0 if BoseFermi == 1 and pade == 2: rn = 1.0 / (4.0 * (N + 1.0) * (2.0 * N + 3.0)) return pole, resi elif pade == 3: Np1 = N + 1 temp = 3.0 if BoseFermi == 1 else 1.0 d = np.empty(2 * Np1, dtype=float) d[0] = 0.25 / temp d[-1] = -4.0 * (N + 1.0) * (N + 1.0) * (temp + 2 * N) * ( temp + 2 * N) * (temp + 4 * N + 2.0) for i in range(1, Np1): d[2*i-1] = -4.0*i*i*(temp+2.0*i-2.0) * \ (temp+2.0*i-2.0)*(temp+4.0*i-2.0) d[2 * i] = -0.25 * (temp + 4.0 * i) / i / (i + 1) / ( temp + 2.0 * i - 2.0) / (temp + 2.0 * i) sumd2 = np.empty(Np1, dtype=float) sumd2[0] = d[1] for i in range(1, Np1): sumd2[i] = sumd2[i - 1] + d[2 * i + 1] tn = 0.25 / sumd2[-1] rn = sum(d[2 * i] * (4.0 * tn * (sumd2[-1] - sumd2[i - 1]))**2 if i > 0 else d[2 * i] for i in range(Np1)) M = 2 * N + 1 diag = np.zeros(M, dtype=float) doff = np.array( [1.0 / math.sqrt(d[i + 1] * d[i + 2]) for i in range(M - 1)]) pole = 2.0 / tseig(diag, doff)[:N] resi = np.zeros(N, dtype=float) for j in range(N): scaling = pole[j] * pole[j] r0, t1 = 0.0, 0.25 / d[1] eta0, eta1, eta2 = 0.0, 0.5, 0.0 for i in range(Np1): r1 = t1 if (i == j or i == N) else t1 / (pole[i] * pole[i] - scaling) r2 = 2.0*math.sqrt(abs(r1)) if r1 > 0 else - \ 2.0*math.sqrt(abs(r1)) r1 = 2.0 * math.sqrt(abs(r1)) eta2 = d[2 * i] * r1 * eta1 - 0.25 * r1 * r0 * scaling * eta0 eta0 = eta1 eta1 = eta2 eta2 = d[2 * i + 1] * r2 * eta1 - 0.25 * r2 * r1 * scaling * eta0 eta0 = eta1 eta1 = eta2 r0 = r2 if i != N: t1 = sumd2[i] / sumd2[i + 1] resi[j] = eta2 return pole, resi def arma_print(ndarray): shape = ndarray.shape dimen = len(shape) if dimen == 1: if issubclass(type(ndarray[0]), np.int_): print('ARMA_MAT_TXT_IS004\n%d %d' % (shape[0], 1)) for row in ndarray: print('%d' % row) elif issubclass(type(ndarray[0]), float): print('ARMA_MAT_TXT_FN008\n%d %d' % (shape[0], 1)) for row in ndarray: print('%.8e' % row) elif issubclass(type(ndarray[0]), complex): print('ARMA_MAT_TXT_FC016\n%d %d' % (shape[0], 1)) for row in ndarray: print('(%.8e,%-.8e)' % (row.real, row.imag)) elif dimen == 2: if issubclass(type(ndarray[0, 0]), np.int_): print('ARMA_MAT_TXT_IS004\n%d %d' % (shape[0], shape[1])) for row in ndarray: print(' '.join('%d' % x for x in row)) elif issubclass(type(ndarray[0, 0]), float): print('ARMA_MAT_TXT_FN008\n%d %d' % (shape[0], shape[1])) for row in ndarray: print(' '.join('%.8e' % x for x in row)) elif issubclass(type(ndarray[0, 0]), complex): print('ARMA_MAT_TXT_FC016\n%d %d' % (shape[0], shape[1])) for row in ndarray: print(' '.join('(%.8e,%-.8e)' % (x.real, x.imag) for x in row)) elif dimen == 3: if issubclass(type(ndarray[0, 0, 0]), np.int_): print('ARMA_CUB_TXT_IS004\n%d %d %d' % (shape[1], shape[2], shape[0])) for slc in ndarray: for row in slc: print(' '.join('%d' % x for x in row)) elif issubclass(type(ndarray[0, 0, 0]), float): print('ARMA_CUB_TXT_FN008\n%d %d %d' % (shape[1], shape[2], shape[0])) for slc in ndarray: for row in slc: print(' '.join('%-.8e' % x for x in row)) elif issubclass(type(ndarray[0, 0, 0]), complex): print('ARMA_CUB_TXT_FC016\n%d %d %d' % (shape[1], shape[2], shape[0])) for slc in ndarray: for row in slc: print(' '.join('(%.8e,%-.8e)' % (x.real, x.imag) for x in row)) def arma_write(ndarray, filename): shape = ndarray.shape dimen = len(shape) with open(filename, 'w') as f: if dimen == 1: if issubclass(type(ndarray[0]), np.int_): print('ARMA_MAT_TXT_IS004\n%d %d' % (shape[0], 1), file=f) for row in ndarray: print('%d' % row, file=f) elif issubclass(type(ndarray[0]), float): print('ARMA_MAT_TXT_FN008\n%d %d' % (shape[0], 1), file=f) for row in ndarray: print('%.8e' % row, file=f) elif issubclass(type(ndarray[0]), complex): print('ARMA_MAT_TXT_FC016\n%d %d' % (shape[0], 1), file=f) for row in ndarray: print('(%.8e,%-.8e)' % (row.real, row.imag), file=f) elif dimen == 2: if issubclass(type(ndarray[0, 0]), np.int_): print('ARMA_MAT_TXT_IS004\n%d %d' % (shape[0], shape[1]), file=f) for row in ndarray: print(' '.join('%d' % x for x in row), file=f) elif issubclass(type(ndarray[0, 0]), float): print('ARMA_MAT_TXT_FN008\n%d %d' % (shape[0], shape[1]), file=f) for row in ndarray: print(' '.join('%.8e' % x for x in row), file=f) elif issubclass(type(ndarray[0, 0]), complex): print('ARMA_MAT_TXT_FC016\n%d %d' % (shape[0], shape[1]), file=f) for row in ndarray: print(' '.join('(%.8e,%-.8e)' % (x.real, x.imag) for x in row), file=f) elif dimen == 3: if issubclass(type(ndarray[0, 0, 0]), np.int_): print('ARMA_CUB_TXT_IS004\n%d %d %d' % (shape[1], shape[2], shape[0]), file=f) for slc in ndarray: for row in slc: print(' '.join('%d' % x for x in row)) elif issubclass(type(ndarray[0, 0, 0]), float): print('ARMA_CUB_TXT_FN008\n%d %d %d' % (shape[1], shape[2], shape[0]), file=f) for slc in ndarray: for row in slc: print(' '.join('%-.8e' % x for x in row), file=f) elif issubclass(type(ndarray[0, 0, 0]), complex): print('ARMA_CUB_TXT_FC016\n%d %d %d' % (shape[1], shape[2], shape[0]), file=f) for slc in ndarray: for row in slc: print(' '.join('(%.8e,%-.8e)' % (x.real, x.imag) for x in row), file=f) # in this script, we can decompose any given spectrum, but the sympy format is must been given # do u like haskell? # sympy[spe(def by sympy)], dict[sp_para_dict], dict[para_dict], dict[npsd], # dict[pade] >> np.array[etal], np.array[etar],np.array[etaa], np.array[expn] def decompose_spe(spe, sp_para_dict, para_dict, condition_dict, npsd, pade=1): numer, denom = sp.cancel(sp.factor(sp.cancel( spe.subs(condition_dict)))).as_numer_denom() numer_get_para = (sp.factor(numer)).subs(sp_para_dict) denom_get_para = (sp.factor(denom)).subs(sp_para_dict) print(numer_get_para, "$$$$$$", denom_get_para) poles = sp.nroots(denom_get_para) float(sp.re(poles[0])) print(poles) expn = [] poles_allplane = np.array([]) for i in poles: i = complex(i) if i.imag < 0: expn.append(i * 1.J) poles_allplane = np.append(poles_allplane, i) etal = [] etar = [] etaa = [] expn = np.array(expn) expn_imag_sort = np.argsort(np.abs(
np.imag(expn)
numpy.imag
import face_recognition from PIL import Image, ImageDraw import numpy as np from sklearn.svm import LinearSVC import glob import os import matplotlib.pyplot as plt ''' Draw box on all face_locations of an image ''' def draw_face_box(image, face_locations): # Convert the image to a PIL-format image pil_image = Image.fromarray(image) # Create a Pillow ImageDraw Draw instance to draw with draw = ImageDraw.Draw(pil_image) # Loop through each face found in the unknown image for (top, right, bottom, left) in face_locations: # Draw a box around the face using the Pillow module draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255)) return draw, pil_image ''' Get encodings and names of all images ''' def get_encoding(path,jitters=10,det_model="hog"): face_encodings = [] for i in [glob.glob(path+'*.%s' % ext) for ext in ["jpg","gif","png","tga","jpeg"]]: for item in i: image = face_recognition.load_image_file(item) face_locations = face_recognition.face_locations(image, model=det_model) face_encoding = face_recognition.face_encodings(image, face_locations, num_jitters=jitters) if (face_encoding == [] or len(face_encoding) > 1): print("image, face_encoding len: ", item, len(face_encoding)) draw, pil_image = draw_face_box(image, face_locations) # Remove the drawing library from memory as per the Pillow docs del draw # Display the resulting image pil_image.show() if face_encoding != []: face_encodings.append(face_encoding[0]) face_encodings = np.array(face_encodings) return face_encodings # Compute or load the known data def load_data(image_path): if not (os.path.exists(image_path+'encodings.npy')): i = 0 for k_image_path in glob.glob(image_path+'*'): print("image: ", k_image_path) if k_image_path == []: continue k_encodings = get_encoding(k_image_path+'/',jitters,det_model=detection_model) if k_encodings != []: head, tail = os.path.split(k_image_path) if i==0: X = k_encodings Y = np.repeat(i, len(k_encodings)) names = [tail] else: X = np.vstack((X,k_encodings)) Y = np.hstack((Y,np.repeat(i, len(k_encodings)))) names = np.hstack((names,tail)) i+=1 print("X.shape, Y.shape: ", X.shape, Y.shape) print("names: ", names) np.save(image_path+'encodings.npy', X) np.save(image_path+'classes.npy', Y) np.save(image_path+'names.npy', names) else: X = np.load(image_path+'encodings.npy') Y = np.load(image_path+'classes.npy') names = np.load(image_path+'names.npy') return X, Y, names def relative_euclidean_distance(face_encodings, face_to_compare): """ Given a list of face encodings, compare them to another face encoding and get a relative euclidean distance for each comparison face. The distance tells you how similar the faces are. :param faces: List of face encodings to compare :param face_to_compare: A face encoding to compare against :return: A numpy ndarray with the distance for each face in the same order as the 'faces' array """ if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings/np.sqrt(np.mean(face_encodings**2)) - face_to_compare/np.sqrt(np.mean(face_to_compare**2)), axis=1) #return np.linalg.norm(face_encodings - face_to_compare, axis=1) if __name__ == '__main__': jitters = 10 tolerance = 0.5 threshold = 0 detection_model = "cnn" image_path = "./data/" neg_image_path = "./data/Negative/" known_image_path = "./data/known_resized/" test_image_path = "./data/test_resized/" test_short_image_path = "./data/twin_test_resized/Side_By_Side/" side_by_side = True # load the sample and test data X, Y, names = load_data(known_image_path) X_t, Y_t, names_t = load_data(test_image_path) # Names of twins and family members (incl. Unknown) #family_names = ["Eman", "Eden", "Enoch", "Albert", "Sandy", "Unknown"] all_family_names = ["Eden", "Eman", "Enoch", "Albert", "Sandy", "Hailey", "Ivy", "Ivan"] twin_names = ["Eman", "Eden"] family_sizes =
np.arange(2,9)
numpy.arange
import numpy as np import tensorflow as tf import time # build transformer (3D generator) def fuse3D(opt,XYZ,maskLogit,fuseTrans): # [B,H,W,3V],[B,H,W,V] with tf.name_scope("transform_fuse3D"): XYZ = tf.transpose(XYZ,perm=[0,3,1,2]) # [B,3V,H,W] maskLogit = tf.transpose(maskLogit,perm=[0,3,1,2]) # [B,V,H,W] # 2D to 3D coordinate transformation invKhom =
np.linalg.inv(opt.Khom2Dto3D)
numpy.linalg.inv
from .range_based_navigation import LimitedRangeBasedPOMDPNavigation2DEnv, StateBasedMDPNavigation2DEnv from .image_based_navigation import ImageBasedNavigation2DEnv # from gym.envs import register import numpy as np # (x,y) idx_to_goal = [ (np.array([230.0, 430.0]), np.array([230.0, 130.0]), np.array([500.0, 430.0]) )] * 10 idx_to_goal[1] = (np.array([130.0, 370.0]), np.array([130.0, 110.0]), np.array([520.0, 250.0]) ) idx_to_goal[2] = (np.array([530.0, 110.0]), np.array([130.0, 310.0]), np.array([460.0, 330.0]) ) idx_to_goal[3] = (np.array([400.0, 50.0]), np.array([180.0, 320.0]), np.array([430.0, 310.0]) ) idx_to_goal[4] = (np.array([180.0, 380.0]), np.array([610.0, 120.0]), np.array([420.0, 330.0]) ) idx_to_goal[5] = (np.array([500.0, 90.0]), np.array([180.0, 390.0]), np.array([380.0, 320.0]) ) idx_to_goal[6] = (np.array([480.0, 150.0]), np.array([440.0, 380.0]), np.array([310.0, 220.0]) ) idx_to_goal[7] = (np.array([500.0, 380.0]), np.array([470.0, 280.0]), np.array([270.0, 280.0]) ) idx_to_goal[8] = (np.array([250.0, 440.0]), np.array([420.0, 200.0]), np.array([150.0, 180.0]) ) idx_to_goal[9] = (
np.array([390.0, 110.0])
numpy.array
import sounddevice as sd import soundfile as sf import numpy as np import matplotlib.pyplot as plt def quantize_a_law(data, bits): start = -1 end = 1 bit_n = 2**bits-1 data = (data-start)/(end-start) data = np.round(data*bit_n)/bit_n data = (data*2)-1 return data def encode_a_law(data): x_data = [] for i in data: if np.abs(i) < 1 / 87.6: x =
np.sign(i)
numpy.sign
import numpy as np from utils import C_bohr __all__ = ['Grid'] class Grid: def __init__(self, npoints, rgrid, solver='sinc', alpha=0.0, rbar=0.0): self.ngrid = npoints self.rmin = rgrid[0] / C_bohr self.rmax = rgrid[1] / C_bohr rbar = rbar / C_bohr self.solver = solver.lower() self.Gy = np.ones(self.ngrid) self.Fy = np.zeros(self.ngrid) if self.solver == 'sinc': self.rgrid, self.rstep = self.generate_sinc_uniform_grid() else: self.rgrid, self.rstep = self.generate_fourier_uniform_grid() if alpha > 0.0: # mapping is allowed with sinc method only self.solver = 'sinc' self.rmin = self.get_grid_bounding_values(self.rmin, rbar, alpha) self.rmax = self.get_grid_bounding_values(self.rmax, rbar, alpha) self.rgrid, ygrid = self.generate_nonuniform_grid(alpha, rbar) gy_power1 = np.power(1.0+ygrid, (1.0/alpha)-1.0) gy_power2 = np.power(1.0-ygrid, (1.0/alpha)+1.0) self.Gy = (2.0*rbar/alpha) * gy_power1 / gy_power2 fy_power = (np.power((1.0 - np.power(ygrid, 2)), 2)) self.Fy = (1.0 - (1.0/(alpha**2))) / fy_power def get_grid_points(self): return self.rgrid * C_bohr def get_grid_bounding_values(self, rlimit, rbar, alpha): return ((rlimit/rbar)**alpha - 1.0) / ((rlimit/rbar)**alpha + 1.0) def generate_fourier_uniform_grid(self): return np.linspace( self.rmin, self.rmax, num=self.ngrid, endpoint=False, retstep=True ) def generate_sinc_uniform_grid(self): return np.linspace( self.rmin, self.rmax, num=self.ngrid, endpoint=True, retstep=True ) def calculate_sinc_basis_functions(self, r): # numpy sinc function is defined as sin(pi*x)/(pi*x) where pi is # used for normalization. Thus I do not need to multiply by pi # for j in range(0, self.nch*self.ngrid): for j in range(0, self.ngrid): arg = (r - self.rgrid[j]) / self.rstep # return one column from a matrix return np.sinc(arg) def generate_nonuniform_grid(self, alpha, rbar): ystep = (self.rmax - self.rmin) / (self.ngrid - 1) # / ngrid - 1 ?? # ygrid = np.ogrid[self.rmin+ystep:self.rmax+ystep:ystep] # ygrid = np.ogrid[self.rmin:self.rmax:ystep] # ygrid = np.linspace(self.rmin, self.rmax, num=self.ngrid) # ygrid = np.arange(self.rmin, self.rmax, step=ystep) # ygrid = np.linspace( # self.rmin, self.rmax, num=self.ngrid, endpoint=True # ) ygrid =
np.empty(self.ngrid)
numpy.empty
import unittest import json import pandas as pd import numpy as np from assistant_dialog_skill_analysis.utils import skills_util from assistant_dialog_skill_analysis.data_analysis import divergence_analyzer class TestDivergenceAnalyzer(unittest.TestCase): """Test for Divergence Analyzer module""" def setUp(self): unittest.TestCase.setUp(self) with open("tests/resources/test_workspaces/skill-Customer-Care-Sample.json", "r") as skill_file: workspace_data, workspace_vocabulary = \ skills_util.extract_workspace_data(json.load(skill_file)) self.workspace_df = pd.DataFrame(workspace_data) self.train_set_pd = pd.DataFrame({'utterance': ['boston is close to new york'], 'intent': ['Boston_New_York']}) self.test_set_pd = pd.DataFrame( {'utterance': ['both boston and new york are on east coast', 'boston is close to new york'], 'intent': ['Boston_New_York', 'Boston_New_York']}) def test_label_percentage(self): label_percentage_dict = divergence_analyzer._label_percentage(self.workspace_df) label_percentage_vec = np.array(list(label_percentage_dict.values())) self.assertEqual(np.all(label_percentage_vec > 0), True, "label percentage test fail") self.assertEqual(
np.sum(label_percentage_vec)
numpy.sum
import numpy as np import os from sklearn.preprocessing import normalize #pos_categories = ["airplane", "buildings", "denseresidential", "freeway", # "harbor", "intersection", "mediumresidential", "mobilehomepark", # "overpass", "parkinglot", "runway", "sparseresidential", "storagetanks"] #pos_categories = ["freeway", "intersection", "overpass", "runway"] #pos_categories = ["mobilehomepark"] pos_categories = ["denseresidential", "mediumresidential", "sparseresidential"] def load_ucmerced(filelist="filepaths.txt", featfile="ucmerced_feature_vectors.numpy", feat_dims=[-1,6,6,1024]): img_files = [x.strip() for x in open(filelist).readlines()] img_files = [x.split("data/")[-1] for x in img_files] feature_vectors = np.fromfile(featfile).reshape(-1,feat_dims[-1]) feature_vectors = normalize(feature_vectors).reshape(*feat_dims) labels = np.zeros(len(img_files)) for i in range(len(img_files)): for p in pos_categories: if p in img_files[i]: labels[i] = 1 test_split = (np.arange(len(img_files)) % 10) == 0 train_x = feature_vectors[~test_split] train_y = labels[~test_split] train_files = np.array(img_files)[~test_split] test_x = feature_vectors[test_split] test_y = labels[test_split] test_files =
np.array(img_files)
numpy.array
import time, sys, os import dill as pickle import numpy as np import scipy.constants as constants import scipy.interpolate as interp import scipy.optimize as opti import scipy.signal as signal import numdifftools as ndt from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import grav_util_3 as gu import bead_util as bu import configuration as config import warnings warnings.filterwarnings("ignore") theory_data_dir = '/data/grav_sim_data/2um_spacing_data/' patches_base_path = '/processed_data/comsol_data/patch_potentials/' patches_name = 'patch_pot_2um_0Vrms_bias-1Vdc' # Include some legacy grav data to compare to later data_dirs = [#'/data/20180625/bead1/grav_data/shield/X50-75um_Z15-25um_17Hz', \ #\ #'/data/20180704/bead1/grav_data/shield', \ #\ #'/data/20180808/bead4/grav_data/shield1' \ #\ '/data/20180827/bead2/500e_data/dipole_v_height_ac' \ #'/data/20180904/bead1/cant_force/ac_cant_elec_force_10s', \ #'/data/20180904/bead1/recharged_20180909/cant_force/acgrid_3freqs_10s' ] load_files = False p0_bead_dict = {'20180625': [19.0, 40.0, 20.0], \ '20180704': [18.7, 40.0, 20.0], \ '20180808': [18.0, 40.0, 20.0], \ '20180827': [35.0 ,40.0, 15.0] } p0_bead_dict = {'20180827': [0.0 ,0.0, 0.0], \ '20180904': [0.0 ,0.0, 0.0] } opt_ext = '_electrostatics' harms = [1] #harms = [1,2,3,4,5] charge = 430 * constants.elementary_charge * (-1.0) plot_field_test = False plot_cost_function = False plot_keyscale = 1.0e-13 maxfreq = 200 dim3 = False unity_errors = False init = [15.0, 0.0, 28.0, -50] init_rot = [15.0, 0.0, 28.0, -50, 0.0, 0.0, 0.0] ############################################################ ############################################################ xx = np.load(open(patches_base_path + patches_name + '.xx', 'rb')) yy = np.load(open(patches_base_path + patches_name + '.yy', 'rb')) zz = np.load(open(patches_base_path + patches_name + '.zz', 'rb')) dx = xx[1] - xx[0] dy = yy[1] - yy[0] dz = zz[1] - zz[0] field = np.load(open(patches_base_path + patches_name + '.field', 'rb')) potential = np.load(open(patches_base_path + patches_name + '.potential', 'rb')) print(field[0].shape) gradE = [] gradE_func = [] for resp in [0,1,2]: gradE.append( np.gradient(field[resp], dx, dy, dz)[resp] ) gradE_func.append( interp.RegularGridInterpolator((xx, yy, zz), gradE[resp], \ bounds_error=False, \ fill_value=None) ) pot_func = interp.RegularGridInterpolator((xx, yy, zz), potential, \ bounds_error=False, fill_value=None) field_func = [] for resp in [0,1,2]: field_func.append( interp.RegularGridInterpolator((xx, yy, zz), field[resp], \ bounds_error=False, fill_value=None) ) if plot_field_test: posvec = np.linspace(-20e-6, 20e-6, 101) posvec = np.linspace(-5e-6, 100e-6, 106) ones = np.ones_like(posvec) xval = 20.0e-6 yval = 0.0e-6 zval = 0.0e-6 eval_pts = np.stack((posvec, yval*ones, zval*ones), axis=-1) #eval_pts = np.stack((xval*ones, posvec, zval*ones), axis=-1) #eval_pts = np.stack((xval*ones, yval*ones, posvec), axis=-1) ann_str = 'Sep: %0.2f um, Height: %0.2f um' % (xval*1e6, zval*1e6) plt.figure() plt.plot(posvec*1e6, pot_func(eval_pts)) plt.figure(figsize=(7,5)) #plt.title(name) plt.plot(posvec*1e6, field_func[0](eval_pts)*charge, label='fx') plt.plot(posvec*1e6, field_func[1](eval_pts)*charge, label='fy') plt.plot(posvec*1e6, field_func[2](eval_pts)*charge, label='fz') plt.legend() plt.xlabel('Displacement Along Attractor [um]') plt.ylabel('Force on 500e$^-$ [N]') plt.annotate(ann_str, xy=(0.2, 0.9), xycoords='axes fraction') plt.tight_layout() plt.grid() plt.show() ############################################################ ############################################################ ############################################################ ############################################################ for ddir in data_dirs: paths = gu.build_paths(ddir, opt_ext=opt_ext) datafiles = bu.find_all_fnames(ddir) p0_bead = p0_bead_dict[paths['date']] if load_files: agg_dat = gu.AggregateData(datafiles, p0_bead=p0_bead, harms=harms, \ elec_drive=True, elec_ind=0, maxfreq=maxfreq, \ plot_harm_extraction=False, dim3=dim3) agg_dat.save(paths['agg_path']) else: agg_dat = gu.AggregateData([], p0_bead=p0_bead, harms=harms, dim3=dim3) agg_dat.load(paths['agg_path']) agg_dat.bin_rough_stage_positions(ax_disc=1.0, dim3=dim3) agg_dat.handle_sparse_binning(dim3=dim3, verbose=False) #print 'Testing sparse handling...', #agg_dat.handle_sparse_binning(dim3=dim3, verbose=True) #print 'Done!' #raw_input() #print agg_dat.ax0vec #print agg_dat.ax1vec #print agg_dat.ax2vec #print len(agg_dat.file_data_objs) force_plane_dict = agg_dat.get_vector_force_plane(plot_resp=(0,2), fig_ind=1, \ plot=True, show=False, \ sign=[1.0, 1.0, 1.0], dim3=dim3, \ keyscale=plot_keyscale) force_plane_dict_2 = agg_dat.get_vector_force_plane(plot_resp=(1,2), fig_ind=2, \ plot=True, show=True, \ sign=[1.0, 1.0, 1.0], dim3=dim3, \ keyscale=plot_keyscale) err_dict = {0: 'xerr', 1: 'yerr', 2: 'zerr'} dat = [[], [], []] err = [[], [], []] for resp in [0,1,2]: dat[resp] = force_plane_dict[resp] err[resp] = force_plane_dict[err_dict[resp]] dat =
np.array(dat)
numpy.array
"""For calculating sub-observer and sub-stellar locations. Defines the method :func:`sub_observerstellar`. Thanks to <NAME> for preliminary work on this script. """ import numpy as np pi = np.pi def sub_observerstellar(times,worb,wrot,inc,obl,sol,longzero=0): """Calculates an exoplanet's sub-observer and -stellar locations over time. Calculates time-dependent, trigonometric values of an exoplanet's sub- observer and sub-stellar locations when on a circular orbit. Planet coordinates are colatitude (theta) and longitude (phi). Orbital phase is zero when planet is opposite star from observer (superior conjunction) and increases CCW when system is viewed above star's North pole. See Appendix A of `Schwartz et al. (2016) <https://arxiv.org/abs/1511.05152>`_. Args: times (1d array, int, or float): Discrete time values in any unit, with total number *n_time*. At t=0 planet is at superior conjunction. worb (int or float): Orbital angular frequency in radians per unit time. Positive values are prograde orbits (CCW), negative are retrograde (CW). wrot (int or float): Rotational angular frequency in radians per unit time. For prograde orbits, positive values are prograde rotation, negative are retrograde (vice versa for retrograde orbits). inc (int or float): Inclination of orbital plane to the observer, in radians. Zero is face-on, pi/2 is edge-on. obl (int or float): Obliquity relative to the ``worb`` vector, in radians. This is the tilt of the planet's spin axis. Zero is North pole up, pi/2 is maximal tilt, pi is North pole down. sol (int or float): The orbital phase of Northern Summer solstice, in radians. If the ``wrot`` vector is projected into the orbital plane, then this phase is where that projection points at the star. longzero (int or float): Longitude of the sub-observer point when t=0, in radians. Default is zero. Returns: trigvals (ndarray): Array of trigonometric values with shape (8, *n_time*). First dimension is organized as: - sin theta_obs - cos theta_obs - sin phi_obs - cos phi_obs - sin theta_st - cos theta_st - sin phi_st - cos phi_st """ if isinstance(times,np.ndarray) and (times.size == times.shape[0]): timeA = times N_time = timeA.size # Number of time steps from input array elif isinstance(times,(int,float)): timeA = np.array([times]) N_time = 1 else: print('sub_observerstellar aborted: input times should be ndarray (1D), int, or float.') return phaseA = worb*timeA # Orbital phases phiGen = wrot*timeA - longzero # General expression for PhiObs (without overall negative sign) cThObs = (np.cos(inc)*np.cos(obl)) + (np.sin(inc)*np.sin(obl)*np.cos(sol)) cThObsfull = np.repeat(cThObs,N_time) sThObs = (1.0 - (cThObs**2.0))**0.5 sThObsfull = np.repeat(sThObs,N_time) cThSt = np.sin(obl)*np.cos(phaseA - sol) sThSt = (1.0 - (cThSt**2.0))**0.5 sol_md = (sol % (2.0*pi)) inc_rd = round(inc,4) # Rounded inclination, for better comparison p_obl_rd = round((pi - obl),4) # Rounded 180 degrees - obliquity, for better comparison cond_face = (((inc == 0) or (inc == pi)) and ((obl == 0) or (obl == pi))) # Pole-observer 1: face-on inclination cond_north = ((sol_md == 0) and ((inc == obl) or (inc_rd == -p_obl_rd))) # Ditto 2: North pole view cond_south = ((sol == pi) and ((inc_rd == p_obl_rd) or (inc == -obl))) # Ditto 3: South pole view if cond_face or cond_north or cond_south: if (obl == (pi/2.0)): aII = np.sin(phaseA)*np.cos(sol) # Special "double-over-pole" time-dependent factor cPhiSt = np.ones(N_time) sPhiSt = np.zeros(N_time) g_i = (sThSt != 0) # Excluding "star-over-pole" situations (g_i are "good indicies") cPhiSt[g_i] = (-np.sin(phiGen[g_i])*aII[g_i])/sThSt[g_i] sPhiSt[g_i] = (-np.cos(phiGen[g_i])*aII[g_i])/sThSt[g_i] else: aI = np.cos(phaseA)*np.cos(obl) # Alternate "observer-over-pole" time-dependent factor bI =
np.sin(phaseA)
numpy.sin
import numpy as np from argoverse.utils.mesh_grid import get_mesh_grid_as_point_cloud def test_get_mesh_grid_as_point_cloud_3x3square(): """ Sample a regular grid and return the (x,y) coordinates of the sampled points. """ min_x = -3 # integer, minimum x-coordinate of 2D grid max_x = -1 # integer, maximum x-coordinate of 2D grid min_y = 2 # integer, minimum y-coordinate of 2D grid max_y = 4 # integer, maximum y-coordinate of 2D grid # return pts, a Numpy array of shape (N,2) pts = get_mesh_grid_as_point_cloud(min_x, max_x, min_y, max_y, downsample_factor=1.0) assert pts.shape == (9, 2) gt_pts = np.array( [ [-3.0, 2.0], [-2.0, 2.0], [-1.0, 2.0], [-3.0, 3.0], [-2.0, 3.0], [-1.0, 3.0], [-3.0, 4.0], [-2.0, 4.0], [-1.0, 4.0], ] ) assert np.allclose(gt_pts, pts) def test_get_mesh_grid_as_point_cloud_3x2rect(): """ Sample a regular grid and return the (x,y) coordinates of the sampled points. """ min_x = -3 # integer, minimum x-coordinate of 2D grid max_x = -1 # integer, maximum x-coordinate of 2D grid min_y = 2 # integer, minimum y-coordinate of 2D grid max_y = 3 # integer, maximum y-coordinate of 2D grid # return pts, a Numpy array of shape (N,2) pts = get_mesh_grid_as_point_cloud(min_x, max_x, min_y, max_y, downsample_factor=1.0) assert pts.shape == (6, 2) gt_pts = np.array([[-3.0, 2.0], [-2.0, 2.0], [-1.0, 2.0], [-3.0, 3.0], [-2.0, 3.0], [-1.0, 3.0]]) assert
np.allclose(gt_pts, pts)
numpy.allclose
""" With thanks to 2019 SF2 Group 7 (<NAME> - <EMAIL>, <NAME> - <EMAIL>), who did the bulk of the porting from matlab to Python. """ import warnings import numpy as np from .laplacian_pyramid import quant1, quant2 from .dct import dct_ii, colxfm, regroup from .lbt import pot_ii from cued_sf2_lab.dwt import idwt from cued_sf2_lab.dwt import dwt def nlevdwt(X, n): # your code here m = X.shape[0] Q = X.copy() for i in range(n): Q[:m,:m]=dwt(Q[:m,:m]) m=m//2 return Q def nlevidwt(Y, n): m = Y.shape[0]//(2**(n-1)) Q = Y.copy() for i in range(n): Q[:m,:m] = idwt(Q[:m,:m]) m*=2 return Q def quantdwt(Y, dwtstep,rise_ratio = None): """ Parameters: Y: the output of `dwt(X, n)` dwtstep: an array of shape `(3, n+1)` Returns: Yq: the quantized version of `Y` dwtenc: an array of shape `(3, n+1)` containing the entropies """ n = dwtstep.shape[1]-1 m = Y.shape[0] dwtent = np.zeros((3, n+1)); Q = Y.copy() if rise_ratio is None: rise_ratio = 0.5*np.ones(dwtstep.shape) # print(rise_ratio) for i in range(n): m=m//2 Q[:m,m:2*m] = quantise(Y[:m,m:2*m], dwtstep[0,i],rise_ratio[0,i]*dwtstep[0,i]) dwtent[0,i]=bpp(Q[:m,m:2*m]) Q[m:2*m,:m] = quantise(Y[m:2*m,:m], dwtstep[1,i],rise_ratio[1,i]*dwtstep[1,i]) dwtent[1,i]=bpp(Q[m:2*m,:m]) Q[m:2*m,m:2*m] = quantise(Y[m:2*m,m:2*m], dwtstep[2,i],rise_ratio[2,i]*dwtstep[2,i]) dwtent[2,i]=bpp(Q[m:2*m,m:2*m]) Q[:m,:m] = quantise(Y[:m,:m], dwtstep[0,n],rise_ratio[0,n]*dwtstep[0,n]) dwtent[0,n] = bpp(Q[:m,:m]) return Q, dwtent def get_quantisation_step_ratio(n): ''' Returns the quantisation ratios between successive images in the pyramid needed to ensure equal MSE contribution''' test_image = np.zeros((256,256)) Y = nlevdwt(test_image,n) energies = np.zeros((3,n+1)) dwtstep = np.zeros((3,n+1)) m,x = Y.shape[0],Y.shape[1] for i in range(n): Y = nlevdwt(test_image,n) # top right -> k = 0 # print(np.nonzero(Y)) Y[:m//2,x//2:x][Y[:m//2,x//2:x].shape[0]//2-1,Y[:m//2,x//2:x].shape[1]//2-1] = 100 Z = nlevidwt(Y,n) energy_tr = np.sum(Z**2) energies[0,i] = energy_tr Y[:m//2,x//2:x][Y[:m//2,x//2:x].shape[0]//2-1,Y[:m//2,x//2:x].shape[1]//2-1] = 0 # bottom right -> k = 1 Y = nlevdwt(test_image,n) # Ybr = Y[m//2:m,x//2:x] # Ybr[Ybr.shape[0]//2-1,Ybr.shape[1]//2-1] = 100 # Y[m//2:m,x//2:x] = Ybr Y[m//2:m,x//2:x][Y[m//2:m,x//2:x].shape[0]//2-1,Y[m//2:m,x//2:x].shape[1]//2-1] = 100 Z = nlevidwt(Y,n) energy_br = np.sum(Z**2) energies[1,i] = energy_br # Ybr[Ybr.shape[0]//2-1,Ybr.shape[1]//2-1] = 0 # Y[m//2:m,x//2:x] = Ybr Y[m//2:m,x//2:x][Y[m//2:m,x//2:x].shape[0]//2-1,Y[m//2:m,x//2:x].shape[1]//2-1] = 0 # bottom left -> k = 2 Y = nlevdwt(test_image,n) Y[m//2:m,:x//2][Y[m//2:m,:x//2].shape[0]//2-1,Y[m//2:m,:x//2].shape[1]//2-1] = 100 # Ybr = Y[m//2:m,:x//2] # Y[m//2:m,:x//2] # Ybr[Ybr.shape[0]//2-1,Ybr.shape[1]//2-1] = 100 # Y[m//2:m,:x//2] = Ybr Z = nlevidwt(Y,n) energy_br = np.sum(Z**2) energies[2,i] = energy_br # Ybr[Ybr.shape[0]//2-1,Ybr.shape[1]//2-1] = 0 # Y[m//2:m,:x//2] = Ybr Y[m//2:m,:x//2][Y[m//2:m,:x//2].shape[0]//2-1,Y[m//2:m,:x//2].shape[1]//2-1] = 0 m //= 2 x //= 2 Y = nlevdwt(test_image,n) Y[:m,:x][Y[:m,:x].shape[0]//2-1,Y[:m,:x].shape[1]//2-1] = 100 Z = nlevidwt(Y,n) energy_tr = np.sum(Z**2) energies[0,n] = energy_tr ratios = [] ratios = np.sqrt(energies[0,0]/energies) Y[:m,:x][Y[:m,:x].shape[0]//2-1,Y[:m,:x].shape[1]//2-1] = 0 # for i in range(1,n): # ratios.append([np.sqrt(energies[0,i-1]/energies[0,i]),np.sqrt(energies[1,i-1]/energies[1,i]),np.sqrt(energies[2,i-1]/energies[2,i])]) # ratios.append([np.sqrt(energies[0,n-1]/energies[0,n]),1,1]) return ratios def diagscan(N): ''' Generate diagonal scanning pattern Return: scan: a diagonal scanning index for an NxN matrix The first entry in the matrix is assumed to be the DC coefficient and is therefore not included in the scan ''' # Copied from matlab without accounting for indexing. slast = N + 1 scan = [slast] while slast != N * N: while slast > N and slast % N != 0: slast = slast - (N - 1) scan.append(slast) if slast < N: slast = slast + 1 else: slast = slast + N scan.append(slast) if slast == N * N: break while slast < (N * N - N + 1) and slast % N != 1: slast = slast + (N - 1) scan.append(slast) if slast == N * N: break if slast < (N * N - N + 1): slast = slast + N else: slast = slast + 1 scan.append(slast) # Python indexing return np.array(scan) - 1 def runampl(a): ''' RUNAMPL Create a run-amplitude encoding from input stream [ra] = RUNAMPL(a) Converts the stream of integers in 'a' to a run-amplltude encoding in 'ra' Column 1 of ra gives the runs of zeros between each non-zero value. Column 2 gives the JPEG sizes of the non-zero values (no of bits excluding leading zeros). Column 3 of ra gives the values of the JPEG remainder, which is normally coded in offset binary. Parameters: a: is a integer stream (array) Returns: ra: (,3) nparray ''' # Check for non integer values in a if sum(abs(np.remainder(a, 1))): raise ValueError("Warning! RUNAMPL.M: Attempting to create" + " run-amplitude from non-integer values") b = np.where(a != 0)[0] if len(b) == 0: ra = np.array([[0, 0, 0]]) return ra # List non-zero elements as a column vector c = np.reshape(a[b], (b.shape[0], 1)).astype('int') # Generate JPEG size vector ca = floor(log2(abs(c)) + 1) ca = np.zeros(c.shape).astype('int') k = 1 cb = np.abs(c) maxc = np.max(cb) ka = np.array([[1]]) while k <= maxc: ca = ca + (cb >= k) k = k * 2 ka = np.concatenate((ka, np.array([[k]]))) cneg = np.where(c < 0)[0] # Changes expression for python indexing c[cneg] = c[cneg] + ka[ca[cneg].flatten()] - 1 bcol = np.reshape(b, (len(b), 1)) # appended -1 instead of 0. col1 = np.diff(np.concatenate((np.array([[-1]]), bcol)).flatten()) - 1 col1 = np.reshape(col1, (col1.shape[0], 1)) ra = np.concatenate((col1, ca, c), axis=1) ra = np.concatenate((ra, np.array([[0, 0, 0]]))) return ra def huffdflt(typ): """ HUFFDFLT Generates default JPEG huffman table [bits, huffval] = HUFFDFLT(type) Produces the luminance (type=1) or chrominance (type=2) tables. The number of values per bit level is stored in 'bits', with the corresponding codes in 'huffval'. Parameters: typ: Integer Returns: bits: (16, ) nparray huffval: (162, ) nparray """ if typ == 1: bits = np.array([0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125]) huffval = np.concatenate(( [], # 1-bit [1, 2], # 2-bit [3], # 3-bit [0, 4, 17], # 4-bit [5, 18, 33], # 5-bit [49, 65], # 6-bit [6, 19, 81, 97], # 7-bit [7, 34, 113], # 8-bit [20, 50, 129, 145, 161], # 9-bit [8, 35, 66, 177, 193], # 10-bit [21, 82, 209, 240], # 11-bit [36, 51, 98, 114], # 12-bit [], # 13-bit [], # 14-bit [130], # 15-bit [9, 10, 22, 23, 24, 25, 26, 37, 38, 39, 40, 41, 42, 52, 53, 54, 55], # 16-bit [56, 57, 58, 67, 68, 69, 70, 71, 72, 73, 74, 83, 84, 85, 86, 87, 88, 89], [90, 99, 100, 101, 102, 103, 104, 105, 106, 115, 116, 117, 118, 119, 120, 121, 122, 131], [132, 133, 134, 135, 136, 137, 138, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 163], [164, 165, 166, 167, 168, 169, 170, 178, 179, 180, 181, 182, 183, 184, 185, 186, 194, 195], [196, 197, 198, 199, 200, 201, 202, 210, 211, 212, 213, 214, 215, 216, 217, 218, 225, 226], [227, 228, 229, 230, 231, 232, 233, 234, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250] )).astype('int') else: bits = np.array([0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119]) huffval = np.concatenate(( [], # 1-bit [0, 1], # 2-bit [2], # 3-bit [3, 17], # 4-bit [4, 5, 33, 49], # 5-bit [6, 18, 65, 81], # 6-bit [7, 97, 113], # 7-bit [19, 34, 50, 129], # 8-bit [8, 20, 66, 145, 161, 177, 193], # 9-bit [9, 35, 51, 82, 240], # 10-bit [21, 98, 114, 209], # 11-bit [10, 22, 36, 52], # 12-bit [], # 13-bit [225], # 14-bit [37, 241], # 15-bit [23, 24, 25, 26, 38, 39, 40, 41, 42, 53, 54], # 16-bit [55, 56, 57, 58, 67, 68, 69, 70, 71, 72, 73, 74, 83, 84, 85, 86, 87, 88], [89, 90, 99, 100, 101, 102, 103, 104, 105, 106, 115, 116, 117, 118, 119, 120, 121, 122], [130, 131, 132, 133, 134, 135, 136, 137, 138, 146, 147, 148, 149, 150, 151, 152, 153, 154], [162, 163, 164, 165, 166, 167, 168, 169, 170, 178, 179, 180, 181, 182, 183, 184, 185, 186], [194, 195, 196, 197, 198, 199, 200, 201, 202, 210, 211, 212, 213, 214, 215, 216, 217, 218], [226, 227, 228, 229, 230, 231, 232, 233, 234, 242, 243, 244, 245, 246, 247, 248, 249, 250] )).astype('int') return [bits, huffval] def huffgen(bits, huffval): """ HUFFGEN Generate huffman codes [huffcode, ehuf] = HUFFGEN(bits, huffval) Translates the number of codes at each bit (in bits) and the valid values (in huffval). huffcode lists the valid codes in ascending order. ehuf is a two-column vector, with one entry per possible 8-bit value. The first column lists the code for that value, and the second lists the length in bits. Parameters: bits: 1D Numpy array. huffval: 1D Numpy array. Returns: huffcode: nparray (ncodes, 1) ehuf: nparray (256, 2) """ # Generate huffman size table (JPEG fig C1, p78): nb = bits.shape[0] k = 1 # Max value of k is 162 j = 1 # sum on nparray sums columns. ncodes = sum(bits) # Check every where 1_D array of zeros/ones defined like this. huffsize = np.zeros((ncodes, 1), dtype=int) for i in range(nb): while j <= bits[i]: huffsize[k - 1, 0] = i + 1 k += 1 j += 1 j = 1 huffcode = np.zeros((ncodes, 1), dtype=int) code = 0 si = huffsize[0, 0] # Generate huffman code table (JPEG fig C2, p79) for k in range(ncodes): while huffsize[k, 0] > si: code = code * 2 si += 1 huffcode[k, 0] = code code += 1 # Reorder the code tables according to the data in # huffval to yield the encoder look-up tables. ehuf = np.zeros((256, 2), dtype=int) ehuf[huffval, :] = np.concatenate((huffcode, huffsize), axis=1) return [huffcode, ehuf] def huffdes(huffhist): """ HUFFDES Design Huffman table ** WARNING THIS CODE IS CURRENTLY KNOWN TO PRODUCE RESULTS DIFFERENT TO THE MATLAB ON WHICH IT IS BASED ** [bits, huffval] = huffdes(huffhist) Generates the JPEG table bits and huffval from the 256-point histogram of values huffhist. This is based on the algorithms in the JPEG Book Appendix K.2. Returns: bits = (16, ) nparray huffval = (162, ) nparray """ warnings.warn("""The huffdes function produces different results to the matlab code it is based on. Use at your own risk!""") # Scale huffhist to sum just less than 32K, allowing for # the 162 ones we are about to add. huffhist = huffhist * (127 * 256)/np.sum(huffhist) # Add 1 to all valid points so they are given a code word. # With the scaling, this should ensure that all probabilities exceed # 1 in 2^16 so that no code words exceed 16 bits in length. # This is probably a better method with poor statistics # than the JPEG method of fig K.3. # Every 16 values made column. freq = np.reshape(huffhist, (16, 16), 'F') freq[1:10, :] = freq[1:10, :] + 1.1 freq[0, [0, 15]] = freq[0, [0, 15]] + 1.1 # Reshape to a vector and add a 257th point to reserve the FFFF codeword. # Also add a small negative ramp so that min() always picks the # larger index when 2 points have the same probability. freq = (np.append(freq.flatten('F'), 1) - np.arange(0, 257, 1) * (10 ** -6)) codesize = np.zeros(257, dtype=int) others = -np.ones(257, dtype=int) # Find Huffman code sizes: JPEG fig K.1, procedure Code_size # Find non-zero entries in freq and loop until 1 entry left. nz = np.where(freq > 0)[0] # np.where output is 2 element tuple. while len(nz) > 1: # Find v1 for least value of freq(v1) > 0. # min in each column i = np.argmin(freq[nz]) # freq[nz] and nz index v1 = nz[i] # Find v2 for next least value of freq(v2) > 0. nz = np.delete(nz, i) # Remove v1 from nz. i = np.argmin(freq[nz]) # freq[nz] and nz index v2 = nz[i] # Combine frequency values to gradually reduce the code table size. freq[v1] = freq[v1] + freq[v2] freq[v2] = 0 # Increment the codeword lengths for all codes in the two combined sets. # Set 1 is v1 and all its members, stored as a linked list using # non-negative entries in vector others(). The members of set 1 are the # frequencies that have already been combined into freq(v1). codesize[v1] += 1 while others[v1] > -1: v1 = others[v1] codesize[v1] += 1 others[v1] = v2 # Link set 1 with set 2. # Set 2 is v2 and all its members, stored as a linked list using # non-negative entries in vector others(). The members of set 2 are the # frequencies that have already been combined into freq(v2). codesize[v2] = codesize[v2] + 1 while others[v2] > -1: v2 = others[v2] codesize[v2] = codesize[v2] + 1 nz = np.where(freq > 0)[0] # Find no. of codes of each size: JPEG fig K.2, procedure Count_BITS bits = np.zeros(max(16, max(codesize))) for i in range(256): if codesize[i] > 0: bits[codesize[i]] = bits[codesize[i]] + 1 # Code length limiting not needed since 1's added earlier to all valid # codes. if max(codesize) > 16: # This should not happen. raise ValueError('Warning! HUFFDES.M: max(codesize) > 16') # Sort codesize values into ascending order and generate huffval: # JPEG fig K.4, procedure Sort_input. huffval = np.array([], dtype=int) t = np.arange(0, 256, 1) for i in range(16): ii = np.where(codesize[t] == i)[0] huffval = np.concatenate((huffval, ii)) if len(huffval) != sum(bits): # This should not happen. raise ValueError( 'Warning! HUFFDES.M: length of huffval ~= sum(bits)') return [bits, huffval] def huffenc(huffhist, rsa, ehuf): """ HUFFENC Convert a run-length encoded stream to huffman coding. [vlc] = HUFFENC(rsa) Performs Huffman encoding on the run-length information in rsa, as produced by RUNAMPL. THe codewords are variable length integers in vlc(:, 0) whose lengths are in vlc(:, 1). ehuf contains the huffman codes and their lengths. The array huffhist is updated in-place for use in HUFFGEN. """ if max(rsa[:, 1]) > 10: print("Warning: Size of value in run-amplitude " + "code is too large for Huffman table") rsa[np.where(rsa[:, 1] > 10), 2] = (2 ** 10) - 1 rsa[np.where(rsa[:, 1] > 10), 1] = 10 r, c = rsa.shape vlc = None for i in range(r): run = rsa[i, 0] # If run > 15, use repeated codes for 16 zeros. while run > 15: # Got rid off + 1 to suit python indexing. code = 15 * 16 huffhist[code] = huffhist[code] + 1 if vlc is None: vlc = np.array([ehuf[code, :]]) else: vlc = np.append(vlc, np.array([ehuf[code, :]]), axis=0) run = run - 16 # Code the run and size. # Got rid off + 1 to suit python indexing. code = run * 16 + rsa[i, 1] huffhist[code] = huffhist[code] + 1 if vlc is None: vlc = np.array([ehuf[code, :]]) else: vlc = np.append(vlc, np.array([ehuf[code, :]]), axis=0) # If size > 0, add in the remainder (which is not coded). if rsa[i, 1] > 0: if vlc is None: vlc = np.array([rsa[i, [2, 1]]]) else: vlc = np.append(vlc, np.array([rsa[i, [2, 1]]]), axis=0) return vlc def dwtgroup(X, n): ''' dwtgroup Change ordering of elements in a matrix Y = dwtgroup(X,n) Regroups the rows and columns of X, such that an n-level DWT image composed of separate subimages is regrouped into 2^n x 2^n blocks of coefs from the same spatial region (like the DCT). If n is negative the process is reversed. ''' Y = X.copy() if n == 0: return Y elif n < 0: n = -n invert = 1 else: invert = 0 sx = X.shape N = np.round(2**n) if sx[0] % N != 0 or sx[1] % N != 0: raise ValueError( 'Error in dwtgroup: X dimensions are not multiples of 2^n') if invert == 0: # Determine size of smallest sub-image. sx = sx // N # Regroup the 4 subimages at each level, starting with the smallest # subimages in the top left corner of Y. k = 1 # Size of blocks of pels at each level. # tm = 1:sx[0]; # tn = 1:sx[1]; tm = np.arange(sx[0]) tn = np.arange(sx[1]) # Loop for each level. for _ in range(n): tm2 = np.block([ [np.reshape(tm, (k, sx[0]//k), order='F')], [np.reshape(tm+sx[0], (k, sx[0]//k), order='F')] ]) tn2 = np.block([ [np.reshape(tn, (k, sx[1]//k), order='F')], [np.reshape(tn+sx[1], (k, sx[1]//k), order='F')] ]) sx = sx * 2 k = k * 2 tm = np.arange(sx[0]) tn = np.arange(sx[1]) Y[np.ix_(tm, tn)] = Y[np.ix_( tm2.flatten('F'), tn2.flatten('F'))] else: # Invert the grouping: # Determine size of largest sub-image. sx = np.array(X.shape) // 2 # Regroup the 4 subimages at each level, starting with the largest # subimages in Y. k = N // 2 # Size of blocks of pels at each level. # Loop for each level. for _ in np.arange(n): tm = np.arange(sx[0]) tn = np.arange(sx[1]) tm2 = np.block([ [np.reshape(tm, (k, sx[0]//k), order='F')], [np.reshape(tm+sx[0], (k, sx[0]//k), order='F')] ]) tn2 = np.block([ [np.reshape(tn, (k, sx[1]//k), order='F')], [np.reshape(tn+sx[1], (k, sx[1]//k), order='F')] ]) Y[np.ix_(tm2.flatten('F'), tn2.flatten('F'))] = Y[np.ix_( np.arange(sx[0]*2), np.arange(sx[1]*2))] sx = sx // 2 k = k // 2 return Y def custom_quant1(x, N, step,quantisation_matrix, rise_ratio=None): """ Custom Quantisation with a defined N*N matrix For a given value of step, we quantise in terms of step*quantisation matrix rise_ratio should be given in terms of the ratio between the absolute rise and step size. The final absolute rise values will be rise = rise_ratio*step*quantisation_matrix """ if rise_ratio is None: rise_ratio = 1 step *= quantisation_matrix rise = rise_ratio*step out = np.zeros(x.shape) indices = np.arange(0,x.shape[0]) indices = np.reshape(np.reshape(indices,(x.shape[0]//N,N)).T,x.shape[0]) for i in range(N): k = indices[i*(x.shape[0]//N):(i+1)*(x.shape[0]//N)] for j in range(N): l = indices[j*(x.shape[1]//N):(j+1)*(x.shape[1]//N)] u,v = np.meshgrid(k,l) # Relevant indices (0,8,16,.....) temp = np.ceil((np.abs(x[u,v]) - rise[i,j])/step[i,j]) q = temp*(temp > 0)*np.sign(x[u,v]) out[u,v] = q return out def custom_quant2(q, N, step,quantisation_matrix, rise_ratio=None): """ Custom Quantisation with a defined N*N matrix For a given value of step, we quantise in terms of step*quantisation matrix rise_ratio should be given in terms of the ratio between the absolute rise and step size. It can be a matrix of size N*N or a float The final absolute rise values will be rise = rise_ratio*step*quantisation_matrix """ if rise_ratio is None: rise_ratio = 1 step *= quantisation_matrix rise = rise_ratio*step out = np.zeros(q.shape) indices = np.arange(0,q.shape[0]) indices = np.reshape(np.reshape(indices,(q.shape[0]//N,N)).T,q.shape[0]) for i in range(N): k = indices[i*(q.shape[0]//N):(i+1)*(q.shape[0]//N)] for j in range(N): l = indices[j*(q.shape[1]//N):(j+1)*(q.shape[1]//N)] u,v = np.meshgrid(k,l) # Relevant indices (0,8,16,.....) y = q[u,v] * step[i,j] + np.sign(q[u,v]) * (rise[i,j] - step[i,j]/2.0) out[u,v] = y return out def lbt_enc(X,N,s=None): if s: Pf,Pr = pot_ii(N,s) else: Pf,Pr = pot_ii(N) C = dct_ii(N) t = np.s_[N//2:-N//2] # N is the DCT size, I is the image size Xp = X.copy() # copy the non-transformed edges directly from X Xp[t,:] = colxfm(Xp[t,:], Pf) Xp[:,t] = colxfm(Xp[:,t].T, Pf).T Y = colxfm(colxfm(Xp, C).T, C).T return Y def lbt_dec(Y,N,s=None): if s: Pf,Pr = pot_ii(N,s) else: Pf,Pr = pot_ii(N) C = dct_ii(N) t = np.s_[N//2:-N//2] Z = colxfm(colxfm(Y.T, C.T).T, C.T) Zp = Z.copy() Zp[:,t] = colxfm(Zp[:,t].T, Pr.T).T Zp[t,:] = colxfm(Zp[t,:], Pr.T) return Zp def dct_enc(X, N): C = dct_ii(N) Y = colxfm(colxfm(X, C).T, C).T return Y def dct_dec(Y,N): C = dct_ii(N) Z = colxfm(colxfm(Y.T, C.T).T, C.T) return Z def jpegenc(X, qstep, N=8, M=8, opthuff=False, dcbits=8, log=True,s = 1.33,quantisation_matrix = None, frequency_quant = False,enc_type = 'dct'): ''' Image in X to generate the variable length bit stream in vlc. X is the input greyscale image qstep is the quantisation step to use in encoding N is the width of the DCT block (defaults to 8) M is the width of each block to be coded (defaults to N). Must be an integer multiple of N - if it is larger, individual blocks are regrouped. if opthuff is true (defaults to false), the Huffman table is optimised based on the data in X determines how many bits are used to encode the DC coefficients of the DCT (defaults to 8) Return: vlc, bits, huffval vlc is the variable length output code, where vlc[:,0] are the codes, and vlc[:,1] the number of corresponding valid bits, so that sum(vlc[:,1]) gives the total number of bits in the image bits and huffval are optional outputs which return the Huffman encoding used in compression ''' if opthuff: warnings.warn("""The opthuff argument to jpegenc calls the huffdes function. The huffdes code produces different results to the matlab code it is based on. Use at your own risk!""") if M % N != 0: raise ValueError('M must be an integer multiple of N!') # DCT on input image X. if log: print('Forward {} x {} DCT'.format(N, N)) if enc_type == 'dct': C8 = dct_ii(N) Y = colxfm(colxfm(X, C8).T, C8).T elif enc_type == 'lbt': Y = lbt_enc(X,N,s) elif enc_type == 'dwt': Y = dwtgroup(nlevdwt(X,N),N) # Quantise to integers. if log: print('Quantising to step size of {}'.format(qstep)) if not frequency_quant: Yq = quant1(Y, qstep, qstep).astype('int') else: Yq = custom_quant1(Y, N, qstep, quantisation_matrix,1).astype('int') # Generate zig-zag scan of AC coefs. scan = diagscan(M) # On the first pass use default huffman tables. if log: print('Generating huffcode and ehuf using default tables') dbits, dhuffval = huffdflt(1) # Default tables. huffcode, ehuf = huffgen(dbits, dhuffval) # Generate run/ampl values and code them into vlc(:,1:2). # Also generate a histogram of code symbols. if log: print('Coding rows') sy = Yq.shape t = np.arange(M) huffhist = np.zeros(16 ** 2) vlc = None for r in range(0, sy[0], M): vlc1 = None for c in range(0, sy[1], M): yq = Yq[np.ix_(r+t, c+t)] # Possibly regroup if M > N: yq = regroup(yq, N) yqflat = yq.flatten('F') # Encode DC coefficient first yqflat[0] += 2 ** (dcbits-1) if yqflat[0] < 0 or yqflat[0] > (2**dcbits) - 1: raise ValueError( 'DC coefficients too large for desired number of bits') dccoef = np.array([[yqflat[0], dcbits]]) # Encode the other AC coefficients in scan order ra1 = runampl(yqflat[scan]) # huffenc() also updates huffhist. if vlc1 is None: vlc1 = np.block([[dccoef], [huffenc(huffhist, ra1, ehuf)]]) else: vlc1 = np.block( [[vlc1], [dccoef], [huffenc(huffhist, ra1, ehuf)]]) if vlc is None: vlc = vlc1 else: vlc = np.block([[vlc], [vlc1]]) # Return here if the default tables are sufficient, otherwise repeat the # encoding process using the custom designed huffman tables. if not opthuff: bits = dbits huffval = dhuffval if log: print('Bits for coded image = {}'.format(sum(vlc[:, 1]))) return vlc.astype('int'), bits, huffval # Design custom huffman tables. if log: print('Generating huffcode and ehuf using custom tables') dbits, dhuffval = huffdes(huffhist) huffcode, ehuf = huffgen(dbits, dhuffval) # Generate run/ampl values and code them into vlc(:,1:2). # Also generate a histogram of code symbols. if log: print('Coding rows (second pass)') t =
np.arange(M)
numpy.arange
#------------------------------------------------------------------------------ # Copyright (C) 1996-2010 Power System Engineering Research Center (PSERC) # Copyright (C) 2007-2010 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------ """ Defines a DC OPF solver and an AC OPF solver. Based on dcopf_solver.m and mipsopf_solver.m from MATPOWER by <NAME>, developed at Cornell. See U{http://www.pserc.cornell.edu/matpower/} for more information. """ #------------------------------------------------------------------------------ # Imports: #------------------------------------------------------------------------------ import logging from numpy import \ array, pi, polyder, polyval, exp, conj, Inf, ones, r_, zeros, asarray from scipy.sparse import lil_matrix, csr_matrix, hstack, vstack from case import REFERENCE from generator import POLYNOMIAL, PW_LINEAR #from pdipm import pdipm, pdipm_qp from pips import pips, qps_pips #------------------------------------------------------------------------------ # Constants: #------------------------------------------------------------------------------ SFLOW = "Sflow" PFLOW = "Pflow" IFLOW = "Iflow" #------------------------------------------------------------------------------ # Logging: #------------------------------------------------------------------------------ logger = logging.getLogger(__name__) #------------------------------------------------------------------------------ # "_Solver" class: #------------------------------------------------------------------------------ class _Solver(object): """ Defines a base class for many solvers. """ def __init__(self, om): #: Optimal power flow model. self.om = om #: Number of equality constraints. self._nieq = 0 def solve(self): """ Solves optimal power flow and returns a results dict. """ raise NotImplementedError def _unpack_model(self, om): """ Returns data from the OPF model. """ buses = om.case.connected_buses branches = om.case.online_branches gens = om.case.online_generators cp = om.get_cost_params() # Bf = om._Bf # Pfinj = om._Pfinj return buses, branches, gens, cp def _dimension_data(self, buses, branches, generators): """ Returns the problem dimensions. """ ipol = [i for i, g in enumerate(generators) if g.pcost_model == POLYNOMIAL] ipwl = [i for i, g in enumerate(generators) if g.pcost_model == PW_LINEAR] nb = len(buses) nl = len(branches) # Number of general cost vars, w. nw = self.om.cost_N # Number of piece-wise linear costs. if "y" in [v.name for v in self.om.vars]: ny = self.om.get_var_N("y") else: ny = 0 # Total number of control variables of all types. nxyz = self.om.var_N return ipol, ipwl, nb, nl, nw, ny, nxyz def _linear_constraints(self, om): """ Returns the linear problem constraints. """ A, l, u = om.linear_constraints() # l <= A*x <= u # Indexes for equality, greater than (unbounded above), less than # (unbounded below) and doubly-bounded box constraints. # ieq = flatnonzero( abs(u - l) <= EPS ) # igt = flatnonzero( (u >= 1e10) & (l > -1e10) ) # ilt = flatnonzero( (l <= -1e10) & (u < 1e10) ) # ibx = flatnonzero( (abs(u - l) > EPS) & (u < 1e10) & (l > -1e10) ) # Zero-sized sparse matrices not supported. Assume equality # constraints exist. ## AA = A[ieq, :] ## if len(ilt) > 0: ## AA = vstack([AA, A[ilt, :]], "csr") ## if len(igt) > 0: ## AA = vstack([AA, -A[igt, :]], "csr") ## if len(ibx) > 0: ## AA = vstack([AA, A[ibx, :], -A[ibx, :]], "csr") # # if len(ieq) or len(igt) or len(ilt) or len(ibx): # sig_idx = [(1, ieq), (1, ilt), (-1, igt), (1, ibx), (-1, ibx)] # AA = vstack([sig * A[idx, :] for sig, idx in sig_idx if len(idx)]) # else: # AA = None # # bb = r_[u[ieq, :], u[ilt], -l[igt], u[ibx], -l[ibx]] # # self._nieq = ieq.shape[0] # # return AA, bb return A, l, u def _var_bounds(self): """ Returns bounds on the optimisation variables. """ x0 = array([]) xmin = array([]) xmax = array([]) for var in self.om.vars: x0 = r_[x0, var.v0] xmin = r_[xmin, var.vl] xmax = r_[xmax, var.vu] return x0, xmin, xmax def _initial_interior_point(self, buses, generators, xmin, xmax, ny): """ Selects an interior initial point for interior point solver. """ Va = self.om.get_var("Va") va_refs = [b.v_angle * pi / 180.0 for b in buses if b.type == REFERENCE] x0 = (xmin + xmax) / 2.0 x0[Va.i1:Va.iN + 1] = va_refs[0] # Angles set to first reference angle. if ny > 0: yvar = self.om.get_var("y") # Largest y-value in CCV data c = [] for g in generators: if g.pcost_model == PW_LINEAR: for _, y in g.p_cost: c.append(y) x0[yvar.i1:yvar.iN + 1] = max(c) * 1.1 return x0 #------------------------------------------------------------------------------ # "DCOPFSolver" class: #------------------------------------------------------------------------------ class DCOPFSolver(_Solver): """ Defines a solver for DC optimal power flow [3]. Based on dcopf_solver.m from MATPOWER by <NAME>, developed at PSERC Cornell. See U{http://www.pserc.cornell.edu/matpower/} for more info. """ def __init__(self, om, opt=None): """ Initialises a new DCOPFSolver instance. """ super(DCOPFSolver, self).__init__(om) # TODO: Implement user-defined costs. self.N = None self.H = None self.Cw = zeros((0, 0)) self.fparm = zeros((0, 0)) #: Solver options (See pips.py for futher details). self.opt = {} if opt is None else opt def solve(self): """ Solves DC optimal power flow and returns a results dict. """ base_mva = self.om.case.base_mva Bf = self.om._Bf Pfinj = self.om._Pfinj # Unpack the OPF model. bs, ln, gn, cp = self._unpack_model(self.om) # Compute problem dimensions. ipol, ipwl, nb, nl, nw, ny, nxyz = self._dimension_data(bs, ln, gn) # Split the constraints in equality and inequality. AA, ll, uu = self._linear_constraints(self.om) # Piece-wise linear components of the objective function. Npwl, Hpwl, Cpwl, fparm_pwl, any_pwl = self._pwl_costs(ny, nxyz, ipwl) # Quadratic components of the objective function. Npol, Hpol, Cpol, fparm_pol, polycf, npol = \ self._quadratic_costs(gn, ipol, nxyz, base_mva) # Combine pwl, poly and user costs. NN, HHw, CCw, ffparm = \ self._combine_costs(Npwl, Hpwl, Cpwl, fparm_pwl, any_pwl, Npol, Hpol, Cpol, fparm_pol, npol, nw) # Transform quadratic coefficients for w into coefficients for X. HH, CC, C0 = self._transform_coefficients(NN, HHw, CCw, ffparm, polycf, any_pwl, npol, nw) # Bounds on the optimisation variables. _, xmin, xmax = self._var_bounds() # Select an interior initial point for interior point solver. x0 = self._initial_interior_point(bs, gn, xmin, xmax, ny) # Call the quadratic/linear solver. s = self._run_opf(HH, CC, AA, ll, uu, xmin, xmax, x0, self.opt) # Compute the objective function value. Va, Pg = self._update_solution_data(s, HH, CC, C0) # Set case result attributes. self._update_case(bs, ln, gn, base_mva, Bf, Pfinj, Va, Pg, s["lmbda"]) return s def _pwl_costs(self, ny, nxyz, ipwl): """ Returns the piece-wise linear components of the objective function. """ any_pwl = int(ny > 0) if any_pwl: y = self.om.get_var("y") # Sum of y vars. Npwl = csr_matrix((ones(ny), (zeros(ny), array(ipwl) + y.i1))) Hpwl = csr_matrix((1, 1)) Cpwl = array([1]) fparm_pwl = array([[1., 0., 0., 1.]]) else: Npwl = None#zeros((0, nxyz)) Hpwl = None#array([]) Cpwl = array([]) fparm_pwl = zeros((0, 4)) return Npwl, Hpwl, Cpwl, fparm_pwl, any_pwl def _quadratic_costs(self, generators, ipol, nxyz, base_mva): """ Returns the quadratic cost components of the objective function. """ npol = len(ipol) rnpol = range(npol) gpol = [g for g in generators if g.pcost_model == POLYNOMIAL] if [g for g in gpol if len(g.p_cost) > 3]: logger.error("Order of polynomial cost greater than quadratic.") iqdr = [i for i, g in enumerate(generators) if g.pcost_model == POLYNOMIAL and len(g.p_cost) == 3] ilin = [i for i, g in enumerate(generators) if g.pcost_model == POLYNOMIAL and len(g.p_cost) == 2] polycf =
zeros((npol, 3))
numpy.zeros
import pandas as pd import numpy as np import pvlib import trimesh import meshio from ..client.client import Client from copy import copy import pickle from pathlib import Path import os def generate_irradiation_vector(time, north_angle=0): data, metadata = pvlib.iotools.read_epw(r'resources/AUT_Vienna.Schwechat.110360_IWEC.epw') location = pvlib.location.Location.from_epw(metadata) solar_position = location.get_solarposition(time) phi = np.deg2rad(- (solar_position.azimuth.values + north_angle)) theta = np.deg2rad(solar_position.elevation.values) cos_theta = np.cos(theta) irradiation_vector = np.zeros([time.shape[0], 3], dtype=np.float32) irradiation_vector[:, 0] = - cos_theta * np.cos(phi) irradiation_vector[:, 1] = - cos_theta * np.sin(phi) irradiation_vector[:, 2] = - np.sin(theta) df = pd.DataFrame(index=time, columns=['irradiation_vector']) df['irradiation_vector'] = [x for x in irradiation_vector] return df def create_sun_window(mesh, irradiation_vector): n = irradiation_vector.shape[0] u, v = two_orthogonal_vectors(irradiation_vector) sun_cs = np.empty((n, 3, 3)) sun_cs[:, 0, :] = u sun_cs[:, 1, :] = v sun_cs[:, 2, :] = irradiation_vector rectangles = np.empty((n, 4, 3)) oriented_mesh_corners = trimesh.bounds.corners(mesh.bounding_box_oriented.bounds).T for i in range(n): rot = sun_cs[i, :, :] rectangle = calc_local_rect(rot, oriented_mesh_corners) rectangles[i, :, :] = np.linalg.inv(rot).dot(rectangle.T).T return rectangles def two_orthogonal_vectors(vector): if isinstance(vector, pd.DataFrame): vector = vector.values if vector.shape.__len__() == 1: vector = np.array([vector]) x, y = generate_basis_vectorized(vector) return x, y def generate_basis_vectorized(z): """ from: trimesh.util.generate_basis Generate an arbitrary basis (also known as a coordinate frame) from a given z-axis vector. Parameters ------------ z : (3,) float A vector along the positive z-axis. epsilon : float Numbers smaller than this considered zero. Returns --------- x : (3,) float Vector along x axis. y : (3,) float Vector along y axis. z : (3,) float Vector along z axis. """ epsilon = 1e-12 # X as arbitrary perpendicular vector x = np.zeros((z.shape[0], 3)) x[:, 0] = -z[:, 1] x[:, 1] = z[:, 0] # avoid degenerate case x_norm = trimesh.util.row_norm(x) ind1 = x_norm < epsilon x[ind1, 0] = -z[ind1, 2] x[ind1, 1] = z[ind1, 1] x[ind1, 2] = z[ind1, 0] x[ind1, :] /= trimesh.util.row_norm(x[ind1, :])[:, None] x[np.logical_not(ind1), :] /= trimesh.util.row_norm(x[np.logical_not(ind1), :])[:, None] # get perpendicular Y with cross product y = np.cross(z, x) return x, y def calc_local_rect(rot_mat, oriented_mesh_corners): import cv2 local_oriented_corners = rot_mat.dot(oriented_mesh_corners).T z_translation = -abs(min(local_oriented_corners[:, 2]) * 1.1) rec = np.zeros((4, 3)) local_points = local_oriented_corners[:, 0:2] c_hull = cv2.convexHull(local_points.astype('float32')) local_rectangle = cv2.boxPoints(cv2.minAreaRect(c_hull)) rec[:, 0:2] = local_rectangle rec[:, 2] = z_translation return rec def sample_rectangle(rect, n, scale=1.01, method='length_dependent'): """ create equally distant points in rectangle :param rect: edge points of the rectangle (4 * 3) :param n: number of points :param scale: scale rectangle :param method: how to sample points: constant: n points along x' and y'; constant_adapted: n^2 = n1 * n2 points in total. n1 and n2 according to length of x' and y'; l length_dependent: number of points = (x' / n) * (y' / n) ; n is distance between points :return: sampled points (n * 3) """ # scale rectangle if scale != 1: center = rect[0, :] + (rect[2, :] - rect[0, :]) * 0.5 rect = (rect - center) * scale + center origin = (rect[0, :]).astype(np.float32) vec0 = (rect[1, :] - origin).astype(np.float32) vec1 = (rect[-1, :] - origin).astype(np.float32) area = np.linalg.norm(vec0) * np.linalg.norm(vec1) if method == 'constant': spaces = np.linspace(0, 1, n, dtype=np.float32) n_spaces = spaces.shape[0] points = ((np.transpose(np.broadcast_to(vec1 * spaces[:, None], (n_spaces, n_spaces, 3)), axes=(1, 0, 2)) + \ np.broadcast_to(vec0 * spaces[:, None], (n_spaces, n_spaces, 3)) + \ origin[None, None, :])).reshape(n_spaces**2, 3) else: if method == 'constant_adapted': frac = np.linalg.norm(vec0) / np.linalg.norm(vec1) n1 = (n * np.sqrt(frac)).astype(int) n2 = (n / np.sqrt(frac)).astype(int) elif method == 'length_dependent': n1 = np.ceil(np.linalg.norm(vec0) / n).astype(int) n2 = np.ceil(np.linalg.norm(vec1) / n).astype(int) if n1 < 20: n1 = 20 if n2 < 20: n2 = 20 spaces0 = np.linspace(0, 1, n1, endpoint=False, dtype=np.float32)[1:] spaces1 = np.linspace(0, 1, n2, endpoint=False, dtype=np.float32)[1:] # x, y = np.meshgrid(spaces0, spaces1, copy=False, dtype=np.float32) # points = (x[:, :, None] * vec0 + y[:, :, None] * vec1).reshape(spaces0.shape[0] * spaces1.shape[0], 3) + origin points = (np.transpose(np.broadcast_to(vec0 * spaces0[:, None], (spaces1.shape[0], spaces0.shape[0], 3)), axes=(1, 0, 2)) + \ np.broadcast_to(vec1 * spaces1[:, None], (spaces0.shape[0], spaces1.shape[0], 3) )).reshape(spaces0.shape[0] * spaces1.shape[0], 3) + origin return points, area def export_rays_vtk(orig, norm, filename='rays.vtk'): pt1 = orig pt2 = orig + norm points = np.concatenate((pt1, pt2), axis=0) pt_range = np.arange(0, pt1.shape[0], 1) lines = np.vstack((pt_range, pt_range[-1] + pt_range + 1)).T cells = [ ("line", lines) ] mesh = meshio.Mesh( points, cells, ) mesh.write( filename, # str, os.PathLike, or buffer/open file # file_format="vtk", # optional if first argument is a path; inferred from extension ) def export_vtk(mesh, count, filename): cells = [ ("triangle", mesh.faces) ] cell_data = np.zeros(mesh.faces.shape[0]) cell_data[0:count.shape[0]] = count mesh = meshio.Mesh( mesh.vertices, cells, # Optionally provide extra data on points, cells, etc. # Each item in cell data must match the cells array cell_data={"count": [cell_data]}, ) mesh.write( filename, # str, os.PathLike, or buffer/open file # file_format="vtk", # optional if first argument is a path; inferred from extension ) def export_sun_window_vtk(window, filename): cells = [ ("quad", np.array([[0, 1, 2, 3]])), ] mesh = meshio.Mesh( window, cells, ) mesh.write( filename, # str, os.PathLike, or buffer/open file # file_format="vtk", # optional if first argument is a path; inferred from extension ) def export_points_vtk(points, filename): from pyntcloud import PyntCloud cloud = PyntCloud(pd.DataFrame( # same arguments that you are passing to visualize_pcl data=points, columns=["x", "y", "z"])) cloud.to_file(filename) class npyAppendableFile(): """ https://stackoverflow.com/questions/30376581/save-numpy-array-in-append-mode :param """ def __init__(self, fname, newfile=True): ''' Creates a new instance of the appendable filetype If newfile is True, recreate the file even if already exists ''' self.fname = Path(fname) if newfile: with open(self.fname, "wb") as fh: fh.close() def write(self, data): ''' append a new array to the file note that this will not change the header ''' with open(self.fname, "ab") as fh: np.save(fh, data) def load(self, axis=2): ''' Load the whole file, returning all the arrays that were consecutively saved on top of each other axis defines how the arrays should be concatenated ''' with open(self.fname, "rb") as fh: fsz = os.fstat(fh.fileno()).st_size out = np.load(fh) while fh.tell() < fsz: out = np.concatenate((out, np.load(fh)), axis=axis) return out def update_content(self): ''' ''' content = self.load() with open(self.fname, "wb") as fh: np.save(fh, content) @property def _dtype(self): return self.load().dtype @property def _actual_shape(self): return self.load().shape @property def header(self): ''' Reads the header of the npy file ''' with open(self.fname, "rb") as fh: version =
np.lib.format.read_magic(fh)
numpy.lib.format.read_magic
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** # -*- coding: utf-8 -*- import numpy as np import pandas as pd import sdc import unittest from itertools import product from sdc.str_arr_ext import StringArray from sdc.str_ext import std_str_to_unicode, unicode_to_std_str from sdc.tests.test_base import TestCase from sdc.tests.test_utils import skip_numba_jit from sdc.functions import numpy_like from sdc.functions import sort class TestArrays(TestCase): def test_astype_to_num(self): def ref_impl(a, t): return a.astype(t) def sdc_impl(a, t): return numpy_like.astype(a, t) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan]] cases_type = [np.float64, np.int64, 'float64', 'int64'] for case in cases: a = np.array(case) for type_ in cases_type: with self.subTest(data=case, type=type_): np.testing.assert_array_equal(sdc_func(a, type_), ref_impl(a, type_)) def test_astype_to_float(self): def ref_impl(a): return a.astype('float64') def sdc_impl(a): return numpy_like.astype(a, 'float64') sdc_func = self.jit(sdc_impl) cases = [[2, 3, 0], [4., 5.6, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_to_int(self): def ref_impl(a): return a.astype(np.int64) def sdc_impl(a): return numpy_like.astype(a, np.int64) sdc_func = self.jit(sdc_impl) cases = [[2, 3, 0], [4., 5.6, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_int_to_str(self): def ref_impl(a): return a.astype(str) def sdc_impl(a): return numpy_like.astype(a, str) sdc_func = self.jit(sdc_impl) a = np.array([2, 3, 0]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Numba converts float to string with incorrect precision') def test_astype_float_to_str(self): def ref_impl(a): return a.astype(str) def sdc_impl(a): return numpy_like.astype(a, str) sdc_func = self.jit(sdc_impl) a = np.array([4., 5.6, np.nan]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_astype_num_to_str(self): def ref_impl(a): return a.astype('str') def sdc_impl(a): return numpy_like.astype(a, 'str') sdc_func = self.jit(sdc_impl) a = np.array([5, 2, 0, 333, -4]) np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Needs Numba astype impl support converting unicode_type to other type') def test_astype_str_to_num(self): def ref_impl(a, t): return a.astype(t) def sdc_impl(a, t): return numpy_like.astype(a, t) sdc_func = self.jit(sdc_impl) cases = [['a', 'cc', 'd'], ['3.3', '5', '.4'], ['¡Y', 'tú quién ', 'te crees']] cases_type = [np.float64, np.int64] for case in cases: a = np.array(case) for type_ in cases_type: with self.subTest(data=case, type=type_): np.testing.assert_array_equal(sdc_func(a, type_), ref_impl(a, type_)) def test_isnan(self): def ref_impl(a): return np.isnan(a) def sdc_impl(a): return numpy_like.isnan(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) @unittest.skip('Needs provide String Array boxing') def test_isnan_str(self): def ref_impl(a): return np.isnan(a) def sdc_impl(a): return numpy_like.isnan(a) sdc_func = self.jit(sdc_impl) cases = [['a', 'cc', np.nan], ['se', None, 'vvv']] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_notnan(self): def ref_impl(a): return np.invert(np.isnan(a)) def sdc_impl(a): return numpy_like.notnan(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_copy(self): from sdc.str_arr_ext import StringArray def ref_impl(a): return np.copy(a) @self.jit def sdc_func(a): _a = StringArray(a) if as_str_arr == True else a # noqa return numpy_like.copy(_a) cases = { 'int': [5, 2, 0, 333, -4], 'float': [3.3, 5.4, np.nan, 7.9, np.nan], 'bool': [True, False, True], 'str': ['a', 'vv', 'o12oo'] } for dtype, data in cases.items(): a = data if dtype == 'str' else np.asarray(data) as_str_arr = True if dtype == 'str' else False with self.subTest(case=data): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_copy_int(self): def ref_impl(): a = np.array([5, 2, 0, 333, -4]) return np.copy(a) def sdc_impl(): a = np.array([5, 2, 0, 333, -4]) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) def test_copy_bool(self): def ref_impl(): a = np.array([True, False, True]) return np.copy(a) def sdc_impl(): a = np.array([True, False, True]) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) @unittest.skip("Numba doesn't have string array") def test_copy_str(self): def ref_impl(): a = np.array(['a', 'vv', 'o12oo']) return np.copy(a) def sdc_impl(): a = np.array(['a', 'vv', 'o12oo']) return numpy_like.copy(a) sdc_func = self.jit(sdc_impl) np.testing.assert_array_equal(sdc_func(), ref_impl()) def test_argmin(self): def ref_impl(a): return np.argmin(a) def sdc_impl(a): return numpy_like.argmin(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_argmax(self): def ref_impl(a): return np.argmax(a) def sdc_impl(a): return numpy_like.argmax(a) sdc_func = self.jit(sdc_impl) cases = [[np.nan, np.nan, np.inf, np.nan], [5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_nanargmin(self): def ref_impl(a): return np.nanargmin(a) def sdc_impl(a): return numpy_like.nanargmin(a) sdc_func = self.jit(sdc_impl) cases = [[5, 2, 0, 333, -4], [3.3, 5.4, np.nan, 7.9, np.nan]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_nanargmax(self): def ref_impl(a): return np.nanargmax(a) def sdc_impl(a): return numpy_like.nanargmax(a) sdc_func = self.jit(sdc_impl) cases = [[np.nan, np.nan, np.inf, np.nan], [5, 2, -9, 333, -4], [3.3, 5.4, np.nan, 7.9]] for case in cases: a = np.array(case) with self.subTest(data=case): np.testing.assert_array_equal(sdc_func(a), ref_impl(a)) def test_sort(self): np.random.seed(0) def ref_impl(a): return np.sort(a) def sdc_impl(a): sort.parallel_sort(a) return a sdc_func = self.jit(sdc_impl) float_array = np.random.ranf(10**2) int_arryay = np.random.randint(0, 127, 10**2) float_cases = ['float32', 'float64'] for case in float_cases: array0 = float_array.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) int_cases = ['int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'] for case in int_cases: array0 = int_arryay.astype(case) array1 = np.copy(array0) with self.subTest(data=case): np.testing.assert_array_equal(ref_impl(array0), sdc_func(array1)) def test_stable_sort(self): np.random.seed(0) def ref_impl(a): return np.sort(a) def sdc_impl(a): sort.parallel_stable_sort(a) return a sdc_func = self.jit(sdc_impl) float_array = np.random.ranf(10**2) int_arryay = np.random.randint(0, 127, 10**2) float_cases = ['float32', 'float64'] for case in float_cases: array0 = float_array.astype(case) array1 =
np.copy(array0)
numpy.copy
#Standard python libraries import os import warnings import copy import time import itertools import functools #Dependencies - numpy, scipy, matplotlib, pyfftw import numpy as np import matplotlib.pyplot as plt import pyfftw from pyfftw.interfaces.numpy_fft import fft, fftshift, ifft, ifftshift, fftfreq from scipy.interpolate import interp1d as sinterp1d import scipy from ufss import DiagramGenerator from ufss.UF2.heaviside_convolve import HeavisideConvolve def set_identical_efields(obj): """This should contain more""" obj.efields = [] class psi_container: def __init__(self,t,psi,bool_mask,pulse_number,manifold_key,*,interp_kind='linear', interp_left_fill=0): self.bool_mask = bool_mask self.pulse_number = pulse_number self.manifold_key = manifold_key if t.size == 1: n, M = psi.shape self.M = M+2 self.n = n self.t = np.array([-1,0,1],dtype='float') * np.spacing(t[0]) + t[0] psi_new = np.zeros((n,3),dtype='complex') psi_new[:,0] = interp_left_fill psi_new[:,1] = (1 + interp_left_fill)/2 * psi[:,0] psi_new[:,2] = psi[:,0] self.asymptote = psi[:,-1] self.psi = psi_new self._psi = psi_new self.psi_fun = self.impulsive_psifun(self.asymptote,left_fill = interp_left_fill) else: self.t = t self.psi = psi self._psi = self.extend(psi,left_fill = interp_left_fill) self.psi_fun = self.make_interpolant(kind=interp_kind, left_fill=interp_left_fill) def extend(self,psi,*,left_fill = 0): n, M = psi.shape self.M = M self.n = n new_psi = np.zeros((n,3*M),dtype='complex') new_psi[:,0:M] = left_fill new_psi[:,M:2*M] = psi asymptote = psi[:,-1] self.asymptote = asymptote new_psi[:,2*M:] = asymptote[:,np.newaxis] return new_psi def make_interpolant(self,*, kind='cubic', left_fill=0): """Interpolates density matrix and pads using 0 to the left and psi[-1] to the right """ left_fill = np.ones(self.n,dtype='complex')*left_fill right_fill = self.psi[:,-1] return sinterp1d(self.t,self.psi,fill_value = (left_fill,right_fill), assume_sorted=True,bounds_error=False,kind=kind) def impulsive_psifun(self,asymptote,left_fill=0): if left_fill == 0: def f(t): return asymptote[:,np.newaxis] * np.heaviside(t-self.t[1],0.5)[np.newaxis,:] else: def f(t): try: return asymptote[:,np.newaxis] * np.ones(len(t))[np.newaxis,:] except: return asymptote[:,np.newaxis] return f def __call__(self,t): if type(t) is np.ndarray: if t[0] > self.t[-1]: if t.size <= self.M: ans = self._psi[:,-t.size:].copy() else: ans = np.ones(t.size,dtype='complex')[np.newaxis,:] * self.asymptote[:,np.newaxis] elif t[-1] < self.t[0]: if t.size <= self.M: ans = self._psi[:,:t.size].copy() else: ans = np.zeros((self.n,t.size),dtype='complex') elif t.size == self.M: if np.allclose(t,self.t): ans = self.psi.copy() else: ans = self.psi_fun(t) else: ans = self.psi_fun(t) else: ans = self.psi_fun(t) return ans def __getitem__(self,inds): return self._psi[:,inds].copy() class Wavepackets(DiagramGenerator): """This class is designed to calculate perturbative wavepackets in the light-matter interaction given the eigenvalues of the unperturbed hamiltonian and the material dipole operator evaluated in the eigenbasis of the unperturbed hamiltonian. Args: file_path (string): path to folder containing eigenvalues and the dipole operator for the system Hamiltonian num_conv_points (int): number of desired points for linear convolution. Also number of points used to resolve all optical pulse shapes dt (float): time spacing used to resolve the shape of all optical pulses initial_state (int): index of initial state for psi^0 """ def __init__(self,file_path,*, num_conv_points=41, initial_state=0, total_num_time_points = None, detection_type = 'polarization'): self.slicing_time = 0 self.interpolation_time = 0 self.expectation_time = 0 self.next_order_expectation_time = 0 self.convolution_time = 0 self.extend_time = 0 self.mask_time = 0 self.dipole_time = 0 self.automation_time = 0 self.diagram_to_signal_time = 0 self.base_path = file_path self.undersample_factor = 1 self.gamma_res = 6.91 self.initial_state = initial_state self.load_eigensystem() self.load_mu() if detection_type == 'polarization': self.psi_to_signal = self.polarization_detection_signal self.return_complex_signal = False elif detection_type == 'complex_polarization': self.psi_to_signal = self.polarization_detection_signal self.return_complex_signal = True detection_type = 'polarization' elif detection_type == 'integrated_polarization': self.psi_to_signal = self.integrated_polarization_detection_signal elif detection_type == 'fluorescence': self.psi_to_signal = self.fluorescence_detection_signal self.f_yield = f_yield #quantum yield of doubly excited manifold relative to singly excited manifold DiagramGenerator.__init__(self,detection_type=detection_type) self.K_dict = {'u':self.up,'d':self.down} # Code will not actually function until the following empty lists are set by the user self.efields = [] #initialize empty list of electric field shapes self.efield_times = [] #initialize empty list of times assoicated with each electric field shape self.dts = [] #initialize empty list of time spacings associated with each electric field shape self.polarization_sequence = [] #initialize empty polarization sequence self.pulse_times = [] #initialize empty list of pulse arrival times self.centers = [] #initialize empty list of pulse center frequencies self.efield_wavevectors = [] self.heaviside_convolve_list = [] self.psis = dict() def set_pulse_delays(self,all_delays): """Must be a list of numpy arrays, where each array is a list of delay times between pulses """ self.all_pulse_delays = all_delays num_delays = len(self.all_pulse_delays) num_pulses = len(self.efields) if num_delays == num_pulses - 1: pass elif num_delays == num_pulses - 2 and self.detection_type == 'polarization': # If there is a local oscillator, it arrives simultaneously with the last pulse self.all_pulse_delays.append(np.array([0])) elif num_delays <= num_pulses -2: raise Exception('There are not enough delay times') elif num_delays >= num_pulses: raise Exception('There are too many delay times') def calculate_diagrams_all_delays(self,diagrams): t0 = time.time() num_delays = len(self.all_pulse_delays) num_pulses = len(self.efields) all_delay_combinations = list(itertools.product(*self.all_pulse_delays)) signal_shape = [delays.size for delays in self.all_pulse_delays] if self.detection_type == 'polarization': signal = np.zeros((len(all_delay_combinations),self.w.size),dtype='complex') if len(signal_shape) == self.pdc.shape[0]: # get rid of the "delay" between the last pulse and the local oscillator signal_shape[-1] = self.w.size elif len(signal_shape) == self.pdc.shape[0] - 1: # append the shape of the polariation-detection axis signal_shape.append(self.w.size) else: raise Exception('Cannot automatically determine final signal shape') else: signal = np.zeros((len(all_delay_combinations)),dtype='complex') counter = 0 for delays in all_delay_combinations: arrival_times = [0] for delay in delays: arrival_times.append(arrival_times[-1]+delay) if self.detection_type == 'polarization': signal[counter,:] = self.calculate_diagrams(diagrams,arrival_times) else: signal[counter] = self.calculate_diagrams(diagrams,arrival_times) counter += 1 self.signal = signal.reshape(signal_shape) self.calculation_time = time.time() - t0 return self.signal def calculate_signal_all_delays(self): t0 = time.time() num_delays = len(self.all_pulse_delays) num_pulses = len(self.efields) all_delay_combinations = list(itertools.product(*self.all_pulse_delays)) signal_shape = [delays.size for delays in self.all_pulse_delays] if self.detection_type == 'polarization': signal = np.zeros((len(all_delay_combinations),self.w.size),dtype='complex') if len(signal_shape) == self.pdc.shape[0]: # get rid of the "delay" between the last pulse and the local oscillator signal_shape[-1] = self.w.size elif len(signal_shape) == self.pdc.shape[0] - 1: # append the shape of the polariation-detection axis signal_shape.append(self.w.size) else: raise Exception('Cannot automatically determine final signal shape') else: signal = np.zeros((len(all_delay_combinations)),dtype='complex') counter = 0 for delays in all_delay_combinations: arrival_times = [0] for delay in delays: arrival_times.append(arrival_times[-1]+delay) if self.detection_type == 'polarization': signal[counter,:] = self.calculate_signal(arrival_times) else: signal[counter] = self.calculate_signal(arrival_times) counter += 1 self.signal = signal.reshape(signal_shape) self.calculation_time = time.time() - t0 return self.signal def set_t(self,optical_dephasing_rate,*,dt='auto'): """Sets the time grid upon which all frequency-detected signals will be calculated on """ max_pos_t = int(self.gamma_res/optical_dephasing_rate) max_efield_t = max([np.max(u) for u in self.efield_times]) * 1.05 max_pos_t = max(max_pos_t,max_efield_t) if dt == 'auto': dt = self.dts[-1] # signal detection bandwidth determined by local oscillator n = int(max_pos_t/dt) self.t = np.arange(-n,n+1,1)*dt self.w = fftshift(fftfreq(self.t.size,d=dt)*2*np.pi) def execute_diagram(self,instructions): num_instructions = len(instructions['ket']) + len(instructions['bra']) ket = self.psi0 bra = self.psi0 ketname = '' braname = '' ket_instructions = instructions['ket'] bra_instructions = instructions['bra'] for i in range(len(ket_instructions)): key, num = ket_instructions[i] ketname += key+str(num) # Try to re-use previous calculations, if they exist try: new_ket = self.psis[ketname] except KeyError: new_ket = self.K_dict[key](ket,pulse_number=num) self.psis[ketname] = new_ket ket = new_ket for i in range(len(bra_instructions)): key, num = bra_instructions[i] braname += key+str(num) # Try to re-use previous calculations, if they exist try: new_bra = self.psis[braname] except KeyError: new_bra = self.K_dict[key](bra,pulse_number=num) self.psis[braname] = new_bra bra = new_bra sig = self.psi_to_signal(bra,ket) return sig def remove_psis_by_pulse_number(self,pulse_number): num = str(pulse_number) keys = self.psis.keys() keys_to_remove = [] for key in keys: flag = key.find(num) if flag >= 0: keys_to_remove.append(key) for key in keys_to_remove: self.psis.pop(key) def set_identical_gaussians(self,sigma_t,c,phase_discrimination): """ """ L = len(phase_discrimination) # number of pulses # Delta = 10 and M = 41 hard-coded in efield_t = np.linspace(-5,5,num=41) times = [efield_t] * L self.set_polarization_sequence(['x'] * L) centers = [c] * L ef = np.exp(-efield_t**2/(2*sigma_t**2)) efields = [ef for i in L] self.set_efields(times,efields,centers,phase_discrimination, reset_psis = True,plot_fields = False) def set_current_diagram_instructions(self,arrival_times): self.current_instructions = self.get_wavefunction_diagrams(arrival_times) def calculate_signal(self,arrival_times): t0 = time.time() try: old_pulse_times = self.pulse_times for i in range(len(old_pulse_times)): if old_pulse_times[i] != arrival_times[i]: self.remove_psis_by_pulse_number(i) except AttributeError: pass self.pulse_times = arrival_times self.set_current_diagram_instructions(arrival_times) diagram_instructions = self.current_instructions if len(diagram_instructions) == 0: print(arrival_times) t1 = time.time() try: instructions = diagram_instructions[0] signal = self.execute_diagram(instructions) for instructions in diagram_instructions[1:]: signal += self.execute_diagram(instructions) except IndexError: signal = 0 t2 = time.time() self.automation_time += t1-t0 self.diagram_to_signal_time += t2-t1 return signal def calculate_diagrams(self,diagram_instructions,arrival_times): try: old_pulse_times = self.pulse_times for i in range(len(old_pulse_times)): if old_pulse_times[i] != arrival_times[i]: self.remove_psis_by_pulse_number(i) except AttributeError: pass self.pulse_times = arrival_times self.current_instructions = diagram_instructions instructions = diagram_instructions[0] signal = self.execute_diagram(instructions) for instructions in diagram_instructions[1:]: signal += self.execute_diagram(instructions) return signal def polarization_detection_signal(self,bra_dict,ket_dict): p_of_t = self.dipole_expectation(bra_dict,ket_dict,pulse_number = -1) return self.polarization_to_signal(p_of_t,local_oscillator_number=-1) def integrated_polarization_detection_signal(self,bra_dict,ket_dict): p = self.integrated_dipole_expectation(bra_dict,ket_dict,pulse_number=-1) return self.integrated_polarization_to_signal(p,local_oscillator_number=-1) def fluorescence_detection_signal(self,bra_dict,ket_dict,*,time_index = -1): """Calculate inner product given an input bra and ket dictionary at a time given by the time index argument. Default is -1, since 2DFS is concerned with the amplitude of arriving in the given manifold after the pulse has finished interacting with the system.""" bra = np.conjugate(bra_dict['psi'][:,-1]) ket = ket_dict['psi'][:,-1] return np.dot(bra,ket) def reset(self): self.psis = dict() def set_efields(self,times_list,efields_list,centers_list,phase_discrimination,*,reset = True, plot_fields = False): self.efield_times = times_list self.efields = efields_list self.centers = centers_list self.set_phase_discrimination(phase_discrimination) self.dts = [] self.efield_frequencies = [] if reset: self.reset() for t in times_list: if t.size == 1: dt = 1 w = np.array([0]) else: dt = t[1] - t[0] w = fftshift(fftfreq(t.size,d=dt))*2*np.pi self.dts.append(dt) self.efield_frequencies.append(w) self.heaviside_convolve_list.append(HeavisideConvolve(t.size)) self.dt = self.dts[0] # Initialize unperturbed wavefunction self.set_psi0(self.initial_state) if self.detection_type == 'polarization' or 'integrated_polarization': try: self.local_oscillator = self.efields[-1].copy() except: self.local_oscillator = copy.deepcopy(self.efields[-1]) # for field in self.efields: # if len(field) == 1: # # M = 1 is the impulsive limit # pass # else: # self.check_efield_resolution(field,plot_fields = plot_fields) def check_efield_resolution(self,efield,*,plot_fields = False): efield_tail = np.max(np.abs([efield[0],efield[-1]])) if efield_tail > np.max(np.abs(efield))/100: warnings.warn('Consider using larger time interval, pulse does not decay to less than 1% of maximum value in time domain') efield_fft = fftshift(fft(ifftshift(efield)))*self.dt efield_fft_tail = np.max(np.abs([efield_fft[0],efield_fft[-1]])) if efield_fft_tail > np.max(np.abs(efield_fft))/100: warnings.warn('''Consider using smaller value of dt, pulse does not decay to less than 1% of maximum value in frequency domain''') if plot_fields: fig, axes = plt.subplots(1,2) l1,l2, = axes[0].plot(self.efield_t,np.real(efield),self.efield_t,np.imag(efield)) plt.legend([l1,l2],['Real','Imag']) axes[1].plot(self.efield_w,np.real(efield_fft),self.efield_w,np.imag(efield_fft)) axes[0].set_ylabel('Electric field Amp') axes[0].set_xlabel('Time ($\omega_0^{-1})$') axes[1].set_xlabel('Frequency ($\omega_0$)') fig.suptitle('Check that efield is well-resolved in time and frequency') plt.show() def set_local_oscillator_phase(self,phase): self.efields[-1] = np.exp(1j*phase) * self.local_oscillator def get_psi_eigen_basis(self,t,key): psi_obj = self.psis[key] mask = psi_obj.bool_mask all_e = self.eigenvalues[psi_obj.manifold_key] e = all_e[mask] psi = psi_obj(t)*np.exp(-1j*e[:,np.newaxis]*t[np.newaxis,:]) full_size = all_e.size total_psi = np.zeros(full_size,t.size) total_psi[mask,:] = psi return total_psi def get_psi_site_basis(self,t,key): psi_obj = self.psis[key] mask = psi_obj.bool_mask manifold_num = self.manifold_key_to_number(psi_obj.manifold_key) e = self.eigenvalues[manifold_num][mask] psi = psi_obj(t)*np.exp(-1j*e[:,np.newaxis]*t[np.newaxis,:]) ev = self.eigenvectors[manifold_num][:,mask] new_psi = ev.dot(psi) full_size = 0 manifold_sizes = [] for i in range(len(self.eigenvalues)): manifold_sizes.append(self.eigenvectors[manifold_num].shape[0]) full_size += manifold_sizes[-1] total_psi = np.zeros(full_size,t.size) start = 0 for i in range(len(self.eigenvalues)): if i == manifold_num: end = start + manifold_sizes[i] total_psi[start:end,:] = new_psi else: start += manifold_sizes[i] return total_psi def get_psi_site_basis_by_order(self,t,order): keys = self.psis.keys() order_keys = [] for key in keys: if len(key) == 2*order: order_keys.append(key) psi_total = self.get_psi_site_basis(t,order_keys.pop(0)) for key in order_keys: psi_total += self.get_psi_site_basis(t,key) return psi_total def set_psi0(self,initial_state): """Creates the unperturbed wavefunction. This code does not support initial states that are coherent super-positions of eigenstates. To perform thermal averaging, recalculate spectra for each initial state that contributes to the thermal ensemble. Args: initial_state (int): index for initial eigenstate in GSM """ # initial state must be interpreted given the fact that masking may have been done try: trimmed_indices = np.where(self.trimming_masks[0])[0] initial_state = np.where(trimmed_indices == initial_state)[0] except AttributeError: pass t = self.efield_times[0] # can be anything of the correct length key = self.ordered_manifolds[0] psi0 = np.ones((1,t.size),dtype=complex) bool_mask = np.zeros(self.eigenvalues[key].size,dtype='bool') bool_mask[initial_state] = True self.psi0 = psi_container(t,psi0,bool_mask,None,key,interp_kind='zero', interp_left_fill=1) def get_closest_index_and_value(self,value,array): """Given an array and a desired value, finds the closest actual value stored in that array, and returns that value, along with its corresponding array index """ index = np.argmin(np.abs(array - value)) value = array[index] return index, value def load_eigensystem(self): """Load in known eigenvalues. Must be stored as a numpy archive file, with keys: GSM, SEM, and optionally DEM. The eigenvalues for each manifold must be 1d arrays, and are assumed to be ordered by increasing energy. The energy difference between the lowest energy ground state and the lowest energy singly-excited state should be set to 0 """ eigval_save_name = os.path.join(self.base_path,'eigenvalues.npz') eigvec_save_name = os.path.join(self.base_path,'eigenvectors.npz') with np.load(eigval_save_name) as eigval_archive: self.manifolds = list(eigval_archive.keys()) self.eigenvalues = {key:eigval_archive[key] for key in self.manifolds} with np.load(eigvec_save_name) as eigvec_archive: self.eigenvectors = {key:eigvec_archive[key] for key in self.manifolds} if '0' in self.manifolds: self.ordered_manifolds = [str(i) for i in range(len(self.manifolds))] else: self.ordered_manifolds = ['GSM','SEM','DEM','TEM','QEM'] ### store original eigenvalues for recentering purposes self.original_eigenvalues = copy.deepcopy(self.eigenvalues) def load_mu(self): """Load the precalculated dipole overlaps. The dipole operator must be stored as a .npz file, and must contain at least one array, each with three indices: (upper manifold eigenfunction, lower manifold eigenfunction, cartesian coordinate). So far this code supports up to three manifolds, and therefore up to two dipole operators (connecting between manifolds)""" file_name = os.path.join(self.base_path,'mu.npz') file_name_pruned = os.path.join(self.base_path,'mu_pruned.npz') file_name_bool = os.path.join(self.base_path,'mu_boolean.npz') try: mu_boolean_archive = np.load(file_name_bool) # self.mu_boolean = {'ket':mu_boolean_archive['ket'],'bra':mu_boolean_archive['bra']} with np.load(file_name_bool) as mu_boolean_archive: self.mu_boolean = {key:mu_boolean_archive[key] for key in mu_boolean_archive.keys()} pruned = True file_name = file_name_pruned except FileNotFoundError: pruned = False with np.load(file_name) as mu_archive: self.mu = {key:mu_archive[key] for key in mu_archive.keys()} if pruned == False: self.mu_boolean = dict() for key in self.mu.keys(): self.mu_boolean[key] = np.ones(self.mu[key].shape[:2],dtype='bool') ### Setting the electric field to be used def set_polarization_sequence(self,polarization_list,*,reset_psis=True): """Sets the sequences used for either parallel or crossed pump and probe Args: polarization_list (list): list of four strings, can be 'x','y' or 'z' Returns: None: sets the attribute polarization sequence """ x = np.array([1,0,0]) y = np.array([0,1,0]) z = np.array([0,0,1]) pol_options = {'x':x,'y':y,'z':z} self.polarization_sequence = [pol_options[pol] for pol in polarization_list] if reset_psis: self.psis = dict() ### Tools for recursively calculating perturbed wavepackets using TDPT def dipole_matrix(self,pulse_number,key,ket_flag=True,up_flag=True): """Calculates the dipole matrix given the electric field polarization vector, if ket_flag = False then uses the bra-interaction""" t0 = time.time() pol = self.polarization_sequence[pulse_number] x = np.array([1,0,0]) y = np.array([0,1,0]) z = np.array([0,0,1]) try: mu = self.mu[key] boolean_matrix = self.mu_boolean[key] except KeyError: try: key = 'up' mu = self.mu[key] boolean_matrix = self.mu_boolean[key] except KeyError: key = 'ket_up' mu = self.mu[key] boolean_matrix = self.mu_boolean[key] if np.all(pol == x): overlap_matrix = mu[:,:,0].copy() elif np.all(pol == y): overlap_matrix = mu[:,:,1].copy() elif np.all(pol == z): overlap_matrix = mu[:,:,2].copy() else: overlap_matrix = np.tensordot(mu,pol,axes=(-1,0)) if not up_flag: overlap_matrix = overlap_matrix.T boolean_matrix = boolean_matrix.T t1 = time.time() self.dipole_time += t1-t0 return boolean_matrix, overlap_matrix def electric_field_mask(self,pulse_number,key,conjugate_flag=False): """This method determines which molecular transitions will be supported by the electric field. We assume that the electric field has 0 amplitude outside the minimum and maximum frequency immplied by the choice of dt and num_conv_points. Otherwise we will inadvertently alias transitions onto nonzero electric field amplitudes. """ if conjugate_flag: ending_key, starting_key = key.split('_to_') else: starting_key, ending_key = key.split('_to_') efield_t = self.efield_times[pulse_number] efield_w = self.efield_frequencies[pulse_number] if conjugate_flag: center = -self.centers[pulse_number] else: center = self.centers[pulse_number] try: eig_starting = self.eigenvalues['all_manifolds'] eig_ending = self.eigenvalues['all_manifolds'] except KeyError: eig_starting = self.eigenvalues[starting_key] eig_ending = self.eigenvalues[ending_key] diff = eig_ending[:,np.newaxis] - eig_starting[np.newaxis,:] if efield_t.size == 1: mask = np.ones(diff.shape,dtype='bool') else: # The only transitions allowed by the electric field shape are inds_allowed = np.where((diff - center > efield_w[0]) & (diff - center < efield_w[-1])) mask = np.zeros(diff.shape,dtype='bool') mask[inds_allowed] = 1 return mask def mask_dipole_matrix(self,boolean_matrix,overlap_matrix, starting_manifold_mask,*,next_manifold_mask = None): """Takes as input the boolean_matrix and the overlap matrix that it corresponds to. Also requires the starting manifold mask, which specifies which states have non-zero amplitude, given the signal tolerance requested. Trims off unnecessary starting elements, and ending elements. If next_manifold_mask is None, then the masking is done automatically based upon which overlap elements are nonzero. If next_manifold_mask is a 1D numpy boolean array, it is used as the mask for next manifold.""" t0 = time.time() if np.all(starting_manifold_mask == True): pass else: boolean_matrix = boolean_matrix[:,starting_manifold_mask] overlap_matrix = overlap_matrix[:,starting_manifold_mask] #Determine the nonzero elements of the new psi, in the #eigenenergy basis, n_nonzero if type(next_manifold_mask) is np.ndarray: n_nonzero = next_manifold_mask else: n_nonzero = np.any(boolean_matrix,axis=1) if np.all(n_nonzero == True): pass else: overlap_matrix = overlap_matrix[n_nonzero,:] t1 = time.time() self.mask_time += t1-t0 return overlap_matrix, n_nonzero def manifold_key_to_number(self,key): num = self.ordered_manifolds.index(key) return num def manifold_number_to_key(self,num): key = self.ordered_manifolds[num] return key def next_order(self,psi_in,*,up_flag=True, new_manifold_mask = None,pulse_number = 0): """This function connects psi_p to psi_pj^(*) using a DFT convolution algorithm. Args: psi_in (psi_container): input density matrix pulse_number (int): index of optical pulse (0,1,2,...) can also be set to 'impulsive' new_manifold_mask (np.ndarray): optional - define the states to be considered in the next manifold Return: psi_dict (psi_container): next-order wavefunction """ pulse_time = self.pulse_times[pulse_number] t = self.efield_times[pulse_number] + pulse_time old_manifold_key = psi_in.manifold_key if up_flag: change = 1 conjugate_flag = False else: change = -1 conjugate_flag = True old_manifold = self.manifold_key_to_number(old_manifold_key) new_manifold = old_manifold + change new_manifold_key = self.manifold_number_to_key(new_manifold) if up_flag: mu_key = old_manifold_key + '_to_' + new_manifold_key else: mu_key = new_manifold_key + '_to_' + old_manifold_key if conjugate_flag: center = - self.centers[pulse_number] else: center = self.centers[pulse_number] m_nonzero = psi_in.bool_mask try: ev1 = self.eigenvalues['all_manifolds'] ev2 = self.eigenvalues['all_manifolds'] except KeyError: ev1 = self.eigenvalues[old_manifold_key] ev2 = self.eigenvalues[new_manifold_key] exp_factor_starting = np.exp( -1j*(ev1[m_nonzero,np.newaxis])*t[np.newaxis,:]) psi = psi_in(t) * exp_factor_starting boolean_matrix, overlap_matrix = self.dipole_matrix(pulse_number,mu_key,up_flag=up_flag) e_mask = self.electric_field_mask(pulse_number,mu_key,conjugate_flag=conjugate_flag) boolean_matrix = boolean_matrix * e_mask overlap_matrix = overlap_matrix * e_mask overlap_matrix, n_nonzero = self.mask_dipole_matrix(boolean_matrix,overlap_matrix,m_nonzero, next_manifold_mask = new_manifold_mask) t0 = time.time() psi = overlap_matrix.dot(psi) t1 = time.time() self.next_order_expectation_time += t1-t0 exp_factor_ending = np.exp(1j*ev2[n_nonzero,np.newaxis]*t[np.newaxis,:]) psi = psi*exp_factor_ending psi = psi * np.exp(-1j*center*t) t0 = time.time() M = self.efield_times[pulse_number].size fft_convolve_fun = self.heaviside_convolve_list[pulse_number].fft_convolve2 if M == 1: psi = psi * self.efields[pulse_number] else: if conjugate_flag: efield =
np.conjugate(self.efields[pulse_number])
numpy.conjugate
from ball import Ball, Cup from ballstring import String import pygame import gym from gym import error, spaces, utils import numpy as np from math import sqrt, cos from cmath import phase WIDTH = 1200 HEIGHT = 700 pygame.init() pygame.font.init() pygame.display.set_mode((WIDTH, HEIGHT)) class GameAI(gym.Env): def __init__(self, scale=0.53/HEIGHT, string_length=200, cup_size=30, amplitude=20, continuous=True): self.ball = Ball(0, 0) self.ball.fall() self.cup = Cup(0, 0, cup_size) self.string = String(self.cup, self.ball, string_length) self.scale = scale self.timestep = 0.01 pygame.init() self.screen = pygame.display.set_mode((WIDTH, HEIGHT)) self.clock = pygame.time.Clock() self.last_points = [] self.myfont = pygame.font.SysFont('FUTURA', 100) self.myfont2 = pygame.font.SysFont('FUTURA', 20) self.textwin = self.myfont.render('WIN', False, (255, 255, 255)) self.textlose = self.myfont.render('LOSE', False, (255, 255, 255)) self.state = None self.score = None self.amplitude = amplitude self.continuous = continuous if continuous: self.action_space = spaces.Box(-1, 1, (2,), dtype=np.float32) else: self.action_space = spaces.Discrete(3) self.observation_space = spaces.Box(-1, 1, (4,), dtype=np.float32) def reset(self, rand=False, pos=(300, 300)): self.cup.set_pos(pos) self.ball.set_pos(pos) bl = complex(np.random.random(),
np.random.random()
numpy.random.random
from pyrep import PyRep from pyrep.objects import VisionSensor from pyrep.const import Verbosity import multiprocessing as mp import os from pathlib import Path from collections import defaultdict from custom_shapes import TapShape, ButtonShape, LeverShape, Kuka import numpy as np from contextlib import contextmanager from traceback import format_exc import time from scipy.interpolate import CubicHermiteSpline import logging import sys MODEL_PATH = os.environ["COPPELIASIM_MODEL_PATH"] class SimulationConsumerFailed(Exception): def __init__(self, consumer_exception, consumer_traceback): self.consumer_exception = consumer_exception self.consumer_traceback = consumer_traceback def __str__(self): return '\n\nFROM CONSUMER:\n\n{}'.format(self.consumer_traceback) def communicate_return_value(method): """method from the SimulationConsumer class decorated with this function will send there return value to the SimulationProducer class""" method._communicate_return_value = True return method def default_dont_communicate_return(cls): """Class decorator for the SimulationConsumers meaning that by default, all methods don't communicate their return value to the Producer class""" for attribute_name, attribute in cls.__dict__.items(): if callable(attribute): communicate = hasattr(attribute, '_communicate_return_value') attribute._communicate_return_value = communicate return cls def c2p_convertion_function(cls, method): """Function that transform a Consumer method into a Producer method. It add a blocking flag that determines whether the call is blocking or not. If you call a `Producer.mothod(blocking=False)`, you then must `Producer._wait_for_answer()`""" def new_method(self, *args, blocking=True, **kwargs): cls._send_command(self, method, *args, **kwargs) if method._communicate_return_value and blocking: return cls._wait_for_answer(self) new_method._communicate_return_value = method._communicate_return_value return new_method def consumer_to_producer_method_conversion(cls): """Class decorator that transforms all methods from the Consumer to the Producer, except for methods starting with an '_', and for the multiprocessing.Process methods""" proc_methods = [ "run", "is_alive", "join", "kill", "start", "terminate", "close" ] method_dict = { **SimulationConsumerAbstract.__dict__, **SimulationConsumer.__dict__, } convertables = { method_name: method \ for method_name, method in method_dict.items()\ if callable(method) and\ method_name not in proc_methods and\ not method_name.startswith("_") } for method_name, method in convertables.items(): new_method = c2p_convertion_function(cls, method) setattr(cls, method_name, new_method) return cls def p2p_convertion_function(name): """This function transforms a producer method into a Pool method""" def new_method(self, *args, **kwargs): if self._distribute_args_mode: # all args are iterables that must be distributed to each producer for i, producer in enumerate(self._active_producers): getattr(producer, name)( *[arg[i] for arg in args], blocking=False, **{key: value[i] for key, value in kwargs.items()} ) else: for producer in self._active_producers: getattr(producer, name)(*args, blocking=False, **kwargs) if getattr(SimulationProducer, name)._communicate_return_value: return [ producer._wait_for_answer() for producer in self._active_producers ] return new_method def producer_to_pool_method_convertion(cls): """This class decorator transforms all Producer methods (besides close and methods starting with '_') to the Pool object.""" convertables = { method_name: method \ for method_name, method in SimulationProducer.__dict__.items()\ if callable(method) and not method_name.startswith("_")\ and not method_name == 'close' } for method_name, method in convertables.items(): new_method = p2p_convertion_function(method_name) setattr(cls, method_name, new_method) return cls @default_dont_communicate_return class SimulationConsumerAbstract(mp.Process): _id = 0 """This class sole purpose is to better 'hide' all interprocess related code from the user.""" def __init__(self, process_io, scene="", gui=False): super().__init__( name="simulation_consumer_{}".format(SimulationConsumerAbstract._id) ) self._id = SimulationConsumerAbstract._id SimulationConsumerAbstract._id += 1 self._scene = scene self._gui = gui self._process_io = process_io np.random.seed() def run(self): self._pyrep = PyRep() self._pyrep.launch( self._scene, headless=not self._gui, verbosity=Verbosity.NONE, # verbosity=Verbosity.SCRIPT_ERRORS, # verbosity=Verbosity.SCRIPT_INFOS, # verbosity=Verbosity.TYRACE_ALL, # verbosity=Verbosity.TRACE_LUA, # write_coppeliasim_stdout_to_file=True ) self._process_io["simulaton_ready"].set() self._main_loop() def _close_pipes(self): self._process_io["command_pipe_out"].close() self._process_io["return_value_pipe_in"].close() # self._process_io["exception_pipe_in"].close() # let this one open def _main_loop(self): success = True while success and not self._process_io["must_quit"].is_set(): success = self._consume_command() self._pyrep.shutdown() self._close_pipes() def _consume_command(self): try: # to execute the command and send result success = True command = self._process_io["command_pipe_out"].recv() self._process_io["slot_in_command_queue"].release() ret = command[0](self, *command[1], **command[2]) if command[0]._communicate_return_value: self._communicate_return_value(ret) except Exception as e: # print traceback, dont raise traceback = format_exc() success = False # return False: quit the main loop self._process_io["exception_pipe_in"].send((e, traceback)) finally: return success def _communicate_return_value(self, value): self._process_io["return_value_pipe_in"].send(value) def signal_command_pipe_empty(self): self._process_io["command_pipe_empty"].set() while self._process_io["command_pipe_empty"].is_set(): time.sleep(0.1) def good_bye(self): pass @default_dont_communicate_return class SimulationConsumer(SimulationConsumerAbstract): def __init__(self, process_io, scene="", gui=False): super().__init__(process_io, scene, gui) self._shapes = defaultdict(list) self._stateful_shape_list = [] self._arm_list = [] self._state_buffer = None self._cams = {} def set_reset_poses(self): self._reset_configuration_trees = [ arm.get_configuration_tree() for arm in self._arm_list ] @communicate_return_value def reset_pose(self, register_states, register_goals): self._previous_hermite_speeds[:] = 0 self._previous_hermite_accelerations[:] = 0 for tree in self._reset_configuration_trees: self._pyrep.set_configuration_tree(tree) self.set_stateful_objects_states(register_states) self.set_stateful_objects_goals(register_goals) @communicate_return_value def reset(self, register_states, register_goals, actions): self._previous_hermite_speeds[:] = 0 self._previous_hermite_accelerations[:] = 0 for tree in self._reset_configuration_trees: self._pyrep.set_configuration_tree(tree) self.set_stateful_objects_states(register_states) self.set_stateful_objects_goals(register_goals) velocities = actions * self._upper_velocity_limits self.set_joint_target_velocities(velocities) self.step_sim() # three steps with a random velocity for randomization self.step_sim() self.step_sim() return self.get_data() @communicate_return_value def get_stateful_objects_states(self): for i, shape in enumerate(self._stateful_shape_list): self._stateful_shape_state_buffer[i] = shape.get_state() return self._stateful_shape_state_buffer def set_stateful_objects_states(self, states): if len(states) != len(self._stateful_shape_list): raise ValueError( "Can not set the object states, wrong length ({} for {})".format( len(states), len(self._stateful_shape_list)) ) for shape, state in zip(self._stateful_shape_list, states): shape.set_state(state) def set_stateful_objects_goals(self, goals): if len(goals) != len(self._stateful_shape_list): raise ValueError( "Can not set the object goals, wrong length ({} for {})".format( len(goals), len(self._stateful_shape_list)) ) for shape, goal in zip(self._stateful_shape_list, goals): shape.set_goal(goal) def _add_stateful_object(self, model): self._stateful_shape_list.append(model) self._stateful_shape_state_buffer = np.zeros( len(self._stateful_shape_list), dtype=np.uint8 ) @communicate_return_value def get_state(self): n = self._n_joints if self._state_buffer is None: n_reg = self.get_n_registers() size = 3 * n + n_reg self._state_buffer = np.zeros(shape=size, dtype=np.float32) self._state_mean = np.zeros(shape=size, dtype=np.float32) self._state_std = np.zeros(shape=size, dtype=np.float32) self._state_mean[3 * n:] = 0.5 # scaling with values measured from random movements pos_std = [1.6, 1.3, 1.6, 1.3, 2.2, 1.7, 2.3] spe_std = [1.1, 1.2, 1.4, 1.3, 2.4, 1.7, 2.1] for_std = [91, 94, 43, 67, 12, 8.7, 2.3] reg_std = [0.5 for i in range(n_reg)] self._state_std[0 * n:1 * n] = np.tile(pos_std, n // 7) self._state_std[1 * n:2 * n] = np.tile(spe_std, n // 7) self._state_std[2 * n:3 * n] = np.tile(for_std, n // 7) self._state_std[3 * n:] = reg_std self._state_buffer[0 * n:1 * n] = self.get_joint_positions() self._state_buffer[1 * n:2 * n] = self.get_joint_velocities() try: self._state_buffer[2 * n:3 * n] = self.get_joint_forces() except RuntimeError: self._state_buffer[2 * n:3 * n] = 0 self._state_buffer[3 * n:] = self.get_stateful_objects_states() # STATE NORMALIZATION: self._state_buffer -= self._state_mean self._state_buffer /= self._state_std return self._state_buffer @communicate_return_value def get_data(self): return self.get_state(), self.get_stateful_objects_states() @communicate_return_value def get_n_registers(self): return len(self._stateful_shape_list) def add_tap(self, position=None, orientation=None): model = self._pyrep.import_model(MODEL_PATH + "/tap_damping_0_spring_20.ttm") model = TapShape(model.get_handle(), self._pyrep) if position is not None: model.set_position(position) if orientation is not None: model.set_orientation(orientation) self._shapes["tap"].append(model) self._add_stateful_object(model) def add_button(self, position=None, orientation=None): model = self._pyrep.import_model(MODEL_PATH + "/button.ttm") model = ButtonShape(model.get_handle(), self._pyrep) if position is not None: model.set_position(position) if orientation is not None: model.set_orientation(orientation) self._shapes["button"].append(model) self._add_stateful_object(model) def add_lever(self, position=None, orientation=None): model = self._pyrep.import_model(MODEL_PATH + "/lever_45.ttm") model = LeverShape(model.get_handle(), self._pyrep) if position is not None: model.set_position(position) if orientation is not None: model.set_orientation(orientation) self._shapes["lever"].append(model) self._add_stateful_object(model) def add_arm(self, position=None, orientation=None, from_tech_sheet=False): if from_tech_sheet: model_file = MODEL_PATH + "/kuka_from_tech_sheet.ttm" else: model_file = MODEL_PATH + "/kuka_default.ttm" model = self._pyrep.import_model(model_file) model = Kuka(model.get_handle()) if position is not None: model.set_position(position) if orientation is not None: model.set_orientation(orientation) self._shapes["arm"].append(model) self._arm_list.append(model) self._arm_joints_count = [arm.get_joint_count() for arm in self._arm_list] self._n_joints = sum(self._arm_joints_count) self._arm_joints_positions_buffer = np.zeros( self._n_joints, dtype=np.float32 ) self._arm_joints_velocities_buffer = np.zeros( self._n_joints, dtype=np.float32 ) self._arm_joints_torques_buffer = np.zeros( self._n_joints, dtype=np.float32 ) self._previous_hermite_speeds = np.zeros(self._n_joints) self._previous_hermite_accelerations = np.zeros(self._n_joints) self.get_joint_upper_velocity_limits() @communicate_return_value def add_camera(self, position=None, orientation=None, resolution=[320, 240]): vision_sensor = VisionSensor.create( resolution=resolution, position=position, orientation=orientation, ) cam_id = vision_sensor.get_handle() self._cams[cam_id] = vision_sensor return cam_id @communicate_return_value def get_frame(self, cam_id): return self._cams[cam_id].capture_rgb() def delete_camera(self, cam_id): self._cams[cam_id].remove() self._cams.pop(cam_id) @communicate_return_value def get_joint_positions(self): last = 0 next = 0 for arm, joint_count in zip(self._arm_list, self._arm_joints_count): next += joint_count self._arm_joints_positions_buffer[last:next] = \ arm.get_joint_positions() last = next return self._arm_joints_positions_buffer @communicate_return_value def get_joint_velocities(self): last = 0 next = 0 for arm, joint_count in zip(self._arm_list, self._arm_joints_count): next += joint_count self._arm_joints_velocities_buffer[last:next] = \ arm.get_joint_velocities() last = next return self._arm_joints_velocities_buffer def set_joint_target_velocities(self, velocities): last = 0 next = 0 for arm, joint_count in zip(self._arm_list, self._arm_joints_count): next += joint_count arm.set_joint_target_velocities(velocities[last:next]) last = next def set_joint_positions(self, positions): last = 0 next = 0 for arm, joint_count in zip(self._arm_list, self._arm_joints_count): next += joint_count arm.set_joint_positions(positions[last:next], disable_dynamics=True) last = next def set_joint_mode(self, mode): for arm in self._arm_list: arm.set_joint_mode(mode) @communicate_return_value def get_joint_mode(self): ret = [] for arm in self._arm_list: ret += arm.get_joint_mode(mode) return ret def set_joint_target_positions(self, positions): last = 0 next = 0 for arm, joint_count in zip(self._arm_list, self._arm_joints_count): next += joint_count arm.set_joint_target_positions(positions[last:next]) last = next @communicate_return_value def apply_action(self, actions): velocities = actions * self._upper_velocity_limits self.set_joint_target_velocities(velocities) self.step_sim() return self.get_data() def get_movement_velocities(self, actions, mode='minimalist', span=10): if mode == 'minimalist': ramp = 0.5 - 0.5 * np.cos(np.linspace(0, 2 * np.pi, span)) velocities = actions * ramp[:, np.newaxis] * self._upper_velocity_limits[np.newaxis] velocities = velocities[np.newaxis] # shape [1, span, 7] elif mode == "cubic_hermite": shape_factor = 0.2 x = [0, 0.5, 1] actions_speeds = actions[:, :2 * self._n_joints] actions_speeds = actions_speeds.reshape( (2, self._n_joints)) actions_accelerations = actions[:, 2 * self._n_joints:] actions_accelerations = actions_accelerations.reshape( (2, self._n_joints)) speeds = np.vstack([self._previous_hermite_speeds, actions_speeds]) accelerations = np.vstack([self._previous_hermite_accelerations, actions_accelerations]) speeds[-1] *= shape_factor accelerations[-1] *= shape_factor eval = np.linspace(0, 1, span) poly = CubicHermiteSpline(x, speeds, accelerations) velocities = poly(eval) * self._upper_velocity_limits[np.newaxis] velocities = velocities[np.newaxis] # shape [1, span, 7] self._previous_hermite_speeds = speeds[-1] self._previous_hermite_accelerations = accelerations[-1] elif mode == "full_raw": velocities = actions * self._upper_velocity_limits[np.newaxis] velocities = velocities[:, np.newaxis] # shape [span, 1, 7] elif mode == "one_raw": velocities = actions * self._upper_velocity_limits[np.newaxis] velocities = velocities[np.newaxis] # shape [1, 1, 7] else: raise ValueError("Unrecognized movement mode ({})".format(mode)) return velocities @communicate_return_value def apply_movement(self, actions, mode='minimalist', span=10): velocities = self.get_movement_velocities(actions, mode=mode, span=span) # shape [n_states_to_be_returned, mini_sequence_length, n_joints] normalized_velocities = velocities / self._upper_velocity_limits[np.newaxis] metabolic_costs = np.sum(normalized_velocities ** 2, axis=(1, 2)) # shape [n_states_to_be_returned] states_sequence = [] stateful_objects_states_sequence = [] for mini_sequence in velocities: state, stateful_objects_state = self.get_data() states_sequence.append(np.copy(state)) stateful_objects_states_sequence.append(np.copy(stateful_objects_state)) for velocity in mini_sequence: self.set_joint_target_velocities(velocity) self.step_sim() return np.vstack(states_sequence), np.vstack(stateful_objects_states_sequence), metabolic_costs @communicate_return_value def apply_movement_get_frames(self, actions, cam_id, mode='minimalist', span=10): velocities = self.get_movement_velocities(actions, mode=mode, span=span) normalized_velocities = velocities / self._upper_velocity_limits[np.newaxis] metabolic_costs = np.sum(normalized_velocities ** 2, axis=(1, 2)) # shape [n_states_to_be_returned] states_sequence = [] stateful_objects_states_sequence = [] frames = [] for mini_sequence in velocities: state, stateful_objects_state = self.get_data() states_sequence.append(np.copy(state)) stateful_objects_states_sequence.append(
np.copy(stateful_objects_state)
numpy.copy
import matplotlib.pyplot as plt import numpy as np import os import PIL import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential import pathlib import pandas as pd from PIL import Image from PIL.ImageDraw import Draw # Create training data training_image_records = pd.read_csv("training.csv") train_image_path = os.path.join(os.getcwd(), "training") train_images = [] train_targets = [] for index, row in training_image_records.iterrows(): (filename, xmin, ymin, xmax, ymax) = row train_image_fullpath = os.path.join(train_image_path, filename) train_img_arr = keras.preprocessing.image.img_to_array(keras.preprocessing.image.load_img(train_image_fullpath, target_size=(255, 255), color_mode="grayscale")) xmin = round(xmin/ 255, 2) ymin = round(ymin/ 255, 2) xmax = round(xmax/ 255, 2) ymax = round(ymax/ 255, 2) train_images.append(train_img_arr) train_targets.append((xmin, ymin, xmax, ymax)) validation_image_records = pd.read_csv("validation.csv") validation_image_path = os.path.join(os.getcwd(), "validation") validation_images = [] validation_targets = [] for index, row in validation_image_records.iterrows(): (filename, xmin, ymin, xmax, ymax) = row validation_image_fullpath = os.path.join(validation_image_path, filename) validation_img_arr = keras.preprocessing.image.img_to_array(keras.preprocessing.image.load_img(validation_image_fullpath, target_size=(255, 255), color_mode="grayscale")) xmin = round(xmin/ 255, 2) ymin = round(ymin/ 255, 2) xmax = round(xmax/ 255, 2) ymax = round(ymax/ 255, 2) validation_images.append(validation_img_arr) validation_targets.append((xmin, ymin, xmax, ymax)) train_images =
np.array(train_images)
numpy.array
''' Skeleton-based Abnormal Gait Detection (Sensors, MDPI 2016) BSD 2-Clause "Simplified" License Author: <NAME>''' from __future__ import division import numpy as np from utils import * from func_HMM import * import argparse, sys def HMMgait3_fullsequence(skel_dataset, test_subjects, n_subjects = 9, n_gaits = 9, window = 5, state_num = 24, obs_num = 43, save_result = False): if isinstance(test_subjects, int): test_subjects = [test_subjects] print('test subject(s): ' + str(test_subjects)) '''define variables''' train_vectors = np.array([]).reshape((0,8)) train_files = np.array([]).reshape((1,0)) file_id = 0 '''load data for training''' print('Load normal gaits of ' + str(n_subjects - len(test_subjects)) + ' subjects for training...') for i in range(n_subjects): if i in test_subjects: continue file_id += 1 print('processing normal skel. of subject ' + str(i)) tmp_skels = skel_dataset[i, 0] tmp = np.array([feature_extract(skel) for skel in tmp_skels]) train_vectors = np.concatenate((train_vectors, tmp), axis = 0) train_files = np.concatenate((train_files, file_id*np.ones((1, tmp.shape[0]))), axis = 1) '''load test data''' print('Load test data...') abnormal_test_vectors = [] normal_test_vectors = [] n_abnormal_test_sequence = len(test_subjects) * (n_gaits - 1) n_normal_test_sequence = len(test_subjects) for i in range(n_subjects): if i in test_subjects: print('processing skel. of subject ' + str(i)) for j in range(n_gaits): tmp_skels = skel_dataset[i, j] tmp = np.array([feature_extract(skel) for skel in tmp_skels]) if j != 0: abnormal_test_vectors.append(tmp) else: normal_test_vectors.append(tmp) '''k-means''' print('window width = ' + str(window) + ', states = ' + str(state_num) + ', observations = ' + str(obs_num)) centroids, train_labels, kmeans = KMeans_postures(train_vectors, obs_num) '''Training cycles''' train_cycle_vectors = [] cycles_id = get_cycles(train_vectors, train_files, window) cycles_idx = np.where(cycles_id != -1)[0] for i in range(len(cycles_idx)-1): if cycles_id[cycles_idx[i]] == cycles_id[cycles_idx[i+1]]: train_cycle_vectors.append(train_labels[cycles_idx[i]:cycles_idx[i+1]+1]) '''Train HMM''' hmm_model = train_hmm(train_cycle_vectors, state_num, obs_num) '''Testing abnormal cycles''' scores_abnormal = np.array([]) groundtruth_cycle_abnormal = np.array([]) scores_cycle_abnormal = np.array([]) for f in range(n_abnormal_test_sequence): tmp_result = np.array([]) test_labels = KMeans_test(kmeans, np.concatenate(abnormal_test_vectors, axis = 0)) cycles_id = get_cycles(abnormal_test_vectors[f], f*np.ones(abnormal_test_vectors[f].shape[0]), window) cycles_idx = np.where(cycles_id != -1)[0] for i in range(len(cycles_idx)-1): if cycles_id[cycles_idx[i]] == cycles_id[cycles_idx[i+1]]: tmp_vt = test_labels[cycles_idx[i]:cycles_idx[i+1]+1] ll_val = hmm_model.score(tmp_vt.reshape((1,-1))) tmp_result = np.append(tmp_result, ll_val) scores_abnormal = np.append(scores_abnormal, -seq_likelihood(tmp_result,3)) tmp_result = tmp_result[abs(tmp_result)!=np.inf] groundtruth_cycle_abnormal = np.concatenate((groundtruth_cycle_abnormal, np.ones(len(tmp_result))), axis = 0) scores_cycle_abnormal = np.concatenate((scores_cycle_abnormal, -np.array(tmp_result)), axis = 0) '''Testing normal cycles''' scores_normal = np.array([]) groundtruth_cycle_normal = np.array([]) scores_cycle_normal = np.array([]) for f in range(n_normal_test_sequence): tmp_result =
np.array([])
numpy.array
import os import pickle import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import numpy as np import colorsys plt.rc('text', usetex=True) plt.rc('font', family='serif') number2name_ml10 = { 0: 'reach-v1', 1: 'push-v1', 2: 'pick-place-v1', 3: 'door-open-v1', 4: 'drawer-close-v1', 5: 'button-press-topdown-v1', 6: 'peg-insert-side-v1', 7: 'window-open-v1', 8: 'sweep-v1', 9: 'basketball-v1', 10: 'drawer-open-v1', 11: 'door-close-v1', 12: 'shelf-place-v1', 13: 'sweep-into-v1', 14: 'lever-pull-v1'} number2name_cheetah_multi_task = { 1: 'velocity', 2: 'goal direction', 3: 'goal', 4: 'rollover', 5: 'stand-up'} number2name = number2name_cheetah_multi_task cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] def plot_encodings_split_with_rewards(epoch, exp_directory, save=False, normalize=False, legend=False): encoding_storage = pickle.load(open(os.path.join(exp_directory, "encoding_" + str(epoch) + ".p"), "rb")) base_tasks = list(encoding_storage.keys()) #rewards_per_base_task = [sum([encoding_storage[base][key]['reward_mean'] / len(list(encoding_storage[base].keys())) for key in encoding_storage[base].keys()]) for base in base_tasks] if len(base_tasks) == 15: figsize = (20, 5) elif len(base_tasks) == 10: figsize = (15, 5) elif len(base_tasks) == 1: figsize = (7, 5) elif len(base_tasks) == 3: figsize = (7, 5) else: figsize = None fig, axes_tuple = plt.subplots(nrows=3, ncols=len(base_tasks), sharex='col', sharey='row', gridspec_kw={'height_ratios': [3, 1, 1]}, figsize=figsize) if len(axes_tuple.shape) == 1: axes_tuple = np.expand_dims(axes_tuple, 1) latent_dim = encoding_storage[base_tasks[0]][next(iter(encoding_storage[base_tasks[0]]))]['mean'].shape[0] # Normalization over base tasks of dim if normalize: normalizer = [] mean_std = ['mean', 'std'] for dim in range(latent_dim): temp_dict = {} for element in mean_std: values = np.array([a[element][dim] for base in base_tasks for a in list(encoding_storage[base].values())]) temp_dict[element] = dict(mean=values.mean(), std=values.std()) normalizer.append(temp_dict) for i, base in enumerate(base_tasks): # encodings #target_values = np.array([encoding_storage[base][key]['target'][2] for key in encoding_storage[base].keys()]) #sort_indices = np.argsort(target_values) for dim in range(latent_dim): x_values = np.array([a['mean'][dim] for a in list(encoding_storage[base].values())])#[sort_indices] y_values = np.array([a['std'][dim] for a in list(encoding_storage[base].values())])#[sort_indices] #Normalize if normalize: x_values = (x_values - normalizer[dim]['mean']['mean']) / (normalizer[dim]['mean']['std'] + 1e-9) y_values = (y_values - normalizer[dim]['std']['mean']) / (normalizer[dim]['std']['std'] + 1e-9) label_string = "Encoding $z_" + str(dim) + "$" #axes_tuple[0][i].errorbar(target_values[sort_indices], x_values, yerr=y_values, fmt=".", label=label_string) axes_tuple[0][i].errorbar(np.array(list(encoding_storage[base].keys())), x_values, yerr=y_values, fmt=".", label=label_string)#, capsize=2 if axes_tuple.shape[1] > 1: #axes_tuple[0][i].set_title("Base Task " + str(i)) nameWithoutVersion = '-'.join(number2name[base].split('-')[:-1]) if len(nameWithoutVersion.split('-')) > 2: split_name = '-'.join(nameWithoutVersion.split('-')[:2]) + " \n " + '-'.join(nameWithoutVersion.split('-')[2:]) else: split_name = nameWithoutVersion axes_tuple[0][i].set_title(split_name) else: axes_tuple[0][i].set_title("Epoch " + str(epoch), fontsize=14) # rewards #axes_tuple[2][i].plot(np.array(list(encoding_storage[base].keys())), [encoding_storage[base][i]['reward_mean'] for i in encoding_storage[base].keys()], 'x') axes_tuple[2][i].bar(np.array(list(encoding_storage[base].keys())), [encoding_storage[base][i]['reward_mean'] for i in encoding_storage[base].keys()], width=0.01, align='center') # base task encodings #axes_tuple[1][i].plot(target_values[sort_indices], [np.argmax(a['base']) for a in list(encoding_storage[base].values())], 'x', label="Base encoding $\mathbf{y}$") axes_tuple[1][i].plot(list(encoding_storage[base].keys()), [np.argmax(a['base']) for a in list(encoding_storage[base].values())], 'x', label="Base encoding $\mathbf{y}$") axes_tuple[1][i].set_xlabel("Specification", fontsize=12) axes_tuple[1][i].set_yticks(np.arange(-1, len(base_tasks), 1), minor=True) axes_tuple[1][0].set_ylim(-1, 10) #len(base_tasks) axes_tuple[0][i].grid() axes_tuple[1][i].grid(which='minor') axes_tuple[1][i].grid(which='major') axes_tuple[2][i].grid() axes_tuple[0][0].set_ylabel('Encoding $\mathbf{z}$', fontsize=12) axes_tuple[1][0].set_ylabel('Base task \n encoding $\mathbf{y}$', fontsize=12) axes_tuple[2][0].set_ylabel('Average \n reward $R$', fontsize=12) if legend: axes_tuple[0][-1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) axes_tuple[1][-1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) if save: plt.tight_layout() fig.savefig(exp_directory + "/encoding_epoch_" + str(epoch) + ("_normalized" if normalize else "") + "_with_rewards" + ".pdf", format="pdf") fig.show() # print("Here to create plot 1") print("Created plot") def plot_encodings_split_with_rewards_cheetah(epoch, exp_directory, save=False, normalize=False, legend=False): encoding_storage = pickle.load(open(os.path.join(exp_directory, "encoding_" + str(epoch) + ".p"), "rb")) base_tasks = list(encoding_storage.keys()) #rewards_per_base_task = [sum([encoding_storage[base][key]['reward_mean'] / len(list(encoding_storage[base].keys())) for key in encoding_storage[base].keys()]) for base in base_tasks] if len(base_tasks) == 15: figsize = (20, 5) elif len(base_tasks) == 10: figsize = (15, 5) elif len(base_tasks) == 1: figsize = (7, 5) elif len(base_tasks) == 3: figsize = (7, 5) else: figsize = None fig, axes_tuple = plt.subplots(nrows=3, ncols=len(base_tasks), sharex='col', sharey='row', gridspec_kw={'height_ratios': [3, 1, 1]}, figsize=figsize) if len(axes_tuple.shape) == 1: axes_tuple = np.expand_dims(axes_tuple, 1) latent_dim = encoding_storage[base_tasks[0]][next(iter(encoding_storage[base_tasks[0]]))]['mean'].shape[0] # Normalization over base tasks of dim if normalize: normalizer = [] mean_std = ['mean', 'std'] for dim in range(latent_dim): temp_dict = {} for element in mean_std: values = np.array([a[element][dim] for base in base_tasks for a in list(encoding_storage[base].values())]) temp_dict[element] = dict(mean=values.mean(), std=values.std()) normalizer.append(temp_dict) for i, base in enumerate(base_tasks): # encodings #target_values = np.array([encoding_storage[base][key]['target'][2] for key in encoding_storage[base].keys()]) #sort_indices = np.argsort(target_values) for dim in range(latent_dim): x_values = np.array([a['mean'][dim] for a in list(encoding_storage[base].values())])#[sort_indices] y_values = np.array([a['std'][dim] for a in list(encoding_storage[base].values())])#[sort_indices] #Normalize if normalize: x_values = (x_values - normalizer[dim]['mean']['mean']) / (normalizer[dim]['mean']['std'] + 1e-9) y_values = (y_values - normalizer[dim]['std']['mean']) / (normalizer[dim]['std']['std'] + 1e-9) label_string = "Encoding $z_" + str(dim) + "$" #axes_tuple[0][i].errorbar(target_values[sort_indices], x_values, yerr=y_values, fmt=".", label=label_string) axes_tuple[0][i].errorbar(np.array(list(encoding_storage[base].keys())), x_values, yerr=y_values, fmt=".", label=label_string)#, capsize=2 if axes_tuple.shape[1] > 1: #axes_tuple[0][i].set_title("Base Task " + str(i)) nameWithoutVersion = '-'.join(number2name[base].split('-')[:-1]) if len(nameWithoutVersion.split('-')) > 2: split_name = '-'.join(nameWithoutVersion.split('-')[:2]) + " \n " + '-'.join(nameWithoutVersion.split('-')[2:]) else: split_name = nameWithoutVersion split_name = number2name[base] axes_tuple[0][i].set_title(split_name) else: axes_tuple[0][i].set_title("Epoch " + str(epoch), fontsize=14) # rewards #axes_tuple[2][i].plot(np.array(list(encoding_storage[base].keys())), [encoding_storage[base][i]['reward_mean'] for i in encoding_storage[base].keys()], 'x') axes_tuple[2][i].bar(np.array(list(encoding_storage[base].keys())), [encoding_storage[base][i]['reward_mean'] for i in encoding_storage[base].keys()], width=0.01, align='center') # base task encodings #axes_tuple[1][i].plot(target_values[sort_indices], [np.argmax(a['base']) for a in list(encoding_storage[base].values())], 'x', label="Base encoding $\mathbf{y}$") axes_tuple[1][i].plot(list(encoding_storage[base].keys()), [np.argmax(a['base']) for a in list(encoding_storage[base].values())], 'x', label="Base encoding $\mathbf{y}$") axes_tuple[1][i].set_xlabel("Specification", fontsize=12) axes_tuple[1][i].set_yticks(np.arange(-1, len(base_tasks), 1), minor=True) axes_tuple[1][0].set_ylim(-1, 10) #len(base_tasks) axes_tuple[0][i].grid() axes_tuple[1][i].grid(which='minor') axes_tuple[1][i].grid(which='major') axes_tuple[2][i].grid() axes_tuple[0][0].set_ylabel('Encoding $\mathbf{z}$', fontsize=12) axes_tuple[1][0].set_ylabel('Base task \n encoding $\mathbf{y}$', fontsize=12) axes_tuple[2][0].set_ylabel('Average \n reward $R$', fontsize=12) if legend: axes_tuple[0][-1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) axes_tuple[1][-1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) if save: plt.tight_layout() fig.savefig(exp_directory + "/encoding_epoch_" + str(epoch) + ("_normalized" if normalize else "") + "_with_rewards" + ".pdf", format="pdf") fig.show() print("Created plot") def plot_encodings_split(epoch, exp_directory, save=False, normalize=False, legend=False): encoding_storage = pickle.load(open(os.path.join(exp_directory, "encoding_" + str(epoch) + ".p"), "rb")) base_tasks = list(encoding_storage.keys()) if len(base_tasks) == 10: figsize = (15, 5) elif len(base_tasks) == 1: figsize = (7, 5) elif len(base_tasks) == 3: figsize = (7, 5) else: figsize = None fig, axes_tuple = plt.subplots(nrows=2, ncols=len(base_tasks), sharex='col', sharey='row', gridspec_kw={'height_ratios': [3, 1]}, figsize=figsize) if len(axes_tuple.shape) == 1: axes_tuple = np.expand_dims(axes_tuple, 1) latent_dim = encoding_storage[base_tasks[0]][next(iter(encoding_storage[base_tasks[0]]))]['mean'].shape[0] base_task_encodings = [np.argmax(a['base']) for base in base_tasks for a in list(encoding_storage[base].values())] # Normalization over base tasks of dim if normalize: normalizer = [] mean_std = ['mean', 'std'] for dim in range(latent_dim): temp_dict = {} for element in mean_std: values = np.array([a[element][dim] for base in base_tasks for a in list(encoding_storage[base].values())]) temp_dict[element] = dict(mean=values.mean(), std=values.std()) normalizer.append(temp_dict) for i, base in enumerate(base_tasks): fontsize=26 # encodings #target_values = np.array([encoding_storage[base][key]['target'][2] for key in encoding_storage[base].keys()]) #sort_indices = np.argsort(target_values) for dim in range(latent_dim): x_values = np.array([a['mean'][dim] for a in list(encoding_storage[base].values())])#[sort_indices] y_values = np.array([a['std'][dim] for a in list(encoding_storage[base].values())])#[sort_indices] #Normalize if normalize: x_values = (x_values - normalizer[dim]['mean']['mean']) / (normalizer[dim]['mean']['std'] + 1e-9) y_values = (y_values - normalizer[dim]['std']['mean']) / (normalizer[dim]['std']['std'] + 1e-9) label_string = "Encoding $z_" + str(dim) + "$" # 2 classes: capsize=3, elinewidth=3, capthick=3, markersize=9 # more classes: capsize=2, elinewidth=2, capthick=2, markersize=7 axes_tuple[0][i].errorbar(np.array(list(encoding_storage[base].keys())), x_values, yerr=y_values, fmt="d", color='tab:green', label=label_string, capsize=2, elinewidth=2, capthick=2, markersize=7, markerfacecolor='yellow', markeredgecolor='black') if axes_tuple.shape[1] > 1: #axes_tuple[0][i].set_title("Base Task " + str(i)) nameWithoutVersion = '-'.join(number2name[base].split('-')[:-1]) if len(nameWithoutVersion.split('-')) > 2: split_name = '-'.join(nameWithoutVersion.split('-')[:2]) + " \n " + '-'.join(nameWithoutVersion.split('-')[2:]) else: split_name = nameWithoutVersion split_name = number2name[base] axes_tuple[0][i].set_title(split_name, fontsize=fontsize) else: axes_tuple[0][i].set_title("Epoch " + str(epoch), fontsize=fontsize) # base task encodings axes_tuple[1][i].plot(list(encoding_storage[base].keys()), [np.argmax(task['base']) for task in list(encoding_storage[base].values())], 'd', color='yellow', markersize=7, markerfacecolor='yellow', markeredgecolor='black') # markersize=7 for multiple tasks, 9 for two axes_tuple[1][i].set_xlabel("Specification", fontsize=fontsize) axes_tuple[1][i].set_ylim(-1, np.max(base_task_encodings) + 1) axes_tuple[0][i].tick_params(axis="x", labelsize=fontsize) axes_tuple[0][i].tick_params(axis="y", labelsize=fontsize) axes_tuple[1][i].tick_params(axis="x", labelsize=fontsize) axes_tuple[1][i].tick_params(axis="y", labelsize=fontsize) axes_tuple[1][i].set_yticks(np.arange(-1, np.max(base_task_encodings) + 2, 1)) axes_tuple[0][i].grid(b=True, which='major', alpha=1) axes_tuple[1][i].grid(which='minor') axes_tuple[1][i].grid(which='major') axes_tuple[0][0].set_ylabel('Encoding $\mathbf{z}$', fontsize=fontsize) axes_tuple[1][0].set_ylabel('Encoding $\mathbf{y}$', fontsize=fontsize) plt.tight_layout() if legend: axes_tuple[0][-1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True, fontsize=fontsize) axes_tuple[1][-1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True, fontsize=fontsize) plt.subplots_adjust(wspace=0.15, hspace=0.15) plt.grid(b=True, which='major', alpha=1) if save: fig.savefig(exp_directory + "/encoding_epoch_" + str(epoch) + ("_normalized" if normalize else "") + ".pdf", format="pdf", bbox_inches = "tight") plt.show() print(exp_directory) print("Created plot") def plot_encodings(epoch, exp_directory, save=False, normalize=False): encoding_storage = pickle.load(open(os.path.join(exp_directory, "encoding_" + str(epoch) + ".p"), "rb")) base_tasks = list(encoding_storage.keys()) fig, axes_tuple = plt.subplots(ncols=len(base_tasks), sharey='row') #fig, axes_tuple = plt.subplots(ncols=len(base_tasks), sharey='row') fig, axes_tuple = plt.subplots(ncols=len(base_tasks), sharey='row', figsize=(15, 3)) #fig.suptitle("Epoch " + str(epoch), fontsize="x-large") if len(base_tasks) == 1: axes_tuple = [axes_tuple] latent_dim = encoding_storage[base_tasks[0]][next(iter(encoding_storage[base_tasks[0]]))]['mean'].shape[0] for i, base in enumerate(base_tasks): for dim in range(latent_dim): x_values = np.array([a['mean'][dim] for a in list(encoding_storage[base].values())]) y_values = np.array([a['std'][dim] for a in list(encoding_storage[base].values())]) #Normalize if normalize: mean = x_values.mean() std = x_values.std() x_values = (x_values - mean) / (std + 1e-9) mean = y_values.mean() std = y_values.std() y_values = (y_values - mean) / (std + 1e-9) axes_tuple[i].errorbar(list(encoding_storage[base].keys()), x_values, yerr=y_values, fmt=".", label="Encoding $\mathbf{z}$") axes_tuple[i].plot(list(encoding_storage[base].keys()), [np.argmax(a['base']) for a in list(encoding_storage[base].values())], 'x', label="Class encoding $\mathbf{y}$") #axes_tuple[i].set_title("Base Task " + str(i) + ", Epoch " + str(epoch)) axes_tuple[i].set_title("Base Task " + str(i)) #axes_tuple[i].set_title("Epoch " + str(epoch)) #axes_tuple[i].set_xlabel("Specification") #, fontsize=10 axes_tuple[i].grid() #axes_tuple[i].set_ylim(-0.1, 0.1) #axes_tuple[i].legend() plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fancybox=True, shadow=True) #fig.text(0.0, 0.5, 'Encoding $\mathbf{z}$', va='center', rotation='vertical') #plt.subplots_adjust(wspace=0, hspace=0) if save: fig.savefig(exp_directory + "/encoding_epoch" + str(epoch) + ("_normalized" if normalize else "") +".pdf", dpi=300, format="pdf") plt.show() print("Created plot") def plot_encodings_2D(epoch, exp_directory): encoding_storage = pickle.load(open(os.path.join(exp_directory, "encoding_" + str(epoch) + ".p"), "rb")) base_tasks = list(encoding_storage.keys()) fig, ax = plt.subplots() for i, base in enumerate(base_tasks): specification = np.array(list(encoding_storage[base].keys())) spec_max = specification.max() means1 = [a['mean'][0] for a in list(encoding_storage[base].values())] means2 = [a['mean'][1] for a in list(encoding_storage[base].values())] vars1 = [a['mean'][0] for a in list(encoding_storage[base].values())] vars2 = [a['mean'][1] for a in list(encoding_storage[base].values())] points = ax.scatter(means1, means2, c=specification, cmap='autumn', zorder=0) ax.errorbar(means1, means2, xerr=np.array(vars1) / 2, yerr=
np.array(vars2)
numpy.array
''' metrics Contact: <EMAIL> ''' # imports import numpy as np def dice(vol1, vol2, labels=None, nargout=1): ''' Dice [1] volume overlap metric The default is to *not* return a measure for the background layer (label = 0) [1] Dice, <NAME>. "Measures of the amount of ecologic association between species." Ecology 26.3 (1945): 297-302. Parameters ---------- vol1 : nd array. The first volume (e.g. predicted volume) vol2 : nd array. The second volume (e.g. "true" volume) labels : optional vector of labels on which to compute Dice. If this is not provided, Dice is computed on all non-background (non-0) labels nargout : optional control of output arguments. if 1, output Dice measure(s). if 2, output tuple of (Dice, labels) Output ------ if nargout == 1 : dice : vector of dice measures for each labels if nargout == 2 : (dice, labels) : where labels is a vector of the labels on which dice was computed ''' if labels is None: labels = np.unique(np.concatenate((vol1, vol2))) labels = np.delete(labels, np.where(labels == 0)) # remove background dicem = np.zeros(len(labels)) for idx, lab in enumerate(labels): top = 2 * np.sum(
np.logical_and(vol1 == lab, vol2 == lab)
numpy.logical_and
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script for generating the binary classification datasets from CIFAR10/MNIST. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags import numpy as np import sklearn import sklearn.datasets import sklearn.metrics import sklearn.model_selection import sklearn.preprocessing import tensorflow_datasets as tfds import task_pb2 flags.DEFINE_string( 'data_dir', '/tmp/binary_cifar10_data/', 'Path of the folder to save the datasets.') flags.DEFINE_string( 'tfds_data_dir', '/tmp/', 'Path for tensorflow_datasets to cache downloaded datasets, ' 'only used in local runs.') flags.DEFINE_integer('num_train_examples', 8000, 'Number of training examples in each dataset.') flags.DEFINE_integer('num_valid_examples', 1000, 'Number of validation examples in each dataset.') flags.DEFINE_integer('num_test_examples', 1000, 'Number of test examples in each dataset.') flags.DEFINE_integer('projected_dim', 16, 'The dimensionality to project the data into.') flags.DEFINE_string('dataset_name', 'cifar10', 'Name of the dataset to generatee ' 'more binary classification datasets.') flags.DEFINE_integer('min_data_seed', 0, 'Generate one dataset for each seed in ' '[min_data_seed, max_data_seed).') flags.DEFINE_integer('max_data_seed', 100, 'Generate one dataset for each seed in ' '[min_data_seed, max_data_seed).') flags.DEFINE_list('class_ids', '0,1,2,3,4,5,6,7,8,9', 'Classes included to generate binary' ' classification datasets.') FLAGS = flags.FLAGS def create_projected_binary_dataset( dataset_name, positive_class, negative_class, num_train_examples, num_valid_examples, num_test_examples, projected_dim, seed, load_fn): """Create a projected binary dataset from the given spec and seed.""" num_samples = ( num_train_examples + num_valid_examples + num_test_examples) pos = positive_class neg = negative_class # Only support training data from MNIST and CIFAR10 for experiments. data, labels, _, _ = get_dataset( dataset_name, int(num_samples / 2), [pos, neg], load_fn=load_fn) labels[np.where(labels == pos)] = -1 labels[np.where(labels == neg)] = 0 labels[np.where(labels == -1)] = 1 (train_data, train_labels, valid_data, valid_labels, test_data, test_labels) = train_valid_test_split( data, labels, num_train_examples, num_valid_examples, num_test_examples, seed) np.random.seed(seed) random_mat = np.random.randn( train_data.shape[-1], projected_dim) train_data = np.dot(train_data, random_mat) valid_data = np.dot(valid_data, random_mat) if test_data is not None: test_data = np.dot(test_data, random_mat) scaler = sklearn.preprocessing.StandardScaler() scaler.fit(train_data) train_data = scaler.transform(train_data) valid_data = scaler.transform(valid_data) if test_data is not None: test_data = scaler.transform(test_data) dataset = task_pb2.ScalarLabelDataset() for i in range(train_data.shape[0]): train_feature = dataset.train_features.add() train_feature.features.extend(list(train_data[i])) dataset.train_labels.append(train_labels[i]) for i in range(valid_data.shape[0]): valid_feature = dataset.valid_features.add() valid_feature.features.extend(list(valid_data[i])) dataset.valid_labels.append(valid_labels[i]) if test_data is not None: for i in range(test_data.shape[0]): test_feature = dataset.test_features.add() test_feature.features.extend(list(test_data[i])) dataset.test_labels.append(test_labels[i]) return dataset def load_projected_binary_dataset(saved_dataset): """Load the binary dataset saved in a ScalarLabelDataset proto.""" num_train = len(saved_dataset.train_labels) assert len(saved_dataset.train_labels) == len(saved_dataset.train_features) num_valid = len(saved_dataset.valid_labels) assert len(saved_dataset.valid_labels) == len(saved_dataset.valid_features) num_test = len(saved_dataset.test_labels) assert len(saved_dataset.test_labels) == len(saved_dataset.test_features) if num_train == 0 or num_valid == 0: raise ValueError('Number of train/valid examples' ' must be more than zero.') feature_size = len(saved_dataset.train_features[0].features) train_data = np.zeros((num_train, feature_size)) train_labels = np.zeros(num_train) for i in range(num_train): train_labels[i] = saved_dataset.train_labels[i] for j in range(feature_size): train_data[i][j] = saved_dataset.train_features[i].features[j] valid_data = np.zeros((num_valid, feature_size)) valid_labels =
np.zeros(num_valid)
numpy.zeros
#!/usr/bin/env python # # # # Autor: <NAME>, GSFC/CRESST/UMBC . # # # # This program is free software; you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation; either version 3 of the License, or # # (at your option) any later version. # # # #------------------------------------------------------------------------------# import os import re import numpy as np import healpy as hp from numba import jit import astropy.io.fits as pf from itertools import product from scipy.special import factorial from scipy.interpolate import griddata import matplotlib.pyplot as plt from Xgam import X_OUT from Xgam.utils.logging_ import logger, startmsg from Xgam.utils.spline_ import xInterpolatedUnivariateSplineLinear FORE_EN = re.compile('\_\d+\.') def get_fore_integral_flux_map(fore_files_list, e_min, e_max): """ A powerlaw is assumed for the foreground energy spectrum, hence the interpolation between 2 given maps at given energies (given by the model) is done in logarithmic scales. Parameters ---------- fore_files_list: list of str Ordered list of the foreground files (one for each energy) e_min: float the min of the energy bin e_max: float the max of the energy bin Returns ------- array foreground map integrated between e_min and e_max """ fore_en = [] for ff in fore_files_list: m = re.search(FORE_EN, ff) en = int(m.group(0).replace('_', '').replace('.', '')) fore_en.append(en) fore_en = np.array(fore_en) out_name = fore_files_list[0].replace('_%i.fits'%fore_en[0], '_%d-%d.fits'%(e_min, e_max)) if os.path.exists(out_name): logger.info('ATT: file %s already exists and returned...'%out_name) fore_map = hp.read_map(out_name) return fore_map else: logger.info('Computing the integral flux of the foreground model...') logger.info('...between %.2f - %.2f'%(e_min, e_max)) fore_emin_sx, fore_emin_dx = find_outer_energies(e_min, fore_en) fore_emax_sx, fore_emax_dx = find_outer_energies(e_max, fore_en) fore_emin_sx_ind = np.where(fore_en == fore_emin_sx)[0][0] fore_emin_dx_ind = np.where(fore_en == fore_emin_dx)[0][0] fore_emax_sx_ind = np.where(fore_en == fore_emax_sx)[0][0] fore_emax_dx_ind = np.where(fore_en == fore_emax_dx)[0][0] fore_fmin_sx = hp.read_map(fore_files_list[fore_emin_sx_ind]) fore_fmin_dx = hp.read_map(fore_files_list[fore_emin_dx_ind]) fore_fmax_sx = hp.read_map(fore_files_list[fore_emax_sx_ind]) fore_fmax_dx = hp.read_map(fore_files_list[fore_emax_dx_ind]) m1 = (np.log10(fore_fmin_sx)-np.log10(fore_fmin_dx))/ \ (np.log10(fore_emin_sx)-np.log10(fore_emin_dx)) m2 = (np.log10(fore_fmax_sx)-np.log10(fore_fmax_dx))/ \ (np.log10(fore_emax_sx)-np.log10(fore_emax_dx)) logfore1 = m1*(np.log10(e_min)-np.log10(fore_emin_sx))+ \ np.log10(fore_fmin_sx) logfore2 = m2*(np.log10(e_max)-np.log10(fore_emax_sx))+ \ np.log10(fore_fmax_sx) fore1 = 10**(logfore1) fore2 = 10**(logfore2) fore_integ_map = np.sqrt(fore1*fore2)*(e_max - e_min) hp.write_map(out_name, fore_integ_map) logger.info('Created file %s'%out_name) return fore_integ_map def find_outer_energies(en_val, en_arr): """ Gives the first element on the right and the first on the left of a given E value (en_val), among all values in an ordered array (en_arr). These values are used to integrate the foreground model in the considered energy bin. Parameters ---------- en_val : float mean energy en_arr : float array of the energies at which the foreground model is given. Returns ------- float, float first element on the right and the first on the left """ en_sx_arr = en_arr[en_arr < en_val] en_dx_arr = en_arr[en_arr > en_val] if en_sx_arr.size == 0: en_sx = en_dx_arr[0] en_dx = en_dx_arr[1] logger.info('Considering model in the interval %.1f-%.1f MeV' %(en_sx, en_dx)) elif en_dx_arr.size == 0: en_sx = en_sx_arr[-2] en_dx = en_sx_arr[-1] logger.info('Considering model in the interval %.1f-%.1f MeV' %(en_sx, en_dx)) else: en_sx = en_sx_arr[-1] en_dx = en_dx_arr[0] return en_sx, en_dx @jit def myfactorial(_x): _facx = [] for x in _x: n = 1 for i in range(2, x+1): n *= i _facx.append(n) return np.array(_facx) @jit def poisson_likelihood(norm_guess, const_guess, fore_map, data_map, exp=None, sr=None): """ Compute the log-likelihood as decribed here: http://iopscience.iop.org/article/10.1088/0004-637X/750/1/3/pdf where the model to fit to data is given by norm*fore_map+const. Parameters ---------- norm_guess : float initial guess for normalization parameter const_guess : float initial guess for constant parameter fore_map : numpy array helapix map of foreground model data_map : numpy array helapix map of data. It could be either a count map or a flux map. If a counts map is given, an exposure map should be given too. See next parameter. exp : numpy array or None helapix map of the exposure. Should be given if the data map is in counts (beacause foreground map is in flux units by default and it needs to be turned to counts to be fitted). While, If data map is in flux units, do not declare this parameter, which is None by default. sr : float or None pixel area -> 4*pi/Npix Returns ------- float likelihood value. """ a = norm_guess b = const_guess factorial_data = factorial(data_map) lh = 0 if exp is not None: for i, f in enumerate(fore_map): lh += (a*f+b)*exp[i]*sr+np.log(factorial_data[i])-data_map[i]*np.log((a*f+b)*exp[i]*sr) else: for i, f in enumerate(fore_map): lh += np.sum(((a*f+b)+np.log(factorial_data[i])-data_map[i]*np.log((a*f+b)))) return lh def get_2params_profile_likelihood(lh_matrix, param1_list, param2_list): """ Returns splines with profile likelihood for the two parameters of the fit. NOTE: param1 is supposed to be the normalization, param2 the constant. """ n_lh = np.amin(lh_matrix, axis=1) c_lh = np.amin(lh_matrix, axis=0) fmt1 = dict(xname='N', xunits='', yname='Likelihood', yunits='') spline1 = xInterpolatedUnivariateSplineLinear(param1_list, n_lh, **fmt1) fmt2 = dict(xname='C', xunits='', yname='Likelihood', yunits='') spline2 = xInterpolatedUnivariateSplineLinear(param2_list, c_lh, **fmt2) return spline1, spline2 def get_param_error(profilelh_spline, param_array, lh_delta=2.3): """ """ lh_array = profilelh_spline(param_array) lh_min_idx = np.argmin(lh_array) lherr = lh_array[lh_min_idx]+lh_delta if lh_min_idx == 0: logger.info('ATT: UPPER limit!') sx_err = param_array[0] dx_err = param_array[-1] elif lh_min_idx == len(lh_array)-1: logger.info('ATT: LOWER limit!') sx_err = param_array[0] dx_err = param_array[-1] else: sx_err = param_array[np.abs(lh_array[:lh_min_idx]-lherr).argmin()] dx_err = param_array[lh_min_idx + np.abs(lh_array[lh_min_idx:]-lherr).argmin()] return sx_err, dx_err def fit_foreground_poisson(fore_map, data_map, mask_map=None, n_guess=1., c_guess=0.1,exp=None, smooth=False, show=False): """ Performs the poissonian fit, recursively computing the log likelihood (using poisson_likelihood) for a grid of values of fit parameters around the guess. Returns the values of parameters which minimize the log likelihood, togather to the 1-sigma error Parameters ---------- n_guess : float initial guess for normalization parameter c_guess : float initial guess for constant parameter fore_map : numpy array helapix map of foreground model data_map : numpy array helapix map of data. It could be either a count map or a flux map. If a counts map is given, an exposure map should be given too. See next parameter. exp : numpy array or None helapix map of the exposure. Should be given if the data map is in counts (beacause foreground map is in flux units by default and it needs to be turned to counts to be fitted). While, If data map is in flux units, do not declare this parameter, which is None by default. smooth : bool not implemented yet... show : bool if true it shows some usefull plot to check if the fit is functioning Returns ------- float, float, float, float, float, float In order: best fit N, best fit C, N's right error, N's left error, C's right error, C's left error """ #show=True #mask_map=None logger.info('Performing poissonian fit...') norm_guess = n_guess igrb_guess = c_guess nside_out = 64 mask = 0. logger.info('N guess = %.2f - C guess = %.1e'%(norm_guess, igrb_guess)) if mask_map is None: logger.info('fit outside default mask: 30deg gp, 2 deg srcs.') mask_f = os.path.join(X_OUT, 'fits/Mask_hp64_src2_gp30.fits') mask = hp.read_map(mask_f) else: logger.info('fit outside mask given in config file.') mask = mask_map mask = np.array(hp.ud_grade(mask, nside_out=nside_out, power=-2)) mask[np.where(mask!=np.amax(mask))[0]] = 0 mask[np.where(mask==np.amax(mask))[0]] = 1 logger.info('down grade...') fore_repix = np.array(hp.ud_grade(fore_map, nside_out=nside_out)) data_repix = np.array(hp.ud_grade(data_map, nside_out=nside_out, power=-2)) _unmask = np.where(mask > 1e-30)[0] norm_list = np.linspace(norm_guess-0.8, norm_guess+0.8, 200) igrb_list = np.logspace(np.log10(igrb_guess*0.01), np.log10(igrb_guess*10), 200) logger.info('-------------------------------') logger.info('Minimization likelihood run1...') lh_list = [] combinations = list(product(norm_list, igrb_list)) if exp is not None: exposure = exp exposure = np.array(hp.ud_grade(exposure, nside_out=nside_out)) areapix = 4*np.pi/(len(data_repix)) for i,j in product(norm_list, igrb_list): lh = poisson_likelihood(i, j, fore_repix[_unmask], data_repix[_unmask], exp=exposure[_unmask], sr=areapix) lh_list.append(lh) else: for i,j in product(norm_list, igrb_list): lh = poisson_likelihood(i, j, fore_repix[_unmask], data_repix[_unmask]) lh_list.append(lh) lh_list =
np.array(lh_list)
numpy.array
#!/usr/bin/env python # coding: utf-8 # <div class="alert alert-block alert-info"> # <b><h1>ENGR 1330 Computational Thinking with Data Science </h1></b> # </div> # # Copyright © 2021 <NAME> and <NAME> # # Last GitHub Commit Date: # # # 9: Matrix Manipulation(s) using *NumPy* # - How to install # - conda # - pip in JupyterHub/Lab (on Linux) # - About NumPy # - Arrays # - Array Methods # - Examples using NumPy to illustrate abstraction to maintainable scripts # # --- # ## Objectives # - To understand the representation of data in different structure using the NumPy library(module). # - Access data within a NumPy array # - Perform arithmetic/mathematical operations on the contents of NumPy arrays # # --- # # ### Numpy # Numpy is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays. The library’s name is short for “Numeric Python” or “Numerical Python”. If you are curious about NumPy, this cheat sheet is recommended: # https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf # # NumPy library has two fundamental conceptualizations: # - Data representation: Arrays # - vectors # - matrices # - Data operations: # - Element-by-element arithmetic, and mathematical operations; # - Matrix/vector arithmetic # - Indexing # - Selection # - Copying # --- # # ## Computational Thinking Concepts # # The CT concepts expressed within NumPy include: # # - `Decomposition` : Break a problem down into smaller pieces; Data interpretation, manipulation, and analysis of NumPy arrays is an act of decomposition. # - `Abstraction` : Pulling out specific differences to make one solution work for multiple problems; The array is a data representation abstraction that allows for placeholder operations, later substituted with specific contents for a problem; enhances reuse and readability. Generally we leverage the principle of algebraic replacement using these abstractions. # - `Algorithms` : A list of steps that you can follow to finish a task; Data interpretation, manipulation, and analysis of NumPy arrays is generally implemented as part of a supervisory algorithm. # --- # # ## Module Set-Up # # In principle, NumPy should be available in a default Anaconda install # - You should not have to do any extra installation steps to install the library in Python # - You do have to **import** the library in your scripts # # How to check # - Simply open a code cell and run `import numpy` if the notebook does not protest (i.e. pink block of error), you is good to go. # In[1]: import numpy # If you do get an error, that means that you will probably have to install using `conda` or `pip`; generally this process of installation is only needed occassionally, you are installing into your kernel the needed funcrtionality. # # :::{note} # On the **content server** the process is: # # 1. Open a new terminal from the launcher # 2. Change to root user `su` then enter the root password # 3. `sudo -H /opt/jupyterhib/bin/python3 -m pip install numpy` # 4. Wait until the install is complete; for security, user `compthink` is not in the `sudo` group # 5. Verify the install by trying to execute `import numpy` as above. # # The process will be similar on a Macintosh, or Windows. Best is to hope you have a sucessful anaconda install. # ::: # # If you have to do this kind of install, you will have to do some reading, some references I find useful are: # 1. https://jupyterlab.readthedocs.io/en/stable/user/extensions.html # 2. https://www.pugetsystems.com/labs/hpc/Note-How-To-Install-JupyterHub-on-a-Local-Server-1673/#InstallJupyterHub # 3. https://jupyterhub.readthedocs.io/en/stable/installation-guide-hard.html (This is the approach on the content server which has a functioning JupyterHub) # # :::{note} # The conda installer is accessed using the conda powershell prompt, accessed from Anaconda Navigator. # # Here are some useful videos: # # - [Conda and Pip Installer(s)](https://www.youtube.com/watch?v=Z_Kxg-EYvxM) # - [Conda package manager](https://www.youtube.com/watch?v=JQtppspwtHE) # - [Conda environments](https://www.youtube.com/watch?v=KBC3oc0VK0g) # - [Anaconda environment - Conda package manager](https://www.youtube.com/watch?v=PPKj9ic5MmI) # # ::: # # --- # # ## NumPy: AKA Numerical Python # # NumPy is a foundational library (module) for scientific computing. Most if not all all data science libraries (modules) rely on NumPy as one of their building blocks to reduce the need to build certain operations in primative python. # # NumPy provides a multi-dimensional array object called ‘ndarray’ (n-dimensional array) and methods for: # - Computations with arrays and mathematical operations between arrays (array-by-array and element-by-element) # - Linear algebra operations # - Psuedo random number generation # # As compared to the prior lesson, multi-dimensional arrays (lists) are far easier to manipulate using numpy. # --- # # ### Arrays # A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative integers. The number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the size of the array along each dimension. # # The figure below is a visual depiction of numpy arrays of rank 1 and rank2. # # <img src="http://54.243.252.9/engr-1330-webroot/1-Lessons/Lesson09/numpyarray.png" width="500"> # # In other words, an array contains information about the raw data, how to locate an element and how to interpret an element.To make a numpy array, you can just use the `np.array()` function. All you need to do is pass a list to it. Don’t forget that, in order to work with the `np.array()` function, you need to make sure that the `numpy` library is present in your environment. # If you want to read more about the differences between a Python list and NumPy array, this link is recommended: # [https://webcourses.ucf.edu/courses/1249560/pages/python-lists-vs-numpy-arrays-what-is-the-difference](https://webcourses.ucf.edu/courses/1249560/pages/python-lists-vs-numpy-arrays-what-is-the-difference) # # --- # # ### Example- 1D Arrays (Vectors) # Let's create a 1D array from the 2000s (2000-2009): # In[2]: import numpy #First, we need to impoty "numpy" mylist = [2000,2001,2002,2003,2004,2005,2006,2007,2008,2009] #Create a list of the years type(mylist) # In[3]: print(mylist) #Check how it looks # In[4]: mylist = numpy.array(mylist) #Type cast it as a numpy array type(mylist) # In[5]: print(mylist) # In[6]: my2dlist = [[1,2,3],[4,5,6],[7,8,9]] type(my2dlist) # In[7]: print(my2dlist) # In[8]: my2dlist= numpy.array(my2dlist) #Type cast it as a numpy array type(mylist) # In[9]: print(my2dlist) # In[10]: len(my2dlist) #how many rows # In[11]: len(my2dlist[0]) #how many columns # In[12]: numpy.shape(my2dlist) # using the shape method # --- # # ### Example: n-Dimensional Arrays # # We already made a 3X3 array, but let's create a 5x2 array from the 2000s (2000-2009): # In[13]: myotherlist = [[2000,2001],[2002,2003],[2004,2005],[2006,2007],[2008,2009]] #Since I want a 5x2 array, I should group the years two by two print(myotherlist) #See how it looks as a list print(numpy.shape(myotherlist)) #check the shape print(numpy.array(myotherlist) ) #See how it looks as a numpy array # --- # # #### Array Arithmetic # Once you have created the arrays, you can do basic Numpy operations. Numpy offers a variety of operations applicable on arrays. From basic operations such as summation, subtraction, multiplication and division to more advanced and essential operations such as matrix multiplication and other elementwise operations. In the examples below, we will go over some of these: # # --- # # ### Example- 1D Array Arithmetic # - Define a 1D array with [0,12,24,36,48,60,72,84,96] # # Lets do scalar multiplication, first as just a list! # ``` # # interactive cell - copy/paste into a notebook to run # victorVector = [0,12,24,36,48,60,72,84,96] # MyScalar = input("Enter scalar value \n") # MyScalar = float(MyScalar) # force a float # # now perform element-by-element multiplication # for i in range(0,len(victorVector),1): # victorVector[i] = MyScalar * victorVector[i] # this will change contents of amatrix # print(victorVector) # ``` # Now using numpy # In[14]: import numpy #import numpy Array1 = numpy.array([0,12,24,36,48,60,72,84,96]) #Step1: Define Array1 print(Array1) # - Multiply all elements by scalar value (scalar multiplication), print result, leave array unchanged # ``` # # interactive cell - cut/paste into a notebook to run # MyScalar = input("Enter scalar value \n") # MyScalar = float(MyScalar) # force a float # # now perform element-by-element multiplication # print(Array1*MyScalar) #Step2: Multiple all elements by 2 # ``` # - Take all elements to the power of 2 # In[15]: print(Array1**2) #Step3: Take all elements to the power of 2 # In[16]: print(numpy.power(Array1,2)) #Another way to do the same thing, by using a function in numpy # - Find the maximum value of the array and its position # In[17]: print(numpy.max(Array1)) #Step4: Find the maximum value of the array # In[18]: print(numpy.argmax(Array1)) ##Step4: Find the postition of the maximum value # - Find the minimum value of the array and its position # In[19]: print(numpy.min(Array1)) #Step5: Find the minimum value of the array # In[20]: print(numpy.argmin(Array1)) ##Step5: Find the postition of the minimum value # - Define another 1D array with [-12,0,12,24,36,48,60,72,84] # In[21]: Array2 = numpy.array([-12,0,12,24,36,48,60,72,84]) #Step6: Define Array2 print(Array2) # - Find the element-by-element sum and difference of these two arrays # In[22]: print(Array1+Array2) #Step7: Sum of two arrays print(Array1-Array2) #Step7: Difference of two arrays # - Element-by-element multiplication of these two arrays # In[23]: print(Array1*Array2) #Step8: Find the multiplication of these two arrays # --- # # ### Example- n-Dimensional Array Arithmetic # - Define a 2x2 array with [5,10,15,20] # In[24]: import numpy #import numpy Array1 = numpy.array([[5,10],[15,20]]) #Step1: Define Array1 print(Array1) # - Define another 2x2 array with [3,6,9,12] # In[25]: Array2 = numpy.array([[3,6],[9,12]]) #Step2: Define Array2 print(Array2) # - Find the sum and difference of these two arrays # In[26]: print(Array1+Array2) #Step3: Find the summation print(Array1-Array2) #Step3: Find the subtraction # - Find the minimum number in the multiplication of these two arrays # In[27]: MultArray = Array1@Array2 #Step4: To perform a typical matrix multiplication (or matrix product) print(MultArray) MultArray1 = Array1.dot(Array2) #Step4: Another way To perform a matrix multiplication print(MultArray1) print(numpy.min(MultArray)) #Step4: Find the minimum value of the multiplication # Recall how we have to do the same if using ordinary lists, just for the first line in the block above: # In[28]: amatrix = [[5,10],[15,20]] bmatrix = [[3,6],[9,12]] cmatrix = [[0 for j in range(len(bmatrix[0]))] for i in range(len(amatrix))] # 2D list to receive input; explicit sizing # now for the multiplication for i in range(0,len(amatrix)): for j in range(0,len(bmatrix[0])): for k in range(0,len(amatrix[0])): cmatrix[i][j]=cmatrix[i][j]+amatrix[i][k]*bmatrix[k][j] for i in range(len(cmatrix)): # print by row print(cmatrix[i][:]) # There is considerable savings in code crafting using numpy; hence its popularity and utility. # # - Find the position of the maximum in the multiplication of these two arrays # In[29]: print(numpy.argmax(MultArray)) ##Step5: Find the postition of the maximum value # - Find the mean of the multiplication of these two arrays # - Find the mean of the first row of the multiplication of these two arrays # In[30]: print(
numpy.mean(MultArray)
numpy.mean
import json import numpy as np import os # json_data = open('accomplishment.json').read() # gg = json.loads(json_data) # print(len(gg['data'])) # print(gg['data'][0]) def transfer(file_name): json_data = json.loads(open(file_name).read()) word_list = json_data['word'] x_list = [point['pos'][0] for point in json_data['data']] y_list = [point['pos'][1] for point in json_data['data']] time_stamp = [point['time'] for point in json_data['data']] first_time = time_stamp[0] tag_list = [point['tag'] for point in json_data['data']] tag_set = set(tag_list) tar_set = list(tag_set) tar_set = sorted(tar_set) print(tar_set) time_stamp[:] = [ x - first_time for x in time_stamp] #### calculate cos and sin sin_list = [] cos_list = [] x_sp_list = [] y_sp_list = [] pen_up_list = [] writing_sin = [] writing_cos = [] angle_stroke = [] for tag in tag_set: ##collect x_point = [] y_point = [] time_stroke = [] angle_stroke = [] w_sin_stroke = [] w_cos_stroke = [] pen_up_stroke = [] for id_point, point in enumerate(x_list): if tag_list[id_point] == tag: x_point.append(point) y_point.append(y_list[id_point]) time_stroke.append(time_stamp[id_point]) if len(x_point) < 3 : sin_stroke = [] cos_stroke = [] for _ in range(len(x_point)): sin_stroke += [0.0] cos_stroke += [1.0] else: for idx in range(1, len(x_point) - 1): x_prev = x_point[idx - 1] y_prev = y_point[idx - 1] x_next = x_point[idx + 1] y_next = y_point[idx + 1] x_now = x_point[idx] y_now = y_point[idx] p0 = [x_prev, y_prev] p1 = [x_now, y_now] p2 = [x_next, y_next] v0 = np.array(p0) - np.array(p1) v1 = np.array(p2) - np.array(p1) angle = np.math.atan2( np.linalg.det([v0, v1]), np.dot(v0, v1)) angle_stroke.append(angle) new_angle_stroke = [0] + angle_stroke + [0] sin_stroke = np.sin(new_angle_stroke).tolist() cos_stroke = np.cos(new_angle_stroke).tolist() sin_list += sin_stroke cos_list += cos_stroke ####calculate spped if len(x_point) <2: for _ in range(len(x_point)): x_sp_list += [0] y_sp_list += [0] x_sp = [0] y_sp = [0] else: time_list = np.asarray(time_stroke, dtype=np.float32) time_list_moved = np.array(time_list)[1:] time_diff = np.subtract(time_list_moved, time_list[:-1]) for idx, v in enumerate(time_diff): if v == 0: time_diff[idx] = 0.001 x_point_moved = np.array(x_point)[1:] y_point_moved = np.array(y_point)[1:] x_diff = np.subtract(x_point_moved, x_point[:-1]) y_diff = np.subtract(y_point_moved, y_point[:-1]) x_sp = np.divide(x_diff, time_diff).tolist() y_sp = np.divide(y_diff, time_diff).tolist() x_sp = [0] + x_sp y_sp = [0] + y_sp x_sp_list += x_sp y_sp_list += y_sp #####pen up and down pen_up_stroke = [1] * (len(x_point) - 1 ) + [0] pen_up_list += pen_up_stroke for idx, x_v in enumerate(x_sp): y_v = y_sp[idx] slope = np.sqrt(x_v * x_v + y_v * y_v) if slope != 0: w_sin_stroke.append(y_v / slope) w_cos_stroke.append(x_v / slope) else: w_sin_stroke.append(0) w_cos_stroke.append(1) writing_sin += w_sin_stroke writing_cos += w_cos_stroke x_cor = np.asarray(x_list, dtype=np.float32) y_cor = np.asarray(y_list, dtype=np.float32) time_stamp = np.asarray(time_stamp, dtype=np.float32) sin_list = np.asarray(sin_list, dtype=np.float32) cos_list = np.asarray(cos_list, dtype=np.float32) x_sp_list = np.asarray(x_sp_list, dtype=np.float32) y_sp_list = np.asarray(y_sp_list, dtype=np.float32) pen_up_list = np.asarray(pen_up_list, dtype=np.float32) writing_cos = np.asarray(writing_cos, dtype=np.float32) writing_sin = np.asarray(writing_sin, dtype=np.float32) k = (x_sp_list, y_sp_list, x_cor, y_cor, sin_list, cos_list, writing_sin, writing_cos, pen_up_list, time_stamp) for each in k: print(each.shape) text_line_data = np.stack( (x_sp_list, y_sp_list, x_cor, y_cor, sin_list, cos_list, writing_sin, writing_cos, pen_up_list, time_stamp), axis=1) return text_line_data, word_list # print(len(x_list)) # print(x_list[0]) # print(time_stamp[0]) # print(time_stamp[1]) def transferS(file_name): json_data = file_name # word_list = json_data['word'] x_list = [point['pos'][0] for point in json_data['data']] y_list = [point['pos'][1] for point in json_data['data']] time_stamp = [point['time'] for point in json_data['data']] first_time = time_stamp[0] tag_list = [point['tag'] for point in json_data['data']] tag_set = set(tag_list) tar_set = list(tag_set) tar_set = sorted(tar_set) print(tar_set) time_stamp[:] = [ x - first_time for x in time_stamp] #### calculate cos and sin sin_list = [] cos_list = [] x_sp_list = [] y_sp_list = [] pen_up_list = [] writing_sin = [] writing_cos = [] angle_stroke = [] for tag in tag_set: ##collect x_point = [] y_point = [] time_stroke = [] angle_stroke = [] w_sin_stroke = [] w_cos_stroke = [] pen_up_stroke = [] for id_point, point in enumerate(x_list): if tag_list[id_point] == tag: x_point.append(point) y_point.append(y_list[id_point]) time_stroke.append(time_stamp[id_point]) if len(x_point) < 3 : sin_stroke = [] cos_stroke = [] for _ in range(len(x_point)): sin_stroke += [0.0] cos_stroke += [1.0] else: for idx in range(1, len(x_point) - 1): x_prev = x_point[idx - 1] y_prev = y_point[idx - 1] x_next = x_point[idx + 1] y_next = y_point[idx + 1] x_now = x_point[idx] y_now = y_point[idx] p0 = [x_prev, y_prev] p1 = [x_now, y_now] p2 = [x_next, y_next] v0 = np.array(p0) - np.array(p1) v1 = np.array(p2) - np.array(p1) angle = np.math.atan2( np.linalg.det([v0, v1]), np.dot(v0, v1)) angle_stroke.append(angle) new_angle_stroke = [0] + angle_stroke + [0] sin_stroke = np.sin(new_angle_stroke).tolist() cos_stroke = np.cos(new_angle_stroke).tolist() sin_list += sin_stroke cos_list += cos_stroke ####calculate spped if len(x_point) <2: for _ in range(len(x_point)): x_sp_list += [0] y_sp_list += [0] x_sp = [0] y_sp = [0] else: time_list = np.asarray(time_stroke, dtype=np.float32) time_list_moved = np.array(time_list)[1:] time_diff = np.subtract(time_list_moved, time_list[:-1]) for idx, v in enumerate(time_diff): if v == 0: time_diff[idx] = 0.001 x_point_moved = np.array(x_point)[1:] y_point_moved = np.array(y_point)[1:] x_diff = np.subtract(x_point_moved, x_point[:-1]) y_diff = np.subtract(y_point_moved, y_point[:-1]) x_sp = np.divide(x_diff, time_diff).tolist() y_sp = np.divide(y_diff, time_diff).tolist() x_sp = [0] + x_sp y_sp = [0] + y_sp x_sp_list += x_sp y_sp_list += y_sp #####pen up and down pen_up_stroke = [1] * (len(x_point) - 1 ) + [0] pen_up_list += pen_up_stroke for idx, x_v in enumerate(x_sp): y_v = y_sp[idx] slope =
np.sqrt(x_v * x_v + y_v * y_v)
numpy.sqrt
import krpc import numpy import time import threading import Global import PIDLoop conn = Global.conn vessel = Global.vessel canvas = conn.ui.stock_canvas screen_size = canvas.rect_transform.size panel = canvas.add_panel() constant = 0.0 def Toggle(in_r, target): mode = in_r #tedious transformations target_position = target.position(target.orbit.body.reference_frame) target_position = numpy.asarray(conn.space_center.transform_direction(target_position, target.orbit.body.reference_frame, target.surface_reference_frame)) #custom value for target position to ensure a trajectory that intercepts the target tail on instead of severe angle target_position[0] += 10000.0-10000.0*numpy.exp(-1.0*vessel.flight(vessel.orbit.body.reference_frame).mean_altitude/30000) target_position = (target_position[0], target_position[1], target_position[2]) target_position = conn.space_center.transform_direction(target_position, target.surface_reference_frame, target.orbit.body.reference_frame) target_position = numpy.asarray(target_position) vessel_position = numpy.asarray(vessel.position(vessel.orbit.body.reference_frame)) target_position = numpy.add(target_position, numpy.multiply(vessel_position, -1.0)) target_position = (target_position[0], target_position[1], target_position[2]) target_position = conn.space_center.transform_direction(target_position, target.orbit.body.reference_frame, vessel.reference_frame) target_position = numpy.asarray(target_position) relative_velocity = vessel.velocity(vessel.orbit.body.reference_frame) relative_velocity = conn.space_center.transform_direction(relative_velocity, vessel.orbit.body.reference_frame, vessel.reference_frame) relative_velocity = numpy.asarray(relative_velocity) relative_velocity = numpy.multiply(relative_velocity, -1.0) Omega = numpy.cross(target_position, relative_velocity)/numpy.vdot(target_position, target_position) A_Vec = numpy.multiply(numpy.cross(relative_velocity, Omega), 5.0) travelling = vessel.velocity(vessel.orbit.body.reference_frame) travelling = numpy.multiply(travelling, 1.0/numpy.linalg.norm(travelling)) travelling = conn.space_center.transform_direction(travelling, vessel.orbit.body.reference_frame, vessel.surface_reference_frame) travelling = numpy.multiply(travelling, -1.0) error_ang = 180.0*numpy.arctan(numpy.sqrt(travelling[1]*travelling[1] + travelling[2]*travelling[2])/travelling[0])/numpy.pi #various modes that can be triggered from Main.py if(mode == 0): Target_Vec = numpy.add(numpy.multiply(A_Vec, -50.0), relative_velocity) elif(mode == 1): Target_Vec = numpy.add(numpy.multiply(A_Vec, -25.0), relative_velocity) elif(mode == 2): Target_Vec = numpy.add(
numpy.multiply(A_Vec, 5.0)
numpy.multiply
import gym from gym import spaces from scipy.integrate import odeint import matplotlib.pyplot as plt import numpy as np import time import random m = 1.0 g = 9.8 l = 0.2 class SimplePendulumEnv(gym.Env): def __init__(self, visualize=False, n_step_solver=2, dt=1e-2, n_step=1, print_state=False): # Here we define the duration of an environment step, # the number of solver steps / environment step self.dt = dt self.n_step_solver = n_step_solver # Number of environemnt steps in an episode self.n_step = n_step self.print_state = print_state # Max action self.max_action = 2.0 # Render of the simulation self.visualize = visualize if self.visualize: plt.ion() self.fig = plt.figure() self.ax = self.fig.add_subplot(211) self.ax.set_xlim([-l, l]) self.ax.set_ylim([-l, l]) self.ax2 = self.fig.add_subplot(212) self.ax2.set_xlim([0, n_step]) self.ax2.set_ylim([-1, 1]) # We get the cartesian coordinates of the mass x = l*np.sin(0) y = -l*np.cos(0) # We plot the mass self.mass, = self.ax.plot(x, y, 'bo', markersize=20) # We plot the pole self.pole, = self.ax.plot([0, x], [0, y]) self.data =
np.zeros((3, self.n_step))
numpy.zeros
""" Module of functions involving great circles (thus assuming spheroid model of the earth) with points given in longitudes and latitudes. """ from __future__ import print_function import math import numpy import numpy.random # Equatorial radius of the earth in kilometers EARTH_ER = 6378.137 # Authalic radius of the earth in kilometers EARTH_AR = 6371.007 # Meridional radius of the earth in kilometers EARTH_MR = 6367.449 # Polar radius of the earth in kilometers EARTH_PR = 6356.752 DEG2RAD = math.pi / 180.0 RAD2DEG = 180.0 / math.pi KM2MI = 0.6213712 MI2KM = 1.609344 def lonlatdistance(pt1lon, pt1lat, pt2lon, pt2lat): """ Compute the great circle distance between two points on a sphere using the haversine formula. Arguments: pt1lon - longitude(s) of the first point pt1lat - latitude(s) of the first point pt2lon - longitude(s) of the second point pt2lat - latitude(s) of the second point Returns: The great circle distance(s) in degrees [0.0, 180.0] """ lon1 = numpy.deg2rad(numpy.asarray(pt1lon, dtype=float)) lat1 = numpy.deg2rad(numpy.asarray(pt1lat, dtype=float)) lon2 = numpy.deg2rad(numpy.asarray(pt2lon, dtype=float)) lat2 = numpy.deg2rad(numpy.asarray(pt2lat, dtype=float)) dellat = numpy.power(numpy.sin(0.5 * (lat2 - lat1)), 2.0) dellon = numpy.cos(lat1) * numpy.cos(lat2) * \ numpy.power(numpy.sin(0.5 * (lon2 - lon1)), 2.0) dist = 2.0 * numpy.arcsin(numpy.power(dellon + dellat, 0.5)) return numpy.rad2deg(dist) def lonlatintersect(gc1lon1, gc1lat1, gc1lon2, gc1lat2, gc2lon1, gc2lat1, gc2lon2, gc2lat2): """ Compute the intersections of two great circles. Uses the line of intersection between the two planes of the great circles. Arguments: gc1lon1 - longitude(s) of the first point on the first great circle gc1lat1 - latitude(s) of the first point on the first great circle gc1lon2 - longitude(s) of the second point on the first great circle gc1lat2 - latitude(s) of the second point on the first great circle gc2lon1 - longitude(s) of the first point on the second great circle gc2lat1 - latitude(s) of the first point on the second great circle gc2lon2 - longitude(s) of the second point on the second great circle gc2lat2 - latitude(s) of the second point on the second great circle Returns: ( (pt1lon, pt1lat), (pt2lon, pt2lat) ) - the longitudes and latitudes of the two intersections of the two great circles. NaN will be returned for both longitudes and latitudes if a great circle is not well-defined, or the two great-circles coincide. """ # Minimum acceptable norm of a cross product # arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth MIN_NORM = 1.0E-7 # Convert longitudes and latitudes to points on a unit sphere # The "+ 0.0 * ptlonr" is to broadcast gcz if needed ptlonr = numpy.deg2rad(numpy.asarray(gc1lon1, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc1lat1, dtype=float)) gcz = numpy.sin(ptlatr) + 0.0 * ptlonr coslat = numpy.cos(ptlatr) gcy = coslat * numpy.sin(ptlonr) gcx = coslat * numpy.cos(ptlonr) gc1xyz1 = numpy.array([gcx, gcy, gcz]) # ptlonr = numpy.deg2rad(numpy.asarray(gc1lon2, dtype=float)) ptlatr = numpy.deg2rad(numpy.asarray(gc1lat2, dtype=float)) gcz =
numpy.sin(ptlatr)
numpy.sin
import numpy as np import pydart2 as pydart import math from fltk import * from PyCommon.modules.GUI import hpSimpleViewer as hsv from PyCommon.modules.Renderer import ysRenderer as yr from Examples.speed_skating.make_skate_keyframe import make_keyframe render_vector = [] render_vector_origin = [] push_force = [] push_force_origin = [] blade_force = [] blade_force_origin = [] rd_footCenter = [] ik_on = True # ik_on = False class MyWorld(pydart.World): def __init__(self, ): super(MyWorld, self).__init__(1.0 / 1200.0, '../data/skel/cart_pole_blade_3dof_with_ground.skel') # pydart.World.__init__(self, 1.0 / 1000.0, '../data/skel/cart_pole_blade_3dof_with_ground.skel') # pydart.World.__init__(self, 1.0 / 1000.0, '../data/skel/cart_pole_blade.skel') # pydart.World.__init__(self, 1.0 / 2000.0, '../data/skel/cart_pole.skel') self.force = None self.force_r = None self.force_l = None self.force_hip_r = None self.duration = 0 self.skeletons[0].body('ground').set_friction_coeff(0.02) self.ground_height = self.skeletons[0].body(0).to_world((0., 0.025, 0.))[1] skel = self.skeletons[2] root_state = make_keyframe(skel) state = root_state self.state_list = [] for i in range(10): self.state_list.append(state) state = state.get_next() state_num = len(self.state_list) self.state_num = state_num # print("state_num: ", state_num) self.curr_state = self.state_list[0] self.elapsedTime = 0.0 self.curr_state_index = 0 # print("backup angle: ", backup_q) # print("cur angle: ", self.curr_state.angles) if ik_on: revise_pose(self.skeletons[3], self.state_list[0]) print('IK ON') self.skeletons[3].set_positions(self.curr_state.angles) self.rd_contact_forces = [] self.rd_contact_positions = [] # print("dof: ", skel.ndofs) # nonholonomic constraint initial setting _th = 5. * math.pi / 180. self.nh0 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_right'), np.array((0.0216+0.104, -0.0216-0.027, 0.))) self.nh1 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_right'), np.array((0.0216-0.104, -0.0216-0.027, 0.))) self.nh2 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_left'), np.array((0.0216+0.104, -0.0216-0.027, 0.))) self.nh3 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_left'), np.array((0.0216-0.104, -0.0216-0.027, 0.))) self.nh1.set_violation_angle_ignore_threshold(_th) self.nh1.set_length_for_violation_ignore(0.208) self.nh3.set_violation_angle_ignore_threshold(_th) self.nh3.set_length_for_violation_ignore(0.208) self.nh0.add_to_world() self.nh1.add_to_world() self.nh2.add_to_world() self.nh3.add_to_world() self.step_count = 0 def step(self): # print("self.curr_state: ", self.curr_state.name) # if self.curr_state.name == "state1": # self.force = np.array([50.0, 0.0, 0.0]) # # elif self.curr_state.name == "state2": # # self.force = np.array([0.0, 0.0, -10.0]) # else: # self.force = None if self.force is not None: self.skeletons[2].body('h_pelvis').add_ext_force(self.force) self.skeletons[3].set_positions(self.curr_state.angles) if self.curr_state.dt < self.time() - self.elapsedTime: # print("change the state!!!", self.curr_state_index) self.curr_state_index = self.curr_state_index + 1 self.curr_state_index = self.curr_state_index % self.state_num self.elapsedTime = self.time() self.curr_state = self.state_list[self.curr_state_index] # print("state_", self.curr_state_index) # print(self.curr_state.angles) # ground_height = -0.98 + 0.0251 # ground_height = 0. ground_height = self.skeletons[0].body("ground").to_world()[1] #0.0251 # print("ground h: ", ground_height) # ground_height = -0.98 + 0.05 # ground_height = -0.98 # if ik_on: # ik_res = copy.deepcopy(self.curr_state.angles) # if self.curr_state.name != "state02": # # print("ik solve!!-------------------") # self.ik.update_target(ground_height) # ik_res[6:] = self.ik.solve() # # self.curr_state.angles = ik_res # self.skeletons[3].set_positions(ik_res) # HP QP solve lf_tangent_vec = np.array([1.0, 0.0, .0]) rf_tangent_vec = np.array([1.0, 0.0, .0]) # character_dir = copy.deepcopy(skel.com_velocity()) character_dir = skel.com_velocity() # print(character_dir, skel.com_velocity()) character_dir[1] = 0 if np.linalg.norm(character_dir) != 0: character_dir = character_dir / np.linalg.norm(character_dir) centripetal_force_dir =
np.cross([0.0, 1.0, 0.0], character_dir)
numpy.cross
# -*- coding: utf-8 -*- """ Created on Mon May 4 21:36:46 2020 @author: <NAME> """ from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras.layers import AveragePooling2D from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.preprocessing.image import load_img from tensorflow.keras.utils import to_categorical from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from imutils import paths import matplotlib.pyplot as plt import numpy as np import argparse import os image_path="dataset" #setting hyperparameters like learning rate, no of epochs and batch_size INIT_LR=1e-4 EPOCHS=20 BS=32 #grabbing all imagepath in dataset image_dataset=list(paths.list_images(image_path)) data=[] labels=[] for imagepath in image_dataset: #extracting the class label= imagepath.split(os.path.sep)[-2] #loading image in 224x224 and preprocess it as model requires 224x224 input image= load_img(imagepath,target_size=(224,224)) image=img_to_array(image) image = preprocess_input(image) #update labels and data respectively data.append(image) labels.append(label) #convert the image to numpy array data=
np.array(data,dtype="float32")
numpy.array
import calculate_species_relative_abundance import numpy as np import matplotlib.pyplot as plt from scipy.optimize import fsolve from scipy.special import erf mean_abundance_dict = calculate_species_relative_abundance.load_species_mean_abun_dict() af_abun_all = [] na_abun_all = [] for species_abundance in mean_abundance_dict.keys(): af_abun_all.append(mean_abundance_dict[species_abundance]['Africa']) na_abun_all.append(mean_abundance_dict[species_abundance]['North America']) af_abun_all = np.array(af_abun_all) na_abun_all = np.array(na_abun_all) af_log_abun = [np.log10(mean) for mean in af_abun_all] na_log_abun = [np.log10(mean) for mean in na_abun_all] af_log_abun = np.array(af_log_abun) na_log_abun = np.array(na_log_abun) standardized_africa_abun = (af_log_abun - af_log_abun.mean())/af_log_abun.std() standardized_na_abun = (na_log_abun - na_log_abun.mean())/na_log_abun.std() fig, axs = plt.subplots(1, 2, figsize=(15,7)) n_af, bins_af, patches = axs[1].hist(np.log10(af_abun_all), bins = 40) n_na, bins_na, patches = axs[0].hist(np.log10(na_abun_all), bins = 40) mode_na = (bins_na[n_na.argmax()] + bins_na[n_na.argmax()+1])/2 mode_af = (bins_af[n_af.argmax()] + bins_af[n_af.argmax()+1])/2 n = float(na_abun_all.shape[0]) na_m1 = (1/n)*na_log_abun.sum() na_m2 = (1/n)*((na_log_abun)**2).sum() af_m1 = (1/n)*af_log_abun.sum() af_m2 = (1/n)*((af_log_abun)**2).sum() c_na = np.exp(mode_na) c_af = np.exp(mode_af) def get_estimates(init, c): sigma = init[0] mu = init[1] a = -m1 + mu + ((np.sqrt(2/np.pi)*sigma*np.exp(-1*((
np.log(c)
numpy.log
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, time from numpy import nan from numpy.random import randn import numpy as np from pandas import (DataFrame, Series, Index, Timestamp, DatetimeIndex, to_datetime, date_range) import pandas as pd import pandas.tseries.offsets as offsets from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.compat import product from pandas.tests.frame.common import TestData class TestDataFrameTimeSeriesMethods(tm.TestCase, TestData): def test_diff(self): the_diff = self.tsframe.diff(1) assert_series_equal(the_diff['A'], self.tsframe['A'] - self.tsframe['A'].shift(1)) # int dtype a = 10000000000000000 b = a + 1 s = Series([a, b]) rs = DataFrame({'s': s}).diff() self.assertEqual(rs.s[1], 1) # mixed numeric tf = self.tsframe.astype('float32') the_diff = tf.diff(1) assert_series_equal(the_diff['A'], tf['A'] - tf['A'].shift(1)) # issue 10907 df = pd.DataFrame({'y': pd.Series([2]), 'z': pd.Series([3])}) df.insert(0, 'x', 1) result = df.diff(axis=1) expected = pd.DataFrame({'x': np.nan, 'y': pd.Series( 1), 'z': pd.Series(1)}).astype('float64') assert_frame_equal(result, expected) def test_diff_timedelta(self): # GH 4533 df = DataFrame(dict(time=[Timestamp('20130101 9:01'), Timestamp('20130101 9:02')], value=[1.0, 2.0])) res = df.diff() exp = DataFrame([[pd.NaT, np.nan], [pd.Timedelta('00:01:00'), 1]], columns=['time', 'value']) assert_frame_equal(res, exp) def test_diff_mixed_dtype(self): df = DataFrame(np.random.randn(5, 3)) df['A'] = np.array([1, 2, 3, 4, 5], dtype=object) result = df.diff() self.assertEqual(result[0].dtype, np.float64) def test_diff_neg_n(self): rs = self.tsframe.diff(-1) xp = self.tsframe - self.tsframe.shift(-1) assert_frame_equal(rs, xp) def test_diff_float_n(self): rs = self.tsframe.diff(1.) xp = self.tsframe.diff(1) assert_frame_equal(rs, xp) def test_diff_axis(self): # GH 9727 df = DataFrame([[1., 2.], [3., 4.]]) assert_frame_equal(df.diff(axis=1), DataFrame( [[np.nan, 1.], [np.nan, 1.]])) assert_frame_equal(df.diff(axis=0), DataFrame( [[np.nan, np.nan], [2., 2.]])) def test_pct_change(self): rs = self.tsframe.pct_change(fill_method=None) assert_frame_equal(rs, self.tsframe / self.tsframe.shift(1) - 1) rs = self.tsframe.pct_change(2) filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = self.tsframe.pct_change(fill_method='bfill', limit=1) filled = self.tsframe.fillna(method='bfill', limit=1) assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = self.tsframe.pct_change(freq='5D') filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(freq='5D') - 1) def test_pct_change_shift_over_nas(self): s = Series([1., 1.5, np.nan, 2.5, 3.]) df = DataFrame({'a': s, 'b': s}) chg = df.pct_change() expected = Series([np.nan, 0.5, np.nan, 2.5 / 1.5 - 1, .2]) edf = DataFrame({'a': expected, 'b': expected}) assert_frame_equal(chg, edf) def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=
np.arange(n)
numpy.arange
"""Perform normalization on inputs or rewards. """ import numpy as np import torch from gym.spaces import Box def normalize_angle(x): """Wraps input angle to [-pi, pi]. """ return ((x + np.pi) % (2 * np.pi)) - np.pi class RunningMeanStd(): """Calulates the running mean and std of a data stream. Attributes: mean (np.array): mean of data stream. var (np.array): variance of data stream. count (float): total count of data steam. """ def __init__(self, epsilon=1e-4, shape=()): """Initializes containers for data mean and variance. Args: epsilon (float): helps with arithmetic issues. shape (tuple): the shape of the data stream's output. """ self.mean = np.zeros(shape, np.float64) self.var = np.ones(shape, np.float64) self.count = epsilon def update(self, arr): """Update current stats with a new stream of data. Args: arr (np.array): 1D array of data, (batch_size, *shape). """ batch_mean = np.mean(arr, axis=0) batch_var = np.var(arr, axis=0) batch_count = arr.shape[0] self.update_from_moments(batch_mean, batch_var, batch_count) def update_from_moments(self, batch_mean, batch_var, batch_count): """Util function for `update` method. """ delta = batch_mean - self.mean tot_count = self.count + batch_count new_mean = self.mean + delta * batch_count / tot_count m_a = self.var * self.count m_b = batch_var * batch_count m_2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count) new_var = m_2 / (self.count + batch_count) new_count = batch_count + self.count self.mean = new_mean self.var = new_var self.count = new_count class BaseNormalizer(object): """Template/default normalizer. Attributes: read_only (bool): if to freeze the current stats being tracked. """ def __init__(self, read_only=False): self.read_only = read_only def set_read_only(self): self.read_only = True def unset_read_only(self): self.read_only = False def __call__(self, x, *args, **kwargs): """Invokes normalization on the given input. """ return x def state_dict(self): """Returns snapshot of current stats. """ return {} def load_state_dict(self, _): """Restores the stats from a snapshot. """ pass class MeanStdNormalizer(BaseNormalizer): """Normalize by the running average. """ def __init__(self, shape=(), read_only=False, clip=10.0, epsilon=1e-8): """Initializes the data stream tracker. Args: shape (tuple): shape of data being tracked. read_only (bool): if to freeze the tracker. clip (float): bounds on the data. epsilon (float): offset to provide divide-by-zero. """ super().__init__(read_only) self.read_only = read_only self.rms = RunningMeanStd(shape=shape) self.clip = clip self.epsilon = epsilon def __call__(self, x): """Update tracker given data, optionally normalize the data. """ x = np.asarray(x) if not self.read_only: self.rms.update(x) return np.clip( (x - self.rms.mean) / np.sqrt(self.rms.var + self.epsilon), -self.clip, self.clip) def state_dict(self): return {'mean': self.rms.mean, 'var': self.rms.var} def load_state_dict(self, saved): self.rms.mean = saved['mean'] self.rms.var = saved['var'] class RewardStdNormalizer(MeanStdNormalizer): """Reward normalization by running average of returns. Papers: * arxiv.org/pdf/1808.04355.pdf * arxiv.org/pdf/1810.12894.pdf Also see: * github.com/openai/baselines/issues/538 """ def __init__(self, gamma=0.99, read_only=False, clip=10.0, epsilon=1e-8): """Initializes the data stream tracker. Args: gamma (float): discount factor for rewards. read_only (bool): if to freeze the tracker. clip (float): bounds on the data. epsilon (float): offset to provide divide-by-zero. """ # Reward has default shape (1,) or just (). super().__init__((), read_only, clip, epsilon) self.gamma = gamma self.ret = None def __call__(self, x, dones): """Update tracker given reward, optionally normalize the reward (only scaling). """ x = np.asarray(x) if not self.read_only: # Track running average of forward discounted returns. if self.ret is None: self.ret = np.zeros(x.shape[0]) self.ret = self.ret * self.gamma + x self.rms.update(self.ret) # Prevent information leak from previous episodes. self.ret[dones.astype(np.long)] = 0 return np.clip(x /
np.sqrt(self.rms.var + self.epsilon)
numpy.sqrt
# coding: utf8 """ Unit tests: - :class:`TestFiniteDppSamplers` """ import unittest from itertools import chain # to flatten list of samples import numpy as np import numpy.random as rndm import scipy.linalg as la from scipy.stats import chisquare import sys sys.path.append('..') from dppy.finite_dpps import FiniteDPP from dppy.utils import det_ST class TestAdequationOfFiniteDppSamplers(unittest.TestCase): """ For various settings, test that the """ rank, N = 6, 10 nb_exact_samples = 1000 nb_iter_mcmc = nb_exact_samples e_vals_eq_01 = np.ones(rank) e_vals_in_01 =
np.random.rand(rank)
numpy.random.rand
from __future__ import print_function import unittest import numpy as np import scipy.sparse as sp from matrixutils import ( sdiag, sub2ind, ndgrid, mkvc, inv2X2BlockDiagonal, inv3X3BlockDiagonal, indexCube, ind2sub, asArray_N_x_Dim, Zero, Identity, meshTensor ) TOL = 1e-8 class TestSequenceFunctions(unittest.TestCase): def setUp(self): self.a = np.array([1, 2, 3]) self.b = np.array([1, 2]) self.c = np.array([1, 2, 3, 4]) def test_mkvc1(self): x = mkvc(self.a) self.assertTrue(x.shape, (3, )) def test_mkvc2(self): x = mkvc(self.a, 2) self.assertTrue(x.shape, (3, 1)) def test_mkvc3(self): x = mkvc(self.a, 3) self.assertTrue(x.shape, (3, 1, 1)) def test_ndgrid_2D(self): XY = ndgrid([self.a, self.b]) X1_test = np.array([1, 2, 3, 1, 2, 3]) X2_test = np.array([1, 1, 1, 2, 2, 2]) self.assertTrue(np.all(XY[:, 0] == X1_test)) self.assertTrue(np.all(XY[:, 1] == X2_test)) def test_ndgrid_3D(self): XYZ = ndgrid([self.a, self.b, self.c]) X1_test = np.array([ 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3 ]) X2_test = np.array([ 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2 ]) X3_test = np.array([ 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4 ]) self.assertTrue(np.all(XYZ[:, 0] == X1_test)) self.assertTrue(np.all(XYZ[:, 1] == X2_test)) self.assertTrue(np.all(XYZ[:, 2] == X3_test)) def test_sub2ind(self): x = np.ones((5, 2)) assert np.allclose(sub2ind(x.shape, [0, 0]), [0]) assert np.allclose(sub2ind(x.shape, [4, 0]), [4]) assert np.allclose(sub2ind(x.shape, [0, 1]), [5]) assert np.allclose(sub2ind(x.shape, [4, 1]), [9]) assert np.allclose(sub2ind(x.shape, [[4, 1]]), [9]) assert np.allclose( sub2ind(x.shape, [[0, 0], [4, 0], [0, 1], [4, 1]]), [0, 4, 5, 9] ) def test_ind2sub(self): x = np.ones((5, 2)) assert np.allclose(ind2sub(x.shape, [0, 4, 5, 9])[0], [0, 4, 0, 4]) assert np.allclose(ind2sub(x.shape, [0, 4, 5, 9])[1], [0, 0, 1, 1]) def test_indexCube_2D(self): nN = np.array([3, 3]) assert np.allclose(indexCube('A', nN), np.array([0, 1, 3, 4])) assert np.allclose(indexCube('B', nN), np.array([3, 4, 6, 7])) assert np.allclose(indexCube('C', nN), np.array([4, 5, 7, 8])) assert np.allclose(indexCube('D', nN), np.array([1, 2, 4, 5])) def test_indexCube_3D(self): nN = np.array([3, 3, 3]) assert np.allclose( indexCube('A', nN), np.array([0, 1, 3, 4, 9, 10, 12, 13]) ) assert np.allclose( indexCube('B', nN), np.array([3, 4, 6, 7, 12, 13, 15, 16]) ) assert np.allclose( indexCube('C', nN), np.array([4, 5, 7, 8, 13, 14, 16, 17]) ) assert np.allclose( indexCube('D', nN), np.array([1, 2, 4, 5, 10, 11, 13, 14]) ) assert np.allclose( indexCube('E', nN),
np.array([9, 10, 12, 13, 18, 19, 21, 22])
numpy.array
import os import shutil import pytest import numpy as np import tensorflow as tf import torch from torch_mimicry.metrics import compute_fid from torch_mimicry.metrics.inception_model import inception_utils from torch_mimicry.nets.gan import gan class ExampleGen(gan.BaseGenerator): def __init__(self, bottom_width=4, nz=4, ngf=256, loss_type='gan', *args, **kwargs): super().__init__(nz=nz, ngf=ngf, bottom_width=bottom_width, loss_type=loss_type, *args, **kwargs) def forward(self, x): output = torch.ones(x.shape[0], 3, 32, 32) return output class CustomDataset(torch.utils.data.Dataset): def __init__(self, nchw=True): super().__init__() if nchw: self.data = torch.ones(30, 3, 32, 32) else: self.data = torch.ones(30, 32, 32, 3) def __len__(self): return self.data.shape[0] def __getitem__(self, idx): return self.data[idx] class TestComputeFID: def setup(self): self.netG = ExampleGen() self.num_real_samples = 10 self.num_fake_samples = 10 self.batch_size = 10 self.device = torch.device("cpu") # Create inception graph once. self.inception_path = './metrics/inception_model' if not os.path.exists(self.inception_path): os.makedirs(self.inception_path) inception_utils.create_inception_graph(self.inception_path) # Directory self.log_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_log") if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) def _create_cached_file(self): m, s = np.ones((128, )), np.ones((128, 128)) cached_file = os.path.join(self.log_dir, 'cached.npz')
np.savez(cached_file, mu=m, sigma=s)
numpy.savez
# -*- coding: utf-8 -*- from PIL import Image import math import numpy as np import os import random import sys import glob import h5py import tensorflow as tf from .dataset_tools import * def read_text(filename): v = [] for l in open(filename, 'r'): v.append(l.strip()) # v.append([x for x in l.strip().split(' ')]) return np.array(v) class SE3PairwiseDataset(object): # class for ScanNet or SfM dataset def __init__(self, batch_size, offset_val=2, random_offset=False, out_width=320, out_height=240, crop_center=False, max_degree=0, max_scale=np.sqrt(2), warp_aug_mode='none', num_threads=8): self.batch_size = batch_size self.offset_val = offset_val self.random_offset = random_offset self.depth_factor = 0.001 self.far_depth_val = 1000 self.src_width = 640 self.src_height = 480 self.dst_width = out_width self.dst_height = out_height self.num_threads = num_threads self.max_rad = np.pi / 180 * max_degree self.max_scale_log = np.log(max_scale) self.warp_aug_mode = warp_aug_mode self.scale_table_path = '../../params/scale/scl-{:.2f}/rnd_table.npy'.format(max_scale) self.ori_table_path = '../../params/ori/deg-{}/rnd_table.npy'.format(max_degree) self.depth_thresh = 1.0 self.crop_center = crop_center def set_files(self, root_dir, render_paths, max_img_num=-1): if isinstance(render_paths, str): render_paths = [render_paths] num_seq = len(render_paths) print('Number of sequences:{0}'.format(len(render_paths))) # load from render_paths photo_intrinsics = [None] * num_seq depth_intrinsics = [None] * num_seq cTws = [None] * num_seq num_photos_per_seq = [None] * num_seq photo_dirs = [None] * num_seq depth_dirs = [None] * num_seq for i, render_path in enumerate(render_paths): calib = np.load(os.path.join(root_dir, render_path, 'calib/calib.npz')) photo_intrinsics[i] = calib['photo_intrinsic'] depth_intrinsics[i] = calib['depth_intrinsic'] cTw = np.load(os.path.join(root_dir, render_path, 'pose/cTw.npy')) num_photos = (len(cTw) // self.batch_size) * self.batch_size # guarantee to be divisible by batch size if max_img_num > 0: num_photos = min(num_photos, max_img_num) print('#{} {} use {} / {} images'.format(i, render_path, num_photos, len(cTw))) cTws[i] = cTw[:num_photos] num_photos_per_seq[i] = num_photos photo_dirs[i] = os.path.join(root_dir, render_path, 'photo') depth_dirs[i] = os.path.join(root_dir, render_path, 'depth') self.cTws_data = np.concatenate(cTws, axis=0) self.cTws = tf.convert_to_tensor(self.cTws_data, dtype=tf.float32) self.photo_intrinsics_data = np.array(photo_intrinsics) self.photo_intrinsics = tf.convert_to_tensor(self.photo_intrinsics_data, dtype=tf.float32) self.depth_intrinsics_data = np.array(depth_intrinsics) self.depth_intrinsics = tf.convert_to_tensor(self.depth_intrinsics_data, dtype=tf.float32) self.num_photos_per_seq_data = np.array(num_photos_per_seq, dtype=np.int32) self.num_photos_per_seq = tf.convert_to_tensor(self.num_photos_per_seq_data, dtype=tf.int32) self.seq_offsets_data = np.concatenate([np.zeros([1], dtype=np.int32), np.cumsum(self.num_photos_per_seq_data)]) self.seq_offsets = tf.convert_to_tensor(self.seq_offsets_data, tf.int32) self.intrinsics_3x3_data = self.photo_intrinsics_data photo_path_list = [] depth_path_list = [] seq_id_list = [] for i, (pdir, ddir) in enumerate(zip(photo_dirs, depth_dirs)): numbers = sorted([int(os.path.splitext(x.name)[0]) for x in os.scandir(pdir)]) num_photos = self.num_photos_per_seq_data[i] numbers = numbers[:num_photos] photos = [os.path.join(pdir, '{}.jpg'.format(img_n)) for img_n in numbers] depths = [os.path.join(ddir, '{}.png'.format(img_n)) for img_n in numbers] seq_ids = [i] * len(numbers) assert len(photos) == len(depths) assert len(photos) == num_photos_per_seq[i] photo_path_list += photos depth_path_list += depths seq_id_list += seq_ids # set other members self.photo_path_list_data = photo_path_list self.depth_path_list_data = depth_path_list self.seq_id_list_data = np.array(seq_id_list, dtype=np.int32) self.photo_path_list = tf.convert_to_tensor(photo_path_list) self.depth_path_list = tf.convert_to_tensor(depth_path_list) self.seq_id_list = tf.convert_to_tensor(self.seq_id_list_data, dtype=tf.int32) self.num_seq = num_seq self.total_num_photos = len(photo_path_list) if self.warp_aug_mode == 'table': ori_table_path = os.path.join(root_dir, self.ori_table_path) scale_table_path = os.path.join(root_dir, self.scale_table_path) self.ori_random_table_data = self._load_random_table(ori_table_path, self.total_num_photos) self.scale_random_table_data = self._load_random_table(scale_table_path, self.total_num_photos) self.ori_random_table = tf.convert_to_tensor(self.ori_random_table_data, dtype=tf.float32) self.scale_random_table = tf.convert_to_tensor(self.scale_random_table_data, dtype=tf.float32) print('[ScanNet] #sep={}, #total={}'.format(self.num_seq, self.total_num_photos)) def get_dataset(self, shuffle=True, num_epoch=None, seed=None): dataset = tf.data.Dataset.range(self.total_num_photos) if shuffle: dataset = dataset.shuffle(self.total_num_photos, seed=seed) dataset = dataset.repeat(count=num_epoch) dataset = dataset.map(lambda x: self.mapfn_read_and_decode(x), num_parallel_calls=self.num_threads) dataset = dataset.map(self.mapfn_augment, num_parallel_calls=self.num_threads) dataset = dataset.batch(self.batch_size) return dataset def mapfn_read_and_decode(self, tgt_idx): tgt_idx = tf.cast(tgt_idx, tf.int32) # tf.int64->tf.int32 seq_idx = self.seq_id_list[tgt_idx] file_idx = tgt_idx - self.seq_offsets[seq_idx] num_photos = self.num_photos_per_seq[seq_idx] if self.random_offset: offset = tf.random_uniform((), -self.offset_val, self.offset_val, dtype=tf.int32) else: offset = self.offset_val # fixed value offset = tf.clip_by_value(file_idx+offset, 0, num_photos-1) - file_idx ref_idx = tgt_idx + offset photo1 = self._load_photo(tgt_idx) photo2 = self._load_photo(ref_idx) depth1, valid_mask1 = self._load_depth(tgt_idx) depth2, valid_mask2 = self._load_depth(ref_idx) # pose c1Tw = self.cTws[tgt_idx] c2Tw = self.cTws[ref_idx] c2Tc1, c1Tc2 = self._get_delta_pose(c1Tw, c2Tw) intrinsics_3x3 = self.photo_intrinsics[seq_idx,:3,:3] intrinsics_3x3.set_shape([3,3]) # warp params print('WARP_AUG_MODE={} max_rad={}, max_scale_log={}'.format(self.warp_aug_mode, self.max_rad, self.max_scale_log)) if self.warp_aug_mode == 'none': scales = tf.zeros([2], tf.float32) oris = tf.zeros([2], tf.float32) elif self.warp_aug_mode == 'fix': scales = tf.constant([self.max_scale_log, self.max_scale_log], tf.float32) oris = tf.constant([self.max_rad, self.max_rad], tf.float32) elif self.warp_aug_mode == 'random': scales = tf.random_uniform([2], minval=-self.max_scale_log, maxval=self.max_scale_log, dtype=tf.float32) oris = tf.random_uniform([2], minval=-self.max_rad, maxval=self.max_rad, dtype=tf.float32) elif self.warp_aug_mode == 'table': scales = self.scale_random_table[tgt_idx] oris = self.ori_random_table[tgt_idx] else: raise ValueError('Unknown warp_aug_mode: {}'.format(self.warp_aug_mode)) theta_params = tf.concat([scales, oris], axis=0) use_aug = tf.constant(False) if self.warp_aug_mode == 'none' else tf.constant(True) # add in-plane rotation intheta_c2Rc1 = tf.py_func(get_inplane_rotation, [c2Tc1[:3,:3]], [tf.float32]) intheta_c1Rc2 = tf.py_func(get_inplane_rotation, [c1Tc2[:3,:3]], [tf.float32]) theta_params = tf.concat([theta_params, intheta_c2Rc1, intheta_c1Rc2], axis=0) return photo1, photo2, depth1, depth2, valid_mask1, valid_mask2, c2Tc1, c1Tc2, c1Tw, c2Tw, intrinsics_3x3, intrinsics_3x3, theta_params, use_aug def mapfn_augment(self, photo1, photo2, depth1, depth2, valid_mask1, valid_mask2, c2Tc1, c1Tc2, c1Tw, c2Tw, K1, K2, theta_params, use_aug): dv1 = tf.concat([depth1, valid_mask1], axis=-1) dv2 = tf.concat([depth2, valid_mask2], axis=-1) # Crop center if self.crop_center: # image size = [480,640] --> [480,640] assert self.src_width > self.src_height x_offset = (self.src_width-self.src_height) // 2 new_height = new_width = self.src_height photo1 = tf.slice(photo1, [0,x_offset,0], [-1, new_width, -1]) photo2 = tf.slice(photo2, [0,x_offset,0], [-1, new_width, -1]) dv1 = tf.slice(dv1, [0,x_offset,0], [-1, new_width, -1]) dv2 = tf.slice(dv2, [0,x_offset,0], [-1, new_width, -1]) # modify intrinsic matrix K1 = fix_intrinsic_center(K1, tf.to_float(new_width)/2, tf.to_float(new_height)/2) K2 = fix_intrinsic_center(K2, tf.to_float(new_width)/2, tf.to_float(new_height)/2) dx = float(self.dst_width) / new_width dy = float(self.dst_height) / new_height else: dx = float(self.dst_width) / self.src_width dy = float(self.dst_height) / self.src_height # Resizing scale_T = self._make_scale_theta(dx, dy) K1 = tf.matmul(scale_T, K1) K2 = tf.matmul(scale_T, K2) photo1 = tf.image.resize_images(photo1, (self.dst_height, self.dst_width)) photo2 = tf.image.resize_images(photo2, (self.dst_height, self.dst_width)) # do not use linear interpolation on valid_masks1 dv1 = tf.image.resize_images(dv1, (self.dst_height, self.dst_width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) dv2 = tf.image.resize_images(dv2, (self.dst_height, self.dst_width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) depth1 = tf.slice(dv1, [0,0,0],[-1,-1,1]) valid_mask1 = tf.slice(dv1, [0,0,1],[-1,-1,1]) depth2 = tf.slice(dv2, [0,0,0],[-1,-1,1]) valid_mask2 = tf.slice(dv2, [0,0,1],[-1,-1,1]) return photo1, photo2, depth1, depth2, valid_mask1, valid_mask2, c2Tc1, c1Tc2, c1Tw, c2Tw, K1, K2, theta_params, use_aug def _load_photo(self, idx): photo = tf.read_file(self.photo_path_list[idx]) photo = tf.image.decode_jpeg(photo, 1) # force to load as grayscale # photo = tf.image.rgb_to_grayscale(photo) photo = tf.cast(photo, tf.float32) / 255.0 # normalize photo.set_shape((self.src_height, self.src_width, 1)) photo.set_shape((None, None, 1)) return photo def _load_depth(self, idx): depth = tf.read_file(self.depth_path_list[idx]) depth = tf.image.decode_png(depth, 1, dtype=tf.uint16) # force to load as grayscale depth = tf.scalar_mul(self.depth_factor, tf.cast(depth, tf.float32)) is_zero = tf.equal(depth, tf.constant(0, dtype=tf.float32)) valid_mask = tf.cast(tf.logical_not(is_zero), tf.float32) far_depth = tf.scalar_mul(self.far_depth_val, tf.ones_like(depth, dtype=tf.float32)) # pay attention when you visualize depth due to dynamic range (0~1000) depth = tf.where(is_zero, far_depth, depth) # depth.set_shape((self.src_height, self.src_width, 1)) depth.set_shape((None, None, 1)) return depth, valid_mask def _get_delta_pose(self, c1Tw, c2Tw): # cTw = world to camera pose [4x4 matrix] # return = c2Tc1, which means c1 to c2 pose c1Rw = tf.slice(c1Tw, [0,0], [3,3]) c2Rw = tf.slice(c2Tw, [0,0], [3,3]) c1Pw = tf.slice(c1Tw, [0,3], [3,1]) c2Pw = tf.slice(c2Tw, [0,3], [3,1]) wPc1 = -tf.matmul(c1Rw, c1Pw, transpose_a=True) # wPc = -wRc cPw wPc2 = -tf.matmul(c2Rw, c2Pw, transpose_a=True) # wPc = -wRc cPw c2Rc1 = tf.matmul(c2Rw, c1Rw, transpose_b=True) # c2Rc1 = c2Rw wRc1 c2Pc1 = tf.matmul(c2Rw, wPc1-wPc2) # c2Pc1 = c2Rw (wPc1-wPc2) # c2Tc1 (4x4) = # | c2Rc1 c2Pc1 | # | 0 1 | c2Tc1 = tf.concat([c2Rc1, c2Pc1], axis=1) c2Tc1 = tf.concat([c2Tc1, tf.constant([[0,0,0,1]], dtype=tf.float32)], axis=0) c1Tc2 = tf.matrix_inverse(c2Tc1) return c2Tc1, c1Tc2 def _make_scale_theta(self, sx, sy): # 3x3 matrix theta = tf.stack( [sx, 0, 0, 0, sy, 0, 0, 0, 1]) return tf.cast(tf.reshape(theta, [3,3]), tf.float32) def _load_random_table(self, table_path, min_table_size): if not os.path.join(table_path): raise ValueError('Cannot load random-table from {}'.format(table_path)) random_table =
np.load(table_path)
numpy.load
import numpy as np import multiprocessing import sys import time import matplotlib.pyplot as plt # ============================================================================= # Distributed Computing Parameters pool_size = multiprocessing.cpu_count() # Genetic Circuit Hyperparameters NODES = 3000 # Evolutionary Algorithm Hyperparameters GENERATIONS = 201 # number of generations to run # Other Hyperparameters # STEP_MUTATION_RATE = 0.9 # BIG_STEP_MUTATION_RATE = 0.8 # RANDOM_MUTATION_RATE = 1 # SIGN_FLIP_MUTATION_RATE = 0.1 # REG_RATE = 0.0003 # regularization rate STEP_SIZE = 2.0 # max mutation intensity of each weight POPULATION = pool_size * 6 # total number of population SURVIVABLE_PARENTS = POPULATION // 3 # number of parents to survive # Novelty Search Hyperparameters # KNN_BC_NUM = 1 # k nearest neighbors number for behavior characteristics # ARCHIVE_STORING_RATE = 0.01 # ODE TIME_STEPS = 300 BATCH_SIZE = 30 # Fully dividable by 3 recommended # Score Constraints ERROR_BOUND = 0.1 # percentage of error allowed (sigmoid bounds are +-1) BANDPASS_BOUND = 0.3 # the absolute bound of each weight (very important) # choose something close to sigmoid saturation is good (eg. 7.5+, 5 is not good, 10 is good) BOUND = 13 # Parameters (Derived from hyperparameters) DNA_SIZE = NODES * NODES UPPER_BANDPASS_BOUND = 1 - BANDPASS_BOUND COST_UPPER_BOUND = ERROR_BOUND * BATCH_SIZE # ============================================================================= # Mean normalization def standardize(population): # as known as z-score normalization # the other method being min-max normalization for i, weights in enumerate(population): mean = np.mean(weights) std = np.std(weights) population[i] = (weights - mean) / std return population # ============================================================================= # ODE & Simulations def sigmoid(x): return 1 / (1 + np.exp(-x)) # FF Classifier # Here, only the classical solution determinator is implemented # def simulate_ode_original(W, N, B, S): # dt = 0.01 # initial_val = 0.1 * np.ones([B, S]) # can we reuse this? # input_val = np.linspace(0, 2, B).reshape(B, 1) * np.random.normal( # loc=1.0, scale=0.0001, size=[N, B, S]) # can we reduce the redundants? # input_val[:, :, 1:S] = 0.0 # output = initial_val + ( # sigmoid(np.matmul(initial_val, W)) - initial_val + input_val[0]) * dt # # print(output) # # HOW: create one time np.linspace(0, 2, B), mutate and reuse in for loop # for i in range(1, N): # output = output + ( # sigmoid(np.matmul(output, W)) - output + input_val[i]) * dt # # print(output) # return output # input_initializer = np.linspace(0, 2, BATCH_SIZE).reshape(BATCH_SIZE, 1,) # input_val[:, 0] = np.linspace(0, 2, BATCH_SIZE).reshape(BATCH_SIZE) # print(np.random.normal(loc=1.0, scale=0.0001)) dt = 0.01 initial_val = 0.1 * np.ones([BATCH_SIZE, NODES]) input_val = np.zeros((BATCH_SIZE, NODES)) linspace_col = np.linspace(0, 2, BATCH_SIZE).reshape(BATCH_SIZE) def simulate_ode(W, N, B, S): # Insert one input and have three outputs input_val[:, 0] = linspace_col * np.random.normal(loc=1.0, scale=0.0001) input_val[:, 1] = linspace_col *
np.random.normal(loc=1.0, scale=0.0001)
numpy.random.normal
from typing import List import numpy as np from poker_ai.poker.evaluation import Evaluator class GameUtility: """This class takes care of some game related functions.""" def __init__(self, our_hand: np.ndarray, board: np.ndarray, cards: np.ndarray): self._evaluator = Evaluator() unavailable_cards =
np.concatenate([board, our_hand], axis=0)
numpy.concatenate
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den =
N.array([4,4,1])
numpy.array
import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense from sklearn.preprocessing import LabelEncoder #IMPORTA A BIBLIOTECA DO ENCODER from keras.utils import np_utils #IMPORTA A BIBLIOTECA PARA COMPLEMENTAR O ENCODER import numpy as np from sklearn.metrics import confusion_matrix base = pd.read_csv('iris.csv') previsores = base.iloc[:, 0:4].values classe = base.iloc[:, 4].values labelEncoder = LabelEncoder() #CRIA O OBJETO DO ENCODER classe = labelEncoder.fit_transform(classe) #TRANSFORMA AS CLASSES DAS PLANTAS EM VALORES NUMERICOS classe_dummy = np_utils.to_categorical(classe) """ iris setosa 1 0 0 iris virginica 0 1 0 iris versicolor 0 0 1 """ previsores_treinamento, previsores_teste, classe_treinamento, classe_teste = train_test_split(previsores, classe_dummy, test_size=0.25) classificador = Sequential() classificador.add(Dense(units = 4, activation = 'relu', input_dim = 4)) classificador.add(Dense(units = 4, activation = 'relu')) classificador.add(Dense(units = 3, activation = 'softmax')) classificador.compile(optimizer='adam', loss = 'categorical_crossentropy', metrics = ['categorical_accuracy']) classificador.fit(previsores_treinamento, classe_treinamento, batch_size = 10, epochs = 1000) resultado = classificador.evaluate(previsores_teste, classe_teste) previsoes = classificador.predict(previsores_teste) previsoes = (previsoes > 0.5) classe_teste2 = [
np.argmax(t)
numpy.argmax
import os import numpy as np #select a region of the spectrum within [wmin, wmax] def spectrum_in_range(l_original, f_original, wmin, wmax): l_trim, f_trim = [], [] for l, f in zip(l_original, f_original): if l >= wmin and l <= wmax: l_trim.append(l) f_trim.append(f) l_trim, f_trim = np.array(l_trim), np.array(f_trim) return l_trim, f_trim #run SNID def run_snid(l, f, snid_options, snid_templates): #save the input spectrum in a file input_spectrum = 'input.txt' file_spectrum = open(input_spectrum, 'w') for ll, ff in zip(l, f): file_spectrum.write('%8.3f %.7e\n' % (ll, ff)) file_spectrum.close() #run SNID os.system('snid '+snid_options+' '+snid_templates+' '+input_spectrum) os.system('rm '+input_spectrum) os.system('rm snid.param') snid_file = 'input_snid.output' if os.path.exists(snid_file) == False: print('ERROR in run_snid: there is no SNID output') sne_bm, rlaps, zs, snid_phases = np.array([]), np.array([]), np.array([]), np.array([]) else: #read important parameters sne_bm = np.atleast_1d(np.genfromtxt(snid_file, skip_header=67, usecols=1, dtype=str)) rlaps = np.atleast_1d(np.genfromtxt(snid_file, skip_header=67, usecols=4)) zs = np.atleast_1d(np.genfromtxt(snid_file, skip_header=67, usecols=5)) snid_phases = np.atleast_1d(np.genfromtxt(snid_file, skip_header=67, usecols=7)) os.system('rm '+snid_file) return sne_bm, rlaps, zs, snid_phases #average snid results def average_snid_results(phases, rms_phases): phase, err_phase = float('nan'), float('nan') if len(phases) != 0: if len(phases) == 1: phase, err_phase = phases[0], rms_phases[0] else: #compute the phase and its error minimizing the log-likelihood residuals = phases - np.mean(phases) rms = np.sqrt(np.sum(residuals**2)/float(len(residuals)-1)) err_0s = np.linspace(0.0, rms, 100) m2ln_L_min = 1.0e90 for err_0 in err_0s: var = rms_phases**2 + err_0**2 phase = np.sum(phases/var)/np.sum(1.0/var) m2ln_L = np.sum(np.log(var)+(phases-phase)**2/var) if m2ln_L < m2ln_L_min: m2ln_L_min = m2ln_L phase_min = phase err_0_min = err_0 err_0 = err_0_min phase = phase_min var = rms_phases**2 + err_0**2 err_phase = np.sqrt(np.sum(rms_phases**2/var**2))/np.sum(1.0/var) err_phase = np.sqrt(err_phase**2) return phase, err_phase #select results based on rlap and zfilter values def filter_snid_results(t_specs, sne_match, rlaps, zs, t0s, rlap_min, zfilter, N_bests): r, p, s, t, zz, i = [], [], [], [], [], 0 for rlap, z, t0, t_spec, sn_match in zip(rlaps, zs, t0s, t_specs, sne_match): if rlap >= rlap_min and abs(z)<zfilter: if i<N_bests: r.append(rlap) zz.append(z) p.append(t0) t.append(t_spec) s.append(sn_match) i = i + 1 rlaps, zs, t0s, t_specs, sne_match = np.array(r), np.array(zz), np.array(p), np.array(t), s return t_specs, sne_match, rlaps, zs, t0s #compute snid phases def compute_snid_time(t_specs, sne_match, rlaps, zs, t0s, N_bests, JD_spectrum=-9999): zfilter = 0.01 rlap_min = 5.0 rlap2err_par = np.array([3.0, 72.0, -75.0]) #rlap to rms(t0) conversion #select good results t_specs, sne_match, rlaps, zs, t0s = filter_snid_results(t_specs, sne_match, rlaps, zs, t0s, rlap_min, zfilter, N_bests) if len(t0s) != 0: #convert rlaps to rms(t0) rms_t0s = 0.0 for i in range(0, len(rlap2err_par)): rms_t0s = rms_t0s + rlap2err_par[i]/rlaps**i #average results t0, err_t0 = average_snid_results(t0s, rms_t0s) else: if JD_spectrum == -9999: print('ERROR in compute_snid_time: no match meeting our SNID requirements') else: print("spectrum at JD="+str(JD_spectrum)+" does not have best-matches meeting our SNID requirements") t0, err_t0 = float('nan'), float('nan') t_specs, sne_match, rlaps, zs, t0s, rms_t0s = np.array([]), np.array([]), np.array([]), np.array([]), np.array([]), np.array([]) return t_specs, sne_match, rlaps, zs, t0s, rms_t0s, t0, err_t0 #compute t0 and rms(t0) with SNID and the input spectra def snid_results(templates_path, sn, z, JD_fd, JD_spectra, wl_spectra, f_spectra, snid_verbose, display_snid_plots): wmin, wmax = 4100.0, 7000.0 N_bests = 10 if snid_verbose: snid_verbose = '1' else: snid_verbose = '0' if display_snid_plots: display_snid_plots = '1' else: display_snid_plots = '0' #aplicaremos SNID a todos los espectros input t_specs_all, sne_match_all, rlaps_all, zs_all, t0s_all, N_good_spectra = np.array([]), np.array([]), np.array([]), np.array([]), np.array([]), 0 JD_list, t_specs_list, sne_match_list, rlaps_list, zs_list, t0s_list = [], {}, {}, {}, {}, {} for JD_spectrum, wl_spectrum, f_spectrum in zip(JD_spectra, wl_spectra, f_spectra): #select data within a wl range wl, f = spectrum_in_range(wl_spectrum, f_spectrum, wmin, wmax) #define the SNID options snid_options = 'verbose='+snid_verbose+' plot='+display_snid_plots+' forcez=0.0 rlapmin=1.0 k1=1 k2=4 k3=85 k4=102' #if the input SN is among the templates, then we avoid their templates sn_templates = np.genfromtxt(templates_path+'/templist', usecols=0, dtype=str) if sn+'.lnw' in sn_templates: snid_options = snid_options + ' avoid='+sn snid_templates = 'tempdir='+templates_path+'/' #run snid sne_match, rlaps, zs, snid_phases = run_snid(wl, f, snid_options, snid_templates) if len(sne_match) != 0: #convert snid phases to t0: JD_spec-JD_t0=phase -> t0_JD = JD_spec-phase -> t0 = JD_spec-phase - JD_fd = (JD_spec-JD_fd)/(1.0+z) - phase t0s = (JD_spectrum-JD_fd)/(1.0+z)-snid_phases t_specs = snid_phases-snid_phases+JD_spectrum #compute preliminar result t_spec_best, sne_best, rlap_best, zs_best, t0_best, err_t0_best, t0, err_t0 = compute_snid_time(t_specs, sne_match, rlaps, zs, t0s, N_bests, JD_spectrum=JD_spectrum) if np.isnan(t0) == False: JD_list.append(JD_spectrum) t_specs_list[str(JD_spectrum)] = t_spec_best sne_match_list[str(JD_spectrum)] = sne_best rlaps_list[str(JD_spectrum)] = rlap_best zs_list[str(JD_spectrum)] = zs_best t0s_list[str(JD_spectrum)] = t0_best N_good_spectra = N_good_spectra+1 t_specs_all, sne_match_all = np.append(t_specs_all, t_spec_best), np.append(sne_match_all, sne_best) rlaps_all, zs_all, t0s_all = np.append(rlaps_all, rlap_best), np.append(zs_all, zs_best), np.append(t0s_all, t0_best) #sort by rlap inds = rlaps_all.argsort()[::-1] t_specs_all, sne_match_all = t_specs_all[inds], sne_match_all[inds] rlaps_all, zs_all, t0s_all = rlaps_all[inds], zs_all[inds], t0s_all[inds] t_spec_best, sne_best, rlap_best, zs_best, t0_best, err_t0_best, t0, err_t0 = compute_snid_time(t_specs_all, sne_match_all, rlaps_all, zs_all, t0s_all, N_bests*N_good_spectra) t_specs_all, sne_match_all, rlaps_all, zs_all, t0s_all, N_good_spectra = np.array([]), np.array([]), np.array([]), np.array([]),
np.array([])
numpy.array
from firedrake import * import numpy as np import math,sys import time as tm from matplotlib import pyplot as plt # from Limiter.hsign_backup import * from Limiter.hsign import * np.set_printoptions(precision=9) from warnings import * class get_flux(SignFlip): def __init__(self,mesh,fluxes): self.mesh = mesh self.fluxes = fluxes def apply(self): hsign,cell_map,TwoCell,boundary_facet = SignFlip(self.mesh).HSIGN() #========================; # Step 0: Define H_{E,E'}: #========================; flux_val= self.fluxes.vector().array() row , col = np.shape(cell_map) old_FLUX = np.zeros((row,col)) for irow in range(row): for icol in range(col): old_FLUX[irow,icol] = flux_val[cell_map[irow,icol]] # print('Old flux:\n',old_FLUX) FLUX = np.multiply(old_FLUX,hsign) return FLUX class flux_limiter(SignFlip): # def __init__(self,mesh,sol_0,sol,fluxes,solMax,solMin,dt): def __init__(self,mesh,sol_0,sol,wells_avg,q_I,q_P,fluxes,solMax,solMin,dt): self.mesh = mesh self.sol_0 = sol_0 self.sol = sol self.wells_avg = wells_avg.vector().array() self.q_I = q_I.vector().array() self.q_P = q_P.vector().array() self.fluxes = fluxes self.solMax = solMax self.solMin = solMin self.dt = dt def wells_update(self,s): fw = lambda t:\ ( ((t-0.2)/0.65) * ((t-0.2)/0.65) * 1./(1e-3) )\ /( ( ((t-0.2)/0.65) * ((t-0.2)/0.65) * 1./(1e-3) ) +\ ( (1-((t-0.2)/0.65)) *(1-((t-0.2)/0.65) ) * 1./(1e-2) )) return ( self.q_I - fw(s) * self.q_P) # self.wells_update(s) is when we want to use this function in this class # forexample self.wells_update(solAvg) def apply(self): hsign,cell_map,TwoCell,boundary_facet = SignFlip(self.mesh).HSIGN() # print('Hsign', signing) # print('cell_map\n', cell_map) # print('TwoCell', TwoCell) # print('boundary_facet', boundary_facet) #========================; # Step 0: Define H_{E,E'}: #========================; flux_val= self.fluxes.vector().array() row , col = np.shape(cell_map) old_FLUX = np.zeros((row,col)) for irow in range(row): for icol in range(col): old_FLUX[irow,icol] = flux_val[cell_map[irow,icol]] # print('Old flux:\n',old_FLUX) FLUX = np.multiply(old_FLUX,hsign) # print('original FLUX:\n',FLUX) #========================================; # Calculate element correction factors: #========================================; # container to store alphaEplus and alphaEminu Vdg0 = FunctionSpace(self.mesh, "DG", 0) V0 = Function(Vdg0) # print(type(self.solMax)) deltaBound = 10*np.finfo(self.solMax).eps #Arithmetic perturbations may violate the bounds. epsBound = np.finfo(self.solMax).eps # print('delatabound',deltaBound) area = V0.interpolate(CellVolume(self.mesh)).vector().array() # print(area) solAvgDG0_0 = V0.interpolate(self.sol_0).vector().array() #==================; # Start iteration ; #==================; maxIter = 10000 epsFLUX = 1e-6 epsDelta = 1e-6 solAvg = solAvgDG0_0 # limiter solution from last time step s0 on DG0 space Corrector = np.ones((row,)) for numIter in range(maxIter): # print('numIter of Flux-limiter',numIter) # Save suppressed fluxes. FLUX_0 = FLUX alphaEplus= np.zeros((row,1)) # incompressible patch test # Qplus = area*np.maximum(0, (0.2)*\ # np.subtract((self.solMax-deltaBound),solAvg)) # Qplus = (area *(0.2 * 1000)* np.maximum(0,np.subtract((self.solMax-deltaBound),solAvg)) ) # incompressible well problem # Qplus = area*np.maximum(0, (0.2*1000)*\ # np.subtract((self.solMax-deltaBound),solAvg)-self.wells_avg*self.dt) Qplus = area*np.maximum(0, (0.2)*\ np.subtract((self.solMax-deltaBound),solAvg)+\ Corrector * self.wells_update(solAvg)*self.dt) # compressible patch test # Qplus = area * np.maximum(0,np.subtract\ # ((self.rPAvg * self.solMax-deltaBound),self.rPAvg_0 * solAvg)) # print('Qplus:\n',Qplus) assert (np.all(Qplus >= 0))\ ,"Qplus is less than zero!" Pplus = -1 *np.where(FLUX<0,FLUX,0).sum(axis=1) * self.dt + epsBound # print('Pplus:\n',Pplus) alphaEplus = np.minimum(1,np.divide(Qplus,Pplus)) # print('alphaEplus at iteration %d:\n'%numIter,alphaEplus) # if alphaEplus is 1 means that no limiting is needed. (100% of unlimited flux is allowed # without introducing a mean-value overshoot); If alphaEplus is 0 this means that: # means Qplus = 0 which means no mass is allowed to be stored in E without introducing # mean-value overshoot. # incompressible patch test # Qminus = area *(np.minimum(0,(0.2)*\ # np.subtract((self.solMin+deltaBound),solAvg ))) # # incompressible well problem Qminus = area *(np.minimum(0,(0.2)*\ np.subtract((self.solMin+deltaBound),solAvg ) -\ Corrector * self.wells_update(solAvg)*self.dt) ) # compressible patch test # Qminus = area * np.minimum(0,np.subtract\ # ((self.rPAvg * self.solMin+deltaBound),self.rPAvg_0 * solAvg )) # # Qminus = (area * np.subtract(solAvg,(self.solMin-deltaBound) ) ) # Qminus = (area * np.subtract(solAvg,(self.solMin) ) ) # assert (np.all(Qminus >= 0))\ # ,"Qminus is less than zero!" assert (np.all(Qminus <= 0))\ ,"Qminus is greater than zero!" # Qminus = (area * np.subtract(solAvg,(self.solMin+deltaBound)) ) # print('Qminus:\n',Qminus) # Pminus = 1 *np.where(FLUX>0,FLUX,0).sum(axis=1) * self.dt + epsBound Pminus = -1 *np.where(FLUX>0,FLUX,0).sum(axis=1) * self.dt - epsBound # print('Pminus:\n',Pminus) alphaEminus = np.minimum(1,np.divide(Qminus,Pminus)) # print('alphaEminus at iteration %d:\n' %numIter,alphaEminus) # alphaEminus shows the percentage of howmuch of mass (Pminus) is allowd to exit element E # if alphaEminus = 1 no limiting is needed. and alphaEminus = 0 # it means that no mass is allowed to exit and hence 100% of flux should be limited. # np.savetxt('Qminus.out',Qminus) #============================================; # Compute edge correction factors alpha_E,E' : #============================================; # met1_Start = tm.time() alphaEface = np.ones((row,col)) for irow in range(row): for icol in range(col): facet = cell_map[irow,icol] # Handling boundary terms if facet in boundary_facet: if FLUX[irow,icol] < 0: alphaEface[irow,icol] = alphaEplus[irow] elif FLUX[irow,icol] > 0: alphaEface[irow,icol] = alphaEminus[irow] # Handling interior edges else: if FLUX[irow,icol] < 0: b0 = TwoCell[facet] # cellID of irow and the opposite cell oppCell_ID = int(b0[np.where( b0 != irow )]) # includes only oppoiste cell ID alphaEface[irow,icol] = np.minimum(alphaEplus[irow] , alphaEminus[oppCell_ID]) elif FLUX[irow,icol] > 0: b0 = TwoCell[facet] # cellID of irow and the opposite cell oppCell_ID = int(b0[np.where( b0 != irow )]) # includes only oppoiste cell ID alphaEface[irow,icol] = np.minimum(alphaEminus[irow] , alphaEplus[oppCell_ID]) # met1_End = tm.time() # print('alphaEface at numIter %d:\n'%numIter,alphaEface,type(alphaEface)) # met2_Start = tm.time() # # use list comprehension in python which is very fast # alphaEface_fast=[alphaEplus[irow]*np.where(FLUX[irow,icol]<0,1,0) + # alphaEminus[irow]*np.where(FLUX[irow,icol]>0,1,0) # if cell_map[irow,icol] in boundary_facet # else np.minimum(alphaEplus[irow] , # alphaEminus[ int(TwoCell[cell_map[irow,icol]][np.where( TwoCell[cell_map[irow,icol]] != irow )]) ]) # *np.where(FLUX[irow,icol]<0,1,0) + np.minimum(alphaEminus[irow] , # alphaEplus[ int(TwoCell[cell_map[irow,icol]][np.where( TwoCell[cell_map[irow,icol]] != irow )]) ]) # *np.where(FLUX[irow,icol]>0,1,0) # for irow in range(row) # for icol in range(col) # ] # alphaEface_fast = np.asarray(alphaEface_fast).reshape((row,col)) # met2_End = tm.time() # print('alphaEface_fast:\n',alphaEface_fast,type(alphaEface_fast)) # # print('For-loop took: %f and comprehension took: %f'%(met1_End-met1_Start,met2_End-met2_Start)) # # Comment: loop-comprehension(even withour asarray conversion and reshaping) # # for some reason takes more time than for-loop! # # Verify that all correction factors are within [0,1]. assert (np.all((alphaEface <= 1 ) & (alphaEface >= 0) ) )\ ,"alphaEface are not between 0 and 1!" #=========================================; # Compute the updated solution and fluxes ; #=========================================; # Incompressible patch test # solAvg = solAvg - self.dt/area * \ # (1./(0.2))* np.multiply(alphaEface,FLUX).sum(axis=1) # solAvg = solAvg - self.dt/area * \ # (1./(0.2*1000))* np.multiply(alphaEface,FLUX).sum(axis=1) # incompressible well problem # solAvg = solAvg - self.dt/area * \ # (1./(0.2*1000))* np.multiply(alphaEface,FLUX).sum(axis=1) + \ # self.dt * (1./(0.2*1000)) * self.wells_avg solAvg = solAvg - self.dt/area * \ (1./(0.2))* np.multiply(alphaEface,FLUX).sum(axis=1) + \ Corrector * self.dt * (1./(0.2)) * self.wells_update(solAvg) # compressible patch test # solAvg = (self.rPAvg_0/self.rPAvg) * solAvg - self.dt/area * \ # (1./self.rPAvg)* np.multiply(alphaEface,FLUX).sum(axis=1) # print("rpAvg_0/rPAvg\n",self.rPAvg_0/self.rPAvg) # solAvg = solAvg - self.dt/area * \ # (1./self.rPAvg)* np.multiply(alphaEface,FLUX).sum(axis=1) # solAvg = solAvg - self.dt/area * \ # (1./self.rPAvg_0)* np.multiply(alphaEface,FLUX).sum(axis=1) # print('alphaEface',alphaEface[150]) # last one seems to work the better than others # print('solAvgUpdated at iteration %d is:\n'%numIter,solAvg) # print(alphaEface*FLUX) FLUX = FLUX * np.subtract(1.,alphaEface) Corrector = Corrector * 0. #=========================; # Check stopping criteria ; #=========================; # Compute new errors: # Criterion 1 # method 1(the maximum absolute row sum) # normFLUX = np.linalg.norm(FLUX,np.inf) # print('normFLUX',normFLUX) # #method 2 normFLUX = np.abs(FLUX).max() # print('normFLUX',normFLUX) # Criterion 2 # method 1 # normDelta = np.linalg.norm(np.subtract(FLUX_0,FLUX),np.inf) # method 2 normDelta = np.abs(np.subtract(FLUX_0,FLUX)).max() # print('normDelta',normDelta) # Check stopping criteria. # if (normFLUX < epsFLUX)|(normDelta < epsDelta) : # if (normFLUX < epsFLUX)&(normDelta < epsDelta) : if normFLUX < epsFLUX : flag = 0 break elif normDelta < epsDelta: flag = 1; break elif numIter == maxIter: flag = 2; break # print('Flux-limiter converged in %d iterations'%numIter) # print('normFLUX',normFLUX) # print('normDelta',normDelta) # print('Exit flag is:', flag) #==================================; # Compute new reconstructed values ; #==================================; V = self.sol.function_space() sol_value = self.sol.vector().array() # print('sol_value_old:\n',sol_value) solPost = solAvg solAvgDG_current = V0.interpolate(self.sol).vector().array() # unlimited solution current step # print('sol_value current time (not limited)',solAvgDG_current) Diff = solPost-solAvgDG_current # print('solPost - solAvgDG_current:\n',Diff) sol_cell_map = V.cell_node_map().values # print('sol_cell_map',sol_cell_map) row , col =
np.shape(sol_cell_map)
numpy.shape
import numpy as np from numba import jit @jit(nopython=True) def find_near_tile(state, x, y, d): if d == 0: # UP for i in range(x-1, -1, -1): if state[i][y] != 0: return state[i][y] if d == 1: # DOWN for i in range(x+1, 4): if state[i][y] != 0: return state[i][y] if d == 2: # RIGHT for i in range(y+1, 4): if state[x][i] != 0: return state[x][i] if d == 3: # UP for i in range(y-1, -1, -1): if state[x][i] != 0: return state[x][i] return 0 @jit(nopython=True) def smoothness(state): s = 0. height, width = state.shape for i in range(height): for j in range(width): a = state[i][j] if a == 0: continue for d in range(4): b = find_near_tile(state, i, j, d) s -= np.abs(np.log2(a + 0.1) - np.log2(b + 0.1)) return s @jit(nopython=True) def tonicity(state): t = 0 a, b = 0, 0 height, width = state.shape for i in range(height): for j in range(width): if state[i, j] == 0: continue c = state[i, j] n = find_near_tile(state, i, j, 2) # RIGHT if n != 0: if c > n: a += np.log2(c + 0.1) - np.log2(n + 0.1) if n > c: b += np.log2(n + 0.1) - np.log2(c + 0.1) # t += max(a, b) t += np.abs(a - b) a, b = 0, 0 for j in range(width): for i in range(height): if state[i, j] == 0: continue c = state[i, j] n = find_near_tile(state, i, j, 1) # DOWN if n != 0: if c > n: a += np.log2(c + 0.1) - np.log2(n + 0.1) if n > c: b += np.log2(n + 0.1) - np.log2(c + 0.1) # t += max(a, b) t += np.abs(a - b) return t def avg_dis(state): def dis(a, b): return np.abs(a[0] - b[0]) + np.abs(a[1] - b[1]) s = {} d = 0. height, width = state.shape tiles =
np.unique(state)
numpy.unique
# -*- coding: utf-8 -*- """ Generate character embeddings Created on 2020/5/30 """ __author__ = "<NAME>" import itertools import json import pickle import numpy as np import torch import torch.nn as nn import torch.optim as optim from model import CharEmbedding WORD_EMBEDDING_DIM = 48 CHAR_EMBEDDING_DIM = WORD_EMBEDDING_DIM with open('config.json', 'r') as fin: args = json.loads(fin.read()) with open(args['dataset_path'], 'rb') as fin: dataset = pickle.load(fin) with open(args['lookup_path'], 'rb') as fin: lookup = pickle.load(fin) word_embeddings = np.load(args['embed_word_path']) # (vocab_size, embedding_dim) vocabs = list(lookup['word2idx'].keys()) # list of unique vocabularies token2index_lookup = lookup['word2idx'] distinct_chars = sorted(list(set(itertools.chain.from_iterable(vocabs)))) num_chars = len(distinct_chars) # 60 char2index_lookup = {c: i for i, c in enumerate(distinct_chars)} vocab_lens = list(map(len, vocabs)) # from collections import Counter # vocab_len_ctr = Counter(vocab_lens) # # import matplotlib.pyplot as plt # fig, ax = plt.subplots() # ax.bar(vocab_len_ctr.keys(), vocab_len_ctr.values()) # # ax.set_xlabel('length of word') # ax.set_ylabel('count') # ax.legend() # plt.show() allowed_max_vocab_len = 15 # Set allowed maximum vocabulary length vocab_groups = [[] for _ in range(allowed_max_vocab_len)] for vocab in vocabs: length = len(vocab) if length <= allowed_max_vocab_len: vocab_groups[length - 1].append(vocab) def gen_batch(vocab_groups, char2index_lookup, token2index_lookup, word_embeddings, batch_size, shuffle=True): """Generate ranodm batches of words from different word groups (identified by different lengths of words) Args: vocab_groups (list[list[str]]): groups of words. Words in each group have same length char2index_lookup (dict): map a character to an integer index token2index_lookup (dict): map a word(token) to an integer index word_embeddings (numpy.ndarray): word embedding matrix with shape (vocab_size, embedding_size) batch_size (int): shuffle (bool): Returns: (generator) with shape [(B, VAR_word_len), (B, embedding_size)] Notes: Make the vocabularies in each batch have same character-length, then no need for padding Each iteration, a tuple composed of "character indices of batch-of-words" and "embedding of batch-of-words" will be return. Note that the group is selected randomly, so the length of "character indices" is variable. """ num_groups = len(vocab_groups) # number of differect word groups num_samps = [len(group) for group in vocab_groups] # number of words in each word group # Make indices to get word from different groups indices = [] for i in range(num_groups): inds = [i for i in range(num_samps[i])] if shuffle:
np.random.shuffle(inds)
numpy.random.shuffle
'''------------------------------------------------------------------------------- Tool Name: CreateDischargeMap Source Name: CreateDischargeMap.py Version: ArcGIS 10.2 License: Apache 2.0 Author: Environmental Systems Research Institute Inc. Updated by: Environmental Systems Research Institute Inc. Description: Create a dischage map document. History: Initial coding - 05/8/2015, version 1.0 Updated: Version 1.0, 06/02/2015, rename the default template layer file names from FGDB_TimeEnabled_5NaturalBreaks.lyr and SQL_TimeEnabled_5NaturalBreaks.lyr to FGDB_TimeEnabled.lyr and SQL_TimeEnabled.lyr Version 1.1, 06/24/2015, add all layers into a group layer named as "AllScales", which is specified in the template .mxd Version 1.1, 04/01/2016, deleted unnecessary line of import netCDF4 -------------------------------------------------------------------------------''' import os import arcpy import numpy as NUM import time class CreateDischargeMap(object): def __init__(self): """Define the tool (tool name is the name of the class).""" self.label = "Create Discharge Map" self.description = "Create a discharge map document for stream flow visualization based on \ the discharge table and the drainage line feature class" self.name_ID = "COMID" self.GDBtemplate_layer = os.path.join(os.path.dirname(__file__), "templates", "FGDB_TimeEnabled.lyr") self.SQLtemplate_layer = os.path.join(os.path.dirname(__file__), "templates", "SQL_TimeEnabled.lyr") self.template_mxd = os.path.join(os.path.dirname(__file__), "templates", "template_mxd.mxd") self.name_df = "DischargeMap" self.field_streamOrder = "StreamOrde" self.layer_minScale_maxScale_query = {"All": [None, None, None]} self.canRunInBackground = False self.category = "Postprocessing" def copyFlowlines(self, in_drainage_line, path_database, list_uniqueID): """Create copies of flowlines based on the layer query definitions""" # make a feature layer for query selection name_lyr = "flowlines" arcpy.MakeFeatureLayer_management(in_drainage_line, name_lyr) '''Create the query expression for line features with matching records in the flat table''' expression_base = self.name_ID + " IN (" count = len(list_uniqueID) counter = 1 for each_ID in list_uniqueID: if counter == count: expression_base = expression_base + str(each_ID) + ")" else: expression_base = expression_base + str(each_ID) + ", " counter += 1 for each_key in self.layer_minScale_maxScale_query.keys(): out_copy = os.path.join(path_database, "Flowline_"+each_key) pars = self.layer_minScale_maxScale_query[each_key] query = pars[2] expression = expression_base if query is not None: expression = expression_base + "AND " + query arcpy.SelectLayerByAttribute_management(name_lyr, "NEW_SELECTION", expression) arcpy.CopyFeatures_management(name_lyr, out_copy) arcpy.AddIndex_management(out_copy, self.name_ID, self.name_ID, "UNIQUE", "ASCENDING") return def getParameterInfo(self): """Define parameter definitions""" param0 = arcpy.Parameter(name = "in_drainage_line", displayName = "Input Drainage Line Features", direction = "Input", parameterType = "Required", datatype = "GPFeatureLayer") param1 = arcpy.Parameter(name = "in_discharge_table", displayName = "Input Discharge Table", direction = "Input", parameterType = "Required", datatype = "DETable") param2 = arcpy.Parameter(name = "out_discharge_map", displayName = "Output Discharge Map", direction = "Output", parameterType = "Required", datatype = "DEMapDocument" ) param3 = arcpy.Parameter(name = "in_unique_ID_table", displayName = "Input Unique ID Table", direction = "Input", parameterType = "Optional", datatype = "DETable") param4 = arcpy.Parameter(name = "in_layer_info", displayName = "Input Layer Information", direction = "Input", parameterType = "Optional", datatype = "GPValueTable") param4.columns = [['String', 'Layer Name'], ['Long', 'Minimum Scale'], ['Long', 'Maximum Scale'], ['Long', 'Minimum Stream Order']] params = [param0, param1, param2, param3, param4] return params def isLicensed(self): """Set whether tool is licensed to execute.""" return True def updateParameters(self, parameters): """Modify the values and properties of parameters before internal validation is performed. This method is called whenever a parameter has been changed.""" '''Add .mxd suffix to the output map document name''' if parameters[2].altered: (dirnm, basenm) = os.path.split(parameters[2].valueAsText) if not basenm.endswith(".mxd"): parameters[2].value = os.path.join(dirnm, "{}.mxd".format(basenm)) return def updateMessages(self, parameters): """Modify the messages created by internal validation for each tool parameter. This method is called after internal validation.""" return def execute(self, parameters, messages): """The source code of the tool.""" arcpy.env.overwriteOutput = True in_drainage_line = parameters[0].valueAsText in_flat_table = parameters[1].valueAsText out_map_document = parameters[2].valueAsText in_uniqueID_table = parameters[3].valueAsText in_layer_info = parameters[4].value ''' Obtain a list of unique IDs ''' list_uniqueID = [] if in_uniqueID_table is not None: arr_uniqueID = arcpy.da.TableToNumPyArray(in_uniqueID_table, self.name_ID) arr_uniqueID = arr_uniqueID[self.name_ID] list_uniqueID = list(arr_uniqueID) else: arr_ID = arcpy.da.TableToNumPyArray(in_flat_table, self.name_ID) arr_ID = arr_ID[self.name_ID] list_uniqueID = list(
NUM.unique(arr_ID)
numpy.unique
import numpy as np from scipy.stats.distributions import norm, lognorm, rv_frozen from math import sqrt from scipy.sparse import spdiags class BrownianMotion: def __init__(self): pass def simulate(self, x0: np.array, n: int, dt: float, mu: float, sigma: float, out=None): """ Generate an instance of Brownian motion (i.e. the Wiener process): X(t) = X(0) + N(mu, sigma**2 * t; 0, t) where N(a,b; t0, t1) is a normally distributed random variable with mean a and variance b. The parameters t0 and t1 make explicit the statistical independence of N on different time intervals; that is, if [t0, t1) and [t2, t3) are disjoint intervals, then N(a, b; t0, t1) and N(a, b; t2, t3) are independent. Written as an iteration scheme, X(t + dt) = X(t) + N(mu, sigma**2 * dt; t, t+dt) If `x0` is an array (or array-like), each value in `x0` is treated as an initial condition, and the value returned is a numpy array with one more dimension than `x0`. Arguments --------- x0 : float or numpy array (or something that can be converted to a numpy array using numpy.asarray(x0)). The initial condition(s) (i.e. position(s)) of the Brownian motion. n : int The number of steps to take. dt : float The time step. sigma: float delta determines the "speed" of the Brownian motion. The random variable of the position at time t, X(t), has a normal distribution whose mean is the position at time t=0 and whose variance is delta**2*t. out : numpy array or None If `out` is not None, it specifies the array in which to put the result. If `out` is None, a new numpy array is created and returned. Returns ------- A numpy array of floats with shape `x0.shape + (n,)`. """ x0 = np.asarray(x0) # For each element of x0, generate a sample of n numbers from a # normal distribution. r = norm.rvs(size=x0.shape + (n,), scale=sigma * sqrt(dt)) # If `out` was not given, create an output array. if out is None: out = np.empty(r.shape) # This computes the Brownian motion by forming the cumulative sum of # the random samples. np.cumsum(r, axis=-1, out=out) # Add the initial condition. out += np.expand_dims(x0, axis=-1) return out class FractionalBrownianMotion: def __init__(self, n, hurst, length): self.n = n self.hurst = hurst self.length = length def autocovariance(self, k): """Autocovariance for fgn.""" return 0.5 * (np.abs(k - 1) ** (2 * self.hurst) - 2 * np.abs(k) ** (2 * self.hurst) + np.abs(k + 1) ** (2 * self.hurst)) def simulate(self): """Generate a fgn realization using the Cholesky method. Uses Cholesky decomposition method (exact method) from: <NAME>. (1998). Stochastic simulation with a view towards stochastic processes. University of Aarhus. Centre for Mathematical Physics and Stochastics (MaPhySto)[MPS]. """ # create Gaussian Noise scale = (1.0 * self.length / self.n) ** self.hurst gn = np.random.normal(0.0, 1.0, self.n) # If hurst == 1/2 then just return Gaussian noise if self.hurst == 0.5: return gn * scale else: # Monte carlo consideration # Generate covariance matrix g = [] offset = [] for i in range(self.n): g.append(self.autocovariance(i)*np.ones(self.n)) offset.append(-i) g = np.array(g) offset = np.array(offset) G = spdiags(g, offset, self.n, self.n).toarray() """G = np.zeros([self.n, self.n]) for i in range(self.n): for j in range(i + 1): G[i, j] = self.autocovariance(i - j)""" # Cholesky decomposition chol = np.linalg.cholesky(G) # Generate fgn fgn = np.dot(chol,
np.array(gn)
numpy.array
# coding=utf-8 # MSC means Multiple Spectral Clustering import numpy as np import scipy as sp import scipy.linalg as linalg import networkx as nx import matplotlib.pyplot as plt def getNormLaplacian(W): """input matrix W=(w_ij) "compute D=diag(d1,...dn) "and L=D-W "and Lbar=D^(-1/2)LD^(-1/2) "return Lbar """ d = [np.sum(row) for row in W] D = np.diag(d) L = D - W # Dn=D^(-1/2) Dn = np.power(np.linalg.matrix_power(D, -1), 0.5) Lbar = np.dot(np.dot(Dn, L), Dn) return Lbar def getKSmallestEigVec(Lbar, k): """input "matrix Lbar and k "return "k smallest eigen values and their corresponding eigen vectors """ eigval, eigvec = linalg.eig(Lbar) dim = len(eigval) # 查找前k小的eigval dictEigval = dict(zip(eigval, range(0, dim))) kEig =
np.sort(eigval)
numpy.sort
import tempfile import unittest from pathlib import Path from typing import List from unittest.mock import patch import docker import numpy as np import psutil import pytest from docker.models.containers import Container from durations import Duration from tests.fixtures.docker_mocks import MockDockerClient, TEST_DOCKER_IMAGE from timeeval import ResourceConstraints from timeeval.adapters import DockerAdapter from timeeval.adapters.docker import ( DATASET_TARGET_PATH, RESULTS_TARGET_PATH, SCORES_FILE_NAME, MODEL_FILE_NAME, DockerTimeoutError, DockerAlgorithmFailedError, AlgorithmInterface ) from timeeval.data_types import ExecutionType class TestDockerAdapter(unittest.TestCase): def test_algorithm_interface_with_numpy(self): ai = AlgorithmInterface( dataInput=Path("in.csv"), dataOutput=Path("out.csv"), modelInput=Path("model-in.csv"), modelOutput=Path("model-out.csv"), executionType=ExecutionType.TRAIN, customParameters={ "bool": True, "float": 1e-3, "numpy": [np.int64(4), np.float64(2.3)], "numpy-list": np.arange(2) } ) ai_string = ('{"dataInput": "in.csv", "dataOutput": "out.csv", "modelInput": "model-in.csv", ' '"modelOutput": "model-out.csv", "executionType": "train", "customParameters": ' '{"bool": true, "float": 0.001, "numpy": [4, 2.3], "numpy-list": [0, 1]}}') self.assertEqual(ai.to_json_string(), ai_string) @patch("timeeval.adapters.docker.docker.from_env") def test_correct_json_string(self, mock_client): mock_docker_client = MockDockerClient() mock_client.return_value = mock_docker_client results_path = Path("./results/") input_string = 'execute-algorithm \'{' \ f'"dataInput": "{DATASET_TARGET_PATH}/test.csv", ' \ f'"dataOutput": "{RESULTS_TARGET_PATH}/{SCORES_FILE_NAME}", ' \ f'"modelInput": "{RESULTS_TARGET_PATH}/{MODEL_FILE_NAME}", ' \ f'"modelOutput": "{RESULTS_TARGET_PATH}/{MODEL_FILE_NAME}", ' \ '"executionType": "train", ' \ '"customParameters": {"a": 0}' \ '}\'' adapter = DockerAdapter("test-image") adapter._run_container(Path("/tmp/test.csv"), { "results_path": results_path, "hyper_params": {"a": 0}, "executionType": ExecutionType.TRAIN }) self.assertEqual(mock_docker_client.containers.cmd, input_string) @patch("timeeval.adapters.docker.docker.from_env") def test_results_at_correct_location(self, mock_client): mock_docker_client = MockDockerClient() mock_client.return_value = mock_docker_client with tempfile.TemporaryDirectory() as tmp_path: adapter = DockerAdapter("test-image") result = adapter(Path("tests/example_data/data.txt"), {"results_path": Path(tmp_path)}) np.testing.assert_array_equal(result,
np.arange(10, dtype=np.float64)
numpy.arange
from numpy import sqrt from numpy import std from numpy import arange from limix_inference.link import LogitLink from limix_inference.link import LogLink from limix_inference.lik import BernoulliLik from limix_inference.lik import BernoulliProdLik from limix_inference.lik import BinomialProdLik from limix_inference.lik import PoissonProdLik from limix_inference.mean import OffsetMean from limix_inference.mean import LinearMean from limix_inference.mean import SumMean from limix_inference.cov import LinearCov from limix_inference.cov import SumCov from limix_inference.cov import EyeCov from .glmm import GLMMSampler from ..tool.normalize import stdnorm def bernoulli(offset, G, heritability=0.5, causal_variants=None, causal_variance=0, random_state=None): link = LogitLink() mean, cov = _mean_cov(offset, G, heritability, causal_variants, causal_variance, random_state) lik = BernoulliProdLik(link) sampler = GLMMSampler(lik, mean, cov) return sampler.sample(random_state) def binomial(ntrials, offset, G, heritability=0.5, causal_variants=None, causal_variance=0, random_state=None): link = LogitLink() mean, cov = _mean_cov(offset, G, heritability, causal_variants, causal_variance, random_state) lik = BinomialProdLik(ntrials, link) sampler = GLMMSampler(lik, mean, cov) return sampler.sample(random_state) def poisson(offset, G, heritability=0.5, causal_variants=None, causal_variance=0, random_state=None): mean, cov = _mean_cov(offset, G, heritability, causal_variants, causal_variance, random_state) link = LogLink() lik = PoissonProdLik(link) sampler = GLMMSampler(lik, mean, cov) return sampler.sample(random_state) def _causal_mean(causal_variants, causal_variance, random): causal_variants = stdnorm(causal_variants, axis=0) causal_variants /=
sqrt(causal_variants.shape[1])
numpy.sqrt
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Class of variatonal Gaussian Mixture Image models. It serves as a baseline for a hidden Potts-MRF for Bayesian unsupervised image segmentation. Author: <NAME> Date: 29-11-2018 """ import numpy as np import numpy.random as rnd from numpy.linalg import inv, cholesky from scipy.misc import logsumexp from scipy.special import betaln, digamma, gammaln from scipy.spatial.distance import cdist from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt from vis import plot_posteriors class VariationalMixture(object): """ Superclass of variational mixture models. Methods are functions common to all submixture models. """ def log_multivariate_gamma(self, n, p): """ Logarithmic multivariate gamma function. This function is necessary for expectations and partition functions of Wishart distributions. See also: https://en.wikipedia.org/wiki/Multivariate_gamma_function Parameters ---------- nu : float Degrees of freedom. p : int Dimensionality. Returns ------- Gp : float p-th order multivariate gamma function. """ # Check for appropriate degree of freedom if not n > (p-1): raise ValueError('Degrees of freedom too low for dimensionality.') # Preallocate Gp = 0 # Product from d=1 to p for d in range(1, p+1): # Gamma function of degrees of freedom and dimension Gp += gammaln((n + 1 - d)/2) return (p * (p-1) / 4)*np.log(np.pi) + Gp def multivariate_digamma(self, n, p): """ Multivariate digamma function. This function is necessary for expectations and partition functions of Wishart distributions. See also: https://en.wikipedia.org/wiki/Multivariate_gamma_function Parameters ---------- nu : float Degrees of freedom. p : int Dimensionality. Returns ------- Pp : float p-th order multivariate digamma function. """ # Check for appropriate degree of freedom if not n > (p-1): raise ValueError('Degrees of freedom too low for dimensionality.') # Preallocate Pp = 0 # Sum from d=1 to D for d in range(1, p+1): # Digamma function of degrees of freedom and dimension Pp += digamma((n + 1 - d)/2) return Pp def log_partition_Wishart(self, W, n): """ Logarithmic partition function of the Wishart distribution. To compute variational expectations, the partition of the Wishart distribution is sometimes needed. The current computation follows Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition & Machine Learning." Parameters ---------- W : array Positive definite, symmetric precision matrix. nu : int Degrees of freedom. Returns ------- B : float Partition of Wishart distribution. """ # Extract dimensionality D, D_ = W.shape # Check for symmetric matrix if not D == D_: raise ValueError('Matrix is not symmetric.') # Check for appropriate degree of freedom if not n > D-1: raise ValueError('Degrees of freedom too low for dimensionality.') # Compute log-multivariate gamma lmG = self.log_multivariate_gamma(n, D) # Compute partition function B = (-n/2)*self.log_det(W) - (n*D/2)*np.log(2) - lmG return B def entropy_Wishart(self, W, n): """ Entropy of the Wishart distribution. To compute variational expectations, the entropy of the Wishart distribution is sometimes needed. The current computation follows Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition & Machine Learning." Parameters ---------- W : array Positive definite, symmetric precision matrix. nu : int Degrees of freedom. Returns ------- H : float Entropy of Wishart distribution. """ # Extract dimensionality D, D_ = W.shape # Check for symmetric matrix if not D == D_: raise ValueError('Matrix is not symmetric.') # Check for appropriate degree of freedom if not n > D-1: raise ValueError('Degrees of freedom too low for dimensionality.') # Expected log-determinant of precision matrix E = self.multivariate_digamma(n, D) + D*np.log(2) + self.log_det(W) # Entropy H = -self.log_partition_Wishart(W, n) - (n - D - 1)/2 * E + n*D/2 return H def log_det(self, A): """ Numerically stable computation of log determinant of a matrix. Parameters ---------- A : array Expecting a positive definite, symmetric matrix. Returns ------- float Log-determinant of given matrix. """ # Perform cholesky decomposition L = cholesky(A) # Stable log-determinant return np.sum(2*np.log(np.diag(L))) def distW(self, X, S): """ Compute weighted distance. Parameters ---------- X : array Vectors (N by D) or (H by W by D). W : array Weights (D by D). Returns ------- array Weighted distance for each vector. """ if not S.shape[0] == S.shape[1]: raise ValueError('Weight matrix not symmetric.') if not X.shape[-1] == S.shape[0]: raise ValueError('Dimensionality of data and weights mismatch.') if len(X.shape) == 2: # Shapes N, D = X.shape # Preallocate A = np.zeros((N,)) # Loop over samples for n in range(N): # Compute weighted inner product between vectors A[n] = X[n, :] @ S @ X[n, :].T elif len(X.shape) == 3: # Shape H, W, D = X.shape # Preallocate A = np.zeros((H, W)) # Loop over samples for h in range(H): for w in range(W): # Compute weighted inner product between vectors A[h, w] = X[h, w, :] @ S @ X[h, w, :].T return A def one_hot(self, A): """ Map array to pages with binary encodings. Parameters ---------- A : array 2-dimensional array of integers Returns ------- B : array (height by width by number of unique integers in A) 3-dimensional array with each page as an indicator of value in A. """ # Unique values labels = np.unique(A) # Preallocate new array B = np.zeros((*A.shape, len(labels))) # Loop over unique values for i, label in enumerate(labels): B[:, :, i] = (A == label) return B class UnsupervisedGaussianMixture(VariationalMixture): """ Variational Gaussian Mixture Image model. This implementation multivariate images (height by width by channel). It is based on the RPubs note by <NAME>: https://rpubs.com/cakapourani/variational-bayes-gmm """ def __init__(self, num_channels=1, num_components=2, init_params='nn', max_iter=10, tol=1e-5): """ Model-specific constructors. Parameters ---------- num_channels : int Number of channels of image (def: 1). num_components : int Number of components (def: 2). theta0 : tuple Prior hyperparameters. max_iter : int Maximum number of iterations to run for (def: 10). tol : float Tolerance on change in x-value (def: 1e-5). Returns ------- None """ # Store data dimensionality if num_channels >= 1: self.D = num_channels else: raise ValueError('Number of channels must be larger than 0.') # Store model parameters if num_components >= 2: self.K = num_components else: raise ValueError('Too few components specified') # Optimization parameters self.init_params = init_params self.max_iter = max_iter self.tol = tol # Set prior hyperparameters self.set_prior_hyperparameters(D=num_channels, K=num_components) def set_prior_hyperparameters(self, D, K, a0=np.array([0.1]), b0=np.array([0.1]), n0=np.array([2.0]), m0=np.array([0.0]), W0=np.array([1.0])): """ Set hyperparameters of prior distributions. Default prior hyperparameters are minimally informative symmetric parameters. Parameters ---------- D : int Dimensionality of data. K : int Number of components. a0 : float / array (components by None) Hyperparameters of Dirichlet distribution on component weights. b0 : float / array (components by None) Scale parameters for hypermean normal distribution. n0 : array (components by None) Degrees of freedom for Wishart precision prior. m0 : array (components by dimensions) Hypermeans. W0 : array (dimensions by dimensions by components) Wishart precision parameters. Returns ------- theta : tuple """ # Expand alpha's if necessary if not a0.shape[0] == K: a0 = np.tile(a0[0], (K,)) # Expand beta's if necessary if not b0.shape[0] == K: b0 = np.tile(b0[0], (K,)) # Expand nu's if necessary if not n0.shape[0] == K: # Check for sufficient degrees of freedom if n0[0] < D: print('Cannot set Wishart degrees of freedom lower than data \ dimensionality.\n Setting it to data dim.') n0 = np.tile(D, (K,)) else: n0 = np.tile(n0[0], (K,)) # Expand hypermeans if necessary if not np.all(m0.shape == (K, D)): # If mean vector given, replicate to each component if len(m0.shape) == 2: if m0.shape[1] == D: m0 = np.tile(m0, (K, 1)) else: m0 = np.tile(m0[0], (K, D)) # Expand hypermeans if necessary if not
np.all(W0.shape == (D, D, K))
numpy.all
import numpy as np import os.path as path from os import listdir from trainingFunctions import * from merlFunctions import * from coordinateFunctions import * MERLDir = "MERLDir/" OutputDir = "data/" #Parse filenames materials = [brdfFile for i,brdfFile in enumerate(listdir(MERLDir)) \ if (path.isfile(MERLDir+brdfFile) and path.splitext(brdfFile)[1] == ".binary")] #Fill observation array obs = np.zeros((90*90*180, 3*len(materials)),'float32') #Add each color channel as a single observation for i in range(0,len(materials)): mat = readMERLBRDF("%s/%s"%(MERLDir,materials[i])) obs[:,3*i] = np.reshape(mat[:,:,:,0],(-1)) obs[:,3*i+1] = np.reshape(mat[:,:,:,1],(-1)) obs[:,3*i+2] = np.reshape(mat[:,:,:,2],(-1)) #Pre-compute maskMap (VERY SLOW if horizonCheck=True) maskMap = ComputeMaskMap(obs, horizonCheck=False) #Pre-compute cosine-map (VERY SLOW! - do once and store, or download!) cosMap = ComputeCosMap(maskMap) #Perform PCA on data (scaledPCs,relativeOffset,median) = LearnMapping(obs,maskMap,cosMap) #Save data np.save('%s/MaskMap'%OutputDir,maskMap) np.save('%s/CosineMap'%OutputDir,cosMap)
np.save('%s/ScaledEigenvectors'%OutputDir,scaledPCs)
numpy.save
""" Feature extraction """ # Author: <NAME> <<EMAIL>> # # License: Apache, Version 2.0 import numpy as np from sklearn.base import BaseEstimator from sklearn.metrics import adjusted_mutual_info_score from scipy.special import psi from scipy.stats.stats import pearsonr from scipy.stats import skew, kurtosis from collections import Counter, defaultdict from multiprocessing import Pool import pandas as pd import operator from .hsic import FastHsicTestGamma import math BINARY = "Binary" CATEGORICAL = "Categorical" NUMERICAL = "Numerical" class FeatureMapper: def __init__(self, features): self.features = features def fit(self, X, y=None): for feature_name in self.features: extractor.fit(X[feature_name].values[:, np.newaxis], y) def transform(self, X): return X[self.features].values def fit_transform(self, X, y=None): return self.transform(X) def weighted_mean_and_std(values, weights): """ Returns the weighted average and standard deviation. values, weights -- numpy ndarrays with the same shape. """ average = np.average(values, weights=weights, axis=0) variance = np.dot(weights, (values - average) ** 2) / weights.sum() # Fast and numerically precise return (average, np.sqrt(variance)) def count_unique(x): try: return len(set(x)) except TypeError: return len(set(x.flat)) def count_unique_ratio(x): try: return len(set(x)) / float(len(x)) except TypeError: return len(set(x.flat))/float(len(x)) def binary(tp): assert type(tp) is str return tp == BINARY def categorical(tp): assert type(tp) is str return tp == CATEGORICAL def numerical(tp): assert type(tp) is str return tp == NUMERICAL def binary_entropy(p, base): assert p <= 1 and p >= 0 h = -(p * np.log(p) + (1 - p) * np.log(1 - p)) if (p != 0) and (p != 1) else 0 return h / np.log(base) def discrete_probability(x, tx, ffactor, maxdev): x = discretized_sequence(x, tx, ffactor, maxdev) try: return Counter(x) except TypeError as e: return Counter(
np.array(x)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Script to compute all of the Diffusion Tensor Imaging (DTI) metrics. By default, will output all available metrics, using default names. Specific names can be specified using the metrics flags that are listed in the "Metrics files flags" section. If --not_all is set, only the metrics specified explicitly by the flags will be output. The available metrics are: fractional anisotropy (FA), geodesic anisotropy (GA), axial diffusivisty (AD), radial diffusivity (RD), mean diffusivity (MD), mode, red-green-blue colored FA (rgb), principal tensor e-vector and tensor coefficients (dxx, dxy, dxz, dyy, dyz, dzz). For all the quality control metrics such as residual, physically implausible signals, pulsation and misalignment artifacts, see [<NAME>, <NAME>, <NAME>. Diffusion Tensor Imaging and Beyond. MRM 2011]. """ from __future__ import division, print_function from builtins import range import argparse import logging import matplotlib.pyplot as plt import nibabel as nib import numpy as np from dipy.core.gradients import gradient_table import dipy.denoise.noise_estimate as ne from dipy.io.gradients import read_bvals_bvecs from dipy.reconst.dti import (TensorModel, color_fa, fractional_anisotropy, geodesic_anisotropy, mean_diffusivity, axial_diffusivity, norm, radial_diffusivity, lower_triangular) # Aliased to avoid clashes with images called mode. from dipy.reconst.dti import mode as dipy_mode from scilpy.io.utils import (add_overwrite_arg, assert_inputs_exist, assert_outputs_exist, add_force_b0_arg) from scilpy.utils.bvec_bval_tools import (normalize_bvecs, is_normalized_bvecs, check_b0_threshold) from scilpy.utils.filenames import add_filename_suffix, split_name_with_nii logger = logging.getLogger("Compute_DTI_Metrics") logger.setLevel(logging.INFO) def _get_min_nonzero_signal(data): return np.min(data[data > 0]) def _build_args_parser(): p = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawTextHelpFormatter) p.add_argument('input', help='Path of the input diffusion volume.') p.add_argument('bvals', help='Path of the bvals file, in FSL format.') p.add_argument('bvecs', help='Path of the bvecs file, in FSL format.') add_overwrite_arg(p) p.add_argument( '--mask', help='Path to a binary mask.\nOnly data inside the mask will be used ' 'for computations and reconstruction. (Default: None)') p.add_argument( '--method', dest='method', metavar='method_name', default='WLS', choices=['WLS', 'LS', 'NLLS', 'restore'], help='Tensor fit method.\nWLS for weighted least squares' + '\nLS for ordinary least squares' + '\nNLLS for non-linear least-squares' + '\nrestore for RESTORE robust tensor fitting. (Default: WLS)') p.add_argument( '--not_all', action='store_true', dest='not_all', help='If set, will only save the metrics explicitly specified using ' 'the other metrics flags. (Default: not set).') g = p.add_argument_group(title='Metrics files flags') g.add_argument('--ad', dest='ad', metavar='file', default='', help='Output filename for the axial diffusivity.') g.add_argument( '--evecs', dest='evecs', metavar='file', default='', help='Output filename for the eigenvectors of the tensor.') g.add_argument( '--evals', dest='evals', metavar='file', default='', help='Output filename for the eigenvalues of the tensor.') g.add_argument( '--fa', dest='fa', metavar='file', default='', help='Output filename for the fractional anisotropy.') g.add_argument( '--ga', dest='ga', metavar='file', default='', help='Output filename for the geodesic anisotropy.') g.add_argument( '--md', dest='md', metavar='file', default='', help='Output filename for the mean diffusivity.') g.add_argument( '--mode', dest='mode', metavar='file', default='', help='Output filename for the mode.') g.add_argument( '--norm', dest='norm', metavar='file', default='', help='Output filename for the tensor norm.') g.add_argument( '--rgb', dest='rgb', metavar='file', default='', help='Output filename for the colored fractional anisotropy.') g.add_argument( '--rd', dest='rd', metavar='file', default='', help='Output filename for the radial diffusivity.') g.add_argument( '--tensor', dest='tensor', metavar='file', default='', help='Output filename for the tensor coefficients.') g = p.add_argument_group(title='Quality control files flags') g.add_argument( '--non-physical', dest='p_i_signal', metavar='file', default='', help='Output filename for the voxels with physically implausible ' 'signals \nwhere the mean of b=0 images is below one or more ' 'diffusion-weighted images.') g.add_argument( '--pulsation', dest='pulsation', metavar='string', default='', help='Standard deviation map across all diffusion-weighted images ' 'and across b=0 images if more than one is available.\nShows ' 'pulsation and misalignment artifacts.') g.add_argument( '--residual', dest='residual', metavar='file', default='', help='Output filename for the map of the residual of the tensor fit.') add_force_b0_arg(p) return p def main(): parser = _build_args_parser() args = parser.parse_args() if not args.not_all: args.fa = args.fa or 'fa.nii.gz' args.ga = args.ga or 'ga.nii.gz' args.rgb = args.rgb or 'rgb.nii.gz' args.md = args.md or 'md.nii.gz' args.ad = args.ad or 'ad.nii.gz' args.rd = args.rd or 'rd.nii.gz' args.mode = args.mode or 'mode.nii.gz' args.norm = args.norm or 'tensor_norm.nii.gz' args.tensor = args.tensor or 'tensor.nii.gz' args.evecs = args.evecs or 'tensor_evecs.nii.gz' args.evals = args.evals or 'tensor_evals.nii.gz' args.residual = args.residual or 'dti_residual.nii.gz' args.p_i_signal =\ args.p_i_signal or 'physically_implausible_signals_mask.nii.gz' args.pulsation = args.pulsation or 'pulsation_and_misalignment.nii.gz' outputs = [args.fa, args.ga, args.rgb, args.md, args.ad, args.rd, args.mode, args.norm, args.tensor, args.evecs, args.evals, args.residual, args.p_i_signal, args.pulsation] if args.not_all and not any(outputs): parser.error('When using --not_all, you need to specify at least ' + 'one metric to output.') assert_inputs_exist( parser, [args.input, args.bvals, args.bvecs], args.mask) assert_outputs_exist(parser, args, outputs) img = nib.load(args.input) data = img.get_data() affine = img.get_affine() if args.mask is None: mask = None else: mask = nib.load(args.mask).get_data().astype(np.bool) # Validate bvals and bvecs logging.info('Tensor estimation with the %s method...', args.method) bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs) if not is_normalized_bvecs(bvecs): logging.warning('Your b-vectors do not seem normalized...') bvecs = normalize_bvecs(bvecs) check_b0_threshold(args, bvals.min()) gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min()) # Get tensors if args.method == 'restore': sigma = ne.estimate_sigma(data) tenmodel = TensorModel(gtab, fit_method=args.method, sigma=sigma, min_signal=_get_min_nonzero_signal(data)) else: tenmodel = TensorModel(gtab, fit_method=args.method, min_signal=_get_min_nonzero_signal(data)) tenfit = tenmodel.fit(data, mask) FA = fractional_anisotropy(tenfit.evals) FA[np.isnan(FA)] = 0 FA = np.clip(FA, 0, 1) if args.tensor: # Get the Tensor values and format them for visualisation # in the Fibernavigator. tensor_vals = lower_triangular(tenfit.quadratic_form) correct_order = [0, 1, 3, 2, 4, 5] tensor_vals_reordered = tensor_vals[..., correct_order] fiber_tensors = nib.Nifti1Image( tensor_vals_reordered.astype(np.float32), affine) nib.save(fiber_tensors, args.tensor) if args.fa: fa_img = nib.Nifti1Image(FA.astype(np.float32), affine) nib.save(fa_img, args.fa) if args.ga: GA = geodesic_anisotropy(tenfit.evals) GA[np.isnan(GA)] = 0 ga_img = nib.Nifti1Image(GA.astype(np.float32), affine) nib.save(ga_img, args.ga) if args.rgb: RGB = color_fa(FA, tenfit.evecs) rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine) nib.save(rgb_img, args.rgb) if args.md: MD = mean_diffusivity(tenfit.evals) md_img = nib.Nifti1Image(MD.astype(np.float32), affine) nib.save(md_img, args.md) if args.ad: AD = axial_diffusivity(tenfit.evals) ad_img = nib.Nifti1Image(AD.astype(np.float32), affine) nib.save(ad_img, args.ad) if args.rd: RD = radial_diffusivity(tenfit.evals) rd_img = nib.Nifti1Image(RD.astype(np.float32), affine) nib.save(rd_img, args.rd) if args.mode: # Compute tensor mode inter_mode = dipy_mode(tenfit.quadratic_form) # Since the mode computation can generate NANs when not masked, # we need to remove them. non_nan_indices = np.isfinite(inter_mode) mode = np.zeros(inter_mode.shape) mode[non_nan_indices] = inter_mode[non_nan_indices] mode_img = nib.Nifti1Image(mode.astype(np.float32), affine) nib.save(mode_img, args.mode) if args.norm: NORM = norm(tenfit.quadratic_form) norm_img = nib.Nifti1Image(NORM.astype(np.float32), affine) nib.save(norm_img, args.norm) if args.evecs: evecs = tenfit.evecs.astype(np.float32) evecs_img = nib.Nifti1Image(evecs, affine) nib.save(evecs_img, args.evecs) # save individual e-vectors also e1_img = nib.Nifti1Image(evecs[..., 0], affine) e2_img = nib.Nifti1Image(evecs[..., 1], affine) e3_img = nib.Nifti1Image(evecs[..., 2], affine) nib.save(e1_img, add_filename_suffix(args.evecs, '_v1')) nib.save(e2_img, add_filename_suffix(args.evecs, '_v2')) nib.save(e3_img, add_filename_suffix(args.evecs, '_v3')) if args.evals: evals = tenfit.evals.astype(np.float32) evals_img = nib.Nifti1Image(evals, affine) nib.save(evals_img, args.evals) # save individual e-values also e1_img = nib.Nifti1Image(evals[..., 0], affine) e2_img = nib.Nifti1Image(evals[..., 1], affine) e3_img = nib.Nifti1Image(evals[..., 2], affine) nib.save(e1_img, add_filename_suffix(args.evals, '_e1')) nib.save(e2_img, add_filename_suffix(args.evals, '_e2')) nib.save(e3_img, add_filename_suffix(args.evals, '_e3')) if args.p_i_signal: S0 = np.mean(data[..., gtab.b0s_mask], axis=-1, keepdims=True) DWI = data[..., ~gtab.b0s_mask] pis_mask = np.max(S0 < DWI, axis=-1) if args.mask is not None: pis_mask *= mask pis_img = nib.Nifti1Image(pis_mask.astype(np.int16), affine) nib.save(pis_img, args.p_i_signal) if args.pulsation: STD = np.std(data[..., ~gtab.b0s_mask], axis=-1) if args.mask is not None: STD *= mask std_img = nib.Nifti1Image(STD.astype(np.float32), affine) nib.save(std_img, add_filename_suffix(args.pulsation, '_std_dwi')) if np.sum(gtab.b0s_mask) <= 1: logger.info('Not enough b=0 images to output standard ' 'deviation map') else: if len(
np.where(gtab.b0s_mask)
numpy.where
import numpy as np import pandas as pd import cv2 as cv import matplotlib.pyplot as plt import matplotlib.image as mpimg from IPython.display import Image #from moviepy.editor import VideoFileClip from IPython.display import HTML import pickle import io import os import glob # %matplotlib inline def abs_sobel_thresh(img, orient='x', thresh=(0,255)): # Convert to grayscale gray = cv.cvtColor(img, cv.COLOR_RGB2GRAY) # Apply x or y gradient with the OpenCV Sobel() function # and take the absolute value if orient == 'x': abs_sobel = np.absolute(cv.Sobel(gray, cv.CV_64F, 1, 0)) if orient == 'y': abs_sobel = np.absolute(cv.Sobel(gray, cv.CV_64F, 0, 1)) # Rescale back to 8 bit integer scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) # Create a copy and apply the threshold binary_output =
np.zeros_like(scaled_sobel)
numpy.zeros_like
import numpy as np from conductor import Conductor from constants import Constants class Plate(Conductor): vertex1 = tuple() # 3D coordinate of one vertex vertex2 = tuple() # 3D coordinate of the opposing vertex vertices = [] # list of all 8 vertices shape = tuple() # tuple of positive floats indicating dimensions faces = [] # list of all 6 faces on the plate stored as tuples of the rectangle's corners thicknessDimension = 0 # 0, 1, or 2 indicating which dimension of the plate is its thickness (the index of the smallest value in shape) thickness = 0 def __init__(self, vertex1, vertex2, resistivity=Constants.COPPER_RESISTIVITY): """ input the 3D coordinate numpy arrays of 2 opposing vertices of the plate requires that the plate's edges lie parallel to the coordinate system generates all the corners of the prism """ self.vertex1 = vertex1 self.vertex2 = vertex2 self.shape = np.absolute(vertex2 - vertex1) self.thicknessDimension = np.argmin(self.shape) self.thickness = self.shape[self.thicknessDimension] self.vertices = [] for x in (vertex1[0], vertex2[0]): for y in (vertex1[1], vertex2[1]): for z in (vertex1[2], vertex2[2]): self.vertices.append(np.array((x, y, z))) self.faces = [] self.faces.append(tuple(self.vertices[i] for i in [0, 1, 3, 2])) self.faces.append(tuple(self.vertices[i] for i in [4, 5, 7, 6])) self.faces.append(tuple(self.vertices[i] for i in [0, 1, 5, 4])) self.faces.append(tuple(self.vertices[i] for i in [2, 3, 7, 6])) self.faces.append(tuple(self.vertices[i] for i in [0, 2, 6, 4])) self.faces.append(tuple(self.vertices[i] for i in [1, 3, 7, 5])) super(Plate, self).__init__(resistivity=resistivity) def checkCollision(self, prevPos, pos, velocity, dampingFactor=1): """ checks to see if the specified particle collided with any of the faces of the plate :param prevPos: previous position vector of the particle :param pos: current position of the particle :param velocity: current velocity vector of the particle :param dampingFactor: the factor by which the velocity decreases upon impact :return: the position of the collision, the particle's new velocity vector, the corners of face the particle collided with. If there was no collision, returns None """ collisions = [] for face in self.faces: col = Plate.rectangleCollision(prevPos, pos, face, velocity, dampingFactor=dampingFactor) if col is not None: collisions.append((face, col)) if len(collisions) == 0: return None col = min(collisions, key=lambda x: abs(x[1][0][0] - prevPos[0])) # the actual collision is the first one return col[1][0], col[1][1], col[0] @staticmethod def rectangleCollision(prevPos, pos, rCorners, velocity, dampeningFactor=1): """ checks to see if a particle collided with the defined rectangle and gives you that particle's updated info :param prevPos: position of a particle at the previous iteration :param pos: position of that particle at the current iteration :param rCorners: a tuple of the corner points of a rectangle in 3D space to check for collisions stored such that ADJACENT CORNERS IN THE LIST ARE ADJACENT IN THE RECTANGLE :param velocity: the initial velocity vector of the particle :param dampeningFactor: the factor by which the particle's velocity decreases upon impact :return: the collision position of the particle and its new velocity. if no collision returns None """ basis = list() basis.append(rCorners[1] - rCorners[0]) basis.append(rCorners[2] - rCorners[1]) normal =
np.cross(basis[0], basis[1])
numpy.cross
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num =
N.array([-1,-1,-1])
numpy.array
import sys import numpy as np import pandas as pd import openmdao.api as om from wisdem.commonse import gravity eps = 1e-3 # Convenience functions for computing McDonald's C and F parameters def chsMshc(x): return np.cosh(x) * np.sin(x) - np.sinh(x) * np.cos(x) def chsPshc(x): return np.cosh(x) * np.sin(x) + np.sinh(x) * np.cos(x) def carterFactor(airGap, slotOpening, slotPitch): """Return Carter factor (based on Langsdorff's empirical expression) See page 3-13 Boldea Induction machines Chapter 3 """ gma = (2 * slotOpening / airGap) ** 2 / (5 + 2 * slotOpening / airGap) return slotPitch / (slotPitch - airGap * gma * 0.5) # --------------- def carterFactorMcDonald(airGap, h_m, slotOpening, slotPitch): """Return Carter factor using Carter's equation (based on Schwartz-Christoffel's conformal mapping on simplified slot geometry) This code is based on Eq. B.3-5 in Appendix B of McDonald's thesis. It is used by PMSG_arms and PMSG_disc. h_m : magnet height (m) b_so : stator slot opening (m) tau_s : Stator slot pitch (m) """ mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS) g_1 = airGap + h_m / mu_r # g b_over_a = slotOpening / (2 * g_1) gamma = 4 / np.pi * (b_over_a * np.arctan(b_over_a) - np.log(np.sqrt(1 + b_over_a ** 2))) return slotPitch / (slotPitch - gamma * g_1) # --------------- def carterFactorEmpirical(airGap, slotOpening, slotPitch): """Return Carter factor using Langsdorff's empirical expression""" sigma = (slotOpening / airGap) / (5 + slotOpening / airGap) return slotPitch / (slotPitch - sigma * slotOpening) # --------------- def carterFactorSalientPole(airGap, slotWidth, slotPitch): """Return Carter factor for salient pole rotor Where does this equation come from? It's different from other approximations above. Original code: tau_s = np.pi * dia / S # slot pitch b_s = tau_s * b_s_tau_s # slot width b_t = tau_s - b_s # tooth width K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor slotPitch - slotWidth == toothWidth """ return (slotPitch + 10 * airGap) / (slotPitch - slotWidth + 10 * airGap) # salient pole rotor # --------------------------------- def array_seq(q1, b, c, Total_number): Seq = np.array([1, 0, 0, 1, 0]) diff = Total_number * 5 / 6 G = np.prod(Seq.shape) return Seq, diff, G # --------------------------------- def winding_factor(Sin, b, c, p, m): S = int(Sin) # Step 1 Writing q1 as a fraction q1 = b / c # Step 2: Writing a binary sequence of b-c zeros and b ones Total_number = int(S / b) L = array_seq(q1, b, c, Total_number) # STep 3 : Repeat binary sequence Q_s/b times New_seq = np.tile(L[0], Total_number) Actual_seq1 = pd.DataFrame(New_seq[:, None].T) Winding_sequence = ["A", "C1", "B", "A1", "C", "B1"] New_seq2 = np.tile(Winding_sequence, int(L[1])) Actual_seq2 = pd.DataFrame(New_seq2[:, None].T) Seq_f = pd.concat([Actual_seq1, Actual_seq2], ignore_index=True) Seq_f.reset_index(drop=True) Slots = S R = S if S % 2 == 0 else S + 1 Windings_arrange = (pd.DataFrame(index=Seq_f.index, columns=Seq_f.columns[1:R])).fillna(0) counter = 1 # Step #4 Arranging winding in Slots for i in range(0, len(New_seq)): if Seq_f.loc[0, i] == 1: Windings_arrange.loc[0, counter] = Seq_f.loc[1, i] counter = counter + 1 Windings_arrange.loc[1, 1] = "C1" for k in range(1, R): if Windings_arrange.loc[0, k] == "A": Windings_arrange.loc[1, k + 1] = "A1" elif Windings_arrange.loc[0, k] == "B": Windings_arrange.loc[1, k + 1] = "B1" elif Windings_arrange.loc[0, k] == "C": Windings_arrange.loc[1, k + 1] = "C1" elif Windings_arrange.loc[0, k] == "A1": Windings_arrange.loc[1, k + 1] = "A" elif Windings_arrange.loc[0, k] == "B1": Windings_arrange.loc[1, k + 1] = "B" elif Windings_arrange.loc[0, k] == "C1": Windings_arrange.loc[1, k + 1] = "C" Phase_A =
np.zeros((1000, 1), dtype=float)
numpy.zeros
"""Module for creating illustrations. To create an annotated image we need an instance of the :class:`jicbioimage.illustrate.AnnotatedImage` class. >>> from jicbioimage.illustrate import AnnotatedImage Suppose that we have an existing image. >>> from jicbioimage.core.image import Image >>> im = Image((50,50)) We can use this image to create an canvas instance populated with the data as a RGB gray scale image. >>> canvas = AnnotatedImage.from_grayscale(im) The :class:`jicbioimage.illustrate.Canvas` instance has built in annotation functionality. One can use it to draw crosses. >>> canvas.draw_cross(10, 20) One can use it to mask out bitmaps (in the example below with the color cyan). >>> bitmap = np.zeros((50, 50), dtype=bool) >>> bitmap[30:40, 30:40] = True >>> canvas.mask_region(bitmap, color=(0, 255, 255)) One can use it to add text at particular locations on the canvas. >>> canvas.text_at("Hello", 30, 60) """ import os.path import PIL.ImageFont import numpy as np import skimage.draw import jicbioimage.core.image __version__ = "0.6.1" HERE = os.path.dirname(__file__) DEFAULT_FONT_PATH = os.path.join(HERE, "fonts", "UbuntuMono-R.ttf") class Canvas(jicbioimage.core.image._BaseImage): """Class for building up annotated images.""" @staticmethod def blank_canvas(width, height): """Return a blank canvas to annotate. :param width: xdim (int) :param height: ydim (int) :returns: :class:`jicbioimage.illustrate.Canvas` """ canvas = np.zeros((height, width, 3), dtype=np.uint8) return canvas.view(Canvas) def draw_cross(self, position, color=(255, 0, 0), radius=4): """Draw a cross on the canvas. :param position: (row, col) tuple :param color: RGB tuple :param radius: radius of the cross (int) """ y, x = position for xmod in
np.arange(-radius, radius+1, 1)
numpy.arange
# Copyright 2019, the MIDOSS project contributors, The University of British Columbia, # and Dalhousie University. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import h5py import os import yaml def wind_speed_dir(u_wind, v_wind): """Calculate wind speed and direction from u and v wind components. :kbd:`u_wind` and :kbd:`v_wind` may be either scalar numbers or :py:class:`numpy.ndarray` objects, and the elements of the return value will be of the same type. :arg u_wind: u-direction component of wind vector. :arg v_wind: v-direction component of wind vector. :returns: 2-tuple containing the wind speed and direction. The :py:attr:`speed` attribute holds the wind speed(s), and the :py:attr:`dir` attribute holds the wind direction(s). :rtype: :py:class:`collections.namedtuple` """ speed = np.sqrt(u_wind**2 + v_wind**2) dir = np.arctan2(v_wind, u_wind) dir = np.rad2deg(dir + (dir < 0) * 2 * np.pi) return speed, dir def add_to_dict(group, timeseries, dict24, dict168, start_hour): dict24[group] = {'min': "%.4g" % np.min(timeseries[start_hour:start_hour+24]), 'max': "%.4g" % np.max(timeseries[start_hour:start_hour+24]), 'mean': "%.4g" % np.mean(timeseries[start_hour:start_hour+24]), 'std': "%.4g" % np.std(timeseries[start_hour:start_hour+24])} dict168[group] = {'min': "%.4g" % np.min(timeseries[start_hour:start_hour+168]), 'max': "%.4g" % np.max(timeseries[start_hour:start_hour+168]), 'mean': "%.4g" % np.mean(timeseries[start_hour:start_hour+168]), 'std': "%.4g" % np.std(timeseries[start_hour:start_hour+168])} return dict24, dict168 def make_forcing_statistics(path, GridX, GridY, start_hour): files =[] for r, d, f in os.walk(path): for file in f: if '.hdf5' in file: files.append(os.path.join(r, file)) stats24_dict = {'variable':{'mean':2, 'min':1, 'max':5, 'std':6}} stats168_dict = {'variable':{'mean':2, 'min':1, 'max':5, 'std':6}} for file in files: with h5py.File(file, 'r') as f: for group in list(f['Results'].keys()): timeseries = np.array([]) for time in list(f['Results'][group].keys()): if np.ndim(f['Results'][group][time][:]) == 3: timeseries =
np.append(timeseries, f['Results'][group][time][-1, GridX, GridY])
numpy.append
import nipype.pipeline.engine as pe import nipype.interfaces.fsl as fsl import nipype.interfaces.utility as util import nipype.interfaces.afni as afni from nipype import logging def get_voxel_timeseries(wf_name='voxel_timeseries'): """ Workflow to extract time series for each voxel in the data that is present in the input mask Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.rest : string (nifti file) path to input functional data inputspec.output_type : string (list of boolean) list of boolean for csv and npz file formats input_mask.masks : string (nifti file) path to ROI mask Workflow Outputs:: outputspec.mask_outputs: string (1D, csv and/or npz files) list of time series matrices stored in csv and/or npz files.By default it outputs mean of voxels across each time point in a afni compatible 1D file. High Level Workflow Graph: Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_voxel_timeseries() >>> wf.inputs.inputspec.rest = '/home/data/rest.nii.gz' >>> wf.inputs.input_mask.mask = '/usr/local/fsl/data/standard/MNI152_T1_2mm_brain.nii.gz' >>> wf.inputs.inputspec.output_type = [True,True] >>> wf.base_dir = './' >>> wf.run() """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['rest', 'output_type']), name='inputspec') inputNode_mask = pe.Node(util.IdentityInterface(fields=['mask']), name='input_mask') outputNode = pe.Node(util.IdentityInterface(fields=['mask_outputs']), name='outputspec') timeseries_voxel = pe.Node(util.Function(input_names=['data_file', 'template', 'output_type'], output_names=['out_file'], function=gen_voxel_timeseries), name='timeseries_voxel') wflow.connect(inputNode, 'rest', timeseries_voxel, 'data_file') wflow.connect(inputNode, 'output_type', timeseries_voxel, 'output_type') wflow.connect(inputNode_mask, 'mask', timeseries_voxel, 'template') wflow.connect(timeseries_voxel, 'out_file', outputNode, 'mask_outputs') return wflow def clean_roi_csv(roi_csv): """Remove the file path comments from every other row of the output of AFNI's 3dROIstats. 3dROIstats has a -nobriklab and a -quiet option, but neither remove the file path comments while retaining the ROI label header, which is needed. If there are no file path comments to remove, this function simply passes the original file as output, instead of unnecessarily opening and re-writing it. """ import pandas as pd import os import pandas as pd import numpy as np with open(roi_csv, 'r') as f: csv_lines = f.readlines() modified = False edited_lines = [] for line in csv_lines: line = line.replace('\t\t\t', '') line = line.replace('\t\t', '') line = line.replace('\t', ',') line = line.replace('#,', '#') if '#' in line: if '/' in line and '.' in line: modified = True continue edited_lines.append(line) if modified: edited_roi_csv = os.path.join(os.getcwd(), os.path.basename(roi_csv)) with open(edited_roi_csv, 'wt') as f: for line in edited_lines: f.write(line) edited_roi_csv = [edited_roi_csv] else: edited_roi_csv = [roi_csv] data = pd.read_csv(edited_roi_csv[0], sep = ',', header = 1) data = data.dropna(axis=1) roi_array = np.transpose(data.values) return roi_array, edited_roi_csv def write_roi_npz(roi_csv, out_type=None): roi_npz = None roi_outputs = [roi_csv[0]] if not out_type: return roi_outputs elif out_type[1]: np_roi_data = genfromtxt(roi_csv[0], delimiter=',') roi_npz = os.path.join(os.getcwd(), 'roi_stats.npz') with open(roi_npz, 'wb') as f: np.savez(f, np_roi_data) roi_outputs.append(roi_npz) return roi_outputs def get_roi_timeseries(wf_name='roi_timeseries'): """ Workflow to extract timeseries for each node in the ROI mask. For each node, mean across all the timepoint is calculated and stored in csv and npz format. Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.rest : string (nifti file) path to input functional data inputspec.output_type : string (list of boolean) list of boolean for csv and npz file formats input_roi.roi : string (nifti file) path to ROI mask Workflow Outputs:: outputspec.roi_ts : numpy array Voxel time series stored in numpy array, which is used to create ndmg graphs. outputspec.roi_outputs : string (list of files) Voxel time series stored in 1D (column wise timeseries for each node), csv and/or npz files. By default it outputs timeseries in a 1D file. The 1D file is compatible with afni interfaces. Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_roi_timeseries() >>> wf.inputs.inputspec.rest = '/home/data/rest.nii.gz' >>> wf.inputs.input_roi.roi = '/usr/local/fsl/data/atlases/HarvardOxford/HarvardOxford-cort-maxprob-thr0-2mm.nii.gz' >>> wf.inputs.inputspec.output_type = [True,True] >>> wf.base_dir = './' >>> wf.run() """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['rest', 'output_type']), name='inputspec') inputnode_roi = pe.Node(util.IdentityInterface(fields=['roi']), name='input_roi') outputNode = pe.Node(util.IdentityInterface(fields=['roi_ts', 'roi_outputs']), name='outputspec') timeseries_roi = pe.Node(interface=afni.ROIStats(), name='3dROIstats') timeseries_roi.inputs.quiet = False timeseries_roi.inputs.args = "-1Dformat" # TODO: add -mask_f2short for float parcellation mask # if parcellation mask has float values # timeseries_roi.inputs.mask_f2short = True wflow.connect(inputNode, 'rest', timeseries_roi, 'in_file') wflow.connect(inputnode_roi, 'roi', timeseries_roi, 'mask') clean_csv_imports = ['import os'] clean_csv = pe.Node(util.Function(input_names=['roi_csv'], output_names=['roi_array', 'edited_roi_csv'], function=clean_roi_csv, imports=clean_csv_imports), name='clean_roi_csv') wflow.connect(timeseries_roi, 'stats', clean_csv, 'roi_csv') write_npz_imports = ['import os', 'import numpy as np', 'from numpy import genfromtxt'] write_npz = pe.Node(util.Function(input_names=['roi_csv', 'out_type'], output_names=['roi_output_npz'], function=write_roi_npz, imports=write_npz_imports), name='write_roi_npz') wflow.connect(clean_csv, 'edited_roi_csv', write_npz, 'roi_csv') wflow.connect(inputNode, 'output_type', write_npz, 'out_type') wflow.connect(clean_csv, 'roi_array', outputNode, 'roi_ts') wflow.connect(write_npz, 'roi_output_npz', outputNode, 'roi_outputs') return wflow def get_spatial_map_timeseries(wf_name='spatial_map_timeseries'): """ Workflow to regress each provided spatial map to the subjects functional 4D file in order to return a timeseries for each of the maps Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.subject_rest : string (nifti file) path to input functional data inputspec.subject_mask : string (nifti file) path to subject functional mask inputspec.spatial_map : string (nifti file) path to Spatial Maps inputspec.demean : Boolean control whether to demean model and data Workflow Outputs:: outputspec.subject_timeseries: string (txt file) list of time series stored in a space separated txt file the columns are spatial maps, rows are timepoints Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_spatial_map_timeseries() >>> wf.inputs.inputspec.subject_rest = '/home/data/rest.nii.gz' >>> wf.inputs.inputspec.subject_mask = '/home/data/rest_mask.nii.gz' >>> wf.inputs.inputspec.ICA_map = '/home/data/spatialmaps/spatial_map.nii.gz' >>> wf.inputs.inputspec.demean = True >>> wf.base_dir = './' >>> wf.run() """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface (fields=['subject_rest', 'subject_mask', 'spatial_map', 'demean']), name='inputspec') outputNode = pe.Node(util.IdentityInterface( fields=['subject_timeseries']), name='outputspec') spatialReg = pe.Node(interface=fsl.GLM(), name='spatial_regression') spatialReg.inputs.out_file = 'spatial_map_timeseries.txt' wflow.connect(inputNode, 'subject_rest', spatialReg, 'in_file') wflow.connect(inputNode, 'subject_mask', spatialReg, 'mask') wflow.connect(inputNode, 'spatial_map', spatialReg, 'design') wflow.connect(inputNode, 'demean', spatialReg, 'demean') wflow.connect(spatialReg, 'out_file', outputNode, 'subject_timeseries') return wflow def get_vertices_timeseries(wf_name='vertices_timeseries'): """ Workflow to get vertices time series from a FreeSurfer surface file Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.lh_surface_file : string (nifti file) left hemishpere surface file inputspec.rh_surface_file : string (nifti file) right hemisphere surface file Workflow Outputs:: outputspec.surface_outputs: string (csv and/or npz files) list of timeseries matrices stored in csv and/or npz files Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_vertices_timeseries() >>> wf.inputs.inputspec.lh_surface_file = '/home/data/outputs/SurfaceRegistration/lh_surface_file.nii.gz' >>> wf.inputs.inputspec.rh_surface_file = '/home/data/outputs/SurfaceRegistration/rh_surface_file.nii.gz' >>> wf.base_dir = './' >>> wf.run() """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['lh_surface_file', 'rh_surface_file']), name='inputspec') timeseries_surface = pe.Node(util.Function(input_names=['rh_surface_file', 'lh_surface_file'], output_names=['out_file'], function=gen_vertices_timeseries), name='timeseries_surface') outputNode = pe.Node(util.IdentityInterface(fields=['surface_outputs']), name='outputspec') wflow.connect(inputNode, 'rh_surface_file', timeseries_surface, 'rh_surface_file') wflow.connect(inputNode, 'lh_surface_file', timeseries_surface, 'lh_surface_file') wflow.connect(timeseries_surface, 'out_file', outputNode, 'surface_outputs') return wflow def get_normalized_moments(wf_name='normalized_moments'): """ Workflow to calculate the normalized moments for skewedness calculations Parameters ---------- wf_name : string name of the workflow Returns ------- wflow : workflow object workflow object Notes ----- `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/timeseries/timeseries_analysis.py>`_ Workflow Inputs:: inputspec.spatial_timeseries : string (nifti file) spatial map timeseries Workflow Outputs:: outputspec.moments: list list of moment values Example ------- >>> import CPAC.timeseries.timeseries_analysis as t >>> wf = t.get_normalized_moments() >>> wf.inputs.inputspec.spatial_timeseries = '/home/data/outputs/SurfaceRegistration/lh_surface_file.nii.gz' >>> wf.base_dir = './' >>> wf.run() """ wflow = pe.Workflow(name=wf_name) inputNode = pe.Node(util.IdentityInterface(fields=['spatial_timeseries']), name='inputspec') # calculate normalized moments # output of this node is a list, 'moments' norm_moments = pe.Node(util.CalculateNormalizedMoments(moment='3'), name='norm_moments') outputNode = pe.Node(util.IdentityInterface(fields=['moments_outputs']), name='outputspec') wflow.connect(inputNode, 'spatial_timeseries', norm_moments, 'timeseries_file') wflow.connect(norm_moments, 'moments', outputNode, 'moments_outputs') return wflow def gen_roi_timeseries(data_file, template, output_type): """ Method to extract mean of voxel across all timepoints for each node in roi mask Parameters ---------- data_file : string path to input functional data template : string path to input roi mask in functional native space output_type : list list of two boolean values suggesting the output types - numpy npz file and csv format Returns ------- out_list : list list of 1D file, txt file, csv file and/or npz file containing mean timeseries for each scan corresponding to each node in roi mask Raises ------ Exception """ import nibabel as nib import csv import numpy as np import os import shutil unit_data = nib.load(template).get_data() # Cast as rounded-up integer unit_data = np.int64(np.ceil(unit_data)) datafile = nib.load(data_file) img_data = datafile.get_data() vol = img_data.shape[3] if unit_data.shape != img_data.shape[:3]: raise Exception('\n\n[!] CPAC says: Invalid Shape Error.' 'Please check the voxel dimensions. ' 'Data and roi should have the same shape.\n\n') nodes = np.unique(unit_data).tolist() sorted_list = [] node_dict = {} out_list = [] # extracting filename from input template tmp_file = os.path.splitext( os.path.basename(template))[0] tmp_file = os.path.splitext(tmp_file)[0] oneD_file = os.path.abspath('roi_' + tmp_file + '.1D') txt_file = os.path.abspath('roi_' + tmp_file + '.txt') csv_file = os.path.abspath('roi_' + tmp_file + '.csv') numpy_file = os.path.abspath('roi_' + tmp_file + '.npz') nodes.sort() for n in nodes: if n > 0: node_array = img_data[unit_data == n] node_str = 'node_{0}'.format(n) avg = np.mean(node_array, axis=0) avg = np.round(avg, 6) list1 = [n] + avg.tolist() sorted_list.append(list1) node_dict[node_str] = avg.tolist() # writing to 1Dfile print("writing 1D file..") f = open(oneD_file, 'w') writer = csv.writer(f, delimiter=',') value_list = [] new_keys = sorted([ int(float(key.split('node_')[1])) for key in node_dict ]) roi_number_list = [str(n) for n in new_keys] roi_number_str = [] for number in roi_number_list: roi_number_str.append("#" + number) for key in new_keys: value_list.append(str('{0}\n'.format(node_dict['node_{0}'.format(key)]))) column_list = list(zip(*value_list)) writer.writerow(roi_number_str) for column in column_list: writer.writerow(list(column)) f.close() out_list.append(oneD_file) # copy the 1D contents to txt file shutil.copy(oneD_file, txt_file) out_list.append(txt_file) # if csv is required if output_type[0]: print("writing csv file..") f = open(csv_file, 'wt') writer = csv.writer(f, delimiter=',', quoting=csv.QUOTE_MINIMAL) headers = ['node/volume'] +
np.arange(vol)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in np.arange(-L, L+1.)] F = F / np.sum(F) return scipy.signal.fftconvolve(x, F, 'same') def power_spectrum(data, length, dt): """ scipy's implementation of Welch's method using hanning window to estimate the power spectrum The function returns power density with units V**2/Hz see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html The label on the y-axis should say PSD [V**2/Hz] @Parameters data - time series; float vector! length - length of hanning window, even integer! @Return: power density, frequencies The function returns power density in units V^2 / Hz Note that np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0]) """ f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2)) return pxx, f def spectral_density(data, length, nfft, dt): """ calculate the spectrogram for the time series given by data with time resolution dt The powerspectrum for each window of length $length is computed using Welch's method. The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data, then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ... The last window ends at ceil(len(data)/length)*5s Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following time windows: 0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15 In total there are thus 2*ceil(13/5)-1 = 5 windows The last window starts at 2*3-2 * (5/2) = 10 s Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps @Parameters: data - time series length - window length of data used to calculate powerspectrum. Note that the time resolution of the spectrogram is length/2 nfft - size of the window used to calculate the powerspectrum. determines the frequency resolution. @Return: Powspectrum, frequencies, time axis """ n = len(data) k = int(np.ceil((1.0*n)/length)) data = np.concatenate((data, np.zeros((length*k-n,)))) fdt = length*dt/2 # time step for spectrogram t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt) # frequency axis of spectrogram f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt) # the power spectrum is calculated for 2*k-1 time points Pow = np.zeros((len(f), k*2-1)) j = 0 for i in range(0, k-2+1): w1=data[(length*i):(i+1)*length] w2=data[length*i+int(length/2):(i+1)*length+int(length/2)] Pow[:,j] = power_spectrum(w1, nfft, dt)[0] Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0] j += 2 # last time point Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt) return Pow, f, t def calculate_spectrum(ppath, name, fres=0.5): """ calculate EEG and EMG spectrogram used for sleep stage detection. Function assumes that data vectors EEG.mat and EMG.mat exist in recording folder ppath/name; these are used to calculate the powerspectrum fres - resolution of frequency axis all data saved in "true" mat files :return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis """ SR = get_snr(ppath, name) swin = round(SR)*5 fft_win = round(swin/5) # approximate number of data points per second if (fres == 1.0) or (fres == 1): fft_win = int(fft_win) elif fres == 0.5: fft_win = 2*int(fft_win) else: print("Resolution %f not allowed; please use either 1 or 0.5" % fres) (peeg2, pemg2) = (False, False) # Calculate EEG spectrogram EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')): peeg2 = True EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2']) Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) #save the stuff to a .mat file spfile = os.path.join(ppath, name, 'sp_' + name + '.mat') if peeg2 == True: so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) # Calculate EMG spectrogram EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')): pemg2 = True EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2']) Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) # save the stuff to .mat file spfile = os.path.join(ppath, name, 'msp_' + name + '.mat') if pemg2 == True: so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) return Pxx, Qxx, f, t def whiten_spectrogram(ppath, name, fmax=50): """ experimental :param ppath: :param name: :param fmax: :return: """ P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] ifreq = np.where(freq <= fmax)[0] SPE = SPE[ifreq,:] nfilt = 5 filt = np.ones((nfilt, nfilt)) filt = np.divide(filt, filt.sum()) #SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') m = np.mean(SPE,axis=1) SPE -= np.tile(m, (SPE.shape[1], 1)).T SPE = SPE.T C = np.dot(SPE.T, SPE) [evals, L] = np.linalg.eigh(C) idx = np.argsort(evals) D = np.diag(np.sqrt(evals[idx])) L = L[:,idx] W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T))) nfilt = 2 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same') return W, D, L def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]): """ Normalize EEG spectrogram by deviding each frequency band by its average value. :param ppath, name: base folder, recording name :param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax if fmax=0, use complete frequency axis :param band: list or tuple, define lower and upper range of a frequency band, if pplot=True, plot band, along with spectrogram; if band=[], disregard :param vm: color range for plotting spectrogram :pplot: if True, plot spectrogram along with power band :sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat; otherwise plot 'normal' spectrogram sp_$name.mat :filt_dim: list or tuple; the two values define the dimensions of box filter used to filter the normalized spectrogram; if filt_dim=[], then no filtering :return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis """ if (len(sptype) == 0) or (sptype=='std'): P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) elif sptype == 'fine': P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] t = P['t'] if fmax > 0: ifreq = np.where(freq <= fmax)[0] else: ifreq = np.arange(0, len(freq)) freq = freq[ifreq] nfilt = 4 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) SPE = SPE[ifreq,:] # before #SPE = SPE[ifreq] #W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') #sp_mean = W.mean(axis=1) sp_mean = SPE.mean(axis=1) SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T) if len(filt_dim) > 0: filt = np.ones(filt_dim) filt = np.divide(filt, filt.sum()) SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') # get high gamma peaks if len(band) > 0: iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0] pow_band = SPE[iband,:].mean(axis=0) thr = pow_band.mean() + pow_band.std() idx = np.where(pow_band > thr)[0] # plot normalized spectrogram, along with band if pplot: plt.ion() plt.figure() if len(band) > 0: med = np.median(SPE.mean(axis=0)) ax1 = plt.subplot(211) plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet') plt.subplot(212, sharex=ax1) plt.plot(t,SPE[iband,:].mean(axis=0)) plt.plot(t[idx], pow_band[idx], '.') plt.draw() return SPE, t, freq[ifreq] def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True): """ calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system. The spectrogram is temporally filtered using a recursive implementation of a lowpass filter @Parameters: ppath/name - mouse EEG recording sf - smoothing factor along frequency axis alpha - temporal lowpass filter time constant pplot - if pplot==True, plot figure @Return: SE, SM - EEG, EMG spectrogram """ EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) len_eeg = len(EEG) fdt = 2.5 SR = get_snr(ppath, name) # we calculate the powerspectrum for 5s windows swin = int(np.round(SR) * 5.0) # but we sample new data each 2.5 s swinh = int(swin/2.0) fft_win = int(swin / 5.0) # number of 2.5s long samples spoints = int(np.floor(len_eeg / swinh)) SE = np.zeros((int(fft_win/2+1), spoints)) SM = np.zeros((int(fft_win/2+1), spoints)) print("Starting calculating spectrogram for %s..." % name) for i in range(2, spoints): # we take the last two swinh windows (the new 2.5 s long sample and the one from # the last iteration) x = EEG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) # recursive low pass filtering of spectrogram: # the current state is an estimate of the current sample and the previous state SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1] # and the same of EMG x = EMG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1] if pplot: # plot EEG spectrogram t = np.arange(0, SM.shape[1])*fdt plt.figure() ax1 = plt.subplot(211) im = np.where((f>=0) & (f<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.xticks(()) ix = list(range(0, 30, 10)) fi = f[im][::-1] plt.yticks(ix, list(map(int, fi[ix]))) box_off(ax1) plt.axis('tight') plt.ylabel('Freq (Hz)') # plot EMG amplitude ax2 = plt.subplot(212) im = np.where((f>=10) & (f<100))[0] df = np.mean(np.diff(f)) # amplitude is the square root of the integral ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0) plt.xlim((0, t[-1])) plt.ylabel('EMG Ampl (mV)') plt.xlabel('Time (s)') box_off(ax2) plt.show(block=False) return SE, SM, f def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False): """ predict a REM period only based on EEG/EMG history; the same algorithm is also used for closed-loop REM sleep manipulation. The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings sf smoothing factor for each powerspectrum alpha smoothing factor along time dimension past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold during the last $past_len seconds past_len window to calculate $past_mu std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta) sdt time bin for brain sttate, typically 2.5s psave if True, save threshold parameters to file. """ idf = re.split('_', recordings[0])[0] # 02/05/2020 changed from int to float: past_len = float(np.round(past_len/sdt)) # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_delta = pow_delta.mean() thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = int(i-past_len) else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0) if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 else: prem = 0 #turn laser off # for loop ends # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='blue') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # write config file if psave: cfile = os.path.join(ppath, idf + '_rem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s'+os.linesep) % idf) fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta) fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta) fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu) fid.write(('SF: %.2f'+os.linesep) % sf) fid.write(('ALPHA: %.2f'+os.linesep) % alpha) fid.write(('Bern: %.2f' + os.linesep) % 0.5) if xemg: fid.write(('XEMG: %d'+os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120): """ algorithm running laser control for REM sleep dependent activation/inhibtion. $delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts, the laser stops, but we keep track of the missing time. The next time is laser turns on again, it stays on for the duration of the most recent REM period + the remaining time. The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation. The function reads in the required parameters from the configuration file (MOUSEID_rem.txt) The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings past_len window to calculate $past_mu sdt time bin for brain sttate, typically 2.5s delay delay to wait after a REM sleep periods ends, till the laser is turned on. """ idf = re.split('_', recordings[0])[0] past_len = int(np.round(past_len/sdt)) # load parameters cfile = os.path.join(ppath, idf + '_rem.txt') params = load_sleep_params(ppath, cfile) thr_th_delta1 = params['THR_TH_DELTA'][0] thr_th_delta2 = params['THR_TH_DELTA'][1] thr_delta = params['THR_DELTA'][0] thr_mu = params['THR_MU'][0] alpha = params['ALPHA'][0] sf = params['SF'][0] past_mu = params['PAST_MU'][0] xemg = params['XEMG'][0] # calculate spectrogram (SE, SM) = ([], []) for rec in recordings: A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5, 12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta, :], axis=0) pow_theta = np.sum(SE[i_theta, :], axis=0) pow_mu = np.sum(SM[i_mu, :], axis=0) th_delta = np.divide(pow_theta, pow_delta) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM # NEW variables: laser_idx = np.zeros((ntbins,)) delay = int(np.round(delay/sdt)) delay_count = 0 curr_rem_dur = 0 dur_count = 0 on_delay = False laser_on = False for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = i - past_len else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 curr_rem_dur += 1 #NEW # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 curr_rem_dur += 1 else: prem = 0 # turn laser off dur_count += curr_rem_dur #NEW delay_count = delay #NEW curr_rem_dur = 0 #NEW on_delay = True #NEW # NEW: if on_delay: if prem == 0: delay_count -=1 if delay_count == 0: laser_on = True on_delay = False if laser_on: if prem == 0: if dur_count >= 0: dur_count -= 1 laser_idx[i] = 1 else: laser_on = False else: laser_on = False # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM') ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.legend() plt.show(block=False) def load_sleep_params(path, param_file): """ load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem @Return: Dictionary: Parameter --> Value """ fid = open(os.path.join(path, param_file), 'r') lines = fid.readlines() params = {} for line in lines: if re.match('^[\S_]+:', line): a = re.split('\s+', line) key = a[0][:-1] params[key] = a[1:-1] # transform number strings to floats for k in params: vals = params[k] new_vals = [] for v in vals: if re.match('^[\d\.]+$', v): new_vals.append(float(v)) else: new_vals.append(v) params[k] = new_vals return params def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False): """ predict NREMs period only based on EEG/EMG history; the same algorithm is also used for closed-loop NREM sleep manipulation. The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power. For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. The values for hard and soft threshold are fitted using a Gaussian mixture model :param ppath: base folder :param recordings: list of recordings :param sf: smoothing factor for each powerspectrum :param alpha: spatial smoothing factor :param std_thdelta: factor to set threshold for theta/delta :param sdt: time step of brain state classification, typically 2.5 s :param psave: save parameters to text file? :param xemg: use EEG instead of EMG? """ # to fit Gaussian mixture model to delta power distributino from sklearn import mixture idf = re.split('_', recordings[0])[0] # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) med_delta = np.median(pow_delta) pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)] # fit Gaussian mixture model to delta power # see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html gm = mixture.GaussianMixture(n_components=2) fit = gm.fit(pow_delta_fit.reshape(-1, 1)) means = np.squeeze(fit.means_) x = np.arange(0, med_delta*3, 100) plt.figure() plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4) logprob = fit.score_samples(x.reshape(-1,1)) responsibilities = fit.predict_proba(x.reshape((-1,1))) pdf = np.exp(logprob) pdf_individual = responsibilities * pdf[:, np.newaxis] plt.plot(x, pdf, '-k') plt.plot(x, pdf_individual, '--k') plt.xlim((0, med_delta*3)) plt.ylabel('p(x)') plt.xlabel('x = Delta power') # get point where curves cut each other if means[0] < means[1]: idx = np.where((x>= means[0]) & (x<= means[1]))[0] else: idx = np.where((x >= means[1]) & (x <= means[0]))[0] imin = np.argmin(pdf[idx]) xcut = x[idx[0]+imin] plt.plot(xcut, pdf[idx[0]+imin], 'ro') ilow = np.argmin(np.abs(x-means[0])) plt.plot(x[ilow], pdf[ilow], 'bo') ihigh = np.argmin(np.abs(x-means[1])) plt.plot(x[ihigh], pdf[ihigh], 'go') plt.show(block=False) # set parameters for hard and soft delta thresholds tmp = np.array([x[ihigh], xcut, x[ilow]]) tmp.sort() thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution thr_delta2 = tmp[1] # trough of distribution # NREM yes or no according to thresholds # However, this variable does not directly control whether laser should # be on or off; whether NREM sleep is really on or off is determined # by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not # sleep history criteria are fulfilled pnrem_hidden = 0 # if nrem_idx[i] == 1, time point i is NREM nrem_idx = np.zeros((ntbins,), dtype='int8') # NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals grace_period = int(20 / sdt) # nrem_delay: NREM only starts with some delay nrem_delay = int(10 / sdt) grace_count = grace_period delay_count = nrem_delay for i in range(ntbins): if pnrem_hidden == 0: ### Entering NREM: # Delta power laser than high threshold if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: ### NOT-NREM -> NREM pnrem_hidden = 1 nrem_idx[i] = 0 delay_count -= 1 # we are fully in NREM, that's why grace_count is reset: grace_count = grace_period else: ### NOT-NREM -> NOT-NREM if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 else: nrem_idx[i] = 0 else: ### pnrem_hidden == 1 if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: if delay_count > 0: delay_count -= 1 nrem_idx[i] = 0 else : nrem_idx[i] = 1 else: ### Exit NREM -> NOT-NREM # were are fully out of NREM, so delay_count can be reset: delay_count = nrem_delay pnrem_hidden = 0 if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 #### figure ############################################## plt.figure() t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq >= 0) & (freq <= 30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412, sharex=ax1) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red') ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6]) ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6]) plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # write config file if psave: cfile = os.path.join(ppath, idf + '_nrem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s' + os.linesep) % idf) fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2)) fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta) fid.write(('SF: %.2f' + os.linesep) % sf) fid.write(('ALPHA: %.2f' + os.linesep) % alpha) if xemg: fid.write(('XEMG: %d' + os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0): """ analyze results from closed-loop experiments :param ppath: base folder :param recordings: list of strings, recordinds :param backup: string, potential second backup folder with recordings :param single_mode: boolean, if True, average across all REM periods (irrespective of mouse) and plot each single REM period as dot :param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to overlap with real (annotated) REM period to be further consided for analysis; if overlap == 0, then any overlap counts, i.e. this parameter has no influence :return: df, pd.DataFrame, with control and experimental REM durations as data columns """ if type(recordings) != list: recordings = [recordings] overlap = overlap / 100.0 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True dur_exp = {m:[] for m in mice} dur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M,S = load_stateidx(paths[rec], rec) sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for s in seq: # check true REM sequences overlapping with online detected sequences isect = np.intersect1d(s, rem_idx) #print(len(isect)/ len(s)) # test if real REM period s overlaps with online detected REM periods and, # if yes, make sure that the overlap is at least overlap *100 percent if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap: drn = (s[-1]-s[0]+1)*dt # does the sequence overlap with laser? if len(np.intersect1d(isect, laser_idx))>0: dur_exp[idf].append(drn) else: dur_ctr[idf].append(drn) data = {'exp':[], 'ctr':[]} # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: for m in mice: data['exp'] += dur_exp[m] data['ctr'] += dur_ctr[m] else: for idf in dur_ctr: dur_ctr[idf] = np.array(dur_ctr[idf]).mean() dur_exp[idf] = np.array(dur_exp[idf]).mean() data['exp'] = np.array(list(dur_exp.values())) data['ctr'] = np.array(list(dur_ctr.values())) df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])}) # plot everything if not single_mode: plt.ion() plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser') plt.bar([2], [df_mean['exp']], color='blue', label='With laser') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') for (a,b) in zip(df['ctr'], df['exp']): plt.plot([1,2], [a,b], color='black') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) else: plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey') plt.bar([2], [df_mean['exp']], color='blue') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') a = df['ctr'] b = df['exp'] plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser') plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) plt.show() if len(fig_file) > 0: save_figure(fig_file) return df def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0): """ Further analysis of data obtained from closed loop stimulation Assume the sleep structure looks like this R R R R W W N N N N N W W N N N N R R R R R REM_pre -- inter REM ---- REM_post REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the next REM period REM_post. The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser :param ppath: base folder :param recordings: list of recording, or file listing :param backup: backup folder for $ppath :param mode: mode == 0, calculate complete inter REM duration mode == 2, only calculate duration of wake in inter REM periods mode == 3, only calculate duration of NREM in inter REM periods :param single_mode: consider each single recording, instead of mice :param overlap: percentage (number between 0 and 100). Defines the percentage how much a true (offline annotated) REM period should overlap with laser to be considered as REM sleep with laser. Of note, REM periods w/o laser have to have 0 overlap with laser. All remaining REM periods are discarded. :param pplot: if True, plot figure; errorbars show 95% confidence intervals, calculated using bootstrapping :param ma: :return: df, if single_mode == True $df is a pandas DataFrame: REM iREM laser mouse - mouse ID REM - REM duration iREM - inter REM duration after REM periods with laser laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the preceding REM sleep period (for "iREM") if single_mode == False, mouse is the data frame index """ if type(recordings) != list: recordings = [recordings] if overlap > 0: overlap = overlap / 100 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True remdur_exp = {m:[] for m in mice} remdur_ctr = {m:[] for m in mice} itdur_exp = {m:[] for m in mice} itdur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(paths[rec], rec)[0] sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for (p,q) in zip(seq[0:-1], seq[1:]): # check if true REM sequences do overlap with online detected sequences # and only continue working with those: if len(np.intersect1d(p, rem_idx)) > 0: drn = (p[-1]-p[0]+1)*dt it_M = M[p[-1]+1:q[0]] if mode == 0: it_drn = len(it_M)*dt elif mode == 2: it_drn = len(np.where(it_M==2)[0]) * dt else: it_drn = len(np.where(it_M == 3)[0]) * dt # does the true REM sequence overlap with laser? # by setting overlap to a value > 0, you can # set a percentage how much the REM period should overlap with laser # NEW 08/26/21 if len(np.intersect1d(p, laser_idx)) / len(p) > overlap: remdur_exp[idf].append(drn) itdur_exp[idf].append(it_drn) elif len(np.intersect1d(p, laser_idx)) == 0: remdur_ctr[idf].append(drn) itdur_ctr[idf].append(it_drn) else: pass # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]} for m in mice: data['itexp'] += itdur_exp[m] data['itctr'] += itdur_ctr[m] data['remexp'] += remdur_exp[m] data['remctr'] += remdur_ctr[m] df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])}) else: for idf in mice: itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean() itdur_exp[idf] = np.array(itdur_exp[idf]).mean() remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean() remdur_exp[idf] = np.array(remdur_exp[idf]).mean() data = {} for s in ['itexp', 'itctr', 'remexp', 'remctr']: data[s] = np.zeros((len(mice),)) i = 0 for m in mice: data['itexp'][i] = itdur_exp[m] data['itctr'][i] = itdur_ctr[m] data['remexp'][i] = remdur_exp[m] data['remctr'][i] = remdur_ctr[m] i += 1 df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])), 'iREM': np.concatenate((data['itexp'], data['itctr'])), 'laser': ['y']*len(mice) + ['n']*len(mice), 'mouse': mice+mice}) if pplot and not single_mode: dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state') sns.set_style('whitegrid') plt.ion() plt.figure() sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') if pplot and single_mode: dfm = pd.melt(df, id_vars=['laser'], var_name='state') plt.ion() plt.figure() sns.set(style="whitegrid") #sns.swarmplot(data=df[['itctr', 'itexp']], color='black') #sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black') sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') return df ### FUNCTIONS USED BY SLEEP_STATE ##################################################### def get_sequences(idx, ibreak=1) : """ get_sequences(idx, ibreak=1) idx - np.vector of indices @RETURN: seq - list of np.vectors """ diff = idx[1:] - idx[0:-1] breaks = np.nonzero(diff>ibreak)[0] breaks = np.append(breaks, len(idx)-1) seq = [] iold = 0 for i in breaks: r = list(range(iold, i+1)) seq.append(idx[r]) iold = i+1 return seq def threshold_crossing(data, th, ilen, ibreak, m): """ seq = threshold_crossing(data, th, ilen, ibreak, m) """ if m>=0: idx = np.where(data>=th)[0] else: idx = np.where(data<=th)[0] # gather sequences j = 0 seq = [] while (j <= len(idx)-1): s = [idx[j]] for k in range(j+1,len(idx)): if (idx[k] - idx[k-1]-1) <= ibreak: # add j to sequence s.append(idx[k]) else: break if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]): seq.append((s[0], s[-1])) if j == len(idx)-1: break j=k return seq def closest_precessor(seq, i): """ find the preceding element in seq which is closest to i helper function for sleep_state """ tmp = seq-i; d = np.where(tmp<0)[0] if len(d)>0: id = seq[d[-1]]; else: id = 0; return id def write_remidx(M, K, ppath, name, mode=1) : """ rewrite_remidx(idx, states, ppath, name) replace the indices idx in the remidx file of recording name with the assignment given in states """ if mode == 0 : outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') else : outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt') f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)] f.writelines(s) f.close() ####################################################################################### ### MANIPULATING FIGURES ############################################################## def set_fontsize(fs): import matplotlib matplotlib.rcParams.update({'font.size': fs}) def set_fontarial(): """ set Arial as default font """ import matplotlib matplotlib.rcParams['font.sans-serif'] = "Arial" def save_figure(fig_file): # alternative way of setting nice fonts: #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 #matplotlib.pylab.savefig(fig_file, dpi=300) #matplotlib.rcParams['text.usetex'] = False #matplotlib.rcParams['text.usetex'] = True plt.savefig(fig_file, bbox_inches="tight", dpi=200) #matplotlib.rcParams['text.usetex'] = False def box_off(ax): """ similar to Matlab's box off """ ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ####################################################################################### def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0, pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]): """ automatic sleep state detection based on delta, theta, sigma, gamma and EMG power. New: use also sigma band: that's very helpful to classify pre-REM periods as NREM; otherwise they tend to be classified as wake. Gamma peaks nicely pick up during microarousals. My strategy is the following: I smooth delta band a lot to avoid strong fragmentation of sleep; but to still pick up microarousals I use the gamma power. spectrogram data has to be calculated before using calculate_spectrum Each bin in the spectrogram gets assigned one of four states: 1-REM 2-Wake 3-NREM 0-undef :param ppath: base folder :param name: recording name :param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta) :param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG) :param sf: smoothing factor for gamma and sigma power :param sf_delta: smoothing factor for delta power :param pwrite: if True, save sleep classification to file remidx_$name.txt :param pplot: if True, plot figures :param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead :param vmax: float, set maximum of color range of EEG heatmap. :param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects plotting, no effect on sleep state calculation :param use_idx: list, if not empty, use only given indices to calculate sleep state :return: """ PRE_WAKE_REM = 30.0 # Minimum Duration and Break in # high theta/delta, high emg, high delta, high sigma and gamma sequences # # duration[i,0] is the minimum duration of sequence of state i # duration[i,1] is maximal break duration allowed in a sequence of state i duration = np.zeros((5,2)) # high theta/delta duration[0,:] = [5,15] # high emg duration[1,:] = [0, 5] # high delta duration[2,:] = [10, 10] # high sigma duration[3,:] = [10, 10] # gamma duration[4,:] = [0, 5] # Frequency Bands/Ranges for delta, theta, and, gamma r_delta = [0.5, 4] r_sigma = [12, 20] r_theta = [5,12] # EMG band r_mu = [50, 500] if not pemg: r_mu = [250, 500] # high gamma power r_gamma = [100, 150] #load EEG and EMG spectrum, calculated by calculate_spectrum P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) if pemg: Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) else: Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) SPEEG = np.squeeze(P['SP']) if pemg == 1: SPEMG = np.squeeze(Q['mSP']) else: SPEMG = np.squeeze(P['SP']) if use_idx == []: use_idx = range(0, SPEEG.shape[1]) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) N = len(t) duration = np.divide(duration,dt) # get indices for frequency bands i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0] i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0] p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta ) p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 ) # now filtering for EMG to pick up microarousals p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf ) p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf ) p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 ) th_delta = np.divide(p_theta, p_delta) #th_delta = smooth_data(th_delta, 2); seq = {} seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]), duration[0,1], duration[0,1], 1) seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*np.nanstd(p_mu[use_idx]), duration[1,0], duration[1,1], 1) seq['high_delta'] = threshold_crossing(p_delta, np.nanmean(p_delta[use_idx]), duration[2,0], duration[2,1], 1) seq['high_sigma'] = threshold_crossing(p_sigma, np.nanmean(p_sigma[use_idx]), duration[3,0], duration[3,1], 1) seq['high_gamma'] = threshold_crossing(p_gamma, np.nanmean(p_gamma[use_idx]), duration[4,0], duration[4,1], 1) # Sleep-State Rules idx = {} for k in seq: tmp = [list(range(i,j+1)) for (i,j) in seq[k]] # now idea why this works to flatten a list # idx[k] = sum(tmp, []) # alternative that I understand: if len(tmp) == 0: idx[k] = np.array([]) else: idx[k] = np.array(reduce(lambda x,y: x+y, tmp)) idx['low_emg'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_emg'])) idx['low_delta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_delta'])) idx['low_theta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_theta'])) #REM Sleep: thdel up, emg down, delta down a = np.intersect1d(idx['high_theta'], idx['low_delta']) # non high_emg phases b = np.setdiff1d(a, idx['high_emg']) rem = get_sequences(b, duration[0,1]) rem_idx = reduce(lambda x,y: np.concatenate((x,y)), rem) # SWS Sleep # delta high, no theta, no emg a = np.setdiff1d(idx['high_delta'], idx['high_emg']) # no emg activation b = np.setdiff1d(a, idx['high_theta']) # no theta; sws = get_sequences(b) sws_idx = reduce(lambda x,y: np.concatenate((x,y)), sws) #print a # Wake # low delta + high emg and not rem a = np.unique(np.union1d(idx['low_delta'], idx['high_emg'])) b = np.setdiff1d(a, rem_idx) wake = get_sequences(b) wake_idx = reduce(lambda x,y: np.concatenate((x,y)), wake) # sequences with low delta, high sigma and low emg are NREM a = np.intersect1d(np.intersect1d(idx['high_sigma'], idx['low_delta']), idx['low_emg']) a = np.setdiff1d(a, rem_idx) sws_idx = np.unique(np.union1d(a, sws_idx)) wake_idx = np.setdiff1d(wake_idx, a) #NREM sequences with high gamma are wake a = np.intersect1d(sws_idx, idx['high_gamma']) sws_idx = np.setdiff1d(sws_idx, a) wake_idx = np.unique(np.union1d(wake_idx,a)) # Wake and Theta wake_motion_idx = np.intersect1d(wake_idx, idx['high_theta']) # Wake w/o Theta wake_nomotion_idx = np.setdiff1d(wake_idx, idx['low_theta']) # Are there overlapping sequences? a = np.intersect1d(np.intersect1d(rem_idx, wake_idx), sws_idx) # Are there undefined sequences? undef_idx = np.setdiff1d(np.setdiff1d(np.setdiff1d(np.arange(0,N), rem_idx), wake_idx), sws_idx) # Wake wins over SWS sws_idx = np.setdiff1d(sws_idx, wake_idx) # Special rules # if there's a REM sequence directly following a short wake sequence (PRE_WAKE_REM), # this wake sequence goes to SWS # NREM to REM transitions are sometimes mistaken as quite wake periods for rem_seq in rem: if len(rem_seq) > 0: irem_start = rem_seq[0] # is there wake in the preceding bin? if irem_start-1 in wake_idx: # get the closest sws bin in the preceding history isws_end = closest_precessor(sws_idx, irem_start) if (irem_start - isws_end)*dt < PRE_WAKE_REM: new_rem = np.arange(isws_end+1,irem_start) rem_idx = np.union1d(rem_idx, new_rem) wake_idx = np.setdiff1d(wake_idx, new_rem) else: new_wake = rem_seq wake_idx = np.union1d(wake_idx, new_wake) rem_idx = np.setdiff1d(rem_idx, new_wake) # two different representations for the results: S = {} S['rem'] = rem_idx S['nrem'] = sws_idx S['wake'] = wake_idx S['awake'] = wake_motion_idx S['qwake'] = wake_nomotion_idx M = np.zeros((N,)) if len(rem_idx) > 0: M[rem_idx] = 1 if len(wake_idx) > 0: M[wake_idx] = 2 if len(sws_idx) > 0: M[sws_idx] = 3 if len(undef_idx) > 0: M[undef_idx] = 0 # write sleep annotation to file if pwrite: outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') print("writing annotation to %s" % outfile) f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M,np.zeros((N,)))] f.writelines(s) f.close() # nice plotting plt.ion() if pplot: plt.figure(figsize=(18,9)) axes1=plt.axes([0.1, 0.9, 0.8, 0.05]) A = np.zeros((1,len(M))) A[0,:] = M cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,0,0], [0,1,1],[0.5,0,1], [0.8, 0.8, 0.8]], 4) #tmp = axes1.imshow(A, vmin=0, vmax=3) tmp = axes1.pcolorfast(t, [0,1], A, vmin=0, vmax=3) tmp.set_cmap(my_map) axes1.axis('tight') tmp.axes.get_xaxis().set_visible(False) tmp.axes.get_yaxis().set_visible(False) box_off(axes1) # show spectrogram axes2=plt.axes([0.1, 0.75, 0.8, 0.1], sharex=axes1) ifreq = np.where(freq <= 30)[0] med = np.median(SPEEG.max(axis=0)) if pspec_norm: ifreq = np.where(freq <= 80)[0] filt = np.ones((6, 1)) filt = filt / np.sum(filt) SPEEG = scipy.signal.convolve2d(SPEEG, filt, mode='same') spec_mean = SPEEG.mean(axis=1) SPEEG = np.divide(SPEEG, np.repeat([spec_mean], SPEEG.shape[1], axis=0).T) med = np.median(SPEEG.max(axis=0)) axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax = med*vmax, cmap='jet') else: axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax=med * vmax, cmap='jet') axes2.axis('tight') plt.ylabel('Freq (Hz)') box_off(axes2) # show delta power axes3=plt.axes([0.1, 0.6, 0.8, 0.1], sharex=axes2) axes3.plot(t,p_delta, color='gray') plt.ylabel('Delta (a.u.)') plt.xlim((t[0], t[-1])) seq = get_sequences(S['nrem']) #for s in seq: # plt.plot(t[s],p_delta[s], color='red') s = idx['high_delta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_delta[s], color='red') box_off(axes3) axes4=plt.axes([0.1, 0.45, 0.8, 0.1], sharex=axes3) axes4.plot(t,p_sigma, color='gray') plt.ylabel('Sigma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_sigma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_sigma[s], color='red') box_off(axes4) axes5=plt.axes([0.1, 0.31, 0.8, 0.1], sharex=axes4) axes5.plot(t,th_delta, color='gray') plt.ylabel('Th/Delta (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_theta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],th_delta[s], color='red') box_off(axes5) axes6=plt.axes([0.1, 0.17, 0.8, 0.1], sharex=axes5) axes6.plot(t,p_gamma, color='gray') plt.ylabel('Gamma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_gamma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_gamma[s], color='red') box_off(axes6) axes7=plt.axes([0.1, 0.03, 0.8, 0.1], sharex=axes6) axes7.plot(t,p_mu, color='gray') plt.xlabel('Time (s)') plt.ylabel('EMG (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_emg'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_mu[s], color='red') box_off(axes7) plt.show() # 2nd figure showing distribution of different bands plt.figure(figsize=(20,3)) axes1 = plt.axes([0.05, 0.1, 0.13, 0.8]) plt.hist(p_delta, bins=100) plt.plot(np.nanmean(p_delta), 10, 'ro') plt.title('delta') plt.ylabel('# Occurances') box_off(axes1) axes1 = plt.axes([0.25, 0.1, 0.13, 0.8]) plt.hist(th_delta, bins=100) plt.plot(np.nanmean(th_delta)+th_delta_std*np.nanstd(th_delta), 10, 'ro') plt.title('theta/delta') box_off(axes1) axes1 = plt.axes([0.45, 0.1, 0.13, 0.8]) plt.hist(p_sigma, bins=100) plt.plot(np.nanmean(p_sigma), 10, 'ro') plt.title('sigma') box_off(axes1) axes1 = plt.axes([0.65, 0.1, 0.13, 0.8]) plt.hist(p_gamma, bins=100) plt.plot(np.nanmean(p_gamma), 10, 'ro') plt.title('gamma') box_off(axes1) axes1 = plt.axes([0.85, 0.1, 0.13, 0.8]) plt.hist(p_mu, bins=100) plt.plot(np.nanmean(p_mu)+np.nanstd(p_mu), 10, 'ro') plt.title('EMG') plt.show(block=False) box_off(axes1) plt.show() return M,S def plot_hypnograms(ppath, recordings, tbin=0, unit='h', ma_thr=20, title='', tstart=0, tend=-1): """ plot all hypnograms specified in @recordings :param ppath: base folder :param recordings: list of recordings :param tbin: tbin for xticks :param unit: time unit; h - hour, min - minute, s - second :param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM :param tstart: float, start time point (in seconds!) of hypnograms :param tend: float, last shown time point (in seconds!) :param title: optional title for figure """ recordings = recordings[::-1] sr = get_snr(ppath, recordings[0]) nbin = int(np.round(sr) * 2.5) dt_sec = (1.0 / sr) * nbin istart = int(np.round(tstart/dt_sec)) dt = dt_sec if unit == 'h': dt /= 3600 elif unit == 'min': dt /= 60 rec_len = dict() irec = 0 ny = (1.0-0.2) / len(recordings) dy = ny * 0.75 cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.5, 0, 1], [0.8, 0.8, 0.8]], 4) plt.ion() plt.figure(figsize=(9,4)) axes = [] for rec in recordings: M,K = load_stateidx(ppath, rec) #kcut = np.where(K<0)[0] #M = M[kcut] #M[kcut] = 0 if tend == -1: iend = len(M) else: iend = int(tend/dt_sec) M = M[istart:iend] if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt_sec <= ma_thr: M[s] = 3 rec_len[rec] = len(M)*dt t = np.arange(0, len(M))*dt ax = plt.axes([0.05, ny*irec+0.15, 0.75, dy]) tmp = ax.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3, cmap=my_map) box_off(ax) ax.axis('tight') tmp.axes.get_yaxis().set_visible(False) if irec > 0: tmp.axes.get_xaxis().set_visible(False) if irec == 0: plt.xlabel('Time (%s)' % unit) irec += 1 axes.append(ax) if len(title) > 0: plt.title(title) max_dur = max(rec_len.values()) if tbin > 0: xtick = np.arange(0, max_dur, tbin) for (ax, rec) in zip(axes, recordings): ax.set_xlim([0, max_dur]) if tbin > 0: ax.set_xticks(xtick) ax.text(max_dur+max_dur*0.01, 0.5, rec) plt.show() def plot_swa(ppath, name, delta_win, alpha, band=[0.5, 4.5], swa_yrange=[]): """ plot slow wave (delta) activity during NREM The top plot shows the hynogram. The middle plot shows the delta power (irrespective of brain state) as line plot The bottom plot shows for consecutive $delta_win seconds long bins, the median delta power (SWA) during NREM, if the ration of NREM during the corresponding bin >= $alpha Example call: dm=plot_swa(ppath, name, 30, 0.5, swa_yrange=[0, 0.012]) :param ppath, name: basefolder, recording name :param delta_win: plot median swa value for each consecutive $delta_win seconds long window, if :param alpha: the ratio of NREM in this window is larger than alpha (value between 0 and 1) :param swa_yrange: tuple, minimun and maximum value of yrange for SWA :return df: pd.DataFrame with SWA time points and corresponding median SWA values """ r_delta = band sr = get_snr(ppath, name) nbin = int(np.round(2.5*sr)) dt = nbin*(1.0/sr) M,_ = load_stateidx(ppath, name) t = np.arange(0, len(M))*dt P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True) SP = P['SP'] freq = P['freq'] df = freq[1]-freq[0] idelta = np.where((freq>=r_delta[0]) & (freq<=r_delta[1]))[0] pow_delta = SP[idelta,:].sum(axis=0)*df # get NREM sequences contributing points for fitting iwin = int(delta_win/dt) #seq = get_sequences(nrem_idx, ibreak=int((delta_win/dt)*0.1)) delta_med = [] for j in range(0, len(M)-iwin, iwin): s = range(j, j+iwin) sc = j+int(iwin/2) Mcut = M[s] if (1.0*len(np.where(Mcut==3)[0])) / len(s) >= alpha: i = np.where(Mcut==3)[0] i = i+s[0] a = np.median(pow_delta[i]) delta_med.append((t[sc],a)) df = pd.DataFrame(columns=['time', 'pow'], data=delta_med) # generate figure # show brainstate plt.ion() plt.figure(figsize=(10, 4)) axes_brs = plt.axes([0.1, 0.85, 0.8, 0.1]) cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') axes_brs.axes.get_xaxis().set_visible(False) axes_brs.axes.get_yaxis().set_visible(False) axes_brs.spines["top"].set_visible(False) axes_brs.spines["right"].set_visible(False) axes_brs.spines["bottom"].set_visible(False) axes_brs.spines["left"].set_visible(False) # plot delta power as function of time c = 1000**2 axes_tdelta = plt.axes([0.1, 0.55, 0.8, 0.2], sharex=axes_brs) plt.plot(t, pow_delta/c, 'k') box_off(axes_tdelta) axes_tdelta.axes.get_xaxis().set_visible(False) axes_tdelta.spines["bottom"].set_visible(False) plt.ylabel('SWA (mV$\mathrm{^2}$)') # plot delta power medians axes_delta = plt.axes([0.1, 0.12, 0.8, 0.35], sharex=axes_brs) for (s,delta) in delta_med: plt.plot(s, delta/c, 'ko') print(t) plt.xlim((t[0], t[-1])) box_off(axes_delta) plt.xlabel('Time (s)') plt.ylabel('NREM SWA (mV$\mathrm{^2}$)') if swa_yrange == []: ymax = df['pow'].max()/c plt.ylim([0, ymax+0.1*ymax]) else: plt.ylim(swa_yrange) plt.show() return df def laser_triggered_eeg(ppath, name, pre, post, f_max, pnorm=2, pplot=False, psave=False, tstart=0, tend=-1, peeg2=False, vm=2.5, prune_trials=True, mu=[10, 200], trig_state=0, harmcs=0, iplt_level=1): """ calculate laser triggered, averaged EEG and EMG spectrum :param ppath: base folder containing mouse recordings :param name: recording :param pre: time before laser :param post: time after laser :param f_max: calculate/plot frequencies up to frequency f_max :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param vm: float to set saturation level of colormap :param pplot: plot figure yes=True, no=False :param psave: save the figure, yes=True, no = False :param tstart: float, starting time point. Only lasers trials after tstart will be considered :param tend: float, only laser trials up to tend will be considered; if tend==-1, use whole recording :param peeg2: if True, use EEG channel 2 :param prune_trials: if True, throw out trials with EEG or EMG artifacts :param mu: tuple; range used for EMG amplitude calculation :param trig_state: int; if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively """ def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): df = freq[2]-freq[1] for h in np.arange(harmcs, f_max, harmcs): i = np.argmin(np.abs(freq - h)) if np.abs(freq[i] - h) < df and h != 60: if iplt_level == 2: SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5 else: SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5 return SP SR = get_snr(ppath, name) NBIN = np.round(2.5*SR) lsr = load_laser(ppath, name) idxs, idxe = laser_start_end(lsr) laser_dur = np.mean((idxe-idxs)/SR) print('%s: Average laser duration: %f; Number of trials %d' % (name, laser_dur, len(idxs))) # downsample EEG time to spectrogram time idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] #load EEG and EMG P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) if not peeg2: SPEEG = np.squeeze(P['SP']) else: SPEEG = np.squeeze(P['SP2']) SPEMG = np.squeeze(Q['mSP']) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) ifreq = np.where(freq<=f_max)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) speeg_mean = SPEEG.mean(axis=1) spemg_mean = SPEMG.mean(axis=1) # interpolate frequencies corresponding to harmonics of $harmcs if harmcs > 0: SPEEG = _interpolate_harmonics(SPEEG, freq, f_max, harmcs) SPEMG = _interpolate_harmonics(SPEMG, freq, f_max, harmcs) if tend > -1: i = np.where((np.array(idxs)*dt >= tstart) & (np.array(idxs)*dt <= tend))[0] else: i = np.where(np.array(idxs)*dt >= tstart)[0] idxs = [idxs[j] for j in i] idxe = [idxe[j] for j in i] skips = [] skipe = [] if prune_trials: for (i,j) in zip(idxs, idxe): A = SPEEG[0,i-ipre:i+ipost+1] / speeg_mean[0] B = SPEMG[0,i-ipre:i+ipost+1] / spemg_mean[0] k = np.where(A >= np.median(A)*50)[0] l = np.where(B >= np.median(B)*500)[0] if len(k) > 0 or len(l) > 0: skips.append(i) skipe.append(j) print("%s: kicking out %d trials" % (name, len(skips))) idxs_new = [] idxe_new = [] for (i,j) in zip(idxs, idxe): if not i in skips: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # select trials where brain state is right before laser in trig_state if trig_state > 0: idxs_new = [] idxe_new = [] M = load_stateidx(ppath, name)[0] for (i,j) in zip(idxs, idxe): if i < len(M) and M[i] == trig_state: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # Spectrogram for EEG and EMG normalized by average power in each frequency band if pnorm == 1: SPEEG = np.divide(SPEEG, np.repeat(speeg_mean, len(t)).reshape(len(speeg_mean), len(t))) SPEMG = np.divide(SPEMG, np.repeat(spemg_mean, len(t)).reshape(len(spemg_mean), len(t))) speeg_parts = [] spemg_parts = [] for (i,j) in zip(idxs, idxe): if i>=ipre and j+ipost < len(t): eeg_part = SPEEG[ifreq,i-ipre:i+ipost+1] speeg_parts.append(eeg_part) spemg_parts.append(SPEMG[ifreq,i-ipre:i+ipost+1]) EEGLsr = np.array(speeg_parts).mean(axis=0) EMGLsr = np.array(spemg_parts).mean(axis=0) # smooth spectrogram nfilt = 3 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) EEGLsr = scipy.signal.convolve2d(EEGLsr, filt, boundary='symm', mode='same') if pnorm == 2: for i in range(EEGLsr.shape[0]): EEGLsr[i,:] = np.divide(EEGLsr[i,:], np.sum(np.abs(EEGLsr[i,0:ipre]))/(1.0*ipre)) EMGLsr[i,:] = np.divide(EMGLsr[i,:], np.sum(np.abs(EMGLsr[i,0:ipre]))/(1.0*ipre)) # get time axis dt = (1.0/SR)*NBIN t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) f = freq[ifreq] if pplot: # get rid of boxes around matplotlib plots def box_off(ax): ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() plt.ion() plt.figure(figsize=(10,8)) ax = plt.axes([0.1, 0.55, 0.4, 0.35]) plt.pcolormesh(t,f,EEGLsr, vmin=0, vmax=np.median(EEGLsr)*vm, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EEG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.62, 0.55, 0.35, 0.35]) ilsr = np.where((t>=0) & (t<=120))[0] plt.plot(f,EEGLsr[:,0:ipre].mean(axis=1), color='gray', label='baseline', lw=2) plt.plot(f,EEGLsr[:,ilsr].mean(axis=1), color='blue', label='laser', lw=2) box_off(ax) plt.xlabel('Freq. (Hz)') plt.ylabel('Power (uV^2)') #plt.legend(loc=0) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, borderaxespad=0.) ax = plt.axes([0.1, 0.1, 0.4, 0.35]) plt.pcolormesh(t,f,EMGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EMG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power (uV^2s)') ax = plt.axes([0.62, 0.1, 0.35, 0.35]) mf = np.where((f>=mu[0]) & (f <= mu[1]))[0] df = f[1]-f[0] # amplitude is square root of (integral over each frequency) avg_emg = np.sqrt(EMGLsr[mf,:].sum(axis=0)*df) m = np.max(avg_emg)*1.5 plt.plot([0,0], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.plot([laser_dur,laser_dur], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.xlim((t[0], t[-1])) plt.ylim((0,m)) plt.plot(t,avg_emg, color='black', lw=2) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. (uV)') plt.show() if psave: img_file = os.path.join(ppath, name, 'fig_'+name+'_spec.png') save_figure(img_file) return EEGLsr, EMGLsr, freq[ifreq], t def laser_triggered_eeg_avg(ppath, recordings, pre, post, f_max, laser_dur, pnorm=1, pplot=1, tstart=0, tend=-1, vm=[], cb_ticks=[], mu=[10, 100], trig_state=0, harmcs=0, iplt_level=1, peeg2=False, fig_file=''): """ calculate average spectrogram for all recordings listed in @recordings; for averaging take mouse identity into account :param ppath: base folder :param recordings: list of recordings :param pre: time before laser onset :param post: time after laser onset :param f_max: maximum frequency shown for EEG spectrogram :param laser_dur: duration of laser stimulation :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param pplot: pplot==0 - no figure; pplot==1 - conventional figure; pplot==2 - pretty figure showing EEG spectrogram along with EMG amplitude note: the errorbar for the EMG amplitude is the S.E.M. :param tstart: only consider laser trials with laser onset after tstart seconds :param tend: only consider laser trials with laser onset before tend seconds :param vm: saturation of heatmap for EEG spectrogram :param cb_ticks: ticks for colorbar (only applies for pplot==2) :param mu: frequencies for EMG amplitude calculation :param trig_state: if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param peeg2: if True, use EEG2 instead of EEG :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively :param fig_file: if specified, save figure to given file :return: t, f, EEGSpec, EMGSpec, EEGLsr t - time axis f - frequency axis EEGSpec - dict with mouse id -> 2D np.array(frequency x time) EMGSpec - dict with mouse id -> 2D np.array(frequency x time) EEGLsr - 2D np.array(frequency x time) """ EEGSpec = {} EMGSpec = {} mice = [] for rec in recordings: idf = re.split('_', rec)[0] if not(idf in mice): mice.append(idf) EEGSpec[idf] = [] EMGSpec[idf] = [] for rec in recordings: idf = re.split('_', rec)[0] EEG, EMG, f, t = laser_triggered_eeg(ppath, rec, pre, post, f_max, mu=mu, pnorm=pnorm, pplot=False, psave=False, tstart=tstart, tend=tend, trig_state=trig_state, peeg2=peeg2, harmcs=harmcs, iplt_level=iplt_level) EEGSpec[idf].append(EEG) EMGSpec[idf].append(EMG) for idf in mice: EEGSpec[idf] =
np.array(EEGSpec[idf])
numpy.array
import os import tempfile import numpy as np import scipy.ndimage.measurements as meas from functools import reduce import warnings import sys sys.path.append(os.path.abspath(r'../lib')) import NumCppPy as NumCpp # noqa E402 #################################################################################### def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #################################################################################### def test_seed(): np.random.seed(1) #################################################################################### def test_abs(): randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item() assert NumCpp.absScaler(randValue) == np.abs(randValue) components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.absArray(cArray), np.abs(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9)) #################################################################################### def test_add(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) #################################################################################### def test_alen(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.alen(cArray) == shape.rows #################################################################################### def test_all(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) #################################################################################### def test_allclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) tolerance = 1e-5 data1 = np.random.randn(shape.rows, shape.cols) data2 = data1 + tolerance / 10 data3 = data1 + 1 cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) assert NumCpp.allclose(cArray1, cArray2, tolerance) and not NumCpp.allclose(cArray1, cArray3, tolerance) #################################################################################### def test_amax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(),
np.max(data, axis=0)
numpy.max
''' XlPy/Tools/Xic_Picking/picking ______________________________ Tools to pick peaks from an extracted ion chromatogram. :copyright: (c) 2015 The Regents of the University of California. :license: GNU GPL, see licenses/GNU GPLv3.txt for more details. ''' # load modules import numpy as np # load objects/functions from collections import namedtuple # OBJECTS # ------- Intersect = namedtuple("Intersect", "above up down") class Cluster(namedtuple("Cluster", "xicfit start end")): '''Subclass with bound methods for facile data processing and scoring''' # YIELDERS def yield_distance(self): '''Returns the euclidean distance from each anchor to the cluster''' x = self.get_x() min_ = x.min() max_ = x.max() for anchor in self.xicfit.anchors: # add the minimum distance from the anchor to the cluster if min_ < anchor < max_: yield 0 elif anchor > max_: yield anchor - max_ elif anchor < min_: yield min_ - anchor # GETTERS def get_x(self): return self.xicfit.x[self.start:self.end] def get_y(self): return self.xicfit.y[self.start:self.end] def get_dotp(self, index): return self.xicfit.get_meandotp(index, self.start, self.end) def get_dotps(self): return [self.get_dotp(i) for i in range(len(self.xicfit.isotopes))] def get_masscorrelation(self, index): return self.xicfit.get_masscorrelation(index, self.start, self.end) def get_masscorrelations(self): return [self.get_masscorrelation(i) for i in range(len(self.xicfit.isotopes))] # CLUSTERING # ---------- def pad_clusters(length, *clusters): '''Adds padding to each of the clusters''' for cluster in clusters: min_ = cluster.min() max_ = cluster.max() if min_ != 0 and max_ < length - 1: yield np.r_[min_ - 1, cluster, max_ + 1] elif min_ != 0: yield np.r_[min_ - 1, cluster] elif max_ < length - 1: yield np.r_[cluster, max_ + 1] else: yield cluster # INTERSECTIONS # ------------- def getintersect(xicfit, valley=0.25, stddev=3, **kwds): '''Returns the intersection indexes as a namedtuple''' # get our two possible baselines valley_level = xicfit.y.max() * valley signal_to_noise = xicfit.baseline + stddev * xicfit.noise # grab the minimum threshold, and find our intersections with the valley threshold = min(valley_level, signal_to_noise) above = xicfit.y > threshold up, = np.where(above[1:] & ~above[:-1]) down, = np.where(~above[1:] & above[:-1]) return Intersect(above, up, down) def splitvalley(xicfit, intersect): '''Splits the array into series that are >= y.max() * valley''' indexes, =
np.where(intersect.above)
numpy.where
# coding:utf-8 import numpy as np import pandas as pd from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from gplearn.genetic import SymbolicTransformer from sklearn.linear_model import Ridge from sklearn.metrics import mean_squared_error np.random.seed(7) class GplearnDemo(object): def __init__(self): # data prepare self.__boston = None self.__boston_feature = None self.__boston_label = None self.__train_feature, self.__test_feature = [None for _ in range(2)] self.__train_label, self.__test_label = [None for _ in range(2)] self.__transformer = None self.__gp_train_feature = None self.__gp_test_feature = None # model fit self.__regressor = None def data_prepare(self): self.__boston = load_boston() self.__boston_feature = pd.DataFrame(self.__boston.data, columns=self.__boston.feature_names) self.__boston_label = pd.Series(self.__boston.target).to_frame("TARGET").squeeze() self.__train_feature, self.__test_feature, self.__train_label, self.__test_label = ( train_test_split( self.__boston_feature, self.__boston_label, test_size=0.5, shuffle=True ) ) # 不能有缺失值 self.__transformer = SymbolicTransformer(n_jobs=4) self.__transformer.fit(self.__train_feature, self.__train_label) self.__gp_train_feature = self.__transformer.transform(self.__train_feature) self.__gp_test_feature = self.__transformer.transform(self.__test_feature) def model_fit_predict(self): self.__regressor = Ridge() self.__regressor.fit(self.__train_feature, self.__train_label) print(mean_squared_error(self.__test_label, self.__regressor.predict(self.__test_feature))) self.__regressor = Ridge() self.__regressor.fit(
np.hstack((self.__train_feature.values, self.__gp_train_feature))
numpy.hstack
# -*- coding:Utf-8 -*- #from numpy import * from __future__ import print_function """ .. currentmodule:: pylayers.antprop.loss .. autosummary:: :members: """ import doctest import os import glob import doctest import logging import numpy as np from scipy import io import matplotlib.pylab as plt import pylayers.gis.gisutil as gu import numpy.linalg as la import pdb import time from numba import jit def PL0(fGHz,GtdB=0,GrdB=0,R=1): """ Path Loss at frequency fGHZ @ R Parameters ---------- fGHz: float frequency GHz GtdB: float transmitting antenna gain dB (default 0 dB) GrdB: float receiving antenna gain dB (default 0 dB) R : float distance in m Returns ------- PL0 : float path @ R Notes ----- .. math:: PL_0 = -20 log_{10}(\\frac{\\lambda}{4\\pi}) - GtdB -GrdB Examples -------- >>> fGHz = 2.4 >>> PL = PL0(fGHz) >>> assert (PL<41)&(PL>40),"something wrong" """ if not isinstance(fGHz,np.ndarray): fGHz=np.array([fGHz]) ld = 0.3/fGHz PL0 = -20*np.log10(ld/(4.0*np.pi*R))-GtdB-GrdB return PL0 def Dgrid_points(points,Px): """ distance point to grid Parameters ---------- points : np.array grid Np x 2 array Px : np.array point 2 x 1 array Returns ------- D: Euclidian distance matrix """ Dx = points[:,0] - Px[0] Dy = points[:,1] - Px[1] D = np.sqrt( Dx*Dx + Dy*Dy ) return(D) def FMetisShad2(fGHz,r,D,sign=1): """ F Metis shadowing function Parameters ---------- fGHz : np.array(Nf) frequency GHz r : np.array(Nseg,) distance between Tx and Rx D : np.array(Nseg,Nscreen) indirect distance between Tx and Rx (screen effect) sign : np.array(Nseg,Nscreen) == 1 : Shadowing NLOS situation ==-1 : No shadowing LOS situation Returns ------- F : np.array(Nseg,Nscreen,Nf) Notes ----- Provides an implementation of formula (6.6) in D1.4 of METIS project See Also -------- LossMetisShadowing """ lamda = 0.3/fGHz[None,None,:] F = np.arctan(sign[:,:,None]*np.pi/2.*(np.sqrt((np.pi/lamda)*(D[:,:,None]-r[:,None,None])))) / np.pi return(F) def FMetisShad(fGHz,r,D,sign=1): """ F Metis shadowing function Parameters ---------- fGHz : float frequency GHz r : float distance between Tx and Rx D : float indirect distance between Tx and Rx (screen effect) sign : int == 1 : Shadowing NLOS situation ==-1 : No shadowing LOS situation Notes ----- Provides an implementation of formula (6.6) in D1.4 of METIS project See Also -------- LossMetisShadowing """ lamda = 0.3/fGHz F = np.arctan(sign*np.pi/2.*(np.sqrt((np.pi/lamda)*(D-r)))) / np.pi return(F) def LossMetisShadowing(fGHz,tx,rx,pg,uw,uh,w,h): """ Calculate the Loss from Parameters ---------- fGHz : float tx : np.array (,3) of floats transmiter coordinates rx : np.array (,3) of floats receiver coordinates pg : np.array (,3) of floats center of gravity of the screen uw : np.array (,3) of floats unitary vector along width dimension uh : np.array (,3) of floats unitary vector along height dimension w : float width in meters h : float height in meters Returns ------- Lsh : float Loss in dB to add to the FS path Loss Notes ----- This function provides an implementation of formula 6.5 of D1.4 deliverable of METIS project [Metis D1.4](Ahttps://www.metis2020.com/wp-content/uploads/METIS_D1.4_v3.pdf) # geometry parametric issue : find M in [tx-rx] defined as M = alpha*rx + (1-alpha)tx where alpha in [0-1]. # if alpha = 0 then M = tx ; if alpha = 1 then M = rx. # Besides, M is defined as M = pg + beta*uw + gamma*uh then alpha*rx + (1-alpha)tx = pg + beta*uw + gamma*uh # [rx-tx , -uw, -uh]*[alpha,beta,gamma].T = pg - tx <==> Ax = b solved by la.solve ; x[0]=alpha, x[1]=beta and TODO To be vectorized """ rxtx = rx - tx # LOS distance # x[2]=gamma. A = np.vstack((rxtx,-uw,-uh)).T b = pg - tx x = la.solve(A,b) # condition of shadowing condseg = ((x[0]>1) or (x[0]<0)) condw = ((x[1]>w/2.) or (x[1]<-w/2.)) condh = ((x[2]>h/2.) or (x[2]<-h/2.)) visi = condseg or condw or condh if visi: shad = -1 else: shad = 1 r = np.dot(rxtx,rxtx)**0.5 w1 = pg + uw*w/2. w2 = pg - uw*w/2. h1 = pg + uh*h/2. h2 = pg - uh*h/2. Dtw1 = np.dot(tx-w1,tx-w1)**0.5 Drw1 = np.dot(rx-w1,rx-w1)**0.5 Dtw2 = np.dot(tx-w2,tx-w2)**0.5 Drw2 = np.dot(rx-w2,rx-w2)**0.5 Dth1 = np.dot(tx-h1,tx-h1)**0.5 Drh1 = np.dot(rx-h1,rx-h1)**0.5 Dth2 = np.dot(tx-h2,tx-h2)**0.5 Drh2 = np.dot(rx-h2,rx-h2)**0.5 D1w = Dtw1+Drw1 D1h = Dth1+Drh1 D2w = Dtw2+Drw2 D2h = Dth2+Drh2 if shad == 1: signw1 = 1 signw2 = 1 signh1 = 1 signh2 = 1 else: if condw: if D1w>D2w: signw1=1 signw2=-1 else: signw1=-1 signw2=1 else: signw1 = 1 signw2 = 1 if condh: if D1h>D2h: signh1=1 signh2=-1 else: signh1=-1 signh2=1 else: signh1 = 1 signh2 = 1 Fw1 = FMetisShad(fGHz,r,D1w,sign=signw1) Fh1 = FMetisShad(fGHz,r,D1h,sign=signh1) Fw2 = FMetisShad(fGHz,r,D2w,sign=signw2) Fh2 = FMetisShad(fGHz,r,D2h,sign=signh2) tmp = (Fh1+Fh2)*(Fw1+Fw2) Lsh = -20*np.log10(1-tmp) #return(Lsh,shad,tmp,Fw1,Fh1,Fw2,Fh2,condh,condw) return(Lsh) def LossMetisShadowing2(fGHz,tx,rx,pg,uw,uh,w,h): """ Calculate the Loss from Parameters ---------- fGHz : np.array(,Nf) tx : np.array (3,Nseg) of floats transmiter coordinates rx : np.array (3,Nseg) of floats receiver coordinates pg : np.array (3,Nscreen) of floats center of gravity of the screen uw : np.array (3,Nscreen) of floats unitary vector along width dimension uh : np.array (3,Nscreen) of floats unitary vector along height dimension w : np.array (,Nscreen) width in meters h : np.array (,Nscreen) height in meters Returns ------- Lsh : np.array (Nseg,Nscreen,Nf) Loss in dB to add to the FS path Loss Notes ----- This function provides an implementation of formula 6.5 of D1.4 deliverable of METIS project [Metis D1.4](Ahttps://www.metis2020.com/wp-content/uploads/METIS_D1.4_v3.pdf) # geometry parametric issue : find M in [tx-rx] defined as M = alpha*rx + (1-alpha)tx where alpha in [0-1]. # if alpha = 0 then M = tx ; if alpha = 1 then M = rx. # Besides, M is defined as M = pg + beta*uw + gamma*uh then alpha*rx + (1-alpha)tx = pg + beta*uw + gamma*uh # [rx-tx , -uw, -uh]*[alpha,beta,gamma].T = pg - tx <==> Ax = b solved by la.solve ; x[0]=alpha, x[1]=beta and """ Nseg = tx.shape[1] Nscreen = uw.shape[1] rxtx = rx - tx # (3,Nseg) LOS distance # A : (Nseg,Nscreen,3,3) # b : (Nseg,Nscreen,3) # rxtx.T (Nseg,3) # uw.T (Nscreen, 3) # uh.T (Nscreen, 3) U = rxtx.T[:,None,:,None] W = uw.T[None,:,:,None] H = uh.T[None,:,:,None] We = W + np.zeros(U.shape) He = H + np.zeros(U.shape) Ue = U + np.zeros(He.shape) A = np.concatenate((Ue,-We,-He),axis=3) #A = np.vstack((rxtx,-uw,-uh)).T # pg.T Nscreen, 3 # tx.T Nseg,3 b = pg.T[None,:,:]-tx.T[:,None,:] #b = pg - tx x = la.solve(A,b) # condition of shadowing condseg = ((x[:,:,0]>1) + (x[:,:,0]<0)) condw = ((x[:,:,1]>w[None,:]/2.) + (x[:,:,1]<-w[None,:]/2.)) condh = ((x[:,:,2]>h[None,:]/2.) + (x[:,:,2]<-h[None,:]/2.)) visi = (condseg + condw + condh)%2 # if visi: # shad = -1 # else: # shad = 1 #shad = - visi r = np.sum(rxtx*rxtx,axis=0)**0.5 w1 = pg + uw*w[None,:]/2. w2 = pg - uw*w[None,:]/2. h1 = pg + uh*h[None,:]/2. h2 = pg - uh*h[None,:]/2. Dtw1 = np.sum((tx[...,None]-w1[:,None,:])*(tx[...,None]-w1[:,None,:]),axis=0)**0.5 Drw1 = np.sum((rx[...,None]-w1[:,None,:])*(rx[...,None]-w1[:,None,:]),axis=0)**0.5 Dtw2 = np.sum((tx[...,None]-w2[:,None,:])*(tx[...,None]-w2[:,None,:]),axis=0)**0.5 Drw2 = np.sum((rx[...,None]-w2[:,None,:])*(rx[...,None]-w2[:,None,:]),axis=0)**0.5 Dth1 = np.sum((tx[...,None]-h1[:,None,:])*(tx[...,None]-h1[:,None,:]),axis=0)**0.5 Drh1 = np.sum((rx[...,None]-h1[:,None,:])*(rx[...,None]-h1[:,None,:]),axis=0)**0.5 Dth2 =
np.sum((tx[...,None]-h2[:,None,:])*(tx[...,None]-h2[:,None,:]),axis=0)
numpy.sum
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np from obspy.signal.util import next_pow_2 from gmprocess.waveform_processing.fft import compute_and_smooth_spectrum from gmprocess.waveform_processing.spectrum import \ brune_f0, moment_from_magnitude # Options for tapering noise/signal windows TAPER_WIDTH = 0.05 TAPER_TYPE = 'hann' TAPER_SIDE = 'both' MIN_POINTS_IN_WINDOW = 10 def compute_snr_trace(tr, bandwidth, mag=None, check=None): if tr.hasParameter('signal_split'): # Split the noise and signal into two separate traces split_prov = tr.getParameter('signal_split') if isinstance(split_prov, list): split_prov = split_prov[0] split_time = split_prov['split_time'] noise = tr.copy().trim(endtime=split_time) signal = tr.copy().trim(starttime=split_time) noise.detrend('demean') signal.detrend('demean') # Taper both windows noise.taper(max_percentage=TAPER_WIDTH, type=TAPER_TYPE, side=TAPER_SIDE) signal.taper(max_percentage=TAPER_WIDTH, type=TAPER_TYPE, side=TAPER_SIDE) # Check that there are a minimum number of points in the noise window if noise.stats.npts < MIN_POINTS_IN_WINDOW: # Fail the trace, but still compute the signal spectra # ** only fail here if it hasn't already failed; we do not yet # ** support tracking multiple fail reasons and I think it is # ** better to know the FIRST reason if I have to pick one. if not tr.hasParameter('failure'): tr.fail('Failed SNR check; Not enough points in noise window.') compute_and_smooth_spectrum(tr, bandwidth, 'signal') return tr # Check that there are a minimum number of points in the noise window if signal.stats.npts < MIN_POINTS_IN_WINDOW: # Fail the trace, but still compute the signal spectra if not tr.hasParameter('failure'): tr.fail( 'Failed SNR check; Not enough points in signal window.') compute_and_smooth_spectrum(tr, bandwidth, 'signal') return tr nfft = max(next_pow_2(signal.stats.npts), next_pow_2(noise.stats.npts)) compute_and_smooth_spectrum(tr, bandwidth, 'noise', noise, nfft) compute_and_smooth_spectrum(tr, bandwidth, 'signal', signal, nfft) # For both the raw and smoothed spectra, subtract the noise spectrum # from the signal spectrum tr.setCached( 'signal_spectrum', { 'spec': (tr.getCached('signal_spectrum')['spec'] - tr.getCached('noise_spectrum')['spec']), 'freq': tr.getCached('signal_spectrum')['freq'] } ) tr.setCached( 'smooth_signal_spectrum', { 'spec': (tr.getCached('smooth_signal_spectrum')['spec'] - tr.getCached('smooth_noise_spectrum')['spec']), 'freq': tr.getCached('smooth_signal_spectrum')['freq'] } ) smooth_signal_spectrum = tr.getCached('smooth_signal_spectrum')['spec'] smooth_noise_spectrum = tr.getCached('smooth_noise_spectrum')['spec'] snr = smooth_signal_spectrum / smooth_noise_spectrum snr_dict = { 'snr': snr, 'freq': tr.getCached('smooth_signal_spectrum')['freq'] } tr.setCached('snr', snr_dict) else: # We do not have an estimate of the signal split time for this trace compute_and_smooth_spectrum(tr, bandwidth, 'signal') if check is not None: tr = snr_check(tr, mag, **check) return tr def compute_snr(st, bandwidth, mag=None, check=None): """Compute SNR dictionaries for a stream, looping over all traces. Args: st (StationStream): Trace of data. bandwidth (float): Konno-Omachi smoothing bandwidth parameter. check (dict): If None, no checks performed. Returns: StationTrace with SNR dictionaries added as trace parameters. """ for tr in st: # Do we have estimates of the signal split time? compute_snr_trace(tr, bandwidth, mag=mag, check=check) return st def snr_check(tr, mag, threshold=3.0, min_freq='f0', max_freq=5.0, f0_options={ 'stress_drop': 10, 'shear_vel': 3.7, 'ceiling': 2.0, 'floor': 0.1}): """ Check signal-to-noise ratio. Requires noise/singal windowing to have succeeded. Args: tr (StationTrace): Trace of data. threshold (float): Threshold SNR value. min_freq (float or str): Minimum frequency for threshold to be exeeded. If 'f0', then the Brune corner frequency will be used. max_freq (float): Maximum frequency for threshold to be exeeded. bandwidth (float): Konno-Omachi smoothing bandwidth parameter. f0_options (dict): Dictionary of f0 options (see config file). Returns: trace: Trace with SNR check. """ if tr.hasCached('snr'): snr_dict = tr.getCached('snr') snr = np.array(snr_dict['snr']) freq = np.array(snr_dict['freq']) # If min_freq is 'f0', then compute Brune corner frequency if min_freq == 'f0': min_freq = brune_f0( moment_from_magnitude(mag), f0_options['stress_drop'], f0_options['shear_vel']) if min_freq < f0_options['floor']: min_freq = f0_options['floor'] if min_freq > f0_options['ceiling']: min_freq = f0_options['ceiling'] # Check if signal criteria is met mask = (freq >= min_freq) & (freq <= max_freq) if
np.any(mask)
numpy.any
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Verification for mean normalize demo. """ import prepare import process_data import numpy as np # 0 for f_range, 1 for f_mean # use decrypted global f_range and f_mean to rescaling local feature data res = process_data.decrypt_data(prepare.data_path + 'result', ( 2, prepare.feat_width, )) # reconstruct plaintext global data to verify row, col = sum(prepare.sample_nums), prepare.feat_width plain_mat = np.empty((row, col)) row = 0 for i, num in enumerate(prepare.sample_nums): m = np.load(prepare.data_path + 'feature_data.' + str(i) + '.npy') plain_mat[row:row + num] = m row += num def mean_normalize(f_mat): """ get plain text f_range & f_mean """ ma =
np.amax(f_mat, axis=0)
numpy.amax
import unittest import numpy as np from nptest import nptest class StatisticsTests(unittest.TestCase): #region amin/amax def test_amin_1(self): a = np.arange(1,5).reshape((2,2)) print(a) print("*****") b = np.amin(a) # Minimum of the flattened array print(b) print("*****") c = np.amin(a, axis=0) # Minima along the first axis print(c) print("*****") d = np.amin(a, axis=1) # Minima along the second axis print(d) print("*****") e = np.arange(5, dtype=float) e[2] = np.NaN f = np.amin(e) print(f) print("*****") g = np.nanmin(b) print(g) def test_amin_2(self): a = np.arange(30.25,46.25).reshape((4,4)) print(a) print("*****") b = np.amin(a) # Minimum of the flattened array print(b) print("*****") c = np.amin(a, axis=0) # Minima along the first axis print(c) print("*****") d = np.amin(a, axis=1) # Minima along the second axis print(d) print("*****") e =
np.arange(5, dtype=float)
numpy.arange
# -*- coding: utf-8 -*- """ Created on 2021/12/14 21:10:08 @File -> mutual_info.py @Author: luolei @Email: <EMAIL> @Describe: 互信息和条件互信息计算 """ from scipy.special import psi import pandas as pd import numpy as np from . import DTYPES from . import preprocess_values, deter_k, build_tree, query_neighbors_dist from .entropy import Entropy class MutualInfo(object): """ 两个随机变量之间的互信息计算 1. X和Y均为'd': 直接离散计算互信息H(X) + H(Y) - H(X, Y) 2. X和Y均为'c': 采用Kraskov的方案 3. X和Y分别为'c'和'd': 采用Ross方案 4. X和Y分别为'd'和'c': 采用Ross方案 """ def __init__(self, x: np.ndarray, y: np.ndarray, x_type: str, y_type: str): assert len(x) == len(y) for type_ in [x_type, y_type]: assert type_ in DTYPES self.x = preprocess_values(x, x_type) self.y = preprocess_values(y, y_type) self.x_type, self.y_type = x_type, y_type @staticmethod def _mi_cc(x, y, k: int = None): """计算连续变量之间的互信息 参考文献: ------ <NAME>, <NAME>, <NAME>: Estimating Mutual Information, 2003, Eqs. (23) & (30). """ N, _ = x.shape k = deter_k(x) if k is None else k assert k <= len(x) - 1 xy = np.c_[x, y] tree = build_tree(xy, 'chebyshev') nn_distc = query_neighbors_dist(tree, xy, k) # 获得了各样本第k近邻的距离 tree = build_tree(x, 'chebyshev') nn_distc_x = nn_distc - 1e-12 Nx = tree.query_radius(x, nn_distc_x, count_only=True) tree = build_tree(y, 'chebyshev') nn_distc_y = nn_distc - 1e-12 Ny = tree.query_radius(y, nn_distc_y, count_only=True) # return psi(N) + psi(k) - np.mean(psi(Nx) + psi(Ny)) return psi(k) - 1 / k + psi(N) - np.mean(psi(Nx) + psi(Ny)) @staticmethod def _mi_cd(x, y, k: int = None): """ 计算连续的X和离散的Y之间的互信息 参考文献: ------ <NAME>: Mutual Information between Discrete and Continuous Data Sets, 2014. """ N, _ = x.shape assert (x.shape[1] >= 1) & (y.shape[1] == 1) # NOTE: 此处y必须为1维 y = y.flatten() k = deter_k(x) if k is None else k assert k <= N - 1 # 统计各类Y的总数. classes = np.unique(y) Nx_class = np.zeros_like(y) for i in range(len(y)): Nx_class[i] = np.sum(y == y[i]) # 逐类进行K近邻计算. nn_distc_classes =
np.zeros_like(y, dtype=float)
numpy.zeros_like
""" Copyright (c) 2021 The authors of SCC All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import time from graphgrove.scc import SCC from graphgrove import graph_builder import numpy as np class Cosine_SCC(object): def __init__(self, k=25, num_rounds=50, thresholds=None, index_name='cosine_sgtree', cores=12, cc_alg=0, par_minimum=100000, verbosity=0, beam_size=100, hnsw_max_degree=200, hnsw_ef_search=200, hnsw_ef_construction=200): self.k = k self.num_rounds = num_rounds self.thresholds = thresholds self.index_name = index_name self.cores = cores if thresholds is None: self.thresholds =
np.ones(num_rounds)
numpy.ones
# note: documentation not written yet import time import numba import numpy as np from scipy import optimize from scipy import interpolate from types import SimpleNamespace import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") prop_cycle = plt.rcParams["axes.prop_cycle"] colors = prop_cycle.by_key()["color"] class AiyagariModel: ############ # 1. setup # ############ def __init__(self, name="", **kwargs): self.name = name self.setup_parameters() self.update_parameters(kwargs) self.setup_primitive_functions() self.setup_misc() def setup_parameters(self): # a. model parameters self.beta = 0.96 # discount factor self.delta = 0.08 # depreciation rate self.sigma = 4 # crra coefficient self.alpha = 1 / 3 # cobb-douglas coeffient # b. solution self.tol_cfunc_inf = 1e-6 # tolerance for consumption function self.cfunc_maxiter = ( 2000 ) # maximum number of iterations when finding consumption function # income self.unemp_p = 0.05 # unemployment probability self.unemp_b = 0.15 # unemployment benefits self.Nz = 2 # number of productivity states self.grid_z = np.array([0.90, 1.10]) # productivity values self.trans_p_z = np.array( [[0.95, 0.05], [0.05, 0.95]] ) # transition probabilities # end-of-period assets grid self.Na = 200 self.a_min = 0 self.a_max = 20 self.a_phi = 1.1 # cash-on-hand grid self.Nm = 500 self.m_max = 20 self.m_phi = 1.1 # c. simulation self.seed = 2018 # d. steady state self.ss_R_tol = 1e-7 # tolerance for finding interest rate self.ss_a0 = 4.0 # initial cash-on-hand (homogenous) self.ss_simN = 50000 # number of households self.ss_simT = 2000 # number of time-periods self.ss_sim_burnin = 1000 # burn-in periods before calculating average savings # e. transition path self.transN = 50000 # number of households self.transT = 200 # number of periods self.trans_maxiter = 200 self.trans_tol = 1e-4 # tolerance for convergence def update_parameters(self, kwargs): for key, value in kwargs.items(): setattr(self, key, value) def setup_primitive_functions(self): eps = 1e-8 # a. utility function if self.sigma == 1: self.u = lambda c: np.log(np.fmax(c, eps)) else: self.u = lambda c: np.fmax(c, eps) ** (1 - self.sigma) / (1 - self.sigma) self.u_prime = lambda c: np.fmax(c, eps) ** (-self.sigma) self.u_prime_inv = lambda x: x ** (-1 / self.sigma) # b. production function self.f = lambda k: np.fmax(k, eps) ** self.alpha self.f_prime = lambda k: self.alpha * np.fmax(k, eps) ** (self.alpha - 1) self.f_prime_inv = lambda x: (np.fmax(x, eps) / self.alpha) ** ( 1 / (self.alpha - 1) ) def setup_misc(self): def nonlinspace( min_val, max_val, num, phi ): # phi up, more points close to min_val x = np.zeros(num) x[0] = min_val for i in range(1, num): x[i] = x[i - 1] + (max_val - x[i - 1]) / (num - i) ** phi return x # a. grids self.grid_a = nonlinspace(self.a_min, self.a_max, self.Na, self.a_phi) self.grid_m = nonlinspace(0, self.m_max, self.Nm, self.m_phi) # b. initial distribution of z z_diag = np.diag(self.trans_p_z ** 1000) self.ini_p_z = z_diag / np.sum(z_diag) avg_z = np.sum(self.grid_z * self.ini_p_z) self.grid_z = self.grid_z / avg_z # force mean one # c. bounds on interst factor self.R_high = 1 / self.beta + 0.005 self.R_low = 1 / self.beta - 0.005 # d. misc self.c_transition_path = np.empty((1, 1, 1)) # raw allocate ###################### # 2. model functions # ###################### def R_func(self, k): return 1 + self.f_prime(k) - self.delta def w_func(self, k): return self.f(k) - self.f_prime(k) * k def w_from_R_func(self, R): k = self.f_prime_inv(R - 1 + self.delta) return self.w_func(k) ############ # 3. solve # ############ def solve_step(self, c_plus_interp, R, w): c_func = [] for i_z in range(self.Nz): # a. find next-period average marginal utility avg_marg_u_plus = np.zeros(self.Na) for i_zplus in range(self.Nz): for u in [0, 1]: # i. future cash-on-hand if u == 0: m_plus = R * self.grid_a + w * ( self.grid_z[i_zplus] - self.unemp_p * self.unemp_b ) / (1 - self.unemp_p) else: m_plus = R * self.grid_a + w * self.unemp_b # ii. future consumption c_plus = c_plus_interp[i_zplus](m_plus) # iii. future marginal utility marg_u_plus = self.u_prime(c_plus) # iv. accumulate average marginal utility weight = self.trans_p_z[i_z, i_zplus] if u == 0: weight *= 1 - self.unemp_p else: weight *= self.unemp_p avg_marg_u_plus += weight * marg_u_plus # b. find current consumption and cash-on-hand c = self.u_prime_inv(R * self.beta * avg_marg_u_plus) m = self.grid_a + c m = np.insert(m, 0, 0) # add 0 in beginning c = np.insert(c, 0, 0) # add 0 in beginning # c. interpolate to common grid c_raw_func = interpolate.RegularGridInterpolator( [m], c, method="linear", bounds_error=False, fill_value=None ) # d. construct interpolator at common grid c_func_now = interpolate.RegularGridInterpolator( [self.grid_m], c_raw_func(self.grid_m), method="linear", bounds_error=False, fill_value=None, ) c_func.append(c_func_now) return c_func def solve_inf_horizon(self): # a. initial guess (consume everything) c_func_inf = [] for i_z in range(self.Nz): # i. consume everything m = self.grid_m c = m # ii. create linear interpolator interp = interpolate.RegularGridInterpolator( [m], c, method="linear", bounds_error=False, fill_value=None ) # iii. append c_func_inf.append(interp) # b. solve household problem diff_cfunc = np.inf it = 0 while diff_cfunc > self.tol_cfunc_inf: it += 1 # i. remember previous c_func_inf_old = c_func_inf # ii. solve one step further c_func_inf = self.solve_step(c_func_inf_old, self.R_ss, self.w_ss) # iii. maximum absolute difference diff_cfunc = [] for i_z in range(self.Nz): diff_cfunc.append( np.amax(np.abs(c_func_inf_old[i_z].values - c_func_inf[i_z].values)) ) diff_cfunc = max(diff_cfunc) # iv. do not reach 2000 iterations if it > self.cfunc_maxiter: break # c. save interpolators self.c_func_inf = c_func_inf # d. save values self.c_inf = np.empty((self.Nz, self.Nm)) for z in range(self.Nz): self.c_inf[z, :] = c_func_inf[z].values def solve_transition_path(self): # a. allocate memory self.c_func_transition_path = [None] * self.transT self.c_transition_path = np.empty((self.transT, self.Nz, self.Nm)) # b. solve backwards along transition path for t in reversed(range(self.transT)): # i. solve if t == self.transT - 1: c_plus_func = self.c_func_inf self.c_func_transition_path[t] = self.solve_step( c_plus_func, self.R_ss, self.w_ss ) else: c_plus_func = self.c_func_transition_path[t + 1] self.c_func_transition_path[t] = self.solve_step( c_plus_func, self.sim_R[t + 1], self.sim_w[t + 1] ) # ii. save values for z in range(self.Nz): self.c_transition_path[t, z, :] = self.c_func_transition_path[t][ z ].values ############################# # 4. stationary equilibrium # ############################# def check_supply_and_demand(self, R_ss_guess, a0, z0, print_results=False): # a. prices self.R_ss = R_ss_guess self.w_ss = self.w_from_R_func(self.R_ss) # b. solve infinite horizon problem t0 = time.time() self.solve_inf_horizon() time_sol = time.time() - t0 # c. simulate t0 = time.time() # prices self.ss_sim_R = self.R_ss * np.ones(self.ss_simT) self.ss_sim_w = self.w_ss * np.ones(self.ss_simT) # simulate self.ss_sim_k, self.ss_sim_a, self.ss_sim_z = simulate( a0, z0, self.ss_sim_R, self.ss_sim_w, self.ss_simN, self.ss_simT, self.grid_z, self.grid_m, self.c_inf, self.trans_p_z, self.unemp_p, self.unemp_b, self.c_transition_path, 0, self.seed, ) time_sim = time.time() - t0 # d. calculate difference self.k_ss = np.mean(self.ss_sim_k[self.ss_sim_burnin :]) R_ss_implied = self.R_func(self.k_ss) diff = R_ss_implied - R_ss_guess # e. print results if print_results: print( f" guess on R = {R_ss_guess:.5f} -> implied R = {R_ss_implied:.5f} (diff = {diff:8.5f})" ) # print(f' time to solve = {time_sol:.1f}, time to simulate = {time_sim:.1f}') return diff def find_stationary_equilibrium(self, print_results=True): print(f"find stationary equilibrium (R in [{self.R_low:.5f};{self.R_high:.5f}]") # a. initial values a0 = self.ss_a0 * np.ones(self.ss_simN) z0 = np.zeros(self.ss_simN, dtype=np.int32) z0[np.linspace(0, 1, self.ss_simN) > self.ini_p_z[0]] = 1 # b. find R_ss (first go) self.R_ss = optimize.bisect( self.check_supply_and_demand, self.R_low, self.R_high, args=(a0, z0, print_results), xtol=self.ss_R_tol * 100, ) self.check_supply_and_demand(self.R_ss, a0, z0) print(f" update initial distribution") # b. find R_ss (second go) a0 =
np.copy(self.ss_sim_a)
numpy.copy
from typing import Union, Optional import pytest import scanpy as sc import cellrank.external as cre from anndata import AnnData from cellrank.tl.kernels import ConnectivityKernel from cellrank.external.kernels._utils import MarkerGenes from cellrank.external.kernels._wot_kernel import LastTimePoint import numpy as np import pandas as pd from scipy.sparse import spmatrix, csr_matrix from pandas.core.dtypes.common import is_categorical_dtype from matplotlib.cm import get_cmap from matplotlib.colors import to_hex class TestOTKernel: def test_no_connectivities(self, adata_large: AnnData): del adata_large.obsp["connectivities"] terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) ok = ok.compute_transition_matrix(1, 0.001) assert ok._conn is None np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) def test_method_not_implemented(self, adata_large: AnnData): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) with pytest.raises( NotImplementedError, match="Method `'unbal'` is not yet implemented." ): ok.compute_transition_matrix(1, 0.001, method="unbal") def test_no_terminal_states(self, adata_large: AnnData): with pytest.raises(RuntimeError, match="Unable to initialize the kernel."): cre.kernels.StationaryOTKernel( adata_large, g=np.ones((adata_large.n_obs,), dtype=np.float64), ) def test_normal_run(self, adata_large: AnnData): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) ok = ok.compute_transition_matrix(1, 0.001) assert isinstance(ok, cre.kernels.StationaryOTKernel) assert isinstance(ok._transition_matrix, csr_matrix) np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) assert isinstance(ok.params, dict) @pytest.mark.parametrize("connectivity_kernel", (None, ConnectivityKernel)) def test_compute_projection( self, adata_large: AnnData, connectivity_kernel: Optional[ConnectivityKernel] ): terminal_states = np.full((adata_large.n_obs,), fill_value=np.nan, dtype=object) ixs = np.where(adata_large.obs["clusters"] == "Granule immature")[0] terminal_states[ixs] = "GI" ok = cre.kernels.StationaryOTKernel( adata_large, terminal_states=pd.Series(terminal_states).astype("category"), g=np.ones((adata_large.n_obs,), dtype=np.float64), ) ok = ok.compute_transition_matrix(1, 0.001) if connectivity_kernel is not None: ck = connectivity_kernel(adata_large).compute_transition_matrix() combined_kernel = 0.9 * ok + 0.1 * ck combined_kernel.compute_transition_matrix() else: combined_kernel = ok expected_error = ( r"<StationaryOTKernel> is not a kNN based kernel. The embedding projection " r"only works for kNN based kernels." ) with pytest.raises(AttributeError, match=expected_error): combined_kernel.compute_projection() class TestWOTKernel: def test_no_connectivities(self, adata_large: AnnData): del adata_large.obsp["connectivities"] ok = cre.kernels.WOTKernel( adata_large, time_key="age(days)" ).compute_transition_matrix() assert ok._conn is None np.testing.assert_allclose(ok.transition_matrix.sum(1), 1.0) def test_invalid_solver_kwargs(self, adata_large: AnnData): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") with pytest.raises(TypeError, match="unexpected keyword argument 'foo'"): ok.compute_transition_matrix(foo="bar") def test_inversion_updates_adata(self, adata_large: AnnData): key = "age(days)" ok = cre.kernels.WOTKernel(adata_large, time_key=key) assert is_categorical_dtype(adata_large.obs[key]) assert adata_large.obs[key].cat.ordered np.testing.assert_array_equal(ok.experimental_time, adata_large.obs[key]) orig_time = ok.experimental_time ok = ~ok inverted_time = ok.experimental_time assert is_categorical_dtype(adata_large.obs[key]) assert adata_large.obs[key].cat.ordered np.testing.assert_array_equal(ok.experimental_time, adata_large.obs[key]) np.testing.assert_array_equal( orig_time.cat.categories, inverted_time.cat.categories ) np.testing.assert_array_equal(orig_time.index, inverted_time.index) with pytest.raises(AssertionError): np.testing.assert_array_equal(orig_time, inverted_time) @pytest.mark.parametrize("cmap", ["inferno", "viridis"]) def test_update_colors(self, adata_large: AnnData, cmap: str): ckey = "age(days)_colors" _ = cre.kernels.WOTKernel(adata_large, time_key="age(days)", cmap=cmap) colors = adata_large.uns[ckey] cmap = get_cmap(cmap) assert isinstance(colors, np.ndarray) assert colors.shape == (2,) np.testing.assert_array_equal(colors, [to_hex(cmap(0)), to_hex(cmap(cmap.N))]) @pytest.mark.parametrize("cmat", [None, "Ms", "X_pca", "good_shape", "bad_shape"]) def test_cost_matrices(self, adata_large: AnnData, cmat: str): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") if isinstance(cmat, str) and "shape" in cmat: cost_matrices = { (12.0, 35.0): np.random.normal(size=(73 + ("bad" in cmat), 127)) } else: cost_matrices = cmat if cmat == "bad_shape": with pytest.raises(ValueError, match=r"Expected cost matrix for time pair"): ok.compute_transition_matrix(cost_matrices=cost_matrices) else: ok = ok.compute_transition_matrix(cost_matrices=cost_matrices) param = ok.params["cost_matrices"] if cmat == "Ms": assert param == "layer:Ms" elif cmat == "X_pca": assert param == "obsm:X_pca" elif cmat == "good_shape": # careful, param is `nstr`, which does not equal anything assert str(param) == "precomputed" else: assert param == "default" @pytest.mark.parametrize("n_iters", [3, 5]) def test_growth_rates(self, adata_large: AnnData, n_iters: int): ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") ok = ok.compute_transition_matrix(growth_iters=n_iters) assert isinstance(ok.growth_rates, pd.DataFrame) np.testing.assert_array_equal(adata_large.obs_names, ok.growth_rates.index) np.testing.assert_array_equal( ok.growth_rates.columns, [f"g{i}" for i in range(n_iters + 1)] ) np.testing.assert_array_equal( adata_large.obs["estimated_growth_rates"], ok.growth_rates[f"g{n_iters}"] ) assert ok.params["growth_iters"] == n_iters @pytest.mark.parametrize("key_added", [None, "gr"]) def test_birth_death_process(self, adata_large: AnnData, key_added: Optional[str]): np.random.seed(42) adata_large.obs["foo"] = np.random.normal(size=(adata_large.n_obs,)) adata_large.obs["bar"] = np.random.normal(size=(adata_large.n_obs,)) ok = cre.kernels.WOTKernel(adata_large, time_key="age(days)") gr = ok.compute_initial_growth_rates("foo", "bar", key_added=key_added) if key_added is None: assert isinstance(gr, pd.Series) np.testing.assert_array_equal(gr.index, adata_large.obs_names) else: assert gr is None assert "gr" in adata_large.obs @pytest.mark.parametrize("ltp", list(LastTimePoint)) def test_last_time_point(self, adata_large: AnnData, ltp: LastTimePoint): key = "age(days)" ok = cre.kernels.WOTKernel(adata_large, time_key=key).compute_transition_matrix( last_time_point=ltp, conn_kwargs={"n_neighbors": 11}, threshold=None, ) ixs = np.where(adata_large.obs[key] == 35.0)[0] T = ok.transition_matrix[ixs, :][:, ixs].A if ltp == LastTimePoint.UNIFORM: np.testing.assert_allclose(T, np.ones_like(T) / float(len(ixs))) elif ltp == LastTimePoint.DIAGONAL: np.testing.assert_allclose(T, np.eye(len(ixs))) elif ltp == LastTimePoint.CONNECTIVITIES: adata_subset = adata_large[adata_large.obs[key] == 35.0] sc.pp.neighbors(adata_subset, n_neighbors=11) T_actual = ( ConnectivityKernel(adata_subset) .compute_transition_matrix() .transition_matrix.A )
np.testing.assert_allclose(T, T_actual)
numpy.testing.assert_allclose
import numpy as np import debug import pytest @pytest.fixture() def logger(tmpdir): path = tmpdir.join('out.zarr') return debug.ZarrLogger(str(path)) def test_append(logger): key = 'U' arr = np.random.rand(100, 10) logger.append(key, arr) logger.append(key, arr) assert logger.root[key].shape == (2, ) + arr.shape with pytest.raises(ValueError): logger.append(key, np.random.rand(10, 10)) # test scalar appending key = 'time' logger.append(key, np.array([1.0])) logger.append(key,
np.array([1.0])
numpy.array
from IPython.core.display import HTML HTML(""" <style> .output_png { display: table-cell; text-align: center; vertical-align: middle; } </style> """) # remove warnings import warnings warnings.filterwarnings('ignore') # --- from matplotlib import pyplot as plt import matplotlib matplotlib.style.use('ggplot') import numpy as np from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectKBest from sklearn.cross_validation import StratifiedKFold from sklearn.grid_search import GridSearchCV from sklearn.ensemble.gradient_boosting import GradientBoostingClassifier from sklearn.cross_validation import cross_val_score import pandas as pd pd.options.display.max_columns = 100 pd.options.display.max_rows = 100 def combineData(): global data global targets # reading train data train = pd.read_csv('train_title.csv') # reading test data test = pd.read_csv('test_title.csv') # extracting and then removing the targets from the training data targets = train.Survived train.drop('Survived',1,inplace=True) # merging train data and test data for future feature engineering data = train.append(test) data.reset_index(inplace=True) data.drop('index',inplace=True,axis=1) return data # load the train data data = combineData() def main(): # combine train and test data to get more accurate result # parse the different columns so we can model effectivly parseAges() parseNames() parseEmbarked() parseCabins() parseSex() parsePClass() parseTickets() parseFamilys() scaleFeatures() # normalise all the features except the passengerId train,test,targets = recoverVars() #print data.info() USED FOR TESTING # Tree based estimators to compute important features clf = ExtraTreesClassifier(n_estimators=210) clf = clf.fit(train, targets) features = pd.DataFrame() features['feature'] = train.columns features['importance'] = clf.feature_importances_ # print features.sort(['importance'],ascending=False) TESTING FEATURES model = SelectFromModel(clf, prefit=True) train_new = model.transform(train) test_new = model.transform(test) #print train_new.shape TESTING #print test_new.shape TESTING # Modeling forest = RandomForestClassifier(max_features='sqrt') parameter_grid = { 'max_depth' : [4,5,6,7,8], 'n_estimators': [200,210,240,250], 'criterion': ['gini','entropy'] } cross_validation = StratifiedKFold(targets, n_folds=5) grid_search = GridSearchCV(forest, param_grid=parameter_grid, cv=cross_validation) grid_search.fit(train_new, targets) print('Best score: {}'.format(grid_search.best_score_)) print('Best parameters: {}'.format(grid_search.best_params_)) output = grid_search.predict(test_new).astype(int) df_output = pd.DataFrame() df_output['PassengerId'] = test['PassengerId'] df_output['Survived'] = output df_output[['PassengerId','Survived']].to_csv('output.csv',index=False) def get_titles(): global data # we extract the title from each name data['Title'] = data['Name'].map(lambda name:name.split(',')[1].split('.')[0].strip()) # a map of more aggregated titles Title_Dictionary = { "Capt": "Officer", "Col": "Officer", "Major": "Officer", "Jonkheer": "Royalty", "Don": "Royalty", "Sir" : "Royalty", "Dr": "Officer", "Rev": "Officer", "the Countess":"Royalty", "Dona": "Royalty", "Mme": "Mrs", "Mlle": "Miss", "Ms": "Mrs", "Mr" : "Mr", "Mrs" : "Mrs", "Miss" : "Miss", "Master" : "Master", "Lady" : "Royalty" } # we map each title data['Title'] = data.Title.map(Title_Dictionary) def parseAges(): global data # a function that fills the missing values of the Age variable def fillAges(row): if row['Sex']=='female' and row['Pclass'] == 1: if row['Title'] == 'Miss': return 30 elif row['Title'] == 'Mrs': return 45 elif row['Title'] == 'Officer': return 49 elif row['Title'] == 'Royalty': return 39 elif row['Sex']=='female' and row['Pclass'] == 2: if row['Title'] == 'Miss': return 20 elif row['Title'] == 'Mrs': return 30 elif row['Sex']=='female' and row['Pclass'] == 3: if row['Title'] == 'Miss': return 18 elif row['Title'] == 'Mrs' or row['Title'] == 'Ms': return 31 elif row['Sex']=='male' and row['Pclass'] == 1: if row['Title'] == 'Master': return 6 elif row['Title'] == 'Mr': return 41.5 elif row['Title'] == 'Officer': return 52 elif row['Title'] == 'Royalty': return 40 elif row['Title'] == 'Dr': return 41 elif row['Sex']=='male' and row['Pclass'] == 2: if row['Title'] == 'Master': return 2 elif row['Title'] == 'Mr': return 30 elif row['Title'] == 'Officer': return 41.5 elif row['Sex']=='male' and row['Pclass'] == 3: if row['Title'] == 'Master': return 6 elif row['Title'] == 'Mr': return 26 data.Age = data.apply(lambda r : fillAges(r) if pd.isnull(r['Age']) else r['Age'], axis=1) def parseNames(): global data # we clean the Name variable data.drop('Name',axis=1,inplace=True) # encoding in dummy variable titles_dummies = pd.get_dummies(data['Title'],prefix='Title') data = pd.concat([data,titles_dummies],axis=1) # removing the title variable data.drop('Title',axis=1,inplace=True) data.Fare.fillna(data.Fare.mean(),inplace=True) # replaces single fare with mean def parseEmbarked(): global data data.Embarked.fillna('S',inplace=True) # replace two missing embarked values embarked_dummies = pd.get_dummies(data['Embarked'],prefix='Embarked') data = pd.concat([data,embarked_dummies],axis=1) data.drop('Embarked',axis=1,inplace=True) def parseCabins(): global data # replacing missing cabins with U (for Uknown) data.Cabin.fillna('U',inplace=True) # mapping each Cabin value with the cabin letter data['Cabin'] = data['Cabin'].map(lambda c : c[0]) # dummy encoding ... cabin_dummies = pd.get_dummies(data['Cabin'],prefix='Cabin') data = pd.concat([data,cabin_dummies],axis=1) data.drop('Cabin',axis=1,inplace=True) def parseSex(): global data # mapping string values to numerical one data['Sex'] = data['Sex'].map({'male':1,'female':0}) def parsePClass(): global data # encoding into 3 categories: pclass_dummies = pd.get_dummies(data['Pclass'],prefix="Pclass") # adding dummy variables data = pd.concat([data,pclass_dummies],axis=1) # removing "Pclass" data.drop('Pclass',axis=1,inplace=True) def parseTickets(): global data # a function that extracts each prefix of the ticket, returns 'XXX' if no prefix (i.e the ticket is a digit) def cleanTicket(ticket): ticket = ticket.replace('.','') ticket = ticket.replace('/','') ticket = ticket.split() ticket = map(lambda t : t.strip() , ticket) ticket = filter(lambda t : not t.isdigit(), ticket) if len(ticket) > 0: return ticket[0] else: return 'XXX' # Extracting dummy variables from tickets: data['Ticket'] = data['Ticket'].map(cleanTicket) tickets_dummies = pd.get_dummies(data['Ticket'],prefix='Ticket') data = pd.concat([data, tickets_dummies],axis=1) data.drop('Ticket',inplace=True,axis=1) def parseFamilys(): global data # introducing a new feature : the size of families (including the passenger) data['FamilySize'] = data['Parch'] + data['SibSp'] + 1 # introducing other features based on the family size data['Singleton'] = data['FamilySize'].map(lambda s : 1 if s == 1 else 0) data['SmallFamily'] = data['FamilySize'].map(lambda s : 1 if 2<=s<=4 else 0) data['LargeFamily'] = data['FamilySize'].map(lambda s : 1 if 5<=s else 0) def scaleFeatures(): global data features = list(data.columns) features.remove('PassengerId') data[features] = data[features].apply(lambda x: x/x.max(), axis=0) def score(clf, X, y,scoring='accuracy'): xval = cross_val_score(clf, X, y, cv = 5,scoring=scoring) return
np.mean(xval)
numpy.mean
#The main idea here that we try to approximate the light curve by Fourier series with different periods #and choose that one, for which the sum of square deviations dots from the approximation is the smallest. #Then programm build a light curve and phase curve. All dots that are stands out from the approximation #is cutted off. Program writes in the file the pictures of phase curves and data with cutted points Version = "V1.0.0" """===========================================""" """IMPORTING LIBRUARIES""" """===========================================""" import scipy.optimize as spo #for the method of LS import numpy as np #for math stuff import matplotlib.pyplot as plt #for plotting import time #to know time of calculations import tkinter as tnk #graphic interface import os #to work with directories import decimal import matplotlib.font_manager import warnings warnings.filterwarnings("ignore") """===========================================""" """Path to files""" """===========================================""" path_file = os.getcwd() #constant for the path to the folder, where code is stored """===========================================""" """ERRORS""" """===========================================""" def Error_1(): #function to display an error in Manual mode that is caused by inputting not correct value of T window_error = tnk.Tk() bcg_cl = '#ffff00' window_error.title("Period D&P " + Version) w = 550 h = 180 window_error.geometry(str(w) + 'x' + str(h)) window_error.config(bg=bcg_cl) window_error.resizable(width=False, height=False) lb_error = tnk.Label(window_error, font = ('Algerian', 19), text = 'Error #1', bg=bcg_cl) lb_describtion_1 = tnk.Label(window_error, font = ('Bookman Old Style', 14), text = 'The program has not found minimum in periodogram', bg=bcg_cl) lb_describtion_2 = tnk.Label(window_error, font = ('Bookman Old Style', 14), text = 'Please try another period or its error', bg=bcg_cl) lb_error.place(x = 200, y = 30) #their place on the window lb_describtion_1.place(x = 20, y = 80) lb_describtion_2.place(x = 90, y = 110) window_error.mainloop() def Error_2(File, Number_error): #function to display an error that arrive due to absense of some files window_error = tnk.Tk() bcg_cl = '#9999FF' window_error.title("Period D&P " + Version) w = 850 h = 180 window_error.geometry(str(w) + 'x' + str(h)) window_error.config(bg=bcg_cl) window_error.resizable(width=False, height=False) if Number_error == 1: error_text = 'The program has not found ' + File lb_error = tnk.Label(window_error, font = ('Algerian', 24), text = 'Error #2.1', bg=bcg_cl) if Number_error == 2: error_text = 'Problem while reading ' + File lb_error = tnk.Label(window_error, font = ('Algerian', 24), text = 'Error #2.2', bg=bcg_cl) lb_describtion_1 = tnk.Label(window_error, font = ('Bookman Old Style', 14), text = error_text, bg=bcg_cl) lb_describtion_2 = tnk.Label(window_error, font = ('Bookman Old Style', 14), text = 'Please check and repeat', bg=bcg_cl) lb_error.place(x = 350, y = 30) lb_describtion_1.place(x = 20, y = 80) lb_describtion_2.place(x = 240, y = 110) window_error.mainloop() """===========================================""" """TRIGONOMETRIC POLYNOMIAL FUNCTIONS""" """===========================================""" def sin(t, pp, n): #approximation of function by Fourie series (t -> x_data, pp - parameters) x = np.zeros(len(t)) x += pp[0] for i in range(n): x += pp[2*i+2]*np.sin(2*np.pi*t*(i+1)/pp[1]+pp[2*i+3]) # x = SUM( A*sin(2*pi*n*t/T + phi)) return x def sin1(t, pp, n): #the same as sin(), but give you not array, but a value y = pp[0] for i in range(n): y += pp[2*i+2]*np.sin(2*np.pi*t/pp[1]*(i+1)+pp[2*i+3]) return y def Trend(t, pp): y = pp[0] + pp[1] * t return y def Polymom(t, pp, n): y = pp[0] for i in range(1, n+1): y+= pp[i]*(t**i) return y """===========================================""" """READING DATA FROM FILE""" """===========================================""" def read_data(name): #function to read raw data Name = path_file + '/data/' + name #data is stored in the same sirectory in the folder "data" try: Data = np.loadtxt(Name) x = np.array(Data[:,0]) y = np.array(Data[:,1]) y_err = np.array(Data[:,2]) Error_program = 0 except FileNotFoundError: Error_program = 1 x = 0 y = 0 y_err = 0 except ValueError: Error_program = 2 x = 0 y = 0 y_err = 0 return x, y, y_err, Error_program """===========================================""" """READING PARAMETERS AND TASKS FROM FILE""" """===========================================""" def read_parametrs(Parametrs_file): #function to read parameters for work try: parametrs = np.loadtxt(Parametrs_file) n_app_T = int(parametrs[0]) #number of additions in Fourie series in function Approximation T n_approximation = int(parametrs[1]) #number of additions in Fourie series in function becoming perfect edge_appr_T = float(parametrs[2]) #to cut minimum in periodogram TT_min_par = float(parametrs[3]) #the minimum value of period in Periodogram Presize_appr_T = float(parametrs[4]) #the distance between points in the Periodogram ratio = float(parametrs[5]) #size of Phase picture (x:y) dpi_picture = int(parametrs[6]) #quality of picture dots_size = int(parametrs[7]) #size of dots ob phase curves Start_phase = float(parametrs[8]) #start phase of observation Error_program = 0 return n_app_T, n_approximation, edge_appr_T, TT_min_par, Presize_appr_T, ratio, dpi_picture, dots_size, Start_phase, Error_program except FileNotFoundError: Error_program = 1 return 0,0,0,0,0,0,0,0,0,Error_program except ValueError: Error_program = 2 return 0,0,0,0,0,0,0,0,0,Error_program def read_task(task_file): try: Task = np.genfromtxt(task_file, dtype='str') for value in Task: if not len(value.split('.')) == 2: raise ValueError Error_program_task = 0 except FileNotFoundError: Error_program_task = 1 except ValueError: Error_program_task = 2 return Task, Error_program_task """===========================================""" """CALCULATING PRESIZE VALUE OF PERIOD""" """===========================================""" def first_approximation(Tappr, A0, x, y, y_err, n_approximation, name, n_app_T, ans_start, dpi_picture, dots_size, ratio, I): p0 = np.ones(2*n_approximation + 2) #start conditions p0[0] = ans_start[0] #first = ideal from periodogram p0[1] = Tappr if(n_approximation > n_app_T): #set conditions the same as the best in ApproximationT for i in range(2*n_app_T): p0[i+2] = ans_start[i+1] else: for i in range(2*n_approximation + 2): p0[i+2] = ans_start[i] fun = lambda pp: (y - sin(x, pp, n_approximation))/y_err #core of least squares ans = spo.leastsq(fun, p0, full_output=1) sigma = np.sum((y - sin(x, ans[0], n_approximation))**2)/len(x) error = np.sqrt(np.diag(ans[1]*sigma)) T_ideal = ans[0][1] error_T = error[1] ans_ideal = ans[0] #ideal parametrs order_Error = -int(np.log10(error_T))+1 #evaluate order of Error save_path = path_file + '/Results/' + name + '/' #save results in the folder "Results" fig = plt.figure(2 + I * 6) #plot dots and curve plt.gca().invert_yaxis() #to invert y axis fig.set_size_inches(20, 7) plt.rc('xtick', labelsize=20) #size of tics plt.rc('ytick', labelsize=20) plt.plot(x, y, '.b') #blue dots plt.xlabel('BJD', fontsize = 20) #name of axis plt.ylabel('$\Delta$T, mmag', fontsize = 20) plt.title('Light curve', fontsize = 20) plt.rc('xtick', labelsize=20) plt.rc('ytick', labelsize=20) plt.savefig(save_path + name + " light curve.png", dpi = 300) #without approximation xx = np.linspace(min(x), max(x), len(x)) #to plot approximation on the parts, where are not data plt.plot(xx, sin(xx, ans_ideal, n_approximation), '-r') plt.savefig(save_path + name + " light curve with approximation.png", dpi = dpi_picture) #with approximation plt.close() return ans_ideal, np.round(T_ideal, order_Error) def remove_trends(x, y, y_err, ans_ideal, name, n_approximation, dpi_picture, dots_size, ratio, I): y_new = y.copy() sigma = np.sqrt(np.sum((y - sin(x, ans_ideal, n_approximation))**2)/len(x)) key = True for index in range(len(x)): Condition = np.abs(y[index] - sin1(x[index], ans_ideal, n_approximation)) > (3*sigma) if key and Condition: Index1 = index key = False if (not key) and (not Condition): Index2 = index key = True if (Index2 - Index1) > 2: #removing trend y_trend = y[Index1:(Index2+1)] y_err_trend = y_err[Index1:(Index2+1)] x_trend = x[Index1:(Index2+1)] trend = y_trend - sin(x_trend, ans_ideal, n_approximation) p0 = [1, 1] fun = lambda pp: (trend - Trend(x_trend, pp))/y_err_trend ans = spo.leastsq(fun, p0, full_output=1) y_new[Index1:(Index2+1)] -= Trend(x_trend, ans[0]) save_path = path_file + '/Results/' + name + '/' #save results in the folder "Results" fig = plt.figure(3 + I*6) #plot dots and curve plt.gca().invert_yaxis() fig.set_size_inches(20, 7) plt.rc('xtick', labelsize=20) plt.rc('ytick', labelsize=20) plt.plot(x, y, '.g') plt.plot(x, y_new, '.b') xx = np.linspace(min(x), max(x), len(x)) #to plot approximation on the parts, where are not data plt.plot(xx, sin(xx, ans_ideal, n_approximation), '-r') plt.xlabel('BJD', fontsize = 20) plt.ylabel('$\Delta$T, mmag', fontsize = 20) plt.title('Light curve (trends)', fontsize = 20) plt.rc('xtick', labelsize=20) plt.rc('ytick', labelsize=20) plt.savefig(save_path + name + " light curve no trends.png", dpi = 300) #without approximation return y def remove_linear(x, y, y_err): number = 10 key = 0 for i in range(10): key += np.sign(y[1] - y[0]) key = np.round(key/10) key1 = 0 for i in range(1, len(x)): if not np.sign(y[i] - y[i-1]) == key: key1 += 1 if key1 == 150: break if i > number: x_new = x[i:] y_new = y[i:] y_err_new = y_err[i:] return x_new, y_new, y_err_new else: return x, y, y_err def remove_trends_2(x, y, y_err, ans_ideal, name, ftype, n_approximation, dpi_picture, dots_size, ratio, I): n = 3 start = [] #cutting in parts end = [] start.append(0) delta = x[1] - x[0] for i in range(len(x)-1): if (x[i+1] - x[i]) > 100*delta: end.append(i) start.append(i+1) end.append(len(x)-1) save_path = path_file + '/Results/' + name + '/' fig, axs = plt.subplots(4, 1) fig.subplots_adjust(hspace=0) fig.set_size_inches(30, 30) plt.rc('ytick', labelsize=30) axs[0].set_title('Light curve (trends) - ' + name, fontsize = 35) xx = np.linspace(np.min(x), np.max(x), len(x)) axs[0].plot(x, y, '.g') #axs[0].plot(xx, sin(xx, ans_ideal, n_approximation), '.r') plt.rc('xtick', labelsize=30) for i in range(4): axs[i].set_ylabel('$\Delta$T, mmag', fontsize = 30) axs[i].invert_yaxis() X_new = np.array([]) Y_new = np.array([]) Y_err_new = np.array([]) for i in range(len(start)): x_part = x[start[i]:end[i]].copy() y_part = y[start[i]:end[i]].copy() y_err_part = y_err[start[i]:end[i]].copy() x_part, y_part, y_err_part = remove_linear(x_part, y_part, y_err_part) # ????????????? if len(x_part) > n+1: p0 = 0.1 * np.ones(n+1) fun = lambda pp: (y_part - sin(x_part, ans_ideal, n_approximation) - Polymom(x_part, pp, n)) / y_err_part ans = spo.leastsq(fun, p0, full_output=1) xx = np.linspace(np.min(x_part), np.max(x_part), len(x_part)) axs[1].plot(x_part, y_part - sin(x_part, ans_ideal, n_approximation), '.g') axs[1].plot(xx, Polymom(xx, ans[0], n), '.r') y_part -= Polymom(x_part, ans[0], n) axs[2].plot(x_part, y_part - sin(x_part, ans_ideal, n_approximation), '.g') else: axs[1].plot(x_part, y_part - sin(x_part, ans_ideal, n_approximation), '.g') axs[2].plot(x_part, y_part - sin(x_part, ans_ideal, n_approximation), '.g') X_new = np.concatenate((X_new, x_part)) Y_new = np.concatenate((Y_new, y_part)) Y_err_new = np.concatenate((Y_err_new, y_err_part)) x = X_new.copy() y = Y_new.copy() y_err = Y_err_new.copy() sigma = np.sqrt(np.sum((y - sin(x, ans_ideal, n_approximation))**2) / len(x) ) axs[2].axhline(y = 3*sigma) axs[2].axhline(y = -3*sigma) Condition = abs(y - sin1(x, ans_ideal, n_approximation)) < 3*sigma x, y, y_err = x[Condition], y[Condition], y_err[Condition] p0 = ans_ideal fun = lambda pp: (y - sin(x, pp, n_approximation))/y_err ans = spo.leastsq(fun, p0, full_output=1) sigma = np.sum((y - sin(x, ans[0], n_approximation))**2)/len(x) error = np.sqrt(np.diag(ans[1]*sigma)) order_Error = -int(np.log10(error[1]))+1 # evaluate order of Error Mean = np.mean(y) SS_res = np.sum((y - sin(x, ans[0], n_approximation))**2) SS_tot = np.sum((y - Mean)**2) R_2 = 1 - SS_res/SS_tot chi_2 = np.sum(((y - sin(x, ans[0], n_approximation))**2)/y_err**2)/( len(x) - (2*n_approximation + 1)) def sin_chi(t): pp = ans[0] z = np.zeros(len(x)) z += pp[0] for i in range(n_approximation): z += pp[2*i+2] * np.sin(2*np.pi*x*(i+1)/t + pp[2*i+3]) chi_2_new = np.sum(((y - z)**2)/y_err**2)/( len(x) - (2*n_approximation + 1)) return (chi_2_new - chi_2 - 1) root = spo.fsolve(sin_chi, ans[0][1]) xx = np.linspace(np.min(x), np.max(x), len(x)) #axs[3].plot(xx, sin(xx, ans[0], n_approximation), '.r') axs[3].plot(x, y, '.g') plt.xlabel('BJD', fontsize = 20) plt.rc('xtick', labelsize=20) plt.rc('ytick', labelsize=20) plt.savefig(save_path + name + " light curve trends.png", dpi = 300) NName = name + "_detrended." + ftype #save data in the same file type completeName = os.path.join(save_path, NName) with open(completeName, 'w+') as f: for i in range(len(x)): f.write(str(x[i]) + ' ' + str(y[i]) + ' ' + str(y_err[i]) + '\n') return x, y, y_err, np.round(ans[0][1], order_Error), np.round(error[1], order_Error), ans[0][1]-root[0], R_2, chi_2, ans[0] def phase_curve(T_ideal, answ, x, y, y_err, n_approximation, name, ftype, ratio, dpi_picture, dots_size, Start_phase, key_number, I): d = decimal.Decimal(str(T_ideal)) if key_number == 1: order_Error = -d.as_tuple().exponent else: order_Error = -d.as_tuple().exponent-1 Number_periods = (x - x[0])/T_ideal #To build phase curve Number_periods = Number_periods.astype(int) I_max = np.argmax(y) X_E = (x - x[0])/T_ideal - Number_periods X_E -= X_E[I_max] X_E[X_E < 0] += 1 save_path = path_file + '/Results/' + name + '/' B = max(y) - min(y) hfont = {'fontname':'Helvetica'} fig = plt.figure(4 + I * 6) plt.gca().invert_yaxis() fig.set_size_inches(ratio*7, 7) plt.rc('xtick', labelsize=20) plt.rc('ytick', labelsize=20) strin = 'Phase (P = ' + str(np.round(Start_phase + x[I_max], order_Error)) + ' +' + str(np.round(T_ideal, order_Error)) + '*E)' plt.xlabel(strin, fontsize = 20, **hfont) plt.ylabel('$\Delta$T, mmag', fontsize = 20, **hfont) plt.plot(X_E, y, color = 'green', linestyle = '', marker = '.', markersize = dots_size) plt.text(0, (np.min(y) + 1/30*B), name, fontsize = 20, **hfont) if key_number == 1: plt.savefig(save_path + name + "phase curve first.png", dpi = dpi_picture) else: plt.savefig(save_path + name + "phase curve.png", dpi = dpi_picture) plt.close() NName = name + " phase curve." + ftype #save data in the same file type completeName = os.path.join(save_path, NName) with open(completeName, 'w+') as f: for i in range(len(x)): f.write(str(X_E[i]) + ' ' + str(y[i]) + ' ' + str(y_err[i]) + '\n') """===========================================""" """COMPUTING APPROXIMATE VALUE OF PERIOD""" """===========================================""" def Approximation_T(x, y, y_err, A, n_app_T, edge_appr_T, T_max, T_min, Presize_appr_T, name, dpi_picture, I): N_N = int(T_max/Presize_appr_T) #number of dots in this area X_min = 0 #just for fun(do not change) def sin2(t, T_Tt, pp, nn): #approximation of function that take x data, period and parametrs and give the approximation function x = np.zeros(len(t)) #make array x lenth of x-data and full zero x += pp[0] for i in range(nn): #additions in Fourie series x += pp[2*i + 1]*np.sin(2*np.pi*t/T_Tt*(i+1)+pp[2*i+2]) return x #return tha value of approximation function def sigma(xx, yy, yy_err, T_Tt, p00, nn): #function to find the sum of squares for each T fun = lambda pp: (yy - sin2(xx, T_Tt, pp, nn))/yy_err #core of least squares ans = spo.leastsq(fun, p00, full_output=1) Sigma = np.sum((yy-sin2(xx, T_Tt, ans[0], nn))**2)/(len(x)*(len(x)-1)) #ans[0] - parametrs: amplitudes and phases return Sigma, ans[0] p0 = np.ones(2*n_app_T+1) p0[0], p0[1] = 0, A #main amplitude x_sigma = np.linspace(T_min, T_max, N_N) y_sigma = np.zeros(N_N) for i in range(len(x_sigma)): #for each dot if(x_sigma[i] == T_min): y_sigma[i], PP0 = sigma(x, y, y_err, x_sigma[i], p0, n_app_T) #find y and ideal parametrs else: y_sigma[i], PP0 = sigma(x, y, y_err, x_sigma[i], PP0, n_app_T) #start condition = ideal for previous plt.rc('xtick', labelsize=20) plt.rc('ytick', labelsize=20) fig = plt.figure(1 + I * 6) fig.set_size_inches(20, 6) save_path = path_file + '/Results/' + name + '/' plt.xlabel('Period', fontsize = 20) plt.ylabel('Sigma', fontsize = 20) plt.plot(x_sigma, y_sigma, color = '#FF0000', ls = '-', lw = 2) plt.savefig(save_path + name + "periodogram.png", dpi = dpi_picture) plt.close() value_error = False if ((np.min(y_sigma)/np.max(y_sigma)) < 0.3): value_error = True #there is no true minimum if value_error: Index =
np.argmin(y_sigma)
numpy.argmin
''' Created: 2022/02/11 Maintainer: <NAME> <<EMAIL>> adapted from https://github.com/ethz-asl/robotcar_tools/blob/master/python/interpolate_poses.py LICENSE: MIT ''' import transformations as tfs import numpy as np import argparse import bisect import transformations as tfs def main(kf_pose_fname, timestamps_fname): kf_pose = np.genfromtxt(kf_pose_fname) timestamps = np.genfromtxt(timestamps_fname) timestamps = np.squeeze(timestamps[:, 1]) * 1e6 pose_timestamps = kf_pose[:, 0] * 1e6 abs_poses = kf_pose[:, 1:] interpolated_pose = interpolate_poses(pose_timestamps.astype(np.int64).tolist(), abs_poses, timestamps.astype(np.int64).tolist(), int(timestamps[0])) np.savetxt(kf_pose_fname.replace(".txt", "_interp.txt"), np.array(interpolated_pose), fmt="%1.6f") def interpolate_poses(pose_timestamps, abs_poses, requested_timestamps, origin_timestamp): """Interpolate between absolute poses. Args: pose_timestamps (list[int]): Timestamps of supplied poses. Must be in ascending order. abs_poses (list[numpy.matrixlib.defmatrix.matrix]): SE3 matrices representing poses at the timestamps specified. requested_timestamps (list[int]): Timestamps for which interpolated timestamps are required. origin_timestamp (int): UNIX timestamp of origin frame. Poses will be reported relative to this frame. Returns: list[numpy.matrixlib.defmatrix.matrix]: SE3 matrix representing interpolated pose for each requested timestamp. Raises: ValueError: if pose_timestamps and abs_poses are not the same length ValueError: if pose_timestamps is not in ascending order """ requested_timestamps.insert(0, origin_timestamp) requested_timestamps = np.array(requested_timestamps) pose_timestamps = np.array(pose_timestamps) if len(pose_timestamps) != len(abs_poses): raise ValueError('Must supply same number of timestamps as poses') abs_quaternions = np.zeros((4, len(abs_poses))) abs_positions = np.zeros((3, len(abs_poses))) for i, pose in enumerate(abs_poses): if i > 0 and pose_timestamps[i - 1] >= pose_timestamps[i]: raise ValueError('Pose timestamps must be in ascending order') abs_quaternions[:, i] = pose[ 3:] # np.roll(pose[3:], -1) uncomment this if the quaternion is saved as [w, x, y, z] abs_positions[:, i] = pose[:3] upper_indices = [bisect.bisect(pose_timestamps, pt) for pt in requested_timestamps] lower_indices = [u - 1 for u in upper_indices] if max(upper_indices) >= len(pose_timestamps): upper_indices = [min(i, len(pose_timestamps) - 1) for i in upper_indices] fractions = (requested_timestamps - pose_timestamps[lower_indices]) // \ (pose_timestamps[upper_indices] - pose_timestamps[lower_indices]) quaternions_lower = abs_quaternions[:, lower_indices] quaternions_upper = abs_quaternions[:, upper_indices] d_array = (quaternions_lower * quaternions_upper).sum(0) linear_interp_indices = np.nonzero(d_array >= 1) sin_interp_indices = np.nonzero(d_array < 1) scale0_array = np.zeros(d_array.shape) scale1_array = np.zeros(d_array.shape) scale0_array[linear_interp_indices] = 1 - fractions[linear_interp_indices] scale1_array[linear_interp_indices] = fractions[linear_interp_indices] theta_array = np.arccos(
np.abs(d_array[sin_interp_indices])
numpy.abs
import numpy as np from os import listdir from matplotlib import pyplot as plt def apply_spectrum(data, pca, numinput=256, power=1.0): colored = data.dot(np.diag(np.power(pca.sValues[:numinput], power))) return colored/colored.std() def get_params_and_errors(net, toy, nunits=256, folder='.', filestart='toy', ds=1.0): filelist = listdir(folder) goodfiles = [] firing_rates = [] gains = [] errors = [] modfit = [] peaks = [] peakmodfits = [] exceptions = [] for file in filelist: dsflag = False if 'ds' in file: dsflag = file.split('ds')[1].startswith(str(ds)) if file.endswith('.pickle') and file.startswith(filestart) and dsflag: file = folder+file try: net.load(file) except BaseException as ee: exceptions.append(file) continue try: fit = np.load(file + 'fit.npy') except FileNotFoundError: fit = net.modfits ok = net.nunits == nunits directtest = toy.test_fit(net.Q) ok = ok and not (directtest - fit[-1]) > 0.01 and fit[-1] != 0 if ok: modfit.append(fit[-1]) err = np.mean(net.errorhist[-1000:]) goodfiles.append(file) errors.append(err) firing_rates.append(net.p) gains.append(net.gain) peaks.append(np.min(net.errorhist)) peakmodfits.append(np.max(fit)) else: exceptions.append(file) print('Errors on ', str(len(exceptions)), ' files') if len(goodfiles) == 0: if len(exceptions) == 0: raise FileNotFoundError('No valid files found.') raise BaseException(exceptions[0]) return (goodfiles, firing_rates, gains, errors, peaks, modfit, peakmodfits) def hp_scatter(firing_rates, gains, modfits, fig=None, ax=None): if fig is None: fig = plt.figure() if ax is None: ax = fig.add_subplot(111) modfits = [0 if np.isnan(mf) else mf for mf in modfits] sc = ax.scatter(firing_rates, gains, c=modfits, cmap='viridis', s=200) ax.set_xlabel('Firing rate p') ax.set_ylabel('Gain') ax.set_xscale('log') ax.set_yscale('log') ax.set_xlim([np.min(firing_rates)*0.8, np.max(firing_rates)*1.2]) ax.set_ylim([np.min(gains)*0.8, np.max(gains)*1.2]) fig.colorbar(sc, ax=ax) def err_hp_scatter(firing_rates, gains, errors, fig=None, ax=None): if fig is None: fig = plt.figure() if ax is None: ax = fig.add_subplot(111) goodfr = [firing_rates[ii] for ii in range(len(errors)) if errors[ii] < 1.0] goodg = [gains[ii] for ii in range(len(errors)) if errors[ii] < 1.0] badfr = [firing_rates[ii] for ii in range(len(errors)) if errors[ii] >= 1.0 or np.isnan(errors[ii])] badg = [gains[ii] for ii in range(len(errors)) if errors[ii] >= 1.0 or np.isnan(errors[ii])] errors = [er for er in errors if er < 1.0] sc = ax.scatter(goodfr, goodg, c=errors, cmap='viridis_r', s=200) fig.colorbar(sc, ax=ax) ax.set_xlabel('Firing rate p') ax.set_ylabel('Gain') ax.scatter(badfr, badg, c='r', s=50, marker='x') ax.set_xscale('log') ax.set_yscale('log') ax.set_xlim([
np.min(firing_rates)
numpy.min
"""Rangeland Production Model.""" import os import logging import tempfile import shutil from builtins import range import re import math import pickle import numpy import pandas from osgeo import ogr from osgeo import osr from osgeo import gdal import pygeoprocessing from rangeland_production import utils from rangeland_production import validation LOGGER = logging.getLogger('rangeland_production.forage') # we only have these types of soils SOIL_TYPE_LIST = ['clay', 'silt', 'sand'] # temporary directory to store intermediate files PROCESSING_DIR = None # user-supplied crude protein of vegetation CRUDE_PROTEIN = None # state variables and parameters take their names from Century # _SITE_STATE_VARIABLE_FILES contains state variables that are a # property of the site, including: # carbon in each soil compartment # (structural, metabolic, som1, som2, som3) and layer (1=surface, 2=soil) # e.g., som2c_2 = carbon in soil som2; # N and P in each soil layer and compartment (1=N, 2=P) # e.g., som2e_1_1 = N in surface som2, som2e_1_2 = P in surface som2; # water in each soil layer, asmos_<layer> # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _SITE_STATE_VARIABLE_FILES = { 'metabc_1_path': 'metabc_1.tif', 'metabc_2_path': 'metabc_2.tif', 'som1c_1_path': 'som1c_1.tif', 'som1c_2_path': 'som1c_2.tif', 'som2c_1_path': 'som2c_1.tif', 'som2c_2_path': 'som2c_2.tif', 'som3c_path': 'som3c.tif', 'strucc_1_path': 'strucc_1.tif', 'strucc_2_path': 'strucc_2.tif', 'strlig_1_path': 'strlig_1.tif', 'strlig_2_path': 'strlig_2.tif', 'metabe_1_1_path': 'metabe_1_1.tif', 'metabe_2_1_path': 'metabe_2_1.tif', 'som1e_1_1_path': 'som1e_1_1.tif', 'som1e_2_1_path': 'som1e_2_1.tif', 'som2e_1_1_path': 'som2e_1_1.tif', 'som2e_2_1_path': 'som2e_2_1.tif', 'som3e_1_path': 'som3e_1.tif', 'struce_1_1_path': 'struce_1_1.tif', 'struce_2_1_path': 'struce_2_1.tif', 'metabe_1_2_path': 'metabe_1_2.tif', 'metabe_2_2_path': 'metabe_2_2.tif', 'plabil_path': 'plabil.tif', 'secndy_2_path': 'secndy_2.tif', 'parent_2_path': 'parent_2.tif', 'occlud_path': 'occlud.tif', 'som1e_1_2_path': 'som1e_1_2.tif', 'som1e_2_2_path': 'som1e_2_2.tif', 'som2e_1_2_path': 'som2e_1_2.tif', 'som2e_2_2_path': 'som2e_2_2.tif', 'som3e_2_path': 'som3e_2.tif', 'struce_1_2_path': 'struce_1_2.tif', 'struce_2_2_path': 'struce_2_2.tif', 'asmos_1_path': 'asmos_1.tif', 'asmos_2_path': 'asmos_2.tif', 'asmos_3_path': 'asmos_3.tif', 'asmos_4_path': 'asmos_4.tif', 'asmos_5_path': 'asmos_5.tif', 'asmos_6_path': 'asmos_6.tif', 'asmos_7_path': 'asmos_7.tif', 'asmos_8_path': 'asmos_8.tif', 'asmos_9_path': 'asmos_9.tif', 'avh2o_3_path': 'avh2o_3.tif', 'minerl_1_1_path': 'minerl_1_1.tif', 'minerl_2_1_path': 'minerl_2_1.tif', 'minerl_3_1_path': 'minerl_3_1.tif', 'minerl_4_1_path': 'minerl_4_1.tif', 'minerl_5_1_path': 'minerl_5_1.tif', 'minerl_6_1_path': 'minerl_6_1.tif', 'minerl_7_1_path': 'minerl_7_1.tif', 'minerl_8_1_path': 'minerl_8_1.tif', 'minerl_9_1_path': 'minerl_9_1.tif', 'minerl_10_1_path': 'minerl_10_1.tif', 'minerl_1_2_path': 'minerl_1_2.tif', 'minerl_2_2_path': 'minerl_2_2.tif', 'minerl_3_2_path': 'minerl_3_2.tif', 'minerl_4_2_path': 'minerl_4_2.tif', 'minerl_5_2_path': 'minerl_5_2.tif', 'minerl_6_2_path': 'minerl_6_2.tif', 'minerl_7_2_path': 'minerl_7_2.tif', 'minerl_8_2_path': 'minerl_8_2.tif', 'minerl_9_2_path': 'minerl_9_2.tif', 'minerl_10_2_path': 'minerl_10_2.tif', 'snow_path': 'snow.tif', 'snlq_path': 'snlq.tif', } # _PFT_STATE_VARIABLES contains state variables that are a # property of a PFT, including: # carbon, nitrogen, and phosphorous in aboveground biomass # where 1=N, 2=P # e.g. aglivc = C in aboveground live biomass, # aglive_1 = N in aboveground live biomass; # carbon, nitrogen, and phosphorous in aboveground standing dead # biomass, stdedc and stdede; # carbon, nitrogen and phosphorous in belowground live biomass, # aglivc and aglive # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _PFT_STATE_VARIABLES = [ 'aglivc', 'bglivc', 'stdedc', 'aglive_1', 'bglive_1', 'stdede_1', 'aglive_2', 'bglive_2', 'stdede_2', 'avh2o_1', 'crpstg_1', 'crpstg_2', ] # intermediate parameters that do not change between timesteps, # including field capacity and wilting point of each soil layer, # coefficients describing effect of soil texture on decomposition # rates _PERSISTENT_PARAMS_FILES = { 'afiel_1_path': 'afiel_1.tif', 'afiel_2_path': 'afiel_2.tif', 'afiel_3_path': 'afiel_3.tif', 'afiel_4_path': 'afiel_4.tif', 'afiel_5_path': 'afiel_5.tif', 'afiel_6_path': 'afiel_6.tif', 'afiel_7_path': 'afiel_7.tif', 'afiel_8_path': 'afiel_8.tif', 'afiel_9_path': 'afiel_9.tif', 'awilt_1_path': 'awilt_1.tif', 'awilt_2_path': 'awilt_2.tif', 'awilt_3_path': 'awilt_3.tif', 'awilt_4_path': 'awilt_4.tif', 'awilt_5_path': 'awilt_5.tif', 'awilt_6_path': 'awilt_6.tif', 'awilt_7_path': 'awilt_7.tif', 'awilt_8_path': 'awilt_8.tif', 'awilt_9_path': 'awilt_9.tif', 'wc_path': 'wc.tif', 'eftext_path': 'eftext.tif', 'p1co2_2_path': 'p1co2_2.tif', 'fps1s3_path': 'fps1s3.tif', 'orglch_path': 'orglch.tif', 'fps2s3_path': 'fps2s3.tif', 'rnewas_1_1_path': 'rnewas_1_1.tif', 'rnewas_2_1_path': 'rnewas_2_1.tif', 'rnewas_1_2_path': 'rnewas_1_2.tif', 'rnewas_2_2_path': 'rnewas_2_2.tif', 'rnewbs_1_1_path': 'rnewbs_1_1.tif', 'rnewbs_1_2_path': 'rnewbs_1_2.tif', 'rnewbs_2_1_path': 'rnewbs_2_1.tif', 'rnewbs_2_2_path': 'rnewbs_2_2.tif', 'vlossg_path': 'vlossg.tif', } # site-level values that are updated once per year _YEARLY_FILES = { 'annual_precip_path': 'annual_precip.tif', 'baseNdep_path': 'baseNdep.tif', } # pft-level values that are updated once per year _YEARLY_PFT_FILES = ['pltlig_above', 'pltlig_below'] # intermediate values for each plant functional type that are shared # between submodels, but do not need to be saved as output _PFT_INTERMEDIATE_VALUES = [ 'h2ogef_1', 'tgprod_pot_prod', 'cercrp_min_above_1', 'cercrp_min_above_2', 'cercrp_max_above_1', 'cercrp_max_above_2', 'cercrp_min_below_1', 'cercrp_min_below_2', 'cercrp_max_below_1', 'cercrp_max_below_2', 'tgprod', 'rtsh', 'flgrem', 'fdgrem'] # intermediate site-level values that are shared between submodels, # but do not need to be saved as output _SITE_INTERMEDIATE_VALUES = [ 'amov_1', 'amov_2', 'amov_3', 'amov_4', 'amov_5', 'amov_6', 'amov_7', 'amov_8', 'amov_9', 'amov_10', 'snowmelt', 'bgwfunc', 'diet_sufficiency'] # fixed parameters for each grazing animal type are adapted from the GRAZPLAN # model as described by Freer et al. 2012, "The GRAZPLAN animal biology model # for sheep and cattle and the GrazFeed decision support tool" _FREER_PARAM_DICT = { 'b_indicus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.31, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'b_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.36, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'indicus_x_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.335, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'sheep': { 'CN1': 0.0157, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.04, 'CI2': 1.7, 'CI8': 28, 'CI9': 1.4, 'CI12': 0.15, 'CI13': 0.02, 'CI14': 0.002, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00112, 'CR5': 0.6, 'CR6': 0.00112, 'CR7': 0, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.486, 'CL1': 2, 'CL2': 22, 'CL3': 1, 'CL5': 0.94, 'CL6': 4.7, 'CL15': 0.045, 'CM1': 0.09, 'CM2': 0.26, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.02, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CW1': 24, 'CW2': 0.004, 'CW3': 0.7, 'CW5': 0.25, 'CW6': 0.072, 'CW7': 1.35, 'CW8': 0.016, 'CW9': 1, 'CW12': 0.025, 'CP1': 150, 'CP4': 0.33, 'CP5': 1.43, 'CP6': 3.38, 'CP7': 0.91, 'CP8': 4.33, 'CP9': 4.37, 'CP10': 0.965, 'CP15': 0.1, }, } # Target nodata is for general rasters that are positive, and _IC_NODATA are # for rasters that are any range _TARGET_NODATA = -1.0 _IC_NODATA = float(numpy.finfo('float32').min) # SV_NODATA is for state variables _SV_NODATA = -1.0 def execute(args): """InVEST Forage Model. [model description] Parameters: args['workspace_dir'] (string): path to target output workspace. args['results_suffix'] (string): (optional) string to append to any output file names args['starting_month'] (int): what month to start reporting where the range 1..12 is equivalent to Jan..Dec. args['starting_year'] (int): what year to start runs. this value is used to notate outputs in the form [month_int]_[year] args['n_months'] (int): number of months to run model, the model run will start reporting in `args['starting_month']`. args['aoi_path'] (string): path to polygon vector indicating the desired spatial extent of the model. This has the effect of clipping the computational area of the input datasets to be the area intersected by this polygon. args['management_threshold'] (float): biomass in kg/ha required to be left standing at each model step after offtake by grazing animals args['proportion_legume_path'] (string): path to raster containing fraction of pasture that is legume, by weight args['bulk_density_path'] (string): path to bulk density raster. args['ph_path'] (string): path to soil pH raster. args['clay_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is clay args['silt_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is silt args['sand_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is sand args['precip_dir'] (string): path to a directory containing monthly precipitation rasters. The model requires at least 12 months of precipitation and expects to find a precipitation file input for every month of the simulation, so the number of precipitation files should be the maximum of 12 and `n_months`. The file name of each precipitation raster must end with the year, followed by an underscore, followed by the month number. E.g., Precip_2016_1.tif for January of 2016. args['min_temp_dir'] (string): path to a directory containing monthly minimum temperature rasters. The model requires one minimum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each minimum temperature raster must end with the month number. E.g., Min_temperature_1.tif for January. args['max_temp_dir'] (string): path to a directory containing monthly maximum temperature rasters. The model requires one maximum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each maximum temperature raster must end with the month number. E.g., Max_temperature_1.tif for January. args['site_param_table'] (string): path to csv file giving site parameters. This file must contain a column named "site" that contains unique integers. These integer values correspond to site type identifiers which are values in the site parameter spatial index raster. Other required fields for this table are site and "fixed" parameters from the Century model, i.e., the parameters in the Century input files site.100 and fix.100. args['site_param_spatial_index_path'] (string): path to a raster file that indexes site parameters, indicating which set of site parameter values should apply at each pixel in the raster. The raster should be composed of integers that correspond to values in the field "site" in `site_param_table`. args['veg_trait_path'] (string): path to csv file giving vegetation traits for each plant functional type available for grazing. This file must contain a column named "PFT" that contains unique integers. These integer values correspond to PFT identifiers of veg spatial composition rasters. Other required fields for this table are vegetation input parameters from the Century model, for example maximum intrinsic growth rate, optimum temperature for production, minimum C/N ratio, etc. args['veg_spatial_composition_path_pattern'] (string): path to vegetation rasters, one per plant functional type available for grazing, where <PFT> can be replaced with an integer that is indexed in the veg trait csv. Example: if this value is given as `./vegetation/pft_<PFT>.tif` and the directory `./vegetation/` contains these files: "pft_1.tif" "pft_12.tif" "pft_50.tif", then the "PFT" field in the vegetation trait table must contain the values 1, 12, and 50. args['animal_trait_path'] (string): path to csv file giving animal traits for each animal type - number - duration combination. This table must contain a column named "animal_id" that contains unique integers. These integer values correspond to features in the animal management layer. Other required fields in this table are: type (allowable values: b_indicus, b_taurus, indicus_x_taurus, sheep, camelid, hindgut_fermenter) sex (allowable values: entire_m, castrate, breeding_female, NA) age (days) weight (kg) SRW (standard reference weight, kg; the weight of a mature female in median condition) SFW (standard fleece weight, kg; the average weight of fleece of a mature adult; for sheep only) birth_weight (kg) grz_months (a string of integers, separated by ','; months of the simulation when animals are present, relative to `starting_month`. For example, if `n_months` is 3, and animals are present during the entire simulation period, `grz_months` should be "1,2,3") args['animal_grazing_areas_path'] (string): path to animal vector inputs giving the location of grazing animals. Must have a field named "animal_id", containing unique integers that correspond to the values in the "animal_id" column of the animal trait csv, and a field named "num_animal" giving the number of animals grazing inside each polygon feature. args['initial_conditions_dir'] (string): optional input, path to directory containing initial conditions. If this directory is not supplied, a site_initial_table and pft_initial_table must be supplied. If supplied, this directory must contain a series of rasters with initial values for each PFT and for the site. Required rasters for each PFT: initial variables that are a property of PFT in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing e.g., aglivc_<PFT>.tif Required for the site: initial variables that are a property of site in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['site_initial_table'] (string): optional input, path to table containing initial conditions for each site state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each site code and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['pft_initial_table'] (string): optional input, path to table containing initial conditions for each plant functional type state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each plant functional type index and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['save_sv_rasters'] (boolean): optional input, default false. Should rasters containing all state variables be saved for each model time step? args['animal_density'] (string): optional input, density of grazing animals in animals per hectare. args['crude_protein'] (float): optional input, crude protein concentration of forage for the purposes of animal diet selection. Should be a value between 0-1. If included, this value is substituted for N content of forage when calculating digestibility and "ingestibility" of forage, and protein content of the diet, for grazing animals. Returns: None. """ LOGGER.info("model execute: %s", args) starting_month = int(args['starting_month']) starting_year = int(args['starting_year']) n_months = int(args['n_months']) try: delete_sv_folders = not args['save_sv_rasters'] except KeyError: delete_sv_folders = True try: global CRUDE_PROTEIN CRUDE_PROTEIN = args['crude_protein'] except KeyError: pass try: animal_density_path = args['animal_density'] except KeyError: args['animal_density'] = None # this set will build up the integer months that are used so we can index # them with temperature later temperature_month_set = set() # this dict will be used to build the set of input rasters associated with # a reasonable lookup ID so we can have a nice dataset to align for raster # stack operations base_align_raster_path_id_map = {} precip_dir_list = [ os.path.join(args['precip_dir'], f) for f in os.listdir(args['precip_dir'])] for month_index in range(n_months): month_i = (starting_month + month_index - 1) % 12 + 1 temperature_month_set.add(month_i) year = starting_year + (starting_month + month_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No precipitation data found for year %d, month %d" % (year, month_i)) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_{}'.format(month_index)] = file_list[0] # the model requires 12 months of precipitation data to calculate # atmospheric N deposition and potential production from annual precip n_precip_months = int(args['n_months']) if n_precip_months < 12: m_index = int(args['n_months']) while n_precip_months < 12: month_i = (starting_month + m_index - 1) % 12 + 1 year = starting_year + (starting_month + m_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: break if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_%d' % m_index] = file_list[0] n_precip_months = n_precip_months + 1 m_index = m_index + 1 if n_precip_months < 12: raise ValueError("At least 12 months of precipitation data required") # collect monthly temperature data min_temp_dir_list = [ os.path.join(args['min_temp_dir'], f) for f in os.listdir(args['min_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in min_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No minimum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'min_temp_%d' % month_i] = file_list[0] max_temp_dir_list = [ os.path.join(args['max_temp_dir'], f) for f in os.listdir(args['max_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in max_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No maximum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'max_temp_%d' % month_i] = file_list[0] # lookup to provide path to soil percent given soil type for soil_type in SOIL_TYPE_LIST: base_align_raster_path_id_map[soil_type] = ( args['%s_proportion_path' % soil_type]) if not os.path.exists(base_align_raster_path_id_map[soil_type]): raise ValueError( "Couldn't find %s for %s" % ( base_align_raster_path_id_map[soil_type], soil_type)) base_align_raster_path_id_map['bulk_d_path'] = args['bulk_density_path'] base_align_raster_path_id_map['ph_path'] = args['ph_path'] # make sure site initial conditions and parameters exist for each site # identifier base_align_raster_path_id_map['site_index'] = ( args['site_param_spatial_index_path']) n_bands = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['n_bands'] if n_bands > 1: raise ValueError( 'Site spatial index raster must contain only one band') site_datatype = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['datatype'] if site_datatype not in [1, 2, 3, 4, 5]: raise ValueError('Site spatial index raster must be integer type') # get unique values in site param raster site_index_set = set() for offset_map, raster_block in pygeoprocessing.iterblocks( (args['site_param_spatial_index_path'], 1)): site_index_set.update(numpy.unique(raster_block)) site_nodata = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['nodata'][0] if site_nodata in site_index_set: site_index_set.remove(site_nodata) site_param_table = utils.build_lookup_from_csv( args['site_param_table'], 'site') missing_site_index_list = list( site_index_set.difference(site_param_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find parameter values for the following site " + "indices: %s\n\t" + ", ".join(missing_site_index_list)) # make sure plant functional type parameters exist for each pft raster pft_dir = os.path.dirname(args['veg_spatial_composition_path_pattern']) pft_basename = os.path.basename( args['veg_spatial_composition_path_pattern']) files = [ f for f in os.listdir(pft_dir) if os.path.isfile( os.path.join(pft_dir, f))] pft_regex = re.compile(pft_basename.replace('<PFT>', r'(\d+)')) pft_matches = [ m for m in [pft_regex.search(f) for f in files] if m is not None] pft_id_set = set([int(m.group(1)) for m in pft_matches]) for pft_i in pft_id_set: pft_path = args['veg_spatial_composition_path_pattern'].replace( '<PFT>', '%d' % pft_i) base_align_raster_path_id_map['pft_%d' % pft_i] = pft_path veg_trait_table = utils.build_lookup_from_csv( args['veg_trait_path'], 'PFT') missing_pft_trait_list = pft_id_set.difference(veg_trait_table.keys()) if missing_pft_trait_list: raise ValueError( "Couldn't find trait values for the following plant functional " + "types: %s\n\t" + ", ".join(missing_pft_trait_list)) frtcindx_set = set([ pft_i['frtcindx'] for pft_i in veg_trait_table.values()]) if frtcindx_set.difference(set([0, 1])): raise ValueError("frtcindx parameter contains invalid values") base_align_raster_path_id_map['proportion_legume_path'] = args[ 'proportion_legume_path'] # track separate state variable files for each PFT pft_sv_dict = {} for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: pft_sv_dict['{}_{}_path'.format( sv, pft_i)] = '{}_{}.tif'.format(sv, pft_i) # make sure animal traits exist for each feature in animal management # layer anim_id_list = [] driver = ogr.GetDriverByName('ESRI Shapefile') datasource = driver.Open(args['animal_grazing_areas_path'], 0) layer = datasource.GetLayer() for feature in layer: anim_id_list.append(feature.GetField('animal_id')) input_animal_trait_table = utils.build_lookup_from_csv( args['animal_trait_path'], 'animal_id') missing_animal_trait_list = set( anim_id_list).difference(input_animal_trait_table.keys()) if missing_animal_trait_list: raise ValueError( "Couldn't find trait values for the following animal " + "ids: %s\n\t" + ", ".join(missing_animal_trait_list)) # if animal density is supplied, align inputs to match its resolution # otherwise, match resolution of precipitation rasters if args['animal_density']: target_pixel_size = pygeoprocessing.get_raster_info( args['animal_density'])['pixel_size'] base_align_raster_path_id_map['animal_density'] = args[ 'animal_density'] else: target_pixel_size = pygeoprocessing.get_raster_info( base_align_raster_path_id_map['precip_0'])['pixel_size'] LOGGER.info( "pixel size of aligned inputs: %s", target_pixel_size) # temporary directory for intermediate files global PROCESSING_DIR PROCESSING_DIR = os.path.join(args['workspace_dir'], "temporary_files") if not os.path.exists(PROCESSING_DIR): os.makedirs(PROCESSING_DIR) # set up a dictionary that uses the same keys as # 'base_align_raster_path_id_map' to point to the clipped/resampled # rasters to be used in raster calculations for the model. aligned_raster_dir = os.path.join( args['workspace_dir'], 'aligned_inputs') if os.path.exists(aligned_raster_dir): shutil.rmtree(aligned_raster_dir) os.makedirs(aligned_raster_dir) aligned_inputs = dict([(key, os.path.join( aligned_raster_dir, 'aligned_%s' % os.path.basename(path))) for key, path in base_align_raster_path_id_map.items()]) # align all the base inputs to be the minimum known pixel size and to # only extend over their combined intersections source_input_path_list = [ base_align_raster_path_id_map[k] for k in sorted( base_align_raster_path_id_map.keys())] aligned_input_path_list = [ aligned_inputs[k] for k in sorted(aligned_inputs.keys())] pygeoprocessing.align_and_resize_raster_stack( source_input_path_list, aligned_input_path_list, ['near'] * len(source_input_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], vector_mask_options={'mask_vector_path': args['aoi_path']}) _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set) file_suffix = utils.make_suffix_string(args, 'results_suffix') # create animal trait spatial index raster from management polygon aligned_inputs['animal_index'] = os.path.join( aligned_raster_dir, 'animal_spatial_index.tif') pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], aligned_inputs['animal_index'], gdal.GDT_Int32, [_TARGET_NODATA], fill_value_list=[_TARGET_NODATA]) pygeoprocessing.rasterize( args['animal_grazing_areas_path'], aligned_inputs['animal_index'], option_list=["ATTRIBUTE=animal_id"]) # create uniform animal density raster, if not supplied as input if not args['animal_density']: aligned_inputs['animal_density'] = os.path.join( aligned_raster_dir, 'animal_density.tif') _animal_density(aligned_inputs, args['animal_grazing_areas_path']) # Initialization sv_dir = os.path.join(args['workspace_dir'], 'state_variables_m-1') os.makedirs(sv_dir) initial_conditions_dir = None try: initial_conditions_dir = args['initial_conditions_dir'] except KeyError: pass if initial_conditions_dir: # check that a raster for each required state variable is supplied missing_initial_values = [] # set _SV_NODATA from initial rasters state_var_nodata = set([]) # align initial state variables to resampled inputs resample_initial_path_map = {} for sv in _SITE_STATE_VARIABLE_FILES: sv_path = os.path.join( initial_conditions_dir, _SITE_STATE_VARIABLE_FILES[sv]) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'][0]])) resample_initial_path_map[sv] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: sv_key = '{}_{}_path'.format(sv, pft_i) sv_path = os.path.join( initial_conditions_dir, '{}_{}.tif'.format(sv, pft_i)) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'] [0]])) resample_initial_path_map[sv_key] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) if missing_initial_values: raise ValueError( "Couldn't find the following required initial values: " + "\n\t".join(missing_initial_values)) if len(state_var_nodata) > 1: raise ValueError( "Initial state variable rasters contain >1 nodata value") global _SV_NODATA _SV_NODATA = list(state_var_nodata)[0] # align initial values with inputs initial_path_list = ( [aligned_inputs['precip_0']] + [resample_initial_path_map[key] for key in sorted( resample_initial_path_map.keys())]) aligned_initial_path_list = ( [os.path.join(PROCESSING_DIR, 'aligned_input_template.tif')] + [os.path.join( sv_dir, os.path.basename(resample_initial_path_map[key])) for key in sorted(resample_initial_path_map.keys())]) pygeoprocessing.align_and_resize_raster_stack( initial_path_list, aligned_initial_path_list, ['near'] * len(initial_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], raster_align_index=0, vector_mask_options={'mask_vector_path': args['aoi_path']}) sv_reg = dict( [(key, os.path.join(sv_dir, os.path.basename(path))) for key, path in resample_initial_path_map.items()]) else: # create initialization rasters from tables try: site_initial_conditions_table = utils.build_lookup_from_csv( args['site_initial_table'], 'site') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_site_index_list = list( site_index_set.difference(site_initial_conditions_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find initial conditions values for the following " + "site indices: %s\n\t" + ", ".join(missing_site_index_list)) try: pft_initial_conditions_table = utils.build_lookup_from_csv( args['pft_initial_table'], 'PFT') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_pft_index_list = pft_id_set.difference( pft_initial_conditions_table.keys()) if missing_pft_index_list: raise ValueError( "Couldn't find initial condition values for the following " "plant functional types: %s\n\t" + ", ".join( missing_pft_index_list)) sv_reg = initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table) # calculate persistent intermediate parameters that do not change during # the simulation persist_param_dir = os.path.join( args['workspace_dir'], 'intermediate_parameters') utils.make_directories([persist_param_dir]) pp_reg = utils.build_file_registry( [(_PERSISTENT_PARAMS_FILES, persist_param_dir)], file_suffix) # calculate derived animal traits that do not change during the simulation freer_parameter_df = pandas.DataFrame.from_dict( _FREER_PARAM_DICT, orient='index') freer_parameter_df['type'] = freer_parameter_df.index animal_trait_table = calc_derived_animal_traits( input_animal_trait_table, freer_parameter_df) # calculate maximum potential intake of each animal type for animal_id in animal_trait_table.keys(): revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # calculate field capacity and wilting point LOGGER.info("Calculating field capacity and wilting point") _afiel_awilt( aligned_inputs['site_index'], site_param_table, sv_reg['som1c_2_path'], sv_reg['som2c_2_path'], sv_reg['som3c_path'], aligned_inputs['sand'], aligned_inputs['silt'], aligned_inputs['clay'], aligned_inputs['bulk_d_path'], pp_reg) # calculate other persistent parameters LOGGER.info("Calculating persistent parameters") _persistent_params( aligned_inputs['site_index'], site_param_table, aligned_inputs['sand'], aligned_inputs['clay'], pp_reg) # calculate required ratios for decomposition of structural material LOGGER.info("Calculating required ratios for structural decomposition") _structural_ratios( aligned_inputs['site_index'], site_param_table, sv_reg, pp_reg) # make yearly directory for values that are updated every twelve months year_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) year_reg = dict( [(key, os.path.join(year_dir, path)) for key, path in _YEARLY_FILES.items()]) for pft_i in pft_id_set: for file in _YEARLY_PFT_FILES: year_reg['{}_{}'.format(file, pft_i)] = os.path.join( year_dir, '{}_{}.tif'.format(file, pft_i)) # make monthly directory for monthly intermediate parameters that are # shared between submodels, but do not need to be saved as output month_temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) month_reg = {} for pft_i in pft_id_set: for val in _PFT_INTERMEDIATE_VALUES: month_reg['{}_{}'.format( val, pft_i)] = os.path.join( month_temp_dir, '{}_{}.tif'.format(val, pft_i)) for val in _SITE_INTERMEDIATE_VALUES: month_reg[val] = os.path.join(month_temp_dir, '{}.tif'.format(val)) output_dir = os.path.join(args['workspace_dir'], "output") if not os.path.exists(output_dir): os.makedirs(output_dir) # provisional state variable registry contains provisional biomass in # absence of grazing provisional_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) provisional_sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, provisional_sv_dir), (pft_sv_dict, provisional_sv_dir)], file_suffix) intermediate_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) # Main simulation loop # for each step in the simulation for month_index in range(n_months): if (month_index % 12) == 0: # Update yearly quantities _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg) current_month = (starting_month + month_index - 1) % 12 + 1 current_year = starting_year + (starting_month + month_index - 1) // 12 # track state variables from previous step prev_sv_reg = sv_reg for animal_id in animal_trait_table.keys(): if animal_trait_table[animal_id]['sex'] == 'breeding_female': revised_animal_trait_dict = update_breeding_female_status( animal_trait_table[animal_id], month_index) animal_trait_table[animal_id] = revised_animal_trait_dict revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # enforce absence of grazing as zero biomass removed for pft_i in pft_id_set: pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['fdgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # populate provisional_sv_reg with provisional biomass in absence of # grazing _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, provisional_sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, provisional_sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, provisional_sv_reg) intermediate_sv_reg = copy_intermediate_sv( pft_id_set, provisional_sv_reg, intermediate_sv_dir) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, provisional_sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, provisional_sv_reg) # estimate grazing offtake by animals relative to provisional biomass # at an intermediate step, after senescence but before new growth _calc_grazing_offtake( aligned_inputs, args['aoi_path'], args['management_threshold'], intermediate_sv_reg, pft_id_set, aligned_inputs['animal_index'], animal_trait_table, veg_trait_table, current_month, month_reg) # estimate actual biomass production for this step, integrating impacts # of grazing sv_dir = os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index) utils.make_directories([sv_dir]) sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, sv_dir), (pft_sv_dict, sv_dir)], file_suffix) _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, sv_reg) _animal_diet_sufficiency( sv_reg, pft_id_set, aligned_inputs, animal_trait_table, veg_trait_table, current_month, month_reg) _grazing( aligned_inputs, site_param_table, month_reg, animal_trait_table, pft_id_set, sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, sv_reg) _leach(aligned_inputs, site_param_table, month_reg, sv_reg) _write_monthly_outputs( aligned_inputs, provisional_sv_reg, sv_reg, month_reg, pft_id_set, current_year, current_month, output_dir, file_suffix) # summary results summary_output_dir = os.path.join(output_dir, 'summary_results') os.makedirs(summary_output_dir) summary_shp_path = os.path.join( summary_output_dir, 'grazing_areas_results_rpm{}.shp'.format(file_suffix)) create_vector_copy( args['animal_grazing_areas_path'], summary_shp_path) field_pickle_map, field_header_order_list = aggregate_and_pickle_results( output_dir, summary_shp_path) _add_fields_to_shapefile( field_pickle_map, field_header_order_list, summary_shp_path) # clean up shutil.rmtree(persist_param_dir) shutil.rmtree(PROCESSING_DIR) if delete_sv_folders: for month_index in range(-1, n_months): shutil.rmtree( os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index)) def raster_multiplication( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Multiply raster1 by raster2. Multiply raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_multiply_op(raster1, raster2): """Multiply two rasters.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata result[valid_mask] = raster1[valid_mask] * raster2[valid_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_multiply_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_division( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Divide raster1 by raster2. Divide raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_divide_op(raster1, raster2): """Divide raster1 by raster2.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) raster1 = raster1.astype(numpy.float32) raster2 = raster2.astype(numpy.float32) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata error_mask = ((raster1 != 0) & (raster2 == 0.) & valid_mask) zero_mask = ((raster1 == 0.) & (raster2 == 0.) & valid_mask) nonzero_mask = ((raster2 != 0.) & valid_mask) result[error_mask] = target_path_nodata result[zero_mask] = 0. result[nonzero_mask] = raster1[nonzero_mask] / raster2[nonzero_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_divide_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_list_sum( raster_list, input_nodata, target_path, target_nodata, nodata_remove=False): """Calculate the sum per pixel across rasters in a list. Sum the rasters in `raster_list` element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. If nodata is treated as zero, areas where all inputs are nodata will be nodata in the output. Parameters: raster_list (list): list of paths to rasters to sum input_nodata (float or int): nodata value in the input rasters target_path (string): path to location to store the result target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(*raster_list): """Add the rasters in raster_list without removing nodata values.""" invalid_mask = numpy.any( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters def raster_sum_op_nodata_remove(*raster_list): """Add the rasters in raster_list, treating nodata as zero.""" invalid_mask = numpy.all( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_sum( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Add raster 1 and raster2. Add raster1 and raster2, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to one raster operand raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to second raster operand raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the sum target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(raster1, raster2): """Add raster1 and raster2 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] + raster2[valid_mask] return result def raster_sum_op_nodata_remove(raster1, raster2): """Add raster1 and raster2, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 + raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_difference( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Subtract raster2 from raster1. Subtract raster2 from raster1 element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to raster from which to subtract raster2 raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to raster which should be subtracted from raster1 raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the difference target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the difference in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_difference_op(raster1, raster2): """Subtract raster2 from raster1 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] - raster2[valid_mask] return result def raster_difference_op_nodata_remove(raster1, raster2): """Subtract raster2 from raster1, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 - raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op, target_path, gdal.GDT_Float32, target_nodata) def reclassify_nodata(target_path, new_nodata_value): """Reclassify the nodata value of a raster to a new value. Convert all areas of nodata in the target raster to the new nodata value, which must be an integer. Parameters: target_path (string): path to target raster new_nodata_value (integer): new value to set as nodata Side effects: modifies the raster indicated by `target_path` Returns: None """ def reclassify_op(target_raster): reclassified_raster = numpy.copy(target_raster) reclassify_mask = (target_raster == previous_nodata_value) reclassified_raster[reclassify_mask] = new_nodata_value return reclassified_raster fd, temp_path = tempfile.mkstemp(dir=PROCESSING_DIR) shutil.copyfile(target_path, temp_path) previous_nodata_value = pygeoprocessing.get_raster_info( target_path)['nodata'][0] pygeoprocessing.raster_calculator( [(temp_path, 1)], reclassify_op, target_path, gdal.GDT_Float32, new_nodata_value) # clean up os.close(fd) os.remove(temp_path) def weighted_state_variable_sum( sv, sv_reg, aligned_inputs, pft_id_set, weighted_sum_path): """Calculate weighted sum of state variable across plant functional types. To sum a state variable across PFTs within a grid cell, the state variable must be weighted by the fractional cover of each PFT inside the grid cell. First multiply the state variable by its fractional cover, and then add up the weighted products. Parameters: sv (string): state variable to be summed across plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables, including sv, the state variable to be summed aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types weighted_sum_path (string): path to raster that should contain the weighted sum across PFTs Side effects: modifies or creates the raster indicated by `weighted_sum_path` Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in pft_id_set: val = '{}_weighted'.format(sv) temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) weighted_path_list = [] for pft_i in pft_id_set: target_path = temp_val_dict['{}_weighted_{}'.format(sv, pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( sv_reg['{}_{}_path'.format(sv, pft_i)], _SV_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) raster_list_sum( weighted_path_list, _TARGET_NODATA, weighted_sum_path, _TARGET_NODATA, nodata_remove=True) # clean up temporary files shutil.rmtree(temp_dir) def _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set): """Check the sum of fractional cover across plant functional types. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types Raises: ValueError if the pixel-wise sum of fractional cover values across plant functional types exceeds 1 Returns: None """ with tempfile.NamedTemporaryFile( prefix='cover_sum', dir=PROCESSING_DIR) as cover_sum_temp_file: cover_sum_path = cover_sum_temp_file.name with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name # initialize sum to zero pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], cover_sum_path, gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) for pft_i in pft_id_set: shutil.copyfile(cover_sum_path, operand_temp_path) pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_sum( aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, operand_temp_path, _TARGET_NODATA, cover_sum_path, _TARGET_NODATA) # get maximum sum of fractional cover max_cover = 0. for offset_map, raster_block in pygeoprocessing.iterblocks( (cover_sum_path, 1)): valid_mask = (raster_block != _TARGET_NODATA) if raster_block[valid_mask].size > 0: max_cover = max(max_cover, numpy.amax(raster_block[valid_mask])) if max_cover > 1: raise ValueError( "Fractional cover across plant functional types exceeds 1") # clean up os.remove(cover_sum_path) def initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table): """Generate initial state variable registry from initial conditions tables. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including site spatial index raster and fractional cover of each plant functional type sv_dir (string): path to directory where initial state variable rasters should be stored pft_id_set (set): set of integers identifying plant functional types site_initial_conditions_table (dict): map of site spatial index to dictionaries that contain initial values for site-level state variables pft_initial_conditions_table (dict): map of plant functional type index to dictionaries that contain initial values for plant functional type-level state variables Returns: initial_sv_reg, map of key, path pairs giving paths to initial state variable rasters """ def full_masked(pft_cover, fill_val): """Create a constant raster masked by pft fractional cover. Parameters: pft_cover (numpy.ndarray): input, fractional cover of the plant functional type fill_val (float): constant value with which to fill raster in areas where fractional cover > 0 Returns: full_masked, a raster containing `fill_val` in areas where `pft_cover` > 0 """ valid_mask = ( (~numpy.isclose(pft_cover, _SV_NODATA)) & (pft_cover > 0)) full_masked = numpy.empty(pft_cover.shape, dtype=numpy.float32) full_masked[:] = _SV_NODATA full_masked[valid_mask] = fill_val return full_masked initial_sv_reg = {} # site-level state variables # check for missing state variable values required_site_state_var = set( [sv_key[:-5] for sv_key in _SITE_STATE_VARIABLE_FILES.keys()]) for site_code in site_initial_conditions_table.keys(): missing_site_state_var = required_site_state_var.difference( site_initial_conditions_table[site_code].keys()) if missing_site_state_var: raise ValueError( "The following state variables were not found in the site " + "initial conditions table: \n\t" + "\n\t".join( missing_site_state_var)) for sv_key, basename in _SITE_STATE_VARIABLE_FILES.items(): state_var = sv_key[:-5] site_to_val = dict( [(site_code, float(table[state_var])) for ( site_code, table) in site_initial_conditions_table.items()]) target_path = os.path.join(sv_dir, basename) initial_sv_reg[sv_key] = target_path pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _SV_NODATA) # PFT-level state variables for pft_i in pft_id_set: # check for missing values missing_pft_state_var = set(_PFT_STATE_VARIABLES).difference( pft_initial_conditions_table[pft_i].keys()) if missing_pft_state_var: raise ValueError( "The following state variables were not found in the plant " + "functional type initial conditions table: \n\t" + "\n\t".join( missing_pft_state_var)) for state_var in _PFT_STATE_VARIABLES: fill_val = pft_initial_conditions_table[pft_i][state_var] pft_cover_path = aligned_inputs['pft_{}'.format(pft_i)] target_path = os.path.join( sv_dir, '{}_{}.tif'.format(state_var, pft_i)) sv_key = '{}_{}_path'.format(state_var, pft_i) initial_sv_reg[sv_key] = target_path pygeoprocessing.raster_calculator( [(pft_cover_path, 1), (fill_val, 'raw')], full_masked, target_path, gdal.GDT_Float32, _SV_NODATA) return initial_sv_reg def _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path, ompc_path): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): path to active organic soil carbon raster som2c_2_path (string): path to slow organic soil carbon raster som3c_path (string): path to passive organic soil carbon raster bulkd_path (string): path to bulk density of soil raster edepth (string): path to depth of soil raster ompc_path (string): path to result, total soil organic matter Side effects: modifies or creates the raster indicated by `ompc_path` Returns: None """ def ompc_op(som1c_2, som2c_2, som3c, bulkd, edepth): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): state variable, active organic soil carbon som2c_2_path (string): state variable, slow organic soil carbon som3c_path (string): state variable, passive organic soil carbon bulkd_path (string): input, bulk density of soil edepth_path (string): parameter, depth of soil for this calculation Returns: ompc, total soil organic matter weighted by bulk density. """ ompc = numpy.empty(som1c_2.shape, dtype=numpy.float32) ompc[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som2c_2, _SV_NODATA)) & (~numpy.isclose(som3c, _SV_NODATA)) & (~numpy.isclose(bulkd, bulkd_nodata)) & (edepth != _IC_NODATA)) ompc[valid_mask] = ( (som1c_2[valid_mask] + som2c_2[valid_mask] + som3c[valid_mask]) * 1.724 / (10000. * bulkd[valid_mask] * edepth[valid_mask])) return ompc bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path]], ompc_op, ompc_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulkd_path, afiel_path): """Calculate field capacity for one soil layer. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster afiel_path (string): path to result raster, field capacity for this soil layer Side effects: creates the raster indicated by `afiel_path` Returns: None """ def afiel_op(sand, silt, clay, ompc, bulkd): """Calculate field capacity for one soil layer. Field capacity, maximum soil moisture retention capacity, from <NAME> Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: afiel, field capacity for this soil layer """ afiel = numpy.empty(sand.shape, dtype=numpy.float32) afiel[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) afiel[valid_mask] = ( 0.3075 * sand[valid_mask] + 0.5886 * silt[valid_mask] + 0.8039 * clay[valid_mask] + 2.208E-03 * ompc[valid_mask] + -0.1434 * bulkd[valid_mask]) return afiel sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], afiel_op, afiel_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulkd_path, awilt_path): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster awilt_path (string): path to result raster, wilting point for this soil layer Side effects: creates the raster indicated by `awilt_path` Returns: None """ def awilt_op(sand, silt, clay, ompc, bulkd): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: awilt, wilting point for this soil layer """ awilt = numpy.empty(sand.shape, dtype=numpy.float32) awilt[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) awilt[valid_mask] = ( -0.0059 * sand[valid_mask] + 0.1142 * silt[valid_mask] + 0.5766 * clay[valid_mask] + 2.228E-03 * ompc[valid_mask] + 0.02671 * bulkd[valid_mask]) return awilt sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], awilt_op, awilt_path, gdal.GDT_Float32, _TARGET_NODATA) def _afiel_awilt( site_index_path, site_param_table, som1c_2_path, som2c_2_path, som3c_path, sand_path, silt_path, clay_path, bulk_d_path, pp_reg): """Calculate field capacity and wilting point for each soil layer. Computations based on Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Field capacity is calculated for -0.33 bar; wilting point is calculated for water content at -15 bars. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters including 'edepth' field som1c_2_path (string): path to the state variable 'som1c_2', active organic soil carbon som2c_2_path (string): path to the state variable 'som2c_2', slow organic soil carbon som3c_path (string): path to the state variable 'som3c', passive organic soil carbon sand_path (string): path to raster containing proportion sand in soil silt_path (string): path to raster containing proportion silt in soil clay_path (string): path to raster containing proportion clay in soil bulk_d_path (string): path to raster containing bulk density of soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation Modifies the rasters pp_reg['afiel_<layer>'] and pp_reg['awilt_<layer>'] for all soil layers. Returns: None """ def decrement_ompc(ompc_orig_path, ompc_dec_path): """Decrease estimated organic matter to 85% of its value. In each subsequent soil layer, estimated organic matter is decreased by 15%, to 85% of its previous value. Parameters: ompc_orig_path (string): path to estimated soil organic matter raster ompc_dec_path (string): path to result raster, estimated soil organic matter decreased to 85% of its previous value Side effects: modifies or creates the raster indicated by `ompc_dec_path` Returns: None """ def decrement_op(ompc_orig): """Reduce organic matter to 85% of its previous value.""" ompc_dec = numpy.empty(ompc_orig.shape, dtype=numpy.float32) ompc_dec[:] = _TARGET_NODATA valid_mask = (ompc_orig != _TARGET_NODATA) ompc_dec[valid_mask] = ompc_orig[valid_mask] * 0.85 return ompc_dec pygeoprocessing.raster_calculator( [(ompc_orig_path, 1)], decrement_op, ompc_dec_path, gdal.GDT_Float32, _TARGET_NODATA) # temporary intermediate rasters for calculating field capacity and # wilting point temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) edepth_path = os.path.join(temp_dir, 'edepth.tif') ompc_path = os.path.join(temp_dir, 'ompc.tif') site_to_edepth = dict( [(site_code, float(table['edepth'])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_edepth, edepth_path, gdal.GDT_Float32, _IC_NODATA) # estimate total soil organic matter _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulk_d_path, edepth_path, ompc_path) # calculate field capacity and wilting point for each soil layer, # decreasing organic matter content by 85% with each layer for lyr in range(1, 10): afiel_path = pp_reg['afiel_{}_path'.format(lyr)] awilt_path = pp_reg['awilt_{}_path'.format(lyr)] _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, afiel_path) _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, awilt_path) ompc_dec_path = os.path.join(temp_dir, 'ompc{}.tif'.format(lyr)) decrement_ompc(ompc_path, ompc_dec_path) ompc_path = ompc_dec_path # clean up temporary files shutil.rmtree(temp_dir) def _persistent_params( site_index_path, site_param_table, sand_path, clay_path, pp_reg): """Calculate persistent parameters. The calculated values do not change over the course of the simulation. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sand_path (string): path to raster containing proportion sand in soil clay_path (string): path to raster containing proportion clay in soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['wc_path'] pp_reg['eftext_path'] pp_reg['p1co2_2_path'] pp_reg['fps1s3_path'] pp_reg['fps2s3_path'] pp_reg['orglch_path'] pp_reg['vlossg_path'] Returns: None """ sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] # temporary intermediate rasters for persistent parameters calculation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in[ 'peftxa', 'peftxb', 'p1co2a_2', 'p1co2b_2', 'ps1s3_1', 'ps1s3_2', 'ps2s3_1', 'ps2s3_2', 'omlech_1', 'omlech_2', 'vlossg']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_wc(afiel_1, awilt_1): """Calculate water content of soil layer 1.""" return afiel_1 - awilt_1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ pp_reg['afiel_1_path'], pp_reg['awilt_1_path']]], calc_wc, pp_reg['wc_path'], gdal.GDT_Float32, _TARGET_NODATA) def calc_eftext(peftxa, peftxb, sand): """Calculate effect of soil texture on microbial decomposition. Use an empirical regression to estimate the effect of soil sand content on the microbe decomposition rate. Line 359 Prelim.f Parameters: peftxa (numpy.ndarray): parameter, regression intercept peftxb (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: eftext, coefficient that modifies microbe decomposition rate. """ eftext = numpy.empty(sand.shape, dtype=numpy.float32) eftext[:] = _IC_NODATA valid_mask = ( (peftxa != _IC_NODATA) & (peftxb != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) eftext[valid_mask] = ( peftxa[valid_mask] + (peftxb[valid_mask] * sand[valid_mask])) return eftext pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['peftxa'], param_val_dict['peftxb'], sand_path]], calc_eftext, pp_reg['eftext_path'], gdal.GDT_Float32, _IC_NODATA) def calc_p1co2_2(p1co2a_2, p1co2b_2, sand): """Calculate the fraction of carbon lost to CO2 from som1c_2. During decomposition from active organic soil carbon, a fraction of decomposing material is lost to CO2 as the soil respires. Line 366 Prelim.f Parameters: p1co2a_2 (numpy.ndarray): parameter, intercept of regression predicting loss to CO2 from active organic soil carbon p1co2b_2 (numpy.ndarray): parameter, slope of regression predicting loss to CO2 from active organic soil carbon sand (numpy.ndarray): input, proportion sand in soil Returns: p1co2_2, fraction of carbon that flows to CO2 from active organic soil carbon """ p1co2_2 = numpy.empty(sand.shape, dtype=numpy.float32) p1co2_2[:] = _IC_NODATA valid_mask = ( (p1co2a_2 != _IC_NODATA) & (p1co2b_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) p1co2_2[valid_mask] = ( p1co2a_2[valid_mask] + (p1co2b_2[valid_mask] * sand[valid_mask])) return p1co2_2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['p1co2a_2'], param_val_dict['p1co2b_2'], sand_path]], calc_p1co2_2, pp_reg['p1co2_2_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps1s3(ps1s3_1, ps1s3_2, clay): """Calculate effect of clay content on decomposition from som1c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from soil organic matter with fast turnover to soil organic matter with slow turnover. Line 370 Prelim.f Parameters: ps1s3_1 (numpy.ndarray): parameter, regression intercept ps1s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps1s3, coefficient that modifies rate of decomposition from som1c_2 """ fps1s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps1s3[:] = _IC_NODATA valid_mask = ( (ps1s3_1 != _IC_NODATA) & (ps1s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps1s3[valid_mask] = ( ps1s3_1[valid_mask] + (ps1s3_2[valid_mask] * clay[valid_mask])) return fps1s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps1s3_1'], param_val_dict['ps1s3_2'], clay_path]], calc_fps1s3, pp_reg['fps1s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps2s3(ps2s3_1, ps2s3_2, clay): """Calculate effect of clay content on decomposition from som2c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from slow soil organic carbon to soil passive organic carbon. Line 371 Prelim.f Parameters: ps2s3_1 (numpy.ndarray): parameter, regression intercept ps2s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps2s3, coefficient that modifies rate of decomposition from som2c_2 to som3c """ fps2s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps2s3[:] = _IC_NODATA valid_mask = ( (ps2s3_1 != _IC_NODATA) & (ps2s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps2s3[valid_mask] = ( ps2s3_1[valid_mask] + (ps2s3_2[valid_mask] * clay[valid_mask])) return fps2s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps2s3_1'], param_val_dict['ps2s3_2'], clay_path]], calc_fps2s3, pp_reg['fps2s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_orglch(omlech_1, omlech_2, sand): """Calculate the effect of sand content on leaching from soil. Use an empirical regression to estimate the effect of sand content of soil on rate of organic leaching from soil when there is drainage of soil water from soil layer 1 to soil layer 2. Line 110 Predec.f Parameters: omlech_1 (numpy.ndarray): parameter, regression intercept omlech_2 (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: orglch, the fraction of organic compounds leaching from soil with drainage from soil layer 1 to layer 2 """ orglch = numpy.empty(sand.shape, dtype=numpy.float32) orglch[:] = _IC_NODATA valid_mask = ( (omlech_1 != _IC_NODATA) & (omlech_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) orglch[valid_mask] = ( omlech_1[valid_mask] + (omlech_2[valid_mask] * sand[valid_mask])) return orglch pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['omlech_1'], param_val_dict['omlech_2'], sand_path]], calc_orglch, pp_reg['orglch_path'], gdal.GDT_Float32, _IC_NODATA) def calc_vlossg(vlossg_param, clay): """Calculate proportion of gross mineralized N that is volatized. During decomposition, some N is lost to volatilization. This is a function of the gross mineralized N and is calculated according to this multiplier, which varies with soil clay content. Parameters: vlossg (numpy.ndarray): parameter, volatilization loss multiplier clay (numpy.ndarray): input, proportion clay in soil Returns: vlossg, proportion of gross mineralized N that is volatized """ valid_mask = ( (vlossg_param != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) vlossg = numpy.empty(vlossg_param.shape, dtype=numpy.float32) vlossg[:] = _IC_NODATA max_mask = ((clay > 0.3) & valid_mask) min_mask = ((clay < 0.1) & valid_mask) vlossg[valid_mask] = -0.1 * (clay[valid_mask] - 0.3) + 0.01 vlossg[max_mask] = 0.01 vlossg[min_mask] = 0.03 vlossg[valid_mask] = vlossg[valid_mask] * vlossg_param[valid_mask] return vlossg pygeoprocessing.raster_calculator( [(path, 1) for path in [param_val_dict['vlossg'], clay_path]], calc_vlossg, pp_reg['vlossg_path'], gdal.GDT_Float32, _IC_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _aboveground_ratio(anps, tca, pcemic_1, pcemic_2, pcemic_3): """Calculate C/<iel> ratios of decomposing aboveground material. This ratio is used to test whether there is sufficient <iel> (N or P) in aboveground material for the material to decompose. Agdrat.f Parameters: anps (numpy.ndarray): state variable, N or P in the donor material tca (numpy.ndarray): state variable, total C in the donor material pcemic_1 (numpy.ndarray): parameter, maximum C/<iel> of new material pcemic_2 (numpy.ndarray): parameter, minimum C/<iel> of new material pcemic_3 (numpy.ndarray): parameter, minimum <iel> content of decomposing material that gives minimum C/<iel> of new material Returns: agdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(tca, _SV_NODATA)) & (pcemic_1 != _IC_NODATA) & (pcemic_2 != _IC_NODATA) & (pcemic_3 != _IC_NODATA)) cemicb = numpy.empty(anps.shape, dtype=numpy.float32) cemicb[:] = _IC_NODATA cemicb[valid_mask] = ( (pcemic_2[valid_mask] - pcemic_1[valid_mask]) / pcemic_3[valid_mask]) econt = numpy.empty(anps.shape, dtype=numpy.float32) econt[:] = _TARGET_NODATA econt[valid_mask] = 0 decompose_mask = ((tca > 0.) & valid_mask) econt[decompose_mask] = anps[decompose_mask] / (tca[decompose_mask] * 2.5) agdrat = numpy.empty(anps.shape, dtype=numpy.float32) agdrat[:] = _TARGET_NODATA agdrat[valid_mask] = pcemic_2[valid_mask] compute_mask = ((econt <= pcemic_3) & valid_mask) agdrat[compute_mask] = ( pcemic_1[compute_mask] + econt[compute_mask] * cemicb[compute_mask]) return agdrat def _belowground_ratio(aminrl, varat_1_iel, varat_2_iel, varat_3_iel): """Calculate C/<iel> ratios of decomposing belowground material. This ratio is used to test whether there is sufficient <iel> (N or P) in soil metabolic material to decompose. Bgdrat.f Parameters: aminrl (numpy.ndarray): derived, average surface mineral <iel> varat_1_iel (numpy.ndarray): parameter, maximum C/<iel> ratio for newly decomposed material varat_2_iel (numpy.ndarray): parameter, minimum C/<iel> ratio varat_3_iel (numpy.ndarray): parameter, amount of <iel> present when minimum ratio applies Returns: bgdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(aminrl, _SV_NODATA)) & (varat_1_iel != _IC_NODATA) & (varat_2_iel != _IC_NODATA) & (varat_3_iel != _IC_NODATA)) bgdrat = numpy.empty(aminrl.shape, dtype=numpy.float32) bgdrat[:] = _TARGET_NODATA bgdrat[valid_mask] = ( (1. - aminrl[valid_mask] / varat_3_iel[valid_mask]) * (varat_1_iel[valid_mask] - varat_2_iel[valid_mask]) + varat_2_iel[valid_mask]) max_mask = ((aminrl <= 0) & valid_mask) bgdrat[max_mask] = varat_1_iel[max_mask] min_mask = ((aminrl > varat_3_iel) & valid_mask) bgdrat[min_mask] = varat_2_iel[min_mask] return bgdrat def _structural_ratios(site_index_path, site_param_table, sv_reg, pp_reg): """Calculate maximum C/N and C/P ratios for structural material. These ratios limit decomposition of structural material (i.e., material containing lignin). Lines 31-77 Predec.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sv_reg (dict): map of key, path pairs giving paths to state variables for the current month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['rnewas_1_1_path'] pp_reg['rnewas_1_2_path'] pp_reg['rnewas_2_1_path'] pp_reg['rnewas_2_2_path'] pp_reg['rnewbs_1_1_path'] pp_reg['rnewbs_1_2_path'] pp_reg['rnewbs_2_1_path'] pp_reg['rnewbs_2_2_path'] Returns: None """ # temporary parameter rasters for structural ratios calculations temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for iel in [1, 2]: for val in[ 'pcemic1_2', 'pcemic1_1', 'pcemic1_3', 'pcemic2_2', 'pcemic2_1', 'pcemic2_3', 'rad1p_1', 'rad1p_2', 'rad1p_3', 'varat1_1', 'varat22_1']: target_path = os.path.join(temp_dir, '{}_{}.tif'.format(val, iel)) param_val_dict['{}_{}'.format(val, iel)] = target_path site_to_val = dict( [(site_code, float(table['{}_{}'.format(val, iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_rnewas_som2( pcemic2_2, pcemic2_1, pcemic2_3, struce_1, strucc_1, rad1p_1, rad1p_2, rad1p_3, pcemic1_2, rnewas1): """Calculate C/<iel> ratio for decomposition into som2. This ratio is calculated separately for each nutrient (i.e., N, P). When material decomposes into the surface slow organic pool, the C/<iel> ratio of decomposing material must be smaller than or equal to this ratio. A portion of the ratio of material entering som1, the surface active pool, is also added to som2 and calculated here. Parameters: pcemic2_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface slow organic pool pcemic2_1 (numpy.ndarray): parameter, maximum C/<iel> ratio for surface slow organic pool pcemic2_3 (numpy.ndarray): parameter, mimimum <iel> content of decomposing aboveground material, above which the C/<iel> ratio of the surface slow organic pool equals pcemic1_2 struce_1 (numpy.ndarray): state variable, <iel> in surface structural material strucc_1 (numpy.ndarray): state variable, C in surface structural material rad1p_1 (numpy.ndarray): parameter, intercept of regression used to calculate addition of <iel> from surface active pool rad1p_2 (numpy.ndarray): parameter, slope of regression used to calculate addition of <iel> from surface active pool rad1p_3 (numpy.ndarray): parameter, minimum allowable C/<iel> used to calculate addition term for C/<iel> ratio of som2 formed from surface active pool pcemic1_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface active organic pool rnewas1 (numpy.ndarray): derived, C/<iel> ratio for decomposition into som1 Returns: rnewas2, required ratio for decomposition of structural material into som2 for one nutrient """ valid_mask = ( (pcemic2_2 != _IC_NODATA) & (pcemic2_1 != _IC_NODATA) & (pcemic2_3 != _IC_NODATA) & (~numpy.isclose(struce_1, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (rad1p_1 != _IC_NODATA) & (rad1p_2 != _IC_NODATA) & (rad1p_3 != _IC_NODATA) & (pcemic1_2 != _IC_NODATA) & (rnewas1 != _TARGET_NODATA)) rnewas2 = _aboveground_ratio( struce_1, strucc_1, pcemic2_1, pcemic2_2, pcemic2_3) radds1 = numpy.empty(strucc_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1[valid_mask] + rad1p_2[valid_mask] * (rnewas1[valid_mask] - pcemic1_2[valid_mask])) rnewas2[valid_mask] = rnewas1[valid_mask] + radds1[valid_mask] rnewas2[valid_mask] = numpy.maximum( rnewas2[valid_mask], rad1p_3[valid_mask]) return rnewas2 for iel in [1, 2]: # calculate rnewas_iel_1 - aboveground material to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, pp_reg['rnewas_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewas_iel_2 - aboveground material to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['pcemic2_2_{}'.format(iel)], param_val_dict['pcemic2_1_{}'.format(iel)], param_val_dict['pcemic2_3_{}'.format(iel)], sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], pp_reg['rnewas_{}_1_path'.format(iel)]]], calc_rnewas_som2, pp_reg['rnewas_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_1 - belowground material to SOM1 site_to_varat1_1 = dict([ (site_code, float(table['varat1_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat1_1, pp_reg['rnewbs_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_2 - belowground material to SOM2 # rnewbs(iel,2) = varat22(1,iel) site_to_varat22_1 = dict([ (site_code, float(table['varat22_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat22_1, pp_reg['rnewbs_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg): """Calculate quantities that remain static for 12 months. These quantities are annual precipitation, annual atmospheric N deposition, and the fraction of plant residue which is lignin for each pft. Century also calculates non-symbiotic soil N fixation once yearly, but here those were moved to monthly tasks. Century uses precipitation in the future 12 months (prcgrw) to predict root:shoot ratios, but here we instead use the sum of monthly precipitation in 12 months including the current one, if data for 12 future months are not available. Lines 79-82, 164 Eachyr.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including monthly precipitation and site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters month_index (int): current monthly step, relative to 0 so that month_index=0 at first monthly time step pft_id_set (set): set of integers identifying plant functional types year_reg (dict): map of key, path pairs giving paths to the annual precipitation and N deposition rasters Side effects: modifies or creates the rasters indicated by: year_reg['annual_precip_path'] year_reg['baseNdep_path'] year_reg['pltlig_above_<pft>'] for each pft year_reg['pltlig_below_<pft>'] for each pft Returns: None Raises: ValueError if fewer than 12 monthly precipitation rasters can be found """ def calc_base_N_dep(epnfa_1, epnfa_2, prcann): """Calculate base annual atmospheric N deposition. Parameters: epnfa_1 (numpy.ndarray): parameter, intercept of regression predicting atmospheric N deposition from precipitation epnfa_2 (numpy.ndarray): parameter, slope of regression predicting atmospheric N deposition from precipitation prcann (numpy.ndarray): derived, annual precipitation Returns: baseNdep, annual atmospheric N deposition """ baseNdep = numpy.empty(prcann.shape, dtype=numpy.float32) baseNdep[:] = 0. valid_mask = ( (epnfa_1 != _IC_NODATA) & (epnfa_2 != _IC_NODATA) & (prcann != _TARGET_NODATA)) baseNdep[valid_mask] = ( epnfa_1[valid_mask] + (epnfa_2[valid_mask] * numpy.minimum(prcann[valid_mask], 80.))) baseNdep[baseNdep < 0] = 0. return baseNdep def calc_pltlig(fligni_1_lyr, fligni_2_lyr, prcann): """Calculate the fraction of residue that is lignin. Cmplig.f This fraction is used to calculate the fraction of residue (i.e., incoming litter from fall of standing dead or incoming soil from death of roots) that is partitioned to metabolic vs structural pools. It is calculated once per year from annual precipitation and fixed parameters. Parameters: fligni_1_lyr (numpy.ndarray): parameter, intercept for regression predicting lignin content fraction from rainfall fligni_2_lyr (numpy.ndarray): parameter, slope for regression predicting lignin content fraction from rainfall prcann (numpy.ndarray): derived, annual precipitation Returns: pltlig_lyr, fraction of residue that is lignin """ valid_mask = ( (fligni_1_lyr != _IC_NODATA) & (fligni_2_lyr != _IC_NODATA) & (prcann != _TARGET_NODATA)) pltlig = numpy.empty(fligni_1_lyr.shape, dtype=numpy.float32) pltlig[:] = _TARGET_NODATA pltlig[valid_mask] = ( fligni_1_lyr[valid_mask] + fligni_2_lyr[valid_mask] * prcann[valid_mask]) pltlig[valid_mask] = numpy.clip(pltlig[valid_mask], 0.02, 0.5) return pltlig offset = -12 annual_precip_rasters = [] while len(annual_precip_rasters) < 12: offset += 1 if offset == 12: raise ValueError("Insufficient precipitation rasters were found") precip_month = month_index + offset try: annual_precip_rasters.append( aligned_inputs['precip_%d' % precip_month]) except KeyError: continue precip_nodata = set([]) for precip_raster in annual_precip_rasters: precip_nodata.update( set([pygeoprocessing.get_raster_info(precip_raster)['nodata'][0]])) if len(precip_nodata) > 1: raise ValueError("Precipitation rasters include >1 nodata value") precip_nodata = list(precip_nodata)[0] raster_list_sum( annual_precip_rasters, precip_nodata, year_reg['annual_precip_path'], _TARGET_NODATA) # intermediate parameter rasters for this operation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in['epnfa_1', 'epnfa_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['fligni_1_1', 'fligni_2_1', 'fligni_1_2', 'fligni_2_2']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # calculate base N deposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['epnfa_1'], param_val_dict['epnfa_2'], year_reg['annual_precip_path']]], calc_base_N_dep, year_reg['baseNdep_path'], gdal.GDT_Float32, _TARGET_NODATA) for pft_i in pft_id_set: # fraction of surface residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_1_{}'.format(pft_i)], param_val_dict['fligni_2_1_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_above_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # fraction of soil residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_2_{}'.format(pft_i)], param_val_dict['fligni_2_2_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_below_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_latitude(template_raster, latitude_raster_path): """Calculate latitude at the center of each pixel in a template raster.""" pygeoprocessing.new_raster_from_base( template_raster, latitude_raster_path, gdal.GDT_Float32, [_IC_NODATA]) latitude_raster = gdal.OpenEx( latitude_raster_path, gdal.OF_RASTER | gdal.GA_Update) target_band = latitude_raster.GetRasterBand(1) base_raster_info = pygeoprocessing.get_raster_info(template_raster) geotransform = base_raster_info['geotransform'] for offset_map, raster_block in pygeoprocessing.iterblocks( (template_raster, 1)): n_y_block = raster_block.shape[0] n_x_block = raster_block.shape[1] # offset by .5 so we're in the center of the pixel xoff = offset_map['xoff'] + 0.5 yoff = offset_map['yoff'] + 0.5 # calculate the projected x and y coordinate bounds for the block x_range = numpy.linspace( geotransform[0] + geotransform[1] * xoff, geotransform[0] + geotransform[1] * (xoff + n_x_block - 1), n_x_block) y_range = numpy.linspace( geotransform[3] + geotransform[5] * yoff, geotransform[3] + geotransform[5] * (yoff + n_y_block - 1), n_y_block) # we'll use this to avoid generating any nodata points valid_mask = raster_block != base_raster_info['nodata'] # these indexes correspond to projected coordinates # y_vector is what we want, an array of latitude coordinates x_vector, y_vector = numpy.meshgrid(x_range, y_range) target_band.WriteArray( y_vector, xoff=offset_map['xoff'], yoff=offset_map['yoff']) # Making sure the band and dataset is flushed and not in memory target_band.FlushCache() target_band.FlushCache() target_band = None gdal.Dataset.__swig_destroy__(latitude_raster) latitude_raster = None def _calc_daylength(template_raster, month, daylength_path): """Calculate estimated hours of daylength. Daylen.c. Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January daylength_path (string): path to shortwave radiation raster Side effects: modifies or creates the raster indicated by `daylength_path` Returns: None """ def daylength(month): def _daylength(latitude): """Estimate hours of daylength for a given month and latitude.""" # Julian day at beginning of each month jday_list = [ 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 337] jday = jday_list[month - 1] # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) declin = 0.4014 * numpy.sin(6.283185 * (jday - 77.0) / 365) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0] = 0 par1 = numpy.sqrt(temp) par2 = -numpy.tan(rlatitude) * numpy.tan(declin) ahou = numpy.arctan2(par1, par2) hours_of_daylength = (ahou / numpy.pi) * 24 return hours_of_daylength return _daylength # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], daylength(month), daylength_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _shortwave_radiation(template_raster, month, shwave_path): """Calculate shortwave radiation outside the atmosphere. Shortwave radiation outside the atmosphere is calculated according to Penman (1948), "Natural evaporation from open water, bare soil and grass", Proc. Roy. Soc. London. The latitude of each pixel is required to calculate radiation and is calculated as an intermediate step from the input `template_raster`. shwave.f Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January shwave_path (string): path to shortwave radiation raster Side effects: Modifies the raster indicated by `shwave_path` Returns: None """ def shwave(month): def _shwave(latitude): """Calculate shortwave radiation outside the atmosphere. Parameters: latitude (float): latitude of current site in degrees month (int): current month of the year, such that month=1 indicates January Returns: shwave, short wave solar radiation outside the atmosphere """ # Julian date in middle of each month of the year jday_list = [ 16, 46, 75, 106, 136, 167, 197, 228, 259, 289, 320, 350] jday = jday_list[month - 1] transcof = 0.8 # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) # short wave solar radiation on a clear day declin = 0.401426 * numpy.sin(6.283185 * (jday - 77.0) / 365.0) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0.] = 0. par1 = numpy.sqrt(temp) par2 = (-numpy.tan(rlatitude) * numpy.tan(declin)) ahou = numpy.arctan2(par1, par2) ahou[ahou < 0.] = 0. solrad = ( 917.0 * transcof * ( ahou * numpy.sin(rlatitude) * numpy.sin(declin) + numpy.cos(rlatitude) * numpy.cos(declin) * numpy.sin(ahou))) # short wave radiation outside the atmosphere shwave = solrad / transcof return shwave return _shwave # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], shwave(month), shwave_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _reference_evapotranspiration( max_temp_path, min_temp_path, shwave_path, fwloss_4_path, pevap_path): """Calculate reference evapotranspiration. Reference evapotranspiration from the FAO Penman-Monteith equation in "Guidelines for computing crop water requirements", FAO Irrigation and drainage paper 56 (http://www.fao.org/docrep/X0490E/x0490e08.htm), modified by the parameter fwloss(4). Parameters: max_temp_path (string): path to maximum monthly temperature min_temp_path (string): path to minimum monthly temperature shwave_path (string): path to shortwave radiation outside the atmosphere fwloss_4_path (string): path to parameter, scaling factor for reference evapotranspiration pevap_path (string): path to result, reference evapotranspiration raster Side effects: modifies or creates the raster indicated by `pevap_path` Returns: None """ def _calc_pevap(max_temp, min_temp, shwave, fwloss_4): """Calculate reference evapotranspiration. Pevap.f Parameters: max_temp (numpy.ndarray): input, maximum monthly temperature min_temp (numpy.ndarray): input, minimum monthly temperature shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere fwloss_4 (numpy.ndarray): parameter, scaling factor for reference evapotranspiration Returns: pevap, reference evapotranspiration """ const1 = 0.0023 const2 = 17.8 langleys2watts = 54.0 valid_mask = ( (~numpy.isclose(max_temp, maxtmp_nodata)) & (~numpy.isclose(min_temp, mintmp_nodata)) & (shwave != _TARGET_NODATA) & (fwloss_4 != _IC_NODATA)) trange = numpy.empty(fwloss_4.shape, dtype=numpy.float32) trange[:] = _TARGET_NODATA trange[valid_mask] = max_temp[valid_mask] - min_temp[valid_mask] tmean = numpy.empty(fwloss_4.shape, dtype=numpy.float32) tmean[:] = _IC_NODATA tmean[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2.0 # daily reference evapotranspiration daypet = numpy.empty(fwloss_4.shape, dtype=numpy.float32) daypet[:] = _TARGET_NODATA in1 = const1 * (tmean[valid_mask] + const2) in2 = numpy.sqrt(trange[valid_mask]) in3 = (shwave[valid_mask] / langleys2watts) daypet[valid_mask] = ( const1 * (tmean[valid_mask] + const2) * numpy.sqrt(trange[valid_mask]) * (shwave[valid_mask] / langleys2watts)) # monthly reference evapotranspiration, from mm to cm, # bounded to be at least 0.5 monpet = (daypet * 30.) / 10. monpet[monpet <= 0.5] = 0.5 pevap = numpy.empty(fwloss_4.shape, dtype=numpy.float32) pevap[:] = _TARGET_NODATA pevap[valid_mask] = monpet[valid_mask] * fwloss_4[valid_mask] return pevap maxtmp_nodata = pygeoprocessing.get_raster_info( max_temp_path)['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( min_temp_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ max_temp_path, min_temp_path, shwave_path, fwloss_4_path]], _calc_pevap, pevap_path, gdal.GDT_Float32, _TARGET_NODATA) def _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg): """Calculate above- and belowground potential production. Potential production of each plant functional type is calculated as total potential production given incoming solar radiation, limited by temperature, soil moisture, and obstruction by biomass and litter. Further modification of potential production according to limitation by water and nutrient availability is calculated in the root:shoot ratio submodel. Lines 57-148 Potcrp.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['h2ogef_1_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month creates the raster indicated by `month_reg['tgprod_pot_prod_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: if str(current_month) in veg_trait_table[pft_i]['growth_months']: do_PFT.append(pft_i) if not do_PFT: return def calc_ctemp(aglivc, pmxbio, maxtmp, pmxtmp, mintmp, pmntmp): """Calculate soil temperature relative to its effect on growth. Soil temperature is calculated from monthly temperature inputs and modified by total standing live biomass. Lines 69-84 Potcrp.f Parameters: aglivc (numpy.ndarray): derived, sum of aglivc (carbon in aboveground live biomass) across plant functional types pmxbio (numpy.ndarray): parameter, maximum biomass impact on temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature pmxtmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly maximum temperature mintmp (numpy.ndarray): input, average minimum monthly temperature pmntmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly minimum temperature Returns: ctemp, effect of soil temperature on potential production """ bio = numpy.empty(aglivc.shape, dtype=numpy.float32) bio[:] = _IC_NODATA valid_mask = ( (aglivc >= 0.) & (pmxbio != _IC_NODATA) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (pmxtmp != _IC_NODATA) & (~numpy.isclose(mintmp, mintmp_nodata)) & (pmntmp != _IC_NODATA)) bio[valid_mask] = aglivc[valid_mask] * 2.5 bio[bio > pmxbio] = pmxbio[bio > pmxbio] bio[pmxbio < 0] = _IC_NODATA # Maximum temperature tmxs = numpy.empty(aglivc.shape, dtype=numpy.float32) tmxs[:] = _IC_NODATA tmxs[valid_mask] = ( maxtmp[valid_mask] + ( (25.4/(1. + 18. * numpy.exp(-0.20 * maxtmp[valid_mask]))) * (numpy.exp(pmxtmp[valid_mask] * bio[valid_mask]) - 0.13))) # Minimum temperature tmns = numpy.empty(aglivc.shape, dtype=numpy.float32) tmns[:] = _IC_NODATA tmns[valid_mask] = ( mintmp[valid_mask] + (pmntmp[valid_mask] * bio[valid_mask] - 1.78)) # Average temperature ctemp = numpy.empty(aglivc.shape, dtype=numpy.float32) ctemp[:] = _IC_NODATA ctemp[valid_mask] = (tmxs[valid_mask] + tmns[valid_mask])/2. return ctemp def calc_potprd(mintmp, maxtmp, ctemp, ppdf_1, ppdf_2, ppdf_3, ppdf_4): """Calculate the limiting effect of temperature on growth. Estimated soil temperature restricts potential production according to a Poisson Density Function curve described by the plant functional type-specific parameters ppdf_1-4.. Lines 73-84 Potcrp.f Parameters: mintmp (numpy.ndarray): input, average minimum monthly temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature ctemp (numpy.ndarray): derived, soil temperature as calculated from monthly temperature and modified by standing live biomass ppdf_1 (numpy.ndarray): parameter, optimum temperature for growth ppdf_2 (numpy.ndarray): parameter, maximum temperature for growth ppdf_3 (numpy.ndarray): parameter, left curve shape for Poisson Density Function curve describing growth as function of temperature ppdf_4 (numpy.ndarray): parameter, right curve shape for Poisson Density Function curve describing growth as function of temperature Returns: potprd, scaling factor describing potential production limited by temperature """ valid_mask = ( (~numpy.isclose(mintmp, mintmp_nodata)) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (ctemp != _IC_NODATA) & (ppdf_1 != _IC_NODATA) & (ppdf_2 != _IC_NODATA) & (ppdf_3 != _IC_NODATA) & (ppdf_4 != _IC_NODATA)) frac = numpy.empty(ctemp.shape, dtype=numpy.float32) frac[:] = _TARGET_NODATA frac[valid_mask] = ( (ppdf_2[valid_mask] - ctemp[valid_mask]) / (ppdf_2[valid_mask] - ppdf_1[valid_mask])) avg_tmp = numpy.empty(ctemp.shape, dtype=numpy.float32) avg_tmp[valid_mask] = (mintmp[valid_mask] + maxtmp[valid_mask]) / 2. grow_mask = ( (avg_tmp > 0) & (frac > 0) & valid_mask) potprd = numpy.empty(ctemp.shape, dtype=numpy.float32) potprd[:] = _TARGET_NODATA potprd[valid_mask] = 0. potprd[grow_mask] = (numpy.exp( (ppdf_3[grow_mask]/ppdf_4[grow_mask]) * (1. - numpy.power(frac[grow_mask], ppdf_4[grow_mask]))) * numpy.power(frac[grow_mask], ppdf_3[grow_mask])) return potprd def calc_h2ogef_1( pevap, avh2o_1, precip, wc, pprpts_1, pprpts_2, pprpts_3): """Calculate the limiting factor of water availability on growth. Soil moisture restricts potential production according to the ratio of available water to reference evapotranspiration. The shape of the linear relationship of this ratio to potential production is controlled by the site parameters pprpts_1, pprpts_2, and pprpts_3. Lines 57-64 Potcrp.f Parameters: pevap (numpy.ndarray): derived, reference evapotranspiration avh2o_1 (numpy.ndarray): state variable, water available to this plant functional type for growth precip (numpy.ndarray): input, precipitation for the current month wc (numpy.ndarray): derived, water content in soil layer 1 pprpts_1 (numpy.ndarray): parameter, the minimum ratio of available water to reference evapotranspiration that limits production completely pprpts_2 (numpy.ndarray): parameter, influences the slope of the line predicting potential production from available water pprpts_3 (numpy.ndarray): parameter, the ratio of available water to reference evapotranspiration above which production is not restricted Returns: h2ogef_1, scaling factor describing potential production limited by soil moisture """ valid_mask = ( (pevap != _TARGET_NODATA) & (~numpy.isclose(avh2o_1, _SV_NODATA)) & (~numpy.isclose(precip, precip_nodata)) & (wc != _TARGET_NODATA) & (pprpts_1 != _IC_NODATA) & (pprpts_2 != _IC_NODATA) & (pprpts_3 != _IC_NODATA)) h2ogef_prior = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_prior[:] = _TARGET_NODATA h2ogef_prior[valid_mask] = numpy.where( pevap[valid_mask] >= 0.01, (avh2o_1[valid_mask] + precip[valid_mask])/pevap[valid_mask], 0.01) intcpt = ( pprpts_1[valid_mask] + (pprpts_2[valid_mask] * wc[valid_mask])) slope = 1. / (pprpts_3[valid_mask] - intcpt) h2ogef_1 = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_1[:] = _TARGET_NODATA h2ogef_1[valid_mask] = ( 1.0 + slope * (h2ogef_prior[valid_mask] - pprpts_3[valid_mask])) h2ogef_1[valid_mask] = numpy.clip(h2ogef_1[valid_mask], 0.01, 1.) return h2ogef_1 def calc_biof(sum_stdedc, sum_aglivc, strucc_1, pmxbio, biok5): """Calculate the effect of obstruction on growth. Live biomass, standing dead biomass, and litter reduce potential production through obstruction. The shape of the relationship between standing biomass and litter and potential production is controlled by the site parameter pmxbio and the plant functional type parameter biok5. Lines 91-120 Potcrp.f Parameters: sum_stdedc (numpy.ndarray): derived, total carbon in standing dead biomass across plant functional types sum_aglivc (numpy.ndarray): derived, total carbon in aboveground live biomass across plant functional types strucc_1 (numpy.ndarray): derived, carbon in surface litter pmxbio (numpy.ndarray): parameter, maximum biomass impact on potential production biok5 (numpy.ndarray): parameter, level of standing dead biomass and litter Returns: biof, scaling factor describing potential production limited by obstruction """ valid_mask = ( (~numpy.isclose(strucc_1, _SV_NODATA)) & (pmxbio != _IC_NODATA) & (biok5 != _IC_NODATA)) bioc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioc[:] = _IC_NODATA bioc[valid_mask] = numpy.where( ((sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask]) <= 0.), 0.01, (sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask])) bioc[valid_mask] = numpy.where( (bioc[valid_mask] > pmxbio[valid_mask]), pmxbio[valid_mask], bioc[valid_mask]) bioprd = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioprd[:] = _IC_NODATA bioprd[valid_mask] = 1. - ( bioc[valid_mask] / (biok5[valid_mask] + bioc[valid_mask])) temp1 = 1. - bioprd temp2 = temp1 * 0.75 temp3 = temp1 * 0.25 ratlc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) ratlc[:] = _IC_NODATA ratlc[valid_mask] = sum_aglivc[valid_mask] / bioc[valid_mask] biof = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) biof[:] = _TARGET_NODATA biof[valid_mask] = numpy.where( ratlc[valid_mask] <= 1., (bioprd[valid_mask] + (temp2[valid_mask] * ratlc[valid_mask])), numpy.where( ratlc[valid_mask] <= 2., (bioprd[valid_mask] + temp2[valid_mask]) + temp3[valid_mask] * (ratlc[valid_mask] - 1.), 1.)) return biof def calc_tgprod_pot_prod(prdx_1, shwave, potprd, h2ogef_1, biof): """Calculate total potential production. Total above- and belowground potential biomass production is calculated as the total potential production given solar radiation and the intrinsinc growth capacity of the plant functional type, modified by limiting factors of temperature, soil moisture, and obstruction by standing biomass and litter. Line 147 Potcrp.f Parameters: prdx_1 (numpy.ndarray): parameter, the intrinsic capacity of the plant functional type for growth per unit of solar radiation shwave (numpy.ndarray): derived, shortwave solar radiation outside the atmosphere potprd (numpy.ndarray): parameter, scaling factor describing limiting effect of temperature h2ogef_1 (numpy.ndarray): derived, scaling factor describing the limiting effect of soil moisture biof (numpy.ndarray): derived, scaling factor describing the limiting effect of obstruction by standing biomass and litter Returns: tgprod_pot_prod, total above- and belowground potential biomass production (g biomass) """ valid_mask = ( (prdx_1 != _IC_NODATA) & (shwave != _TARGET_NODATA) & (potprd != _TARGET_NODATA) & (h2ogef_1 != _TARGET_NODATA) & (biof != _TARGET_NODATA)) tgprod_pot_prod = numpy.empty(prdx_1.shape, dtype=numpy.float32) tgprod_pot_prod[:] = _TARGET_NODATA tgprod_pot_prod[valid_mask] = ( prdx_1[valid_mask] * shwave[valid_mask] * potprd[valid_mask] * h2ogef_1[valid_mask] * biof[valid_mask]) return tgprod_pot_prod # temporary intermediate rasters for calculating total potential production temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} # site-level temporary calculated values for val in ['sum_aglivc', 'sum_stdedc', 'ctemp', 'shwave', 'pevap']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # PFT-level temporary calculated values for pft_i in pft_id_set: for val in [ 'aglivc_weighted', 'stdedc_weighted', 'potprd', 'biof']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) # temporary parameter rasters for calculating total potential production param_val_dict = {} # site-level parameters for val in [ 'pmxbio', 'pmxtmp', 'pmntmp', 'fwloss_4', 'pprpts_1', 'pprpts_2', 'pprpts_3']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for val in [ 'ppdf_1', 'ppdf_2', 'ppdf_3', 'ppdf_4', 'biok5', 'prdx_1']: for pft_i in do_PFT: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) maxtmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] precip_nodata = pygeoprocessing.get_raster_info( aligned_inputs['precip_{}'.format(month_index)])['nodata'][0] # calculate intermediate quantities that do not differ between PFTs: # sum of aglivc (standing live biomass) and stdedc (standing dead biomass) # across PFTs, weighted by % cover of each PFT for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) # ctemp, soil temperature relative to impacts on growth pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], param_val_dict['pmxbio'], aligned_inputs['max_temp_{}'.format(current_month)], param_val_dict['pmxtmp'], aligned_inputs['min_temp_{}'.format(current_month)], param_val_dict['pmntmp']]], calc_ctemp, temp_val_dict['ctemp'], gdal.GDT_Float32, _IC_NODATA) # shwave, shortwave radiation outside the atmosphere _shortwave_radiation( aligned_inputs['site_index'], current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pevap']) # calculate quantities that differ between PFTs for pft_i in do_PFT: # potprd, the limiting effect of temperature pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['min_temp_{}'.format(current_month)], aligned_inputs['max_temp_{}'.format(current_month)], temp_val_dict['ctemp'], param_val_dict['ppdf_1_{}'.format(pft_i)], param_val_dict['ppdf_2_{}'.format(pft_i)], param_val_dict['ppdf_3_{}'.format(pft_i)], param_val_dict['ppdf_4_{}'.format(pft_i)]]], calc_potprd, temp_val_dict['potprd_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # h2ogef_1, the limiting effect of soil water availability pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pevap'], prev_sv_reg['avh2o_1_{}_path'.format(pft_i)], aligned_inputs['precip_{}'.format(month_index)], pp_reg['wc_path'], param_val_dict['pprpts_1'], param_val_dict['pprpts_2'], param_val_dict['pprpts_3']]], calc_h2ogef_1, month_reg['h2ogef_1_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # biof, the limiting effect of obstruction pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_stdedc'], temp_val_dict['sum_aglivc'], prev_sv_reg['strucc_1_path'], param_val_dict['pmxbio'], param_val_dict['biok5_{}'.format(pft_i)]]], calc_biof, temp_val_dict['biof_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['prdx_1_{}'.format(pft_i)], temp_val_dict['shwave'], temp_val_dict['potprd_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], temp_val_dict['biof_{}'.format(pft_i)]]], calc_tgprod_pot_prod, month_reg['tgprod_pot_prod_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_favail_P(sv_reg, param_val_dict): """Calculate the fraction of P in surface layer available to plants. This must be performed after the sum of mineral N in the surface layer is calculated because the fraction of labile P available to plants is impacted by the amount of mineral N in the surface layer. Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables for the current month, including minerl_1_1, mineral N in the surface layer param_val_dict (dict): map of key, path pairs giving paths to site-level parameters, including favail_4, favail_5, favail_6, and favail_2 Side effects: modifies or creates the raster indicated by `param_val_dict['favail_2']` Returns: None """ def favail_P_op(minerl_1_1, favail_4, favail_5, favail_6): """Calculate the fraction of P in surface layer available to plants. The fraction of labile P available to plants depends on mineral N in the surface layer and site parameters favail_4, favail_5, favail_6. Line 395 Simsom.f Parameters: minerl_1_1 (numpy.ndarray): state variable, mineral N in the surface layer favail_4 (numpy.ndarray): parameter, minimum fraction of P available favail_5 (numpy.ndarray): parameter, maximum fraction of P available favail_6 (numpy.ndarray): parameter, mineral N in surface layer required to attain maximum fraction of P available Returns: favail_P, fraction of mineral P available to plants """ valid_mask = ( (~numpy.isclose(minerl_1_1, _SV_NODATA)) & (favail_4 != _IC_NODATA) & (favail_5 != _IC_NODATA) & (favail_6 != _IC_NODATA)) interim = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) interim[:] = _IC_NODATA interim[valid_mask] = ( favail_4[valid_mask] + minerl_1_1[valid_mask] * (favail_5[valid_mask] - favail_4[valid_mask]) / favail_6[valid_mask]) favail_P = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) favail_P[:] = _IC_NODATA favail_P[valid_mask] = numpy.maximum( favail_4[valid_mask], numpy.minimum( interim[valid_mask], favail_5[valid_mask])) return favail_P pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_1_path'], param_val_dict['favail_4'], param_val_dict['favail_5'], param_val_dict['favail_6']]], favail_P_op, param_val_dict['favail_2'], gdal.GDT_Float32, _IC_NODATA) def _calc_avail_mineral_nutrient(pft_param_dict, sv_reg, iel, target_path): """Calculate one mineral nutrient available to one plant functional type. The mineral nutrient available to a plant functional type is calculated from the mineral nutrient content of soil layers accessible by that plant function type. Parameters: pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month iel (int): integer index for current nutrient (1=N, 2=P) target_path (string): path to raster to contain available mineral nutrient for this plant functional type and nutrient Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ nlay = int(pft_param_dict['nlaypg']) mineral_raster_list = [ sv_reg['minerl_{}_{}_path'.format(lyr, iel)] for lyr in range( 1, nlay + 1)] raster_list_sum( mineral_raster_list, _SV_NODATA, target_path, _TARGET_NODATA, nodata_remove=True) def _calc_available_nutrient( pft_i, iel, pft_param_dict, sv_reg, site_param_table, site_index_path, availm_path, favail_path, tgprod_path, eavail_path): """Calculate nutrient available to a plant functional type. The nutrient available is the sum of mineral nutrient (N or P) in soil layers accessible by the roots of the plant functional type, modified by the fraction of nutrient available to plants and the current root biomass. Parameters: pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month site_index_path (string): path to site spatial index raster availm_path (string): path to raster containing available mineral nutrient for the given plant functional type and nutrient site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters favail_path (string): path to raster containing the appropriate value of the parameter favail. For nitrogen, this parameter is supplied directly as user input, but for phosphorus, it must be calculated from other parameters. tgprod_path (string): path to raster containing total potential production (g biomass) eavail_path (string): path to location to store the result, nutrient available to the plant functional type Side effects: modifies or creates the raster indicated by `eavail_path` Returns: None """ def calc_eavail(rictrl, bglivc, riint, availm, favail, crpstg): """Calculate available nutrient. Parameters: rictrl (numpy.ndarray): parameter, scaling factor used to calculate the impact of root biomass on nutrient availability bglivc (numpy.ndarray): state variable, carbon in belowground live biomass riint (numpy.ndarray): parameter, intercept used to calculate the impact of root biomass on nutrient availability availm (numpy.ndarray): derived, the sum of mineral nutrient in soil layers accessible by this plant functional type favail (numpy.ndarray): parameter, fraction of the nutrient available each month to plants crpstg (numpy.ndarray): state variable, nutrient in retranslocation storage pool for the plant functional type Returns: eavail, the nutrient available to the plant functional type """ valid_mask = ( (rictrl != _IC_NODATA) & (~numpy.isclose(bglivc, _SV_NODATA)) & (riint != _IC_NODATA) & (availm != _TARGET_NODATA) & (favail != _IC_NODATA) & (~numpy.isclose(crpstg, _SV_NODATA))) rimpct = numpy.empty(rictrl.shape, dtype=numpy.float32) rimpct[:] = _TARGET_NODATA rimpct[valid_mask] = numpy.where( ((rictrl[valid_mask] * bglivc[valid_mask] * 2.5) > 33.), 1., 1. - riint[valid_mask] * numpy.exp( -rictrl[valid_mask] * bglivc[valid_mask] * 2.5)) eavail = numpy.empty(rictrl.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = ( (availm[valid_mask] * favail[valid_mask] * rimpct[valid_mask]) + crpstg[valid_mask]) return eavail def add_symbiotic_fixed_N(eavail_prior, snfxmx, tgprod): """Add nitrogen fixed by the plant to nutrient available. Some nitrogen may be fixed by the plant, and this must be added to available mineral nitrogen. Nitrogen fixed by the plant is calculated from total potential production and the maximum rate of N fixation. Parameters: eavail_prior (numpy.ndarray): derived, mineral nitrogen available to the plant functional type, calculated with calc_eavail() snfxmx (numpy.ndarray): parameter, maximum rate of symbiotic nitrogen fixation tgprod (numpy.ndarray): derived, total above- and belowground potential production (g biomass) Returns: eavail, total N available including N fixed by the plant """ valid_mask = ( (eavail_prior != _TARGET_NODATA) & (snfxmx != _IC_NODATA) & (tgprod != _TARGET_NODATA)) maxNfix = numpy.empty(eavail_prior.shape, dtype=numpy.float32) maxNfix[:] = _TARGET_NODATA maxNfix[valid_mask] = snfxmx[valid_mask] * (tgprod[valid_mask] / 2.5) eavail = numpy.empty(eavail_prior.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = eavail_prior[valid_mask] + maxNfix[valid_mask] return eavail # temporary intermediate rasters for calculating available nutrient temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in ['rictrl', 'riint']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['snfxmx_1']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path fill_val = pft_param_dict[val] pygeoprocessing.new_raster_from_base( site_index_path, target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['rictrl'], sv_reg['bglivc_{}_path'.format(pft_i)], param_val_dict['riint'], availm_path, favail_path, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)]]], calc_eavail, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) if iel == 1: eavail_prior_path = os.path.join(temp_dir, 'eavail_prior.tif') shutil.copyfile(eavail_path, eavail_prior_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ eavail_prior_path, param_val_dict['snfxmx_1'], tgprod_path]], add_symbiotic_fixed_N, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_nutrient_demand( biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path, demand_path): """Calculate the demand of one nutrient by a plant functional type. Demand is calculated from total biomass production, the fraction of biomass production allocated to roots, and the minimum carbon/nutrient ratios of above- and belowground live biomass. Lines 88-92 CropDynC.f and line 65, Nutrlm.f Parameters: biomass_production_path (string): path to raster giving total biomass production fraction_allocated_to_roots_path (string): path to raster giving the fraction fo total biomass production allocated to roots cercrp_min_above_path (string): path to raster giving the minimum ratio of carbon to nutrient in aboveground live biomass cercrp_min_below_path (string): path to raster giving the minimum ratio of carbon to nutrient in belowground live biomass Side effects: modifies or creates the raster indicated by `demand_path` Returns: None """ def nutrient_demand_op( biomass_production, root_fraction, cercrp_min_above, cercrp_min_below): """Calculate nutrient demand. Parameters: biomass_production (numpy.ndarray): derived, total biomass production root_fraction (numpy.ndarray): derived, fraction of biomass allocated to roots cercrp_min_above (numpy.ndarray): derived, minimum carbon to nutrient ratio of new aboveground live material cercrp_min_below (numpy.ndarray): derived, minimum carbon to nutrient ratio of new belowground live material Returns: demand_e, nutrient demand """ valid_mask = ( (biomass_production != _TARGET_NODATA) & (root_fraction != _TARGET_NODATA) & (cercrp_min_above != _TARGET_NODATA) & (cercrp_min_above > 0) & (cercrp_min_below > 0) & (cercrp_min_below != _TARGET_NODATA)) demand_above = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_above[:] = _TARGET_NODATA demand_above[valid_mask] = ( ((biomass_production[valid_mask] * (1. - root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_above[valid_mask])) demand_below = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_below[:] = _TARGET_NODATA demand_below[valid_mask] = ( ((biomass_production[valid_mask] * (root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_below[valid_mask])) demand_e = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_e[:] = _TARGET_NODATA demand_e[valid_mask] = ( demand_above[valid_mask] + demand_below[valid_mask]) return demand_e pygeoprocessing.raster_calculator( [(path, 1) for path in [ biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path]], nutrient_demand_op, demand_path, gdal.GDT_Float32, _TARGET_NODATA) def calc_provisional_fracrc( annual_precip, frtcindx, bgppa, bgppb, agppa, agppb, cfrtcw_1, cfrtcw_2, cfrtcn_1, cfrtcn_2): """Calculate provisional fraction of carbon allocated to roots. A temporary provisional fraction of carbon allocated to roots must be calculated prior to calculating plant demand for N and P. The value of this provisional fraction depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 36-47 cropDynC.f Parameters: annual_precip (numpy.ndarray): derived, sum of monthly precipitation over twelve months including the current month frtcindx (numpy.ndarray): parameter, flag indicating whether root:shoot allocation follows the Great Plains equation (frtcindx=0) or as a perennial plant (frtcindx=1) bgppa (numpy.ndarray): parameter, intercept in regression estimating belowground production from annual precipitation if frtcindx=0 bgppb (numpy.ndarray): parameter, slope in regression estimating belowground production from annual precipitation if frtcindx=0 agppa (numpy.ndarray): parameter, intercept in regression estimating aboveground production from annual precipitation if frtcindx=0 agppb (numpy.ndarray): parameter, slope in regression estimating aboveground production from annual precipitation if frtcindx=0 cfrtcw_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum water stress if frtcindx=1 cfrtcw_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots without water stress if frtcindx=1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum nutrient stress if frtcindx=1 cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots under no nutrient stress if frtcindx=1 Returns: fracrc_p, provisional fraction of carbon allocated to roots """ valid_mask = ( (annual_precip != _TARGET_NODATA) & (frtcindx != _IC_NODATA) & (bgppa != _IC_NODATA)) rtsh = numpy.empty(annual_precip.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[valid_mask] = ( (bgppa[valid_mask] + annual_precip[valid_mask] * bgppb[valid_mask]) / (agppa[valid_mask] + annual_precip[valid_mask] * agppb[valid_mask])) fracrc_p = numpy.empty(annual_precip.shape, dtype=numpy.float32) fracrc_p[:] = _TARGET_NODATA fracrc_p[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, (1.0 / (1.0 / rtsh[valid_mask] + 1.0)), ((cfrtcw_1[valid_mask] + cfrtcw_2[valid_mask] + cfrtcn_1[valid_mask] + cfrtcn_2[valid_mask]) / 4.0)) return fracrc_p def calc_ce_ratios( pramn_1_path, pramn_2_path, aglivc_path, biomax_path, pramx_1_path, pramx_2_path, prbmn_1_path, prbmn_2_path, prbmx_1_path, prbmx_2_path, annual_precip_path, pft_i, iel, month_reg): """Calculate minimum and maximum carbon to nutrient ratios. Minimum and maximum C/E ratios are used to calculate demand for a nutrient by a plant functional type. This function calculates the ratios for above- and belowground plant portions, for one plant functional type and one nutrient. Fltce.f Parameters: pramn_1_path (string): path to raster containing the parameter pramn_<iel>_1, the minimum aboveground ratio with zero biomass pramn_2_path (string): path to raster containing the parameter pramn_<iel>_2, the minimum aboveground ratio with biomass greater than or equal to biomax aglivc_path (string): path to raster containing carbon in aboveground live biomass biomax_path (string): path to raster containing the parameter biomax, the biomass above which the ratio equals pramn_2 or pramx_2 pramx_1_path (string): path to raster containing the parameter pramx_<iel>_1, the maximum aboveground ratio with zero biomass pramx_2_path (string): path to raster containing the parameter pramx_<iel>_2, the maximum aboveground ratio with biomass greater than or equal to biomax prbmn_1_path (string): path to raster containing the parameter prbmn_<iel>_1, intercept of regression to predict minimum belowground ratio from annual precipitation prbmn_2_path (string): path to raster containing the parameter prbmn_<iel>_2, slope of regression to predict minimum belowground ratio from annual precipitation prbmx_1_path (string): path to raster containing the parameter prbmx_<iel>_1, intercept of regression to predict maximum belowground ratio from annual precipitation prbmx_2_path (string): path to raster containing the parameter prbmx_<iel>_2, slope of regression to predict maximum belowground ratio from annual precipitation annual_precip_path (string): path to annual precipitation raster pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the rasters indicated by `month_reg['cercrp_min_above_<iel>_<pft_i>']`, `month_reg['cercrp_max_above_<iel>_<pft_i>']`, `month_reg['cercrp_min_below_<iel>_<pft_i>']`, `month_reg['cercrp_max_below_<iel>_<pft_i>']`, Returns: None """ def calc_above_ratio(pra_1, pra_2, aglivc, biomax): """Calculate carbon to nutrient ratio for aboveground material. Parameters: pra_1 (numpy.ndarray): parameter, minimum or maximum ratio with zero biomass pra_2 (numpy.ndarray): parameter, minimum or maximum ratio with biomass greater than or equal to biomax aglivc (numpy.ndarray): state variable, carbon in aboveground live material biomax (numpy:ndarray): parameter, biomass above which the ratio equals pra_2 Returns: cercrp_above, carbon to nutrient ratio for aboveground material """ valid_mask = ( (pra_1 != _IC_NODATA) & (pra_2 != _IC_NODATA) & (~numpy.isclose(aglivc, _SV_NODATA)) & (biomax != _IC_NODATA)) cercrp_above = numpy.empty(pra_1.shape, dtype=numpy.float32) cercrp_above[:] = _TARGET_NODATA cercrp_above[valid_mask] = numpy.minimum( (pra_1[valid_mask] + (pra_2[valid_mask] - pra_1[valid_mask]) * 2.5 * aglivc[valid_mask] / biomax[valid_mask]), pra_2[valid_mask]) return cercrp_above def calc_below_ratio(prb_1, prb_2, annual_precip): """Calculate carbon to nutrient ratio for belowground material. Parameters: prb_1 (numpy.ndarray): parameter, intercept of regression to predict ratio from annual precipitation prb_2 (numpy.ndarray): parameter, slope of regression to predict ratio from annual precipitation annual_precip (numpy.ndarray): derived, precipitation in twelve months including the current month Returns: cercrp_below, carbon to nutrient ratio for belowground material """ valid_mask = ( (prb_1 != _IC_NODATA) & (prb_2 != _IC_NODATA) & (annual_precip != _TARGET_NODATA)) cercrp_below = numpy.empty(prb_1.shape, dtype=numpy.float32) cercrp_below[:] = _TARGET_NODATA cercrp_below[valid_mask] = ( prb_1[valid_mask] + (prb_2[valid_mask] * annual_precip[valid_mask])) return cercrp_below pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramn_1_path, pramn_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramx_1_path, pramx_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_max_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmn_1_path, prbmn_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmx_1_path, prbmx_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_max_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) def calc_revised_fracrc( frtcindx_path, fracrc_p_path, totale_1_path, totale_2_path, demand_1_path, demand_2_path, h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, cfrtcn_1_path, cfrtcn_2_path, fracrc_r_path): """ Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots includes the impacts of water and nutrient limitation. The method of the revised calculation depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 96-104, cropDynC.f, froota.f Parameters: frtcindx_path (string): path to raster containing the parameter frtcindx fracrc_p_path (string): path to raster containing provisional fraction of carbon allocated to roots totale_1_path (string): path to raster containing total available nitrogen totale_2_path (string): path to raster containing total available phosphorus demand_1_path (string): path to raster containing nitrogen demand demand_2_path (string): path to raster containing phosphorus demand h2ogef_1_path (string): path to raster containing the limiting effect of water availability on growth cfrtcw_1_path (string): path to raster containing the parameter cfrtcw_1 cfrtcw_2_path (string): path to raster containing the parameter cfrtcw_2 cfrtcn_1_path (string): path to raster containing the parameter cfrtcn_1 cfrtcn_2_path (string): path to raster containing the parameter cfrtcn_2 fracrc_r_path (string): path to raster that should contain the result, revised fraction of carbon allocated to roots Side effects: creates the raster indicated by `fracrc_r_path` Returns: None """ def calc_a2drat(totale, demand): """Calculate the ratio of available nutrient to nutrient demand. The ratio of nutrient available to demand for the nutrient is restricted to be between 0 and 1. Parameters: totale (numpy.ndarray): derived, nutrient available demand (numpy.ndarray): derived, demand for the nutrient Returns: a2drat, the ratio of available nutrient to demand, restricted to be between 0 and 1 """ valid_mask = ( (totale != _TARGET_NODATA) & (demand != _TARGET_NODATA)) a2drat = numpy.empty(totale.shape, dtype=numpy.float32) a2drat[:] = _TARGET_NODATA demand_mask = ((demand > 0) & valid_mask) a2drat[valid_mask] = 1. a2drat[demand_mask] = numpy.clip( totale[demand_mask] / demand[demand_mask], 0., 1.) return a2drat def calc_perennial_fracrc( h2ogef, cfrtcw_1, cfrtcw_2, a2drat_1, a2drat_2, cfrtcn_1, cfrtcn_2): """Calculate fraction C allocated to roots for a perennial plant. The fraction of carbon allocated to roots is determined by water availability, described by h2ogef, and nutrient availability, described by a2drat_1 for nitrogen and a2drat_2 for phosphorus. Lines 114-125 froota.f Parameters: h2ogef (numpy.ndarray): derived, the limiting factor of water availability on growth cfrtcw_1 (numpy.ndarray): parameter, the maximum fraction of carbon allocated to roots with maximum water stress cfrtcw_2 (numpy.ndarray): parameter, the minimum fraction of carbon allocated to roots with no water stress a2drat_1 (numpy.ndarray): derived, the ratio of available nitrogen to nitrogen demand, restricted to be between 0 and 1 a2drat_2 (numpy.ndarray): derived, the ratio of available phosphorus to phosphorus demand, restricted to be between 0 and 1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots with maximum nutrient stress cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots with no nutrient stress Returns: fracrc_perennial, revised fraction of C allocated to roots for a perennial plant """ valid_mask = ( (h2ogef != _TARGET_NODATA) & (cfrtcw_1 != _IC_NODATA) & (cfrtcw_2 != _IC_NODATA) & (a2drat_1 != _TARGET_NODATA) & (a2drat_2 != _TARGET_NODATA) & (cfrtcn_1 != _IC_NODATA) & (cfrtcn_2 != _IC_NODATA)) h2oeff = numpy.empty(h2ogef.shape, dtype=numpy.float32) h2oeff[:] = _TARGET_NODATA h2oeff[valid_mask] = ( (cfrtcw_2[valid_mask] - cfrtcw_1[valid_mask]) * (h2ogef[valid_mask] - 1.) + cfrtcw_2[valid_mask]) ntreff_1 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_1[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_1[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff_2 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_2[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_2[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff[:] = _TARGET_NODATA ntreff[valid_mask] = numpy.maximum( ntreff_1[valid_mask], ntreff_2[valid_mask]) fracrc_perennial = numpy.empty( h2ogef.shape, dtype=numpy.float32) fracrc_perennial[:] = _TARGET_NODATA fracrc_perennial[valid_mask] = numpy.minimum( numpy.maximum(h2oeff[valid_mask], ntreff[valid_mask]), 0.99) return fracrc_perennial def revised_fracrc_op(frtcindx, fracrc_p, fracrc_perennial): """Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots is calculated according to the parameter frtcindx. If frtcindx=0 (use the "Great Plains equation"), the revised fraction is equal to the provisional fraction. If frtcindx=1 (a perennial plant), the revised fraction is calculated from water and nutrient stress. Parameters: frtcindx (numpy.ndarray): parameter, indicates whether revised fraction of carbon allocated to roots should follow the "Great Plains equation" or the algorithm for a perennial plant fracrc_p (numpy.ndarray): derived, provisional fraction of carbon allocated to roots fracrc_perennial (numpy.ndarray): derived, fraction of carbon allocated to roots for a perennial plant Returns: fracrc_r, revised fraction of carbon allocated to roots """ valid_mask = ( (frtcindx != _IC_NODATA) & (fracrc_p != _TARGET_NODATA) & (fracrc_perennial != _TARGET_NODATA)) fracrc_r = numpy.empty(frtcindx.shape, dtype=numpy.float32) fracrc_r[:] = _TARGET_NODATA fracrc_r[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, fracrc_p[valid_mask], fracrc_perennial[valid_mask]) return fracrc_r # temporary intermediate rasters for calculating revised fracrc temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['a2drat_1', 'a2drat_2', 'fracrc_perennial']: temp_val_dict[val] = os.path.join( temp_dir, '{}.tif'.format(val)) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_1_path, demand_1_path]], calc_a2drat, temp_val_dict['a2drat_1'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_2_path, demand_2_path]], calc_a2drat, temp_val_dict['a2drat_2'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, temp_val_dict['a2drat_1'], temp_val_dict['a2drat_2'], cfrtcn_1_path, cfrtcn_2_path]], calc_perennial_fracrc, temp_val_dict['fracrc_perennial'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ frtcindx_path, fracrc_p_path, temp_val_dict['fracrc_perennial']]], revised_fracrc_op, fracrc_r_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def grazing_effect_on_aboveground_production(tgprod, fracrc, flgrem, grzeff): """Adjust aboveground production with the impact of grazing. Removal of biomass by herbivores directly impacts potential aboveground production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0, 3, or 4, aboveground production is not changed. If grzeff=1 or 6, production decreases linearly with biomass removed; if grzeff=2 or 5, biomass removed has a quadratic impact on production. Grazrst.f Parameters: tgprod (numpy.ndarray): derived, total potential biomass production restricted by water and nutrient availability fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio Returns: agprod, aboveground production impacted by grazing """ valid_mask = ( (tgprod != _TARGET_NODATA) & (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA)) agprod_prior = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod_prior[:] = _TARGET_NODATA agprod_prior[valid_mask] = ( tgprod[valid_mask] * (1. - fracrc[valid_mask])) linear_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( (1. - (2.21*flgrem[valid_mask])) * agprod_prior[valid_mask], 0.02) quadratic_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = ( (1. + 2.6*flgrem[valid_mask] - (5.83*(numpy.power(flgrem[valid_mask], 2)))) * agprod_prior[valid_mask]) quadratic_effect[valid_mask] = numpy.maximum( quadratic_effect[valid_mask], 0.02) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 3, 4])) linear_mask = (valid_mask & numpy.isin(grzeff, [1, 6])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 5])) agprod = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod[:] = _TARGET_NODATA agprod[no_effect_mask] = agprod_prior[no_effect_mask] agprod[linear_mask] = linear_effect[linear_mask] agprod[quadratic_mask] = quadratic_effect[quadratic_mask] return agprod def grazing_effect_on_root_shoot(fracrc, flgrem, grzeff, gremb): """Adjust root:shoot ratio according to the impact of grazing. Removal of biomass by herbivores directly impacts the root:shoot ratio of production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0 or 1, the root:shoot ratio is not changed. If grzeff=2 or 3, biomass removed has a quadratic impact on the root:shoot ratio. If grzeff=4, 5, or 6, biomass removed has a linear effect on the root:shoot ratio. The parameter gremb multiplies the linear impact of grazing when grzeff=4, 5 or 6. Grzrst.f Parameters: fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio grzemb (numpy.ndarray): parameter, grazing effect multiplier Returns: rtsh, root:shoot ratio impacted by grazing """ valid_mask = ( (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA) & (gremb != _IC_NODATA)) rtsh_prior = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh_prior[:] = _TARGET_NODATA rtsh_prior[valid_mask] = ( fracrc[valid_mask] / (1. - fracrc[valid_mask])) quadratic_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = numpy.maximum( rtsh_prior[valid_mask] + 3.05 * flgrem[valid_mask] - 11.78 * numpy.power(flgrem[valid_mask], 2), 0.01) linear_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( 1. - (flgrem[valid_mask] * gremb[valid_mask]), 0.01) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 1])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 3])) linear_mask = (valid_mask & numpy.isin(grzeff, [4, 5, 6])) rtsh = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[no_effect_mask] = rtsh_prior[no_effect_mask] rtsh[quadratic_mask] = quadratic_effect[quadratic_mask] rtsh[linear_mask] = linear_effect[linear_mask] return rtsh def calc_tgprod_final(rtsh, agprod): """Calculate final total potential production. Final total potential production is calculated from aboveground production impacted by grazing and the final root:shoot ratio impacted by grazing. Parameters: rtsh (numpy.ndarray): derived, final root:shoot ratio impacted by grazing agprod (numpy.ndarray): derived, final aboveground potential production impacted by grazing Returns: tgprod, final total potential production """ valid_mask = ( (rtsh != _TARGET_NODATA) & (agprod != _TARGET_NODATA)) tgprod = numpy.empty(rtsh.shape, dtype=numpy.float32) tgprod[:] = _TARGET_NODATA tgprod[valid_mask] = ( agprod[valid_mask] + (rtsh[valid_mask] * agprod[valid_mask])) return tgprod def calc_final_tgprod_rtsh( tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path, gremb_path, tgprod_path, rtsh_path): """Calculate final potential production and root:shoot ratio. Final potential production and root:shoot ratio include the impact of grazing. First calculate final aboveground production including the impact of grazing; then calculate rtsh, the final root:shoot ratio including the impact of grazing; then calculate tgprod, final total potential production, from final aboveground production and final root:shoot ratio. Grazrst.f Parameters: tgprod_pot_prod_path (string): path to raster containing total potential biomass production restricted by water and nutrient availability, prior to effects of grazing fracrc_path (string): path to raster containing the fraction of carbon production allocated to roots according to restriction by water and nutrient availability, prior to effects of grazing flgrem_path (string): path to raster containing the fraction of live aboveground biomass removed by herbivores according to diet selection in the previous step grzeff_path (string): path to raster containing the parameter grzeff, the effect of defolation on production and root:shoot ratio gremb_path (string): path to raster containing the parameter gremb, the grazing effect multiplier tgprod_path (string): path to raster containing final total potential production (g biomass) rtsh_path (string): path to raster containing final root:shoot ratio of potential production Side effects: creates the raster indicated by tgprod_path creates the raster indicated by rtsh_path Returns: None """ # temporary intermediate rasters for grazing effect temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) agprod_path = os.path.join(temp_dir, 'agprod.tif') # grazing effect on aboveground production pygeoprocessing.raster_calculator( [(path, 1) for path in [ tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path]], grazing_effect_on_aboveground_production, agprod_path, gdal.GDT_Float32, _TARGET_NODATA) # grazing effect on final root:shoot ratio pygeoprocessing.raster_calculator( [(path, 1) for path in [ fracrc_path, flgrem_path, grzeff_path, gremb_path]], grazing_effect_on_root_shoot, rtsh_path, gdal.GDT_Float32, _TARGET_NODATA) # final total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [rtsh_path, agprod_path]], calc_tgprod_final, tgprod_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg): """Calculate final potential production and root:shoot ratio. Final potential biomass production and root:shoot ratio is calculated according to nutrient availability and demand for the nutrient, and the impact of defoliation by herbivores. CropDynC.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including the site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters current_month (int): month of the year, such that current_month=1 indicates January pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month year_reg (dict): map of key, path pairs giving paths to rasters that are modified once per year, including annual precipitation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['tgprod_<PFT>']`, total potential production (g biomass) for each plant functional type (PFT) creates the raster indicated by `month_reg['rtsh_<PFT>']` for each plant functional type (PFT) Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: # growth occurs in growth months and when senescence not scheduled do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: do_PFT.append(pft_i) if not do_PFT: return # temporary intermediate rasters for root:shoot submodel temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in do_PFT: for val in ['fracrc_p', 'fracrc', 'availm']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) for iel in [1, 2]: for val in ['eavail', 'demand']: temp_val_dict[ '{}_{}_{}'.format(val, iel, pft_i)] = os.path.join( temp_dir, '{}_{}_{}.tif'.format(val, iel, pft_i)) # temporary parameter rasters for root:shoot submodel param_val_dict = {} # site-level parameters for val in [ 'bgppa', 'bgppb', 'agppa', 'agppb', 'favail_1', 'favail_4', 'favail_5', 'favail_6']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for pft_i in do_PFT: for val in [ 'frtcindx', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'biomax', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'grzeff', 'gremb']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) for val in [ 'pramn_1_1', 'pramn_1_2', 'pramx_1_1', 'pramx_1_2', 'prbmn_1_1', 'prbmn_1_2', 'prbmx_1_1', 'prbmx_1_2', 'pramn_2_1', 'pramn_2_2', 'pramx_2_1', 'pramx_2_2', 'prbmn_2_1', 'prbmn_2_2', 'prbmx_2_1', 'prbmx_2_2']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict[ '{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # the parameter favail_2 must be calculated from current mineral N in # surface layer param_val_dict['favail_2'] = os.path.join(temp_dir, 'favail_2.tif') _calc_favail_P(prev_sv_reg, param_val_dict) for pft_i in do_PFT: # fracrc_p, provisional fraction of C allocated to roots pygeoprocessing.raster_calculator( [(path, 1) for path in [ year_reg['annual_precip_path'], param_val_dict['frtcindx_{}'.format(pft_i)], param_val_dict['bgppa'], param_val_dict['bgppb'], param_val_dict['agppa'], param_val_dict['agppb'], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)]]], calc_provisional_fracrc, temp_val_dict['fracrc_p_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: # persistent ratios used here and in plant growth submodel calc_ce_ratios( param_val_dict['pramn_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramn_{}_2_{}'.format(iel, pft_i)], prev_sv_reg['aglivc_{}_path'.format(pft_i)], param_val_dict['biomax_{}'.format(pft_i)], param_val_dict['pramx_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramx_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_2_{}'.format(iel, pft_i)], year_reg['annual_precip_path'], pft_i, iel, month_reg) # sum of mineral nutrient in accessible soil layers _calc_avail_mineral_nutrient( veg_trait_table[pft_i], prev_sv_reg, iel, temp_val_dict['availm_{}'.format(pft_i)]) # eavail_iel, available nutrient _calc_available_nutrient( pft_i, iel, veg_trait_table[pft_i], prev_sv_reg, site_param_table, aligned_inputs['site_index'], temp_val_dict['availm_{}'.format(pft_i)], param_val_dict['favail_{}'.format(iel)], month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['eavail_{}_{}'.format(iel, pft_i)]) # demand_iel, demand for the nutrient _calc_nutrient_demand( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], temp_val_dict['demand_{}_{}'.format(iel, pft_i)]) # revised fraction of carbon allocated to roots calc_revised_fracrc( param_val_dict['frtcindx_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], temp_val_dict['demand_1_{}'.format(pft_i)], temp_val_dict['demand_2_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)]) # final potential production and root:shoot ratio accounting for # impacts of grazing calc_final_tgprod_rtsh( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], param_val_dict['grzeff_{}'.format(pft_i)], param_val_dict['gremb_{}'.format(pft_i)], month_reg['tgprod_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)]) # clean up temporary files shutil.rmtree(temp_dir) def _snow( site_index_path, site_param_table, precip_path, tave_path, max_temp_path, min_temp_path, prev_snow_path, prev_snlq_path, current_month, snowmelt_path, snow_path, snlq_path, inputs_after_snow_path, pet_rem_path): """Account for precipitation as snow and snowmelt from snowpack. Determine whether precipitation falls as snow. Track the fate of new and existing snowpack including evaporation and melting. Track the the remaining snowpack and liquid in snow and potential evapotranspiration remaining after evaporation of snow. Snowcent.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters precip_path (string): path to raster containing precipitation for the current month tave_path (string): path to raster containing average temperature for the current month max_temp_path (string): path to raster containing maximum temperature for the current month min_temp_path (string): path to raster containing minimum temperature for the current month prev_snow_path (string): path to raster containing current snowpack prev_snlq_path (string): path to raster containing current liquid in snow current_month (int): current month of the year, such that month=0 indicates January snow_path (string): path to raster to contain modified snowpack snlq_path (string): path to raster to contain modified liquid in snow inputs_after_snow_path (string): path to raster containing water inputs to the system after accounting for snow pet_rem_path (string): path to raster containing potential evapotranspiration remaining after any evaporation of snow Side effects: creates the raster indicated by `snowmelt_path` creates the raster indicated by `snow_path` creates the raster indicated by `snlq_path` creates the raster indicated by `inputs_after_snow_path` creates the raster indicated by `pet_rem_path` Returns: None """ def calc_snow_moisture(return_type): """Calculate change in snow, pet, snow liquid, and moisture inputs. Record changes in snowpack, liquid in snow, potential evapotranspiration energy, and liquid draining into soil from snow. Parameters: return_type (string): flag indicating whether modified snowpack, modified liquid in snow, modified potential evapotranspiration, or soil moisture inputs after snow should be returned Returns: the function `_calc_snow_moisture` """ def _calc_snow_moisture( tave, precip, snow, snlq, pet, tmelt_1, tmelt_2, shwave): """Calculate the fate of moisture from snow. Calculate new snowfall or rain on snow. Calculate direct evaporation of snow and consumption of potential evapotranspiration energy. Calculate snowmelt and liquid draining from snow into the soil. Parameters: tave (numpy.ndarray): derived, average temperature precip (numpy.ndarray): input, precipitation for this month snow (numpy.ndarray): derived, existing snowpack prior to new snowfall snlq (numpy.ndarray): derived, existing liquid in snowpack pet (numpy.ndarray): derived, potential evapotranspiration tmelt_1 (numpy.ndarray): parameter, minimum temperature above which snow will melt tmelt_2 (numpy.ndarray): parameter, ratio between degrees above the minimum temperature and cm of snow that will melt shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere Returns: snowmelt if return_type is 'snowmelt' snow_revised if return_type is 'snow' snlq_revised if return_type is 'snlq' pet_revised if return_type is 'pet' inputs_after_snow if return_type is 'inputs_after_snow' """ valid_mask = ( (tave != _IC_NODATA) & (~numpy.isclose(precip, precip_nodata)) & (~numpy.isclose(snow, _SV_NODATA)) & (~numpy.isclose(snlq, _SV_NODATA)) & (pet != _TARGET_NODATA) & (tmelt_1 != _IC_NODATA) & (tmelt_2 != _IC_NODATA) & (shwave != _TARGET_NODATA)) inputs_after_snow = numpy.empty(precip.shape, dtype=numpy.float32) inputs_after_snow[:] = _TARGET_NODATA inputs_after_snow[valid_mask] = precip[valid_mask] snowfall_mask = (valid_mask & (tave <= 0)) snow[snowfall_mask] = (snow[snowfall_mask] + precip[snowfall_mask]) inputs_after_snow[snowfall_mask] = 0. rain_on_snow_mask = ( (valid_mask) & (tave > 0) & (snow > 0)) snlq[rain_on_snow_mask] = ( snlq[rain_on_snow_mask] + precip[rain_on_snow_mask]) inputs_after_snow[rain_on_snow_mask] = 0. snowtot = numpy.zeros(snow.shape, dtype=numpy.float32) snowtot[valid_mask] = numpy.maximum( snow[valid_mask] + snlq[valid_mask], 0) evap_mask = (valid_mask & (snowtot > 0.)) evsnow = numpy.zeros(snow.shape, dtype=numpy.float32) evsnow[evap_mask] = numpy.minimum( snowtot[evap_mask], pet[evap_mask] * 0.87) snow_revised = numpy.empty(snow.shape, dtype=numpy.float32) snow_revised[:] = _TARGET_NODATA snow_revised[valid_mask] = snow[valid_mask] snow_revised[evap_mask] = numpy.maximum( snow[evap_mask] - evsnow[evap_mask] * (snow[evap_mask] / snowtot[evap_mask]), 0.) snlq_revised = numpy.zeros(snow.shape, dtype=numpy.float32) snlq_revised[valid_mask] = snlq[valid_mask] snlq_revised[evap_mask] = numpy.maximum( snlq[evap_mask] - evsnow[evap_mask] * (snlq[evap_mask] / snowtot[evap_mask]), 0.) pet_revised = numpy.empty(snow.shape, dtype=numpy.float32) pet_revised[:] = _TARGET_NODATA pet_revised[valid_mask] = pet[valid_mask] pet_revised[evap_mask] = numpy.maximum( (pet[evap_mask] - evsnow[evap_mask] / 0.87), 0.) melt_mask = (valid_mask & (tave >= tmelt_1)) snowmelt = numpy.zeros(snow.shape, dtype=numpy.float32) snowmelt[melt_mask] = numpy.clip( tmelt_2[melt_mask] * (tave[melt_mask] - tmelt_1[melt_mask]) * shwave[melt_mask], 0., snow_revised[melt_mask]) snow_revised[melt_mask] = ( snow_revised[melt_mask] - snowmelt[melt_mask]) snlq_revised[melt_mask] = ( snlq_revised[melt_mask] + snowmelt[melt_mask]) drain_mask = (melt_mask & (snlq_revised > 0.5 * snow_revised)) inputs_after_snow[drain_mask] = ( snlq_revised[drain_mask] - 0.5 * snow_revised[drain_mask]) snlq_revised[drain_mask] = ( snlq_revised[drain_mask] - inputs_after_snow[drain_mask]) if return_type == 'snowmelt': return snowmelt elif return_type == 'snow': return snow_revised elif return_type == 'snlq': return snlq_revised elif return_type == 'pet': return pet_revised else: return inputs_after_snow return _calc_snow_moisture temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['shwave', 'pet']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in ['tmelt_1', 'tmelt_2', 'fwloss_4']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) max_temp_nodata = pygeoprocessing.get_raster_info( max_temp_path)['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( min_temp_path)['nodata'][0] precip_nodata = pygeoprocessing.get_raster_info( precip_path)['nodata'][0] # solar radiation outside the atmosphere _shortwave_radiation(precip_path, current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( max_temp_path, min_temp_path, temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pet']) # calculate snowmelt pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture('snowmelt'), snowmelt_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in snow pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("snow"), snow_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in liquid in snow pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("snlq"), snlq_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in potential evapotranspiration energy pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("pet"), pet_rem_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate soil moisture inputs draining from snow after snowmelt pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("inputs_after_snow"), inputs_after_snow_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_aboveground_live_biomass(sum_aglivc, sum_tgprod): """Calculate aboveground live biomass for purposes of soil water. Live biomass impacts loss of moisture inputs through canopy interception and evapotranspiration. Because soil moisture is computed after potential production, but before actual growth of plants, some of the predicted growth in biomass (i.e., tgprod) is added here to existing standing live biomass (i.e., aglivc * 2.5; line 80, potprod.f, in Century). Parameters: sum_aglivc (numpy.ndarray): the sum of aglivc across plant functional types (pft), weighted by % cover of the pft sum_tgprod (numpy.ndarray): sum of tgprod, potential production limited by soil water, nutrient availability, and grazing, across pfts weighted by % cover of the pft Returns: aliv, aboveground live biomass for soil water submodel """ valid_mask = ( (sum_aglivc != _TARGET_NODATA) & (sum_tgprod != _TARGET_NODATA)) aliv = numpy.empty(sum_aglivc.shape, dtype=numpy.float32) aliv[:] = _TARGET_NODATA aliv[valid_mask] = ( sum_aglivc[valid_mask] * 2.5 + (0.25 * sum_tgprod[valid_mask])) return aliv def _calc_standing_biomass(aliv, sum_stdedc): """Calculate total aboveground standing biomass for soil water. Total standing biomass impacts loss of moisture inputs by increasing total canopy interception and decreasing bare soil evaporation. It is the sum of live and dead standing biomass across plant functional types, bounded to be <= 800 g/m2. Parameters: aliv (numpy.ndarray): aboveground live biomass, calculated from aglivc and tgprod across plant functional types sum_stdedc (numpy.ndarray): aboveground standing dead C summed across plant functional types Returns: sd, total aboveground standing biomass for soil water. """ valid_mask = ( (aliv != _TARGET_NODATA) & (sum_stdedc != _TARGET_NODATA)) sd = numpy.empty(aliv.shape, dtype=numpy.float32) sd[:] = _TARGET_NODATA sd[valid_mask] = numpy.minimum( aliv[valid_mask] + (sum_stdedc[valid_mask] * 2.5), 800.) return sd def subtract_surface_losses(return_type): """Calculate surface losses to runoff and surface evaporation. Calculate the loss of surface moisture to runoff, canopy interception, and bare soil evaporation. Parameters: return_type (string): flag indicating whether soil moisture inputs after surface losses or total surface evaporation should be returned Returns: the function `_subtract_surface_losses` """ def _subtract_surface_losses( inputs_after_snow, fracro, precro, snow, alit, sd, fwloss_1, fwloss_2, pet_rem): """Subtract moisture losses to runoff, interception, and evaporation. Of the surface water inputs from precipitation and snowmelt, some water is lost to runoff (line 113, H2olos.f). After runoff, some water is lost to canopy interception and bare soil evaporation, if there is no snow cover. Loss to canopy interception and bare soil evaporation is a function of live, standing dead, and surface litter biomass. The total loss of moisture to interception and bare soil evaporation is bounded to be less than or equal to 40% of reference evapotranspiration. Parameters: inputs_after_snow (numpy.ndarray): derived, surface water inputs from precipitation and snowmelt, prior to runoff fracro (numpy.ndarray): parameter, fraction of surface water above precro that is lost to runoff precro (numpy.ndarray): parameter, amount of surface water that must be available for runoff to occur snow (numpy.ndarray): derived, current snowpack alit (numpy.ndarray): derived, biomass in surface litter sd (numpy.ndarray): derived, total standing biomass fwloss_1 (numpy.ndarray): parameter, scaling factor for interception and evaporation of precip by vegetation fwloss_2 (numpy.ndarray): parameter, scaling factor for bare soil evaporation of precip pet_rem (numpy.ndarray): derived, potential evaporation remaining after evaporation of snow Returns: inputs_after_surface, surface water inputs to soil after runoff and surface evaporation are subtracted, if return_type is 'inputs_after_surface' absevap, bare soil evaporation, if return_type is 'absevap' evap_losses, total surface evaporation, if return_type is 'evap_losses' """ valid_mask = ( (inputs_after_snow != _TARGET_NODATA) & (fracro != _IC_NODATA) & (precro != _IC_NODATA) & (snow != _TARGET_NODATA) & (alit != _TARGET_NODATA) & (sd != _TARGET_NODATA) & (fwloss_1 != _IC_NODATA) & (fwloss_2 != _IC_NODATA) & (pet_rem != _TARGET_NODATA)) runoff = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) runoff[:] = _TARGET_NODATA runoff[valid_mask] = numpy.maximum( fracro[valid_mask] * (inputs_after_snow[valid_mask] - precro[valid_mask]), 0.) inputs_after_runoff = numpy.empty( inputs_after_snow.shape, dtype=numpy.float32) inputs_after_runoff[:] = _TARGET_NODATA inputs_after_runoff[valid_mask] = ( inputs_after_snow[valid_mask] - runoff[valid_mask]) evap_mask = (valid_mask & (snow <= 0)) # loss to interception aint = numpy.zeros(inputs_after_snow.shape, dtype=numpy.float32) aint[evap_mask] = ( (0.0003 * alit[evap_mask] + 0.0006 * sd[evap_mask]) * fwloss_1[evap_mask]) # loss to bare soil evaporation absevap = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) absevap[:] = _TARGET_NODATA absevap[valid_mask] = 0. absevap[evap_mask] = ( 0.5 * numpy.exp((-0.002 * alit[evap_mask]) - (0.004 * sd[evap_mask])) * fwloss_2[evap_mask]) # total losses to interception and evaporation evap_losses = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) evap_losses[:] = _TARGET_NODATA evap_losses[valid_mask] = 0. evap_losses[evap_mask] = ( numpy.minimum(((absevap[evap_mask] + aint[evap_mask]) * inputs_after_runoff[evap_mask]), (0.4 * pet_rem[evap_mask]))) # remaining inputs after evaporation inputs_after_surface = numpy.empty( inputs_after_snow.shape, dtype=numpy.float32) inputs_after_surface[:] = _TARGET_NODATA inputs_after_surface[valid_mask] = inputs_after_runoff[valid_mask] inputs_after_surface[evap_mask] = ( inputs_after_runoff[evap_mask] - evap_losses[evap_mask]) if return_type == 'inputs_after_surface': return inputs_after_surface elif return_type == 'absevap': return absevap elif return_type == 'evap_losses': return evap_losses return _subtract_surface_losses def calc_potential_transpiration(return_type): """Calculate potential transpiration and evaporation from soil layer 1. Calculate potential transpiration (trap), potential evaporation from soil layer 1 (pevp), and initial transpiration water loss (tran). Remove the initial transpiration water loss from soil moisture inputs at this step. Parameters: return_type (string): flag indicating whether potential transpiration, potential evaporation from soil layer 1, or modified moisture inputs should be returned Returns: the function `_calc_potential_transpiration` """ def _calc_potential_transpiration( pet_rem, evap_losses, tave, aliv, current_moisture_inputs): """Calculate potential water losses to transpiration. Calculate potential transpiration (trap), the total potential transpiration from all soil layers by plants. Calculate potential evaporation from soil layer 1 (pevp); this amount is calculated prior to transpiration but actually removed after water loss to transpiration from all soil layers has been accounted. Calculate actual transpiration (tran). Remove actual transpiration water losses from moisture inputs before distributing water to soil layers. This is necessary for a monthly time step to give plants in wet climates adequate access to water for transpiration. Parameters: pet_rem (numpy.ndarray): derived, potential evapotranspiration remaining after evaporation of snow evap_losses (numpy.ndarray): derived, total surface evaporation tave (numpy.ndarray): derived, average temperature aliv (numpy.ndarray): aboveground live biomass, calculated from aglivc and tgprod across plant functional types current_moisture_inputs (numpy.ndarray): derived, moisture inputs after surface losses Returns: trap if return_type is 'trap' pevp if return_type is 'pevp' modified_moisture_inputs if return_type is 'modified_moisture_inputs' """ valid_mask = ( (pet_rem != _TARGET_NODATA) & (evap_losses != _TARGET_NODATA) & (tave != _IC_NODATA) & (aliv != _TARGET_NODATA) & (current_moisture_inputs != _TARGET_NODATA)) trap = numpy.empty(pet_rem.shape, dtype=numpy.float32) trap[:] = _TARGET_NODATA trap[valid_mask] = pet_rem[valid_mask] - evap_losses[valid_mask] no_transpiration_mask = (valid_mask & (tave < 2)) trap[no_transpiration_mask] = 0. transpiration_mask = (valid_mask & (tave >= 2)) trap[transpiration_mask] = numpy.maximum( numpy.minimum( trap[transpiration_mask], pet_rem[transpiration_mask] * 0.65 * (1 - numpy.exp(-0.02 * aliv[transpiration_mask]))), 0.) trap[valid_mask] = numpy.maximum(trap[valid_mask], 0.01) pevp = numpy.empty(pet_rem.shape, dtype=numpy.float32) pevp[:] = _TARGET_NODATA pevp[valid_mask] = numpy.maximum( pet_rem[valid_mask] - trap[valid_mask] - evap_losses[valid_mask], 0.) tran = numpy.empty(pet_rem.shape, dtype=numpy.float32) tran[:] = _TARGET_NODATA tran[valid_mask] = numpy.minimum( trap[valid_mask] - 0.01, current_moisture_inputs[valid_mask]) trap[valid_mask] = trap[valid_mask] - tran[valid_mask] modified_moisture_inputs = numpy.empty( pet_rem.shape, dtype=numpy.float32) modified_moisture_inputs[:] = _TARGET_NODATA modified_moisture_inputs[valid_mask] = ( current_moisture_inputs[valid_mask] - tran[valid_mask]) if return_type == 'trap': return trap elif return_type == 'pevp': return pevp elif return_type == 'modified_moisture_inputs': return modified_moisture_inputs return _calc_potential_transpiration def distribute_water_to_soil_layer(return_type): """Distribute moisture inputs to one soil layer prior to transpiration. Soil moisture inputs after runoff, evaporation, and initial transpiration are distributed to soil layers sequentially according to the field capacity of the layer. If moisture inputs exceed the field capacity of the layer, the remainder of moisture inputs move down to the next adjacent soil layer. Returns: the function `_distribute_water` """ def _distribute_water(adep, afiel, asmos, current_moisture_inputs): """Revise soil moisture in this soil layer prior to transpiration. Moisture inputs coming into this soil layer are compared to the field capacity of the layer. If the field capacity is exceeded, the excess moisture moves from this layer to the next adjacent layer. Parameters: adep (numpy.ndarray): parameter, depth of this soil layer in cm afiel (numpy.ndarray): derived, field capacity of this layer asmos (numpy.ndarray): state variable, current soil moisture content of this soil layer current_moisture_inputs (numpy.ndarray): derived, moisture inputs added to this soil layer Returns: asmos_revised, revised soil moisture in this layer, if return_type is 'asmos_revised' amov, moisture flowing from this layer into the next, if return_type is 'amov' """ valid_mask = ( (adep != _IC_NODATA) & (afiel != _TARGET_NODATA) & (~numpy.isclose(asmos, _SV_NODATA)) & (current_moisture_inputs != _TARGET_NODATA)) afl = numpy.empty(adep.shape, dtype=numpy.float32) afl[:] = _TARGET_NODATA afl[valid_mask] = adep[valid_mask] * afiel[valid_mask] asmos_interm = numpy.empty(adep.shape, dtype=numpy.float32) asmos_interm[:] = _TARGET_NODATA asmos_interm[valid_mask] = ( asmos[valid_mask] + current_moisture_inputs[valid_mask]) amov = numpy.empty(adep.shape, dtype=numpy.float32) amov[:] = _TARGET_NODATA exceeded_mask = (valid_mask & (asmos_interm > afl)) amov[exceeded_mask] = asmos_interm[exceeded_mask] asmos_revised = numpy.empty(adep.shape, dtype=numpy.float32) asmos_revised[:] = _TARGET_NODATA asmos_revised[valid_mask] = asmos_interm[valid_mask] asmos_revised[exceeded_mask] = afl[exceeded_mask] notexceeded_mask = (valid_mask & (asmos_interm <= afl)) amov[notexceeded_mask] = 0. if return_type == 'asmos_revised': return asmos_revised elif return_type == 'amov': return amov return _distribute_water def calc_available_water_for_transpiration(asmos, awilt, adep): """Calculate water available for transpiration in one soil layer. The water available for transpiration is the amount of water in the soil layer minus the wilting point of the soil layer. Parameters: asmos (numpy.ndarray): derived, interim moisture in the soil layer awilt (numpy.ndarray): derived, wilting point of the soil layer adep (numpy.ndarray): parameter, depth of the soil layer in cm Returns: avw, available water for transpiration """ valid_mask = ( (asmos != _TARGET_NODATA) & (awilt != _TARGET_NODATA) & (adep != _IC_NODATA)) avw = numpy.empty(asmos.shape, dtype=numpy.float32) avw[:] = _TARGET_NODATA avw[valid_mask] = numpy.maximum( asmos[valid_mask] - awilt[valid_mask] * adep[valid_mask], 0.) return avw def revise_potential_transpiration(trap, tot): """Revise potential transpiration according to water available. Total potential transpiration, trap, is revised to be less than or equal to total water available for transpiration, tot. Total water available for transpiration is the sum of available water per soil layer. Line 241, H2olos.f Parameters: trap (numpy.ndarray): derived, potential transpiration water losses tot (numpy.ndarray): derived, total soil water available for transpiration Returns: trap_revised, revised total potential transpiration """ valid_mask = ( (trap != _TARGET_NODATA) & (tot != _TARGET_NODATA)) trap_revised = numpy.empty(trap.shape, dtype=numpy.float32) trap_revised[:] = _TARGET_NODATA trap_revised[valid_mask] = numpy.minimum(trap[valid_mask], tot[valid_mask]) return trap_revised def remove_transpiration(return_type): """Remove water from a soil layer via transpiration by plants. Transpiration from one soil layer is apportioned from total potential transpiration, trap, according to the available water for transpiration in this soil layer. Lines 218-294, H2olos.f Parameters: return_type (string): flag indicating whether avinj (water in this soil layer available to plants for growth) or asmos (total water in this soil layer) should be returned Returns: the function `_remove_transpiration` """ def _remove_transpiration(asmos, awilt, adep, trap, awwt, tot2): """Remove water from a soil layer via transpiration by plants. Parameters: asmos (numpy.ndarray): derived, interim moisture in this soil layer after additions from current month precipitation awilt (numpy.ndarray): derived, wilting point of this soil layer adep (numpy.ndarray): parameter, depth of this soil layer in cm trap (numpy.ndarray): derived, total potential transpiration across all soil layers accessible by plant roots awwt (numpy.ndarray): derived, water available for transpiration in this soil layer weighted by transpiration depth distribution parameter tot2 (numpy.ndarray): derived, the sum of weighted water available for transpiration across soil layers Returns: avinj, water available to plants for growth in this layer after losses to transpiration, if return type is 'avinj' asmos_revised, total water in this layer after losses to transpiration, if return type is 'asmos' """ valid_mask = ( (asmos != _TARGET_NODATA) & (awilt != _TARGET_NODATA) & (adep != _IC_NODATA) & (trap != _TARGET_NODATA) & (awwt != _TARGET_NODATA) & (tot2 != _TARGET_NODATA)) avinj = numpy.empty(asmos.shape, dtype=numpy.float32) avinj[:] = _TARGET_NODATA avinj[valid_mask] = numpy.maximum( asmos[valid_mask] - awilt[valid_mask] * adep[valid_mask], 0.) transpire_mask = (valid_mask & (tot2 > 0)) transpiration_loss = numpy.zeros(asmos.shape, dtype=numpy.float32) transpiration_loss[transpire_mask] = numpy.minimum( (trap[transpire_mask] * awwt[transpire_mask]) / tot2[transpire_mask], avinj[transpire_mask]) avinj[valid_mask] = avinj[valid_mask] - transpiration_loss[valid_mask] asmos_revised = numpy.empty(asmos.shape, dtype=numpy.float32) asmos_revised[:] = _TARGET_NODATA asmos_revised[valid_mask] = ( asmos[valid_mask] - transpiration_loss[valid_mask]) if return_type == 'avinj': return avinj elif return_type == 'asmos': return asmos_revised return _remove_transpiration def calc_relative_water_content_lyr_1(asmos_1, adep_1, awilt_1, afiel_1): """Calculate the relative water content of soil layer 1. The relative water content of soil layer 1, prior to any evaporation losses from soil layer 1, is used to estimate water available for evaporation from soil layer 1. Line 280, H2olos.f Parameters: asmos_1 (numpy.ndarray): derived, interim moisture in soil layer 1 after losses to transpiration adep_1 (numpy.ndarray): parameter, depth of soil layer 1 in cm awilt_1 (numpy.ndarray): derived, wilting point of soil layer 1 afiel_1 (numpy.ndarray): derived, field capacity of soil layer 1 Returns: rwcf_1, relative water content of soil layer 1 """ valid_mask = ( (asmos_1 != _TARGET_NODATA) & (adep_1 != _IC_NODATA) & (awilt_1 != _TARGET_NODATA) & (afiel_1 != _TARGET_NODATA)) rwcf_1 = numpy.empty(asmos_1.shape, dtype=numpy.float32) rwcf_1[valid_mask] = ( (asmos_1[valid_mask] / adep_1[valid_mask] - awilt_1[valid_mask]) / (afiel_1[valid_mask] - awilt_1[valid_mask])) return rwcf_1 def calc_evaporation_loss(rwcf_1, pevp, absevap, asmos_1, awilt_1, adep_1): """Calculate evaporation from soil layer 1. Some moisture is lost from soil layer 1 (i.e., the top soil layer) to evaporation, separate from surface evaporation and transpiration by plants. This amount is calculated from potential soil evaporation, which was calculated from potential evapotranspiration prior to allocation of water to soil layers. It is restricted to be less than or equal to water available in this soil layer. Parameters: rwcf_1 (numpy.ndarray): derived, relative water content of soil layer 1 pevp (numpy.ndarray): derived, potential evaporation from soil layer 1 absevap (numpy.ndarray): derived, bare soil evaporation asmos_1 (numpy.ndarray): derived, interim moisture in soil layer 1 awilt_1 (numpy.ndarray): derived, wilting point of soil layer 1 adep_1 (numpy.ndarray): parameter, depth of soil layer 1 in cm Returns: evlos, moisture evaporated from soil layer 1 """ valid_mask = ( (rwcf_1 != _TARGET_NODATA) & (pevp != _TARGET_NODATA) & (absevap != _TARGET_NODATA) & (asmos_1 != _TARGET_NODATA) & (awilt_1 != _TARGET_NODATA) & (adep_1 != _IC_NODATA)) evmt = numpy.empty(rwcf_1.shape, dtype=numpy.float32) evmt[:] = _TARGET_NODATA evmt[valid_mask] = numpy.maximum( (rwcf_1[valid_mask] - 0.25) / (1 - 0.25), 0.01) evlos = numpy.empty(rwcf_1.shape, dtype=numpy.float32) evlos[:] = _TARGET_NODATA evlos[valid_mask] = numpy.minimum( evmt[valid_mask] * pevp[valid_mask] * absevap[valid_mask] * 0.1, numpy.maximum( asmos_1[valid_mask] - awilt_1[valid_mask] * adep_1[valid_mask], 0.)) return evlos def _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg): """Allocate precipitation to runoff, transpiration, and soil moisture. Simulate snowfall and account for evaporation and melting of the snow pack. Allocate the flow of precipitation through interception by plants, runoff and infiltration into the soil, percolation through the soil, and transpiration by plants. Update soil moisture in each soil layer. Estimate avh2o_1 for each PFT (water available to the PFT for growth), avh2o_3 (water in first two soil layers), and amov_<lyr> (saturated flow of water between soil layers, used in decomposition and mineral leaching). Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters, including nlaypg, number of soil layers access by plant roots current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=1 indicates month 1 of the simulation prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving persistent parameters including field capacity of each soil layer pft_id_set (set): set of integers identifying plant functional types month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the raster indicated by `sv_reg['snow_path']`, current snowpack creates the raster indicated by `sv_reg['snlq_path']`, current liquid in snow creates the raster indicated by `sv_reg['asmos_<lyr>_path']`, soil moisture content, for each soil layer accessible by roots of any plant functional type creates the rasters indicated by `month_reg['amov_<lyr>']` for each soil layer, saturated flow of water from that soil layer creates the raster indicated by `sv_reg['avh2o_1_<PFT>_path']`, soil moisture available for growth, for each plant functional type (PFT) creates the raster indicated by `sv_reg['avh2o_3_path']`, available water in the top two soil layers Returns: None """ def calc_avg_temp(max_temp, min_temp): """Calculate average temperature from maximum and minimum temp.""" valid_mask = ( (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata))) tave = numpy.empty(max_temp.shape, dtype=numpy.float32) tave[:] = _IC_NODATA tave[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2. return tave def calc_surface_litter_biomass(strucc_1, metabc_1): """Calculate biomass in surface litter.""" valid_mask = ( (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(metabc_1, _SV_NODATA))) alit = numpy.empty(strucc_1.shape, dtype=numpy.float32) alit[:] = _TARGET_NODATA alit[valid_mask] = (strucc_1[valid_mask] + metabc_1[valid_mask]) * 2.5 alit = numpy.minimum(alit, 400) return alit max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] # get max number of soil layers accessible by plants nlaypg_max = int(max(val['nlaypg'] for val in veg_trait_table.values())) # max number of soil layers simulated, beyond those accessible by plants nlayer_max = int(max(val['nlayer'] for val in site_param_table.values())) # temporary intermediate rasters for soil water submodel temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'tave', 'current_moisture_inputs', 'modified_moisture_inputs', 'pet_rem', 'alit', 'sum_aglivc', 'sum_stdedc', 'sum_tgprod', 'aliv', 'sd', 'absevap', 'evap_losses', 'trap', 'trap_revised', 'pevp', 'tot', 'tot2', 'rwcf_1', 'evlos', 'avinj_interim_1']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # temporary intermediate values for each layer accessible by plants for val in ['avw', 'awwt', 'avinj']: for lyr in range(1, nlaypg_max + 1): val_lyr = '{}_{}'.format(val, lyr) temp_val_dict[val_lyr] = os.path.join( temp_dir, '{}.tif'.format(val_lyr)) # temporary intermediate value for each layer total for lyr in range(1, nlayer_max + 1): val_lyr = 'asmos_interim_{}'.format(lyr) temp_val_dict[val_lyr] = os.path.join( temp_dir, '{}.tif'.format(val_lyr)) # PFT-level temporary calculated values for pft_i in pft_id_set: for val in ['tgprod_weighted', 'sum_avinj']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict = {} for val in ['fracro', 'precro', 'fwloss_1', 'fwloss_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for lyr in range(1, nlaypg_max + 1): val_lyr = 'awtl_{}'.format(lyr) target_path = os.path.join(temp_dir, '{}.tif'.format(val_lyr)) param_val_dict[val_lyr] = target_path site_to_val = dict( [(site_code, float(table[val_lyr])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for lyr in range(1, nlayer_max + 1): val_lyr = 'adep_{}'.format(lyr) target_path = os.path.join(temp_dir, '{}.tif'.format(val_lyr)) param_val_dict[val_lyr] = target_path site_to_val = dict( [(site_code, float(table[val_lyr])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # calculate canopy and litter cover that influence moisture inputs # calculate biomass in surface litter pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['strucc_1_path'], prev_sv_reg['metabc_1_path']]], calc_surface_litter_biomass, temp_val_dict['alit'], gdal.GDT_Float32, _TARGET_NODATA) # calculate the sum of aglivc (standing live biomass) and stdedc # (standing dead biomass) across PFTs, weighted by % cover of each PFT for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) # calculate the weighted sum of tgprod, potential production, across PFTs weighted_path_list = [] for pft_i in pft_id_set: do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: target_path = temp_val_dict['tgprod_weighted_{}'.format(pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( month_reg['tgprod_{}'.format(pft_i)], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) if weighted_path_list: raster_list_sum( weighted_path_list, _TARGET_NODATA, temp_val_dict['sum_tgprod'], _TARGET_NODATA, nodata_remove=True) else: # no potential production occurs this month, so tgprod = 0 pygeoprocessing.new_raster_from_base( temp_val_dict['sum_aglivc'], temp_val_dict['sum_tgprod'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0.]) # calculate average temperature pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)]]], calc_avg_temp, temp_val_dict['tave'], gdal.GDT_Float32, _IC_NODATA) # calculate aboveground live biomass pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], temp_val_dict['sum_tgprod']]], _calc_aboveground_live_biomass, temp_val_dict['aliv'], gdal.GDT_Float32, _TARGET_NODATA) # calculate total standing biomass pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aliv'], temp_val_dict['sum_stdedc']]], _calc_standing_biomass, temp_val_dict['sd'], gdal.GDT_Float32, _TARGET_NODATA) # modify standing snow, liquid in snow, return moisture inputs after snow _snow( aligned_inputs['site_index'], site_param_table, aligned_inputs['precip_{}'.format(month_index)], temp_val_dict['tave'], aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], prev_sv_reg['snow_path'], prev_sv_reg['snlq_path'], current_month, month_reg['snowmelt'], sv_reg['snow_path'], sv_reg['snlq_path'], temp_val_dict['modified_moisture_inputs'], temp_val_dict['pet_rem']) # remove runoff and surface evaporation from moisture inputs shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('inputs_after_surface'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # calculate bare soil evaporation pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('absevap'), temp_val_dict['absevap'], gdal.GDT_Float32, _TARGET_NODATA) # calculate total losses to surface evaporation pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('evap_losses'), temp_val_dict['evap_losses'], gdal.GDT_Float32, _TARGET_NODATA) # remove losses due to initial transpiration from water inputs shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('modified_moisture_inputs'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # calculate potential transpiration pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('trap'), temp_val_dict['trap'], gdal.GDT_Float32, _TARGET_NODATA) # calculate potential evaporation from top soil layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('pevp'), temp_val_dict['pevp'], gdal.GDT_Float32, _TARGET_NODATA) # distribute water to each layer for lyr in range(1, nlayer_max + 1): shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) # revise moisture content of this soil layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['adep_{}'.format(lyr)], pp_reg['afiel_{}_path'.format(lyr)], prev_sv_reg['asmos_{}_path'.format(lyr)], temp_val_dict['current_moisture_inputs']]], distribute_water_to_soil_layer('asmos_revised'), temp_val_dict['asmos_interim_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) # calculate soil moisture moving to next layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['adep_{}'.format(lyr)], pp_reg['afiel_{}_path'.format(lyr)], prev_sv_reg['asmos_{}_path'.format(lyr)], temp_val_dict['current_moisture_inputs']]], distribute_water_to_soil_layer('amov'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # amov, water moving to next layer, persists between submodels shutil.copyfile( temp_val_dict['modified_moisture_inputs'], month_reg['amov_{}'.format(lyr)]) # calculate available water for transpiration avw_list = [] for lyr in range(1, nlaypg_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)]]], calc_available_water_for_transpiration, temp_val_dict['avw_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) avw_list.append(temp_val_dict['avw_{}'.format(lyr)]) # total water available for transpiration raster_list_sum( avw_list, _TARGET_NODATA, temp_val_dict['tot'], _TARGET_NODATA) # calculate water available for transpiration weighted by transpiration # depth for that soil layer awwt_list = [] for lyr in range(1, nlaypg_max + 1): raster_multiplication( temp_val_dict['avw_{}'.format(lyr)], _TARGET_NODATA, param_val_dict['awtl_{}'.format(lyr)], _IC_NODATA, temp_val_dict['awwt_{}'.format(lyr)], _TARGET_NODATA) awwt_list.append(temp_val_dict['awwt_{}'.format(lyr)]) # total weighted available water for transpiration raster_list_sum( awwt_list, _TARGET_NODATA, temp_val_dict['tot2'], _TARGET_NODATA) # revise total potential transpiration pygeoprocessing.raster_calculator( [(path, 1) for path in [temp_val_dict['trap'], temp_val_dict['tot']]], revise_potential_transpiration, temp_val_dict['trap_revised'], gdal.GDT_Float32, _TARGET_NODATA) # remove water via transpiration for lyr in range(1, nlaypg_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)], temp_val_dict['trap_revised'], temp_val_dict['awwt_{}'.format(lyr)], temp_val_dict['tot2']]], remove_transpiration('avinj'), temp_val_dict['avinj_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)], temp_val_dict['trap_revised'], temp_val_dict['awwt_{}'.format(lyr)], temp_val_dict['tot2']]], remove_transpiration('asmos'), sv_reg['asmos_{}_path'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) # no transpiration is removed from layers not accessible by plants for lyr in range(nlaypg_max + 1, nlayer_max + 1): shutil.copyfile( temp_val_dict['asmos_interim_{}'.format(lyr)], sv_reg['asmos_{}_path'.format(lyr)]) # relative water content of soil layer 1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['asmos_1_path'], param_val_dict['adep_1'], pp_reg['awilt_1_path'], pp_reg['afiel_1_path']]], calc_relative_water_content_lyr_1, temp_val_dict['rwcf_1'], gdal.GDT_Float32, _TARGET_NODATA) # evaporation from soil layer 1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['rwcf_1'], temp_val_dict['pevp'], temp_val_dict['absevap'], sv_reg['asmos_1_path'], pp_reg['awilt_1_path'], param_val_dict['adep_1']]], calc_evaporation_loss, temp_val_dict['evlos'], gdal.GDT_Float32, _TARGET_NODATA) # remove evaporation from total moisture in soil layer 1 shutil.copyfile(sv_reg['asmos_1_path'], temp_val_dict['asmos_interim_1']) raster_difference( temp_val_dict['asmos_interim_1'], _TARGET_NODATA, temp_val_dict['evlos'], _TARGET_NODATA, sv_reg['asmos_1_path'], _TARGET_NODATA) # remove evaporation from moisture available to plants in soil layer 1 shutil.copyfile(temp_val_dict['avinj_1'], temp_val_dict['avinj_interim_1']) raster_difference( temp_val_dict['avinj_interim_1'], _TARGET_NODATA, temp_val_dict['evlos'], _TARGET_NODATA, temp_val_dict['avinj_1'], _TARGET_NODATA) # calculate avh2o_1, soil water available for growth, for each PFT for pft_i in pft_id_set: pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] soil_layers_accessible = [ temp_val_dict['avinj_{}'.format(lyr)] for lyr in range(1, int(veg_trait_table[pft_i]['nlaypg']) + 1)] raster_list_sum( soil_layers_accessible, _TARGET_NODATA, temp_val_dict['sum_avinj_{}'.format(pft_i)], _TARGET_NODATA, nodata_remove=True) raster_multiplication( temp_val_dict['sum_avinj_{}'.format(pft_i)], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, sv_reg['avh2o_1_{}_path'.format(pft_i)], _SV_NODATA) # calculate avh2o_3, moisture in top two soil layers soil_layers_to_sum = [ temp_val_dict['avinj_{}'.format(lyr)] for lyr in [1, 2]] raster_list_sum( soil_layers_to_sum, _TARGET_NODATA, sv_reg['avh2o_3_path'], _SV_NODATA, nodata_remove=False) # set correct nodata value for all revised asmos rasters for lyr in range(1, nlayer_max + 1): reclassify_nodata(sv_reg['asmos_{}_path'.format(lyr)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_anerb(rprpet, pevap, drain, aneref_1, aneref_2, aneref_3): """Calculate the effect of soil anaerobic conditions on decomposition. The impact of soil anaerobic conditions on decomposition is calculated from soil moisture and reference evapotranspiration. Anerob.f. Parameters: rprpet (numpy.ndarray): derived, ratio of precipitation or snowmelt to reference evapotranspiration pevap (numpy.ndarray): derived, reference evapotranspiration drain (numpy.ndarray): parameter, the fraction of excess water lost by drainage. Indicates whether a soil is sensitive for anaerobiosis (drain = 0) or not (drain = 1) aneref_1 (numpy.ndarray): parameter, value of rprpet below which there is no negative impact of soil anaerobic conditions on decomposition aneref_2 (numpy.ndarray): parameter, value of rprpet above which there is maximum negative impact of soil anaerobic conditions on decomposition aneref_3 (numpy.ndarray): parameter, minimum value of the impact of soil anaerobic conditions on decomposition Returns: anerb, the effect of soil anaerobic conditions on decomposition """ valid_mask = ( (rprpet != _TARGET_NODATA) & (pevap != _TARGET_NODATA) & (drain != _IC_NODATA) & (aneref_1 != _IC_NODATA) & (aneref_2 != _IC_NODATA) & (aneref_3 != _IC_NODATA)) xh2o = numpy.empty(rprpet.shape, dtype=numpy.float32) xh2o[:] = _TARGET_NODATA xh2o[valid_mask] = ( (rprpet[valid_mask] - aneref_1[valid_mask]) * pevap[valid_mask] * (1. - drain[valid_mask])) anerb = numpy.empty(rprpet.shape, dtype=numpy.float32) anerb[:] = _TARGET_NODATA anerb[valid_mask] = 1. high_rprpet_mask = (valid_mask & (rprpet > aneref_1) & (xh2o > 0)) anerb[high_rprpet_mask] = numpy.maximum( 1. + (1. - aneref_3[high_rprpet_mask]) / (aneref_1[high_rprpet_mask] - aneref_2[high_rprpet_mask]) * (aneref_1[high_rprpet_mask] + (xh2o[high_rprpet_mask] / pevap[high_rprpet_mask]) - aneref_1[high_rprpet_mask]), aneref_3[high_rprpet_mask]) return anerb def esched(return_type): """Calculate flow of an element accompanying decomposition of C. Calculate the movement of one element (N or P) as C decomposes from one state variable (the donating stock, or box A) to another state variable (the receiving stock, or box B). Esched.f Parameters: return_type (string): flag indicating whether to return material leaving box A, material arriving in box B, or material flowing into or out of the mineral pool Returns: the function `_esched` """ def _esched(cflow, tca, rcetob, anps, labile): """Calculate the flow of one element (iel) to accompany decomp of C. This is a transcription of Esched.f: "Schedule N, P, or S flow and associated mineralization or immobilization flow for decomposition from Box A to Box B." If there is enough of iel (N or P) in the donating stock to satisfy the required ratio, that material flows from the donating stock to the receiving stock and whatever iel is leftover goes to mineral pool. If there is not enough iel to satisfy the required ratio, iel is drawn from the mineral pool to satisfy the ratio; if there is not enough iel in the mineral pool, the material does not leave the donating stock. Parameters: cflow (numpy.ndarray): derived, total C that is decomposing from box A to box B tca (numpy.ndarray): state variable, C in donating stock, i.e. box A rcetob (numpy.ndarray): derived, required ratio of C/iel in the receiving stock anps (numpy.ndarray): state variable, iel (N or P) in the donating stock labile (numpy.ndarray): state variable, mineral iel (N or P) Returns: material_leaving_a, the amount of material leaving box A, if return_type is 'material_leaving_a' material_arriving_b, the amount of material arriving in box B, if return_type is 'material_arriving_b' mnrflo, flow to or from mineral pool, if return_type is 'mineral_flow' """ valid_mask = ( (cflow != _IC_NODATA) & (~numpy.isclose(tca, _SV_NODATA)) & (tca > 0) & (rcetob != _TARGET_NODATA) & (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(labile, _SV_NODATA))) outofa = numpy.empty(cflow.shape, dtype=numpy.float32) outofa[:] = _IC_NODATA outofa[valid_mask] = ( anps[valid_mask] * (cflow[valid_mask] / tca[valid_mask])) immobil_ratio = numpy.zeros(cflow.shape) nonzero_mask = ((outofa > 0) & valid_mask) immobil_ratio[nonzero_mask] = ( cflow[nonzero_mask] / outofa[nonzero_mask]) immflo = numpy.zeros(cflow.shape) immflo[valid_mask] = ( cflow[valid_mask] / rcetob[valid_mask] - outofa[valid_mask]) labile_supply = numpy.zeros(cflow.shape) labile_supply[valid_mask] = labile[valid_mask] - immflo[valid_mask] atob = numpy.zeros(cflow.shape) atob[valid_mask] = cflow[valid_mask] / rcetob[valid_mask] # immobilization immobilization_mask = ( (immobil_ratio > rcetob) & (labile_supply > 0) & valid_mask) # mineralization mineralization_mask = ( (immobil_ratio <= rcetob) & valid_mask) # no movement no_movt_mask = ( (immobil_ratio > rcetob) & (labile_supply <= 0) & valid_mask) material_leaving_a = numpy.empty(cflow.shape, dtype=numpy.float32) material_leaving_a[:] = _IC_NODATA material_arriving_b = numpy.empty(cflow.shape, dtype=numpy.float32) material_arriving_b[:] = _IC_NODATA mnrflo = numpy.empty(cflow.shape, dtype=numpy.float32) mnrflo[:] = _IC_NODATA material_leaving_a[immobilization_mask] = ( outofa[immobilization_mask]) material_arriving_b[immobilization_mask] = ( outofa[immobilization_mask] + immflo[immobilization_mask]) mnrflo[immobilization_mask] = -immflo[immobilization_mask] material_leaving_a[mineralization_mask] = outofa[mineralization_mask] material_arriving_b[mineralization_mask] = atob[mineralization_mask] mnrflo[mineralization_mask] = ( outofa[mineralization_mask] - atob[mineralization_mask]) material_leaving_a[no_movt_mask] = 0. material_arriving_b[no_movt_mask] = 0. mnrflo[no_movt_mask] = 0. if return_type == 'material_leaving_a': return material_leaving_a elif return_type == 'material_arriving_b': return material_arriving_b elif return_type == 'mineral_flow': return mnrflo return _esched def fsfunc(minerl_1_2, sorpmx, pslsrb): """Calculate the fraction of mineral P that is in solution. The fraction of P in solution is influenced by two soil properties: the maximum sorption potential of the soil and sorption affinity. Parameters: minerl_1_2 (numpy.ndarray): state variable, mineral P in top layer sorpmx (numpy.ndarray): parameter, maximum P sorption potential pslsrb (numpy.ndarray): parameter, slope term which controls the fraction of mineral P that is labile Returns: fsol, fraction of P in solution """ valid_mask = ( (~numpy.isclose(minerl_1_2, _SV_NODATA)) & (minerl_1_2 > 0) & (sorpmx != _IC_NODATA) & (pslsrb != _IC_NODATA)) c_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) c_ar[valid_mask] = ( sorpmx[valid_mask] * (2.0 - pslsrb[valid_mask]) / 2.) b_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) b_ar[valid_mask] = ( sorpmx[valid_mask] - minerl_1_2[valid_mask] + c_ar[valid_mask]) sq_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) sq_ar[valid_mask] = ( b_ar[valid_mask] * b_ar[valid_mask] + 4. * c_ar[valid_mask] * minerl_1_2[valid_mask]) sqrt_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) sqrt_ar[valid_mask] = numpy.sqrt(sq_ar[valid_mask]) labile = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) labile[valid_mask] = (-b_ar[valid_mask] + sqrt_ar[valid_mask]) / 2. fsol = numpy.empty(minerl_1_2.shape, dtype=numpy.float32) fsol[:] = _TARGET_NODATA fsol[valid_mask] = labile[valid_mask] / minerl_1_2[valid_mask] return fsol def calc_surface_som2_ratio( som1c_1, som1e_1_iel, rad1p_1_iel, rad1p_2_iel, rad1p_3_iel, pcemic1_2_iel): """Calculate the required C/iel ratio for material entering surface SOM2. The C/iel ratio of material decomposing from surface SOM1 into surface SOM2 fluctuates with each decomposition time step according to the current C/iel content of SOM1. Parameters: som1c_1 (numpy.ndarray): state variable, C in surface SOM1 som1e_1_iel (numpy.ndarray): state variable, iel in surface SOM1 rad1p_1_iel (numpy.ndarray): parameter, intercept term rad1p_2_iel (numpy.ndarray): parameter, slope term rad1p_3_iel (numpy.ndarray): parameter, minimum allowable C/iel for addition term pcemic1_2_iel (numpy.ndarray): parameter, minimum C/iel ratio Returns: rceto2_surface, required C/iel ratio of material entering surface SOM2 """ valid_mask = ( (~numpy.isclose(som1c_1, _SV_NODATA)) & (~numpy.isclose(som1e_1_iel, _SV_NODATA)) & (som1e_1_iel > 0) & (rad1p_1_iel != _IC_NODATA) & (rad1p_2_iel != _IC_NODATA) & (pcemic1_2_iel != _IC_NODATA) & (rad1p_3_iel != _IC_NODATA)) radds1 = numpy.empty(som1c_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1_iel[valid_mask] + rad1p_2_iel[valid_mask] * ((som1c_1[valid_mask] / som1e_1_iel[valid_mask]) - pcemic1_2_iel[valid_mask])) rceto2_surface = numpy.empty(som1c_1.shape, dtype=numpy.float32) rceto2_surface[:] = _TARGET_NODATA rceto2_surface[valid_mask] = numpy.maximum( (som1c_1[valid_mask] / som1e_1_iel[valid_mask] + radds1[valid_mask]), rad1p_3_iel[valid_mask]) return rceto2_surface def calc_tcflow_strucc_1( aminrl_1, aminrl_2, strucc_1, struce_1_1, struce_1_2, rnewas_1_1, rnewas_2_1, strmax_1, defac, dec1_1, pligst_1, strlig_1, pheff_struc): """Calculate total flow out of surface structural C. The total potential flow of C out of surface structural material is calculated according to its lignin content, the decomposition factor, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P strucc_1 (numpy.ndarray): state variable, surface structural C struce_1_1 (numpy.ndarray): state variable, surface structural N struce_1_2 (numpy.ndarray): state variable, surface structural P rnewas_1_1 (numpy.ndarray): derived, required C/N ratio for aboveground material decomposing to SOM1 rnewas_2_1 (numpy.ndarray): derived, required C/P ratio for aboveground material decomposing to SOM1 strmax_1 (numpy.ndarray): parameter, maximum decomposition amount defac (numpy.ndarray): derived, decomposition factor dec1_1 (numpy.ndarray): parameter, maximum decomposition rate pligst_1 (numpy.ndarray): parameter, effect of lignin content on decomposition rate strlig_1 (numpy.ndarray): state variable, lignin content of decomposing material pheff_struc (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow_strucc_1, total flow of C out of surface structural material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(struce_1_1, _SV_NODATA)) & (~numpy.isclose(struce_1_2, _SV_NODATA)) & (rnewas_1_1 != _TARGET_NODATA) & (rnewas_2_1 != _TARGET_NODATA) & (strmax_1 != _IC_NODATA) & (defac != _TARGET_NODATA) & (dec1_1 != _IC_NODATA) & (pligst_1 != _IC_NODATA) & (~numpy.isclose(strlig_1, _SV_NODATA)) & (pheff_struc != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum(strucc_1[valid_mask], strmax_1[valid_mask]) * defac[valid_mask] * dec1_1[valid_mask] * numpy.exp(-pligst_1[valid_mask] * strlig_1[valid_mask]) * 0.020833 * pheff_struc[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((strucc_1 / struce_1_1) <= rnewas_1_1)) & ((aminrl_2 > 0.0000001) | ((strucc_1 / struce_1_2) <= rnewas_2_1)) & valid_mask) tcflow_strucc_1 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_strucc_1[:] = _IC_NODATA tcflow_strucc_1[valid_mask] = 0. tcflow_strucc_1[decompose_mask] = potential_flow[decompose_mask] return tcflow_strucc_1 def calc_tcflow_strucc_2( aminrl_1, aminrl_2, strucc_2, struce_2_1, struce_2_2, rnewbs_1_1, rnewbs_2_1, strmax_2, defac, dec1_2, pligst_2, strlig_2, pheff_struc, anerb): """Calculate total flow out of soil structural C. The total potential flow of C out of soil structural material is calculated according to its lignin content, the decomposition factor, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average soil mineral N aminrl_2 (numpy.ndarray): derived, average soil mineral P strucc_2 (numpy.ndarray): state variable, soil structural C struce_2_1 (numpy.ndarray): state variable, soil structural N struce_2_2 (numpy.ndarray): state variable, soil structural P rnewbs_1_1 (numpy.ndarray): derived, required C/N ratio for belowground material decomposing to SOM1 rnewbs_2_1 (numpy.ndarray): derived, required C/P ratio for belowground material decomposing to SOM1 strmax_2 (numpy.ndarray): parameter, maximum decomposition amount defac (numpy.ndarray): derived, decomposition factor dec1_2 (numpy.ndarray): parameter, maximum decomposition rate pligst_2 (numpy.ndarray): parameter, effect of lignin content on decomposition rate strlig_2 (numpy.ndarray): state variable, lignin content of decomposing material pheff_struc (numpy.ndarray): derived, effect of soil pH on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate Returns: tcflow_strucc_2, total flow of C out of soil structural material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(strucc_2, _SV_NODATA)) & (~numpy.isclose(struce_2_1, _SV_NODATA)) & (~numpy.isclose(struce_2_2, _SV_NODATA)) & (rnewbs_1_1 != _TARGET_NODATA) & (rnewbs_2_1 != _TARGET_NODATA) & (strmax_2 != _IC_NODATA) & (defac != _TARGET_NODATA) & (dec1_2 != _IC_NODATA) & (pligst_2 != _IC_NODATA) & (~numpy.isclose(strlig_2, _SV_NODATA)) & (pheff_struc != _TARGET_NODATA) & (anerb != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum(strucc_2[valid_mask], strmax_2[valid_mask]) * defac[valid_mask] * dec1_2[valid_mask] * numpy.exp(-pligst_2[valid_mask] * strlig_2[valid_mask]) * 0.020833 * pheff_struc[valid_mask] * anerb[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((strucc_2 / struce_2_1) <= rnewbs_1_1)) & ((aminrl_2 > 0.0000001) | ((strucc_2 / struce_2_2) <= rnewbs_2_1)) & valid_mask) tcflow_strucc_2 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_strucc_2[:] = _IC_NODATA tcflow_strucc_2[valid_mask] = 0. tcflow_strucc_2[decompose_mask] = potential_flow[decompose_mask] return tcflow_strucc_2 def calc_tcflow_surface( aminrl_1, aminrl_2, cstatv, estatv_1, estatv_2, rcetob_1, rcetob_2, defac, dec_param, pheff): """Calculate total flow of C out of a surface pool. The total potential flow of C out of a surface pool is calculated according to the decomposition factor and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P cstatv (numpy.ndarray): state variable, C in decomposing pool estatv_1 (numpy.ndarray): state variable, N in decomposing pool estatv_2 (numpy.ndarray): state variable, P in decomposing pool rcetob_1 (numpy.ndarray): derived, required C/N ratio for material entering the receiving pool rcetob_2 (numpy.ndarray): derived, required C/P ratio for material entering the receiving pool defac (numpy.ndarray): derived, decomposition factor dec_param (numpy.ndarray): parameter, maximum decomposition rate pheff (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow, total flow of C out of the decomposing pool """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(estatv_1, _SV_NODATA)) & (~numpy.isclose(estatv_2, _SV_NODATA)) & (rcetob_1 != _TARGET_NODATA) & (rcetob_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec_param != _IC_NODATA) & (pheff != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum( cstatv[valid_mask] * defac[valid_mask] * dec_param[valid_mask] * 0.020833 * pheff[valid_mask], cstatv[valid_mask])) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((cstatv / estatv_1) <= rcetob_1)) & ((aminrl_2 > 0.0000001) | ((cstatv / estatv_2) <= rcetob_2)) & valid_mask) tcflow = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow[:] = _IC_NODATA tcflow[valid_mask] = 0. tcflow[decompose_mask] = potential_flow[decompose_mask] return tcflow def calc_tcflow_soil( aminrl_1, aminrl_2, cstatv, estatv_1, estatv_2, rcetob_1, rcetob_2, defac, dec_param, pheff, anerb): """Calculate total flow out of soil metabolic C. The total potential flow of C out of soil metabolic material is calculated according to the decomposition factor, soil pH, and soil anaerobic conditions. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average soil mineral N aminrl_2 (numpy.ndarray): derived, average soil mineral P cstatv (numpy.ndarray): state variable, C in decomposing stock estatv_1 (numpy.ndarray): state variable, N in decomposing stock estatv_2 (numpy.ndarray): state variable, P in decomposing stock rcetob_1 (numpy.ndarray): derived, required C/N ratio for material entering receiving stock rceto1_2 (numpy.ndarray): derived, required C/P ratio for material entering receiving stock defac (numpy.ndarray): derived, decomposition factor dec_param (numpy.ndarray): parameter, maximum decomposition rate pheff (numpy.ndarray): derived, effect of soil pH on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate Returns: tcflow_soil, total flow of C out of soil metabolic material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(estatv_1, _SV_NODATA)) & (~numpy.isclose(estatv_2, _SV_NODATA)) & (rcetob_1 != _TARGET_NODATA) & (rcetob_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec_param != _IC_NODATA) & (pheff != _TARGET_NODATA) & (anerb != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum( cstatv[valid_mask] * defac[valid_mask] * dec_param[valid_mask] * 0.020833 * pheff[valid_mask] * anerb[valid_mask], cstatv[valid_mask])) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((cstatv / estatv_1) <= rcetob_1)) & ((aminrl_2 > 0.0000001) | ((cstatv / estatv_2) <= rcetob_2)) & valid_mask) tcflow_soil = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_soil[:] = _IC_NODATA tcflow_soil[valid_mask] = 0. tcflow_soil[decompose_mask] = potential_flow[decompose_mask] return tcflow_soil def calc_tcflow_som1c_2( aminrl_1, aminrl_2, som1c_2, som1e_2_1, som1e_2_2, rceto2_1, rceto2_2, defac, dec3_2, eftext, anerb, pheff_metab): """Calculate total flow out of soil SOM1. The total potential flow of C out of soil SOM1 is calculated according to the effect of soil texture, anaerobic conditions, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P som1c_2 (numpy.ndarray): state variable, C in soil SOM1 som1e_2_1 (numpy.ndarray): state variable, N in soil SOM1 som1e_2_2 (numpy.ndarray): state variable, P in soil SOM1 rceto2_1 (numpy.ndarray): derived, required C/N ratio for material decomposing to soil SOM2 rceto2_2 (numpy.ndarray): derived, required C/P ratio for material decomposing to soil SOM2 defac (numpy.ndarray): derived, decomposition factor dec3_2 (numpy.ndarray): parameter, maximum decomposition rate eftext (numpy.ndarray): derived, effect of soil texture on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate pheff_metab (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow_som1c_2, total flow of C out of soil SOM1 """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_1, _SV_NODATA)) & (~numpy.isclose(som1e_2_2, _SV_NODATA)) & (rceto2_1 != _TARGET_NODATA) & (rceto2_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec3_2 != _IC_NODATA) & (eftext != _TARGET_NODATA) & (anerb != _TARGET_NODATA) & (pheff_metab != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( som1c_2[valid_mask] * defac[valid_mask] * dec3_2[valid_mask] * eftext[valid_mask] * anerb[valid_mask] * 0.020833 * pheff_metab[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((som1c_2 / som1e_2_1) <= rceto2_1)) & ((aminrl_2 > 0.0000001) | ((som1c_2 / som1e_2_2) <= rceto2_2)) & valid_mask) tcflow_som1c_2 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_som1c_2[:] = _IC_NODATA tcflow_som1c_2[valid_mask] = 0. tcflow_som1c_2[decompose_mask] = potential_flow[decompose_mask] return tcflow_som1c_2 def calc_som3_flow(tcflow, fps, animpt, anerb): """Calculate the C that flows from soil SOM1 or SOM2 to SOM3. The fraction of total flow leaving SOM1 or SOM2 that goes to SOM3 is dependent on soil clay content and soil anaerobic conditions. Parameters: tcflow (numpy.ndarray): derived, total C leaving soil SOM1 or SOM2 fps (numpy.ndarray): derived, effect of soil clay content on decomposition to SOM3 animpt (numpy.ndarray): parameter, slope of relationship between anaerobic conditions and decomposition flow to SOM3 anerb (numpy.ndarray): derived, impact of soil anaerobic conditions on decomposition Returns: tosom3, C flowing to SOM3 """ valid_mask = ( (tcflow != _IC_NODATA) & (fps != _IC_NODATA) & (animpt != _IC_NODATA) & (anerb != _TARGET_NODATA)) tosom3 = numpy.empty(tcflow.shape, dtype=numpy.float32) tosom3[:] = _IC_NODATA tosom3[valid_mask] = ( tcflow[valid_mask] * fps[valid_mask] * (1. + animpt[valid_mask] * (1. - anerb[valid_mask]))) return tosom3 def calc_som2_flow(som2c_1, cmix, defac): """Calculate the C that flows from surface SOM2 to soil SOM2. Some C flows from surface SOM2 to soil SOM2 via mixing. This flow is controlled by the parameter cmix. Parameters: som2c_1 (numpy.ndarray): state variable, C in surface SOM2 cmix (numpy.ndarray): parameter, amount of C flowing via mixing defac (numpy.ndarray): derived, decomposition factor Returns: tcflow, C flowing to soil SOM2 via mixing """ valid_mask = ( (~numpy.isclose(som2c_1, _SV_NODATA)) & (cmix != _IC_NODATA) & (defac != _TARGET_NODATA)) tcflow = numpy.empty(som2c_1.shape, dtype=numpy.float32) tcflow[:] = _IC_NODATA tcflow[valid_mask] = ( som2c_1[valid_mask] * cmix[valid_mask] * defac[valid_mask] * 0.020833) return tcflow def calc_respiration_mineral_flow(cflow, frac_co2, estatv, cstatv): """Calculate mineral flow of one element associated with respiration. As material decomposes from one stock to another, some CO2 is lost to microbial respiration and some nutrient (N or P) moves to the mineral pool. Respir.f Parameters: cflow (numpy.ndarray): derived, C decomposing from one stock to another frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 estatv (numpy.ndarray): state variable, iel (N or P) in the decomposing stock cstatv (numpy.ndarray): state variable, C in the decomposing stock Returns: mineral_flow, flow of iel (N or P) accompanying respiration """ valid_mask = ( (cflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (~numpy.isclose(estatv, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA))) co2_loss = numpy.zeros(cflow.shape, dtype=numpy.float32) co2_loss[valid_mask] = cflow[valid_mask] * frac_co2[valid_mask] mineral_flow = numpy.empty(cflow.shape, dtype=numpy.float32) mineral_flow[:] = _IC_NODATA mineral_flow[valid_mask] = 0. flow_mask = ((cstatv > 0) & valid_mask) mineral_flow[flow_mask] = ( co2_loss[flow_mask] * estatv[flow_mask] / cstatv[flow_mask]) return mineral_flow def update_gross_mineralization(gross_mineralization, mineral_flow): """Update gross N mineralization with current mineral flow. Gross mineralization of N during decomposition is used to calculate volatilization loss of N after decomposition. It is updated with N mineral flow if mineral flow is positive. Parameters: gross_mineralization (numpy.ndarray): gross N mineralization during decomposition mineral_flow (numpy.ndarray): N mineral flow Returns: gromin_updated, updated gross mineralization """ valid_mask = ( (gross_mineralization != _TARGET_NODATA) & (mineral_flow != _IC_NODATA)) gromin_updated = numpy.empty( gross_mineralization.shape, dtype=numpy.float32) gromin_updated[:] = _TARGET_NODATA gromin_updated[valid_mask] = gross_mineralization[valid_mask] update_mask = ((mineral_flow > 0) & valid_mask) gromin_updated[update_mask] = ( gross_mineralization[update_mask] + mineral_flow[update_mask]) return gromin_updated def calc_net_cflow(cflow, frac_co2): """Calculate net flow of C after loss to CO2. As material decomposes from one stock to another, some C is lost to CO2 through microbial respiration. Calculate the net flow of C after subtracting losses to CO2. Parameters: cflow (numpy.ndarray): derived, C decomposing from one stock to another frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 Returns: net_cflow, amount of decomposing C that flows after accounting for CO2 losses """ valid_mask = ( (cflow != _IC_NODATA) & (frac_co2 != _IC_NODATA)) co2_loss = numpy.zeros(cflow.shape, dtype=numpy.float32) co2_loss[valid_mask] = cflow[valid_mask] * frac_co2[valid_mask] net_cflow = numpy.empty(cflow.shape, dtype=numpy.float32) net_cflow[:] = _IC_NODATA net_cflow[valid_mask] = cflow[valid_mask] - co2_loss[valid_mask] return net_cflow def calc_net_cflow_tosom2(tcflow, frac_co2, tosom3, cleach): """Calculate net flow of C from soil SOM1 to soil SOM2. The C flowing from soil SOM1 to SOM2 is the remainder of total flow from SOM1, after accounting for losses to CO2 through respiration, decomposition to SOM3, and leaching. Parameters: tcflow (numpy.ndarray): derived, total C decomposing from soil SOM1 frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 tosom3 (numpy.ndarray): derived, C flowing from SOM1 to SOM3 cleach (numpy.ndarray): derived, leached organic C Returns: net_tosom2, amount of C that flows from soil SOM1 to soil SOm2 """ valid_mask = ( (tcflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (tosom3 != _IC_NODATA) & (cleach != _TARGET_NODATA)) net_tosom2 = numpy.empty(tcflow.shape, dtype=numpy.float32) net_tosom2[:] = _IC_NODATA net_tosom2[valid_mask] = ( tcflow[valid_mask] - (tcflow[valid_mask] * frac_co2[valid_mask]) - tosom3[valid_mask] - cleach[valid_mask]) return net_tosom2 def calc_net_cflow_tosom1(tcflow, frac_co2, tosom3): """Calculate net flow of C from soil SOM2 to soil SOM1. The C flowing from soil SOM2 to SOM1 is the remainder of total flow from SOM2, after accounting for losses to CO2 through respiration and decomposition to SOM3. Parameters: tcflow (numpy.ndarray): derived, total C decomposing from soil SOM1 frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 tosom3 (numpy.ndarray): derived, C flowing from SOM1 to SOM3 Returns: net_tosom1, amount of C that flows from soil SOM2 to soil SOM1 """ valid_mask = ( (tcflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (tosom3 != _IC_NODATA)) net_tosom1 = numpy.empty(tcflow.shape, dtype=numpy.float32) net_tosom1[:] = _IC_NODATA net_tosom1[valid_mask] = ( tcflow[valid_mask] - (tcflow[valid_mask] * frac_co2[valid_mask]) - tosom3[valid_mask]) return net_tosom1 def respiration( tcflow_path, frac_co2_path, cstatv_path, estatv_path, delta_estatv_path, delta_minerl_1_iel_path, gromin_1_path=None): """Calculate and apply flow of N or P during respiration. Microbial respiration accompanies decomposition of most stocks. Calculate the flow of one element (N or P) to the mineral pool, which accompanies this respiration. Parameters: tcflow_path (string): path to raster containing flow of C that is accompanied by respiration frac_co2_path (string): path to raster containing fraction of C lost to co2 cstatv_path (string): path to raster containing C state variable of decomposing pool estatv_path (string): path to raster containing iel (N or P) state variable of decomposing pool delta_estatv_path (string): path to raster containing change in the iel state variable of decomposing pool delta_minerl_1_iel_path (string): path to raster containing change in surface mineral iel gromin_1_path (string): path to raster containing gross mineralization of N Side effects: modifies or creates the raster indicated by `delta_estatv_path` modifies or creates the raster indicated by `delta_minerl_1_iel_path` modifies or creates the raster indicated by `gromin_1_path`, if supplied Returns: None """ with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name pygeoprocessing.raster_calculator( [(path, 1) for path in [ tcflow_path, frac_co2_path, estatv_path, cstatv_path]], calc_respiration_mineral_flow, operand_temp_path, gdal.GDT_Float32, _IC_NODATA) # mineral flow is removed from the decomposing iel state variable shutil.copyfile(delta_estatv_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, delta_estatv_path, _IC_NODATA) # mineral flow is added to surface mineral iel shutil.copyfile(delta_minerl_1_iel_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, delta_minerl_1_iel_path, _IC_NODATA) if gromin_1_path: shutil.copyfile(gromin_1_path, d_statv_temp_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ d_statv_temp_path, operand_temp_path]], update_gross_mineralization, gromin_1_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def nutrient_flow( cflow_path, cstatv_donating_path, estatv_donating_path, rcetob_path, minerl_1_path, d_estatv_donating_path, d_estatv_receiving_path, d_minerl_path, gromin_path=None): """Calculate and apply the flow of one nutrient accompanying C. As C decomposes from one compartment to another, nutrients (N and P) also flow from the donating compartment to the receiving compartment. Some N or P may also flow to or from the mineral pool. Calculate and apply the flow of iel (N or P) accompanying the given flow of C. Parameters: cflow_path (string): path to raster containing the flow of C from the donating to the receiving pool cstatv_donating_path (string): path to raster containing the C state variable in the donating pool estatv_donating_path (string): path to raster containing the iel (N or P) in the donating pool rcetob_path (string): path to raster containing required C/iel ratio in the receiving pool minerl_1_path (string): path to raster containing surface mineral iel d_estatv_donating_path (string): path to raster containing change in iel in the donating pool d_estatv_receiving_path (string): path to raster containing change in iel in the receiving pool d_minerl_path (string): path to raster containing change in surface mineral iel gromin_path (string): path to raster containing gross mineralization of N Side effects: modifies or creates the raster indicated by `d_estatv_donating_path` modifies or creates the raster indicated by `d_estatv_receiving_path` modifies or creates the raster indicated by `d_minerl_path` modifies or creates the raster indicated by `gromin_path`, if supplied Returns: None """ with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('material_leaving_a'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_estatv_donating_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_estatv_donating_path, _IC_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('material_arriving_b'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_estatv_receiving_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_estatv_receiving_path, _IC_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('mineral_flow'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_minerl_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_minerl_path, _IC_NODATA) if gromin_path: shutil.copyfile(gromin_path, d_statv_temp_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ d_statv_temp_path, operand_temp_path]], update_gross_mineralization, gromin_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def calc_c_leach(amov_2, tcflow, omlech_3, orglch): """Calculate the amount of C leaching from soil SOM1 to stream flow. Some C leaches from soil SOM1 if the water flow out of soil layer 2 is above a critical level. Parameters: amov_2 (numpy.ndarray): derived, moisture flowing out of soil layer 2 tcflow (numpy.ndarray): derived, total flow of C out of soil SOM1 omlech_3 (numpy.ndarray): parameter, threshold value for amov_2 orglch (numpy.ndarray): derived, effect of sand content on leaching rate Returns: cleach, C leaching from soil SOM1 to stream flow """ valid_mask = ( (amov_2 != _TARGET_NODATA) & (tcflow != _IC_NODATA) & (omlech_3 != _IC_NODATA) & (orglch != _IC_NODATA)) cleach = numpy.empty(amov_2.shape, dtype=numpy.float32) cleach[:] = _TARGET_NODATA cleach[valid_mask] = 0 linten = numpy.zeros(amov_2.shape) linten[valid_mask] = numpy.minimum( (1. - (omlech_3[valid_mask] - amov_2[valid_mask]) / omlech_3[valid_mask]), 1.) leach_mask = ((amov_2 > 0) & valid_mask) cleach[leach_mask] = ( tcflow[leach_mask] * orglch[leach_mask] * linten[leach_mask]) return cleach def remove_leached_iel( som1c_2_path, som1e_2_iel_path, cleach_path, d_som1e_2_iel_path, iel): """Remove N or P leached from soil SOM1. As soil SOM1 decomposes into SOM3, some of N and P is lost from SOM1 through leaching. The amount lost is calculated from the amount of C leaching from the soil and the proportion of iel (N or P) in soil SOM1. Parameters: som1c_2_path (string): path to raster containing C in soil SOM1 som1e_2_iel_path (string): path to raster containing iel in soil SOM1 cleach_path (string): path to raster containing C leaching from SOM1 d_som1e_2_iel_path (string): path to raster giving change in som1e_2_iel iel (int): index indicating N (iel == 1) or P (iel == 2)) Side effects: modifies the raster indicated by `d_som1e_2_iel_path` Returns: None """ def calc_leached_N(som1c_2, som1e_2_1, cleach): """Calculate the N leaching from soil SOM1.""" valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_1, _SV_NODATA)) & (som1c_2 > 0) & (som1e_2_1 > 0) & (cleach != _TARGET_NODATA)) rceof1_1 = numpy.zeros(som1c_2.shape) rceof1_1[valid_mask] = som1c_2[valid_mask] / som1e_2_1[valid_mask] * 2. orgflow = numpy.empty(som1c_2.shape, dtype=numpy.float32) orgflow[:] = _IC_NODATA orgflow[valid_mask] = cleach[valid_mask] / rceof1_1[valid_mask] return orgflow def calc_leached_P(som1c_2, som1e_2_2, cleach): """Calculate the P leaching from soil SOM1.""" valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_2, _SV_NODATA)) & (som1c_2 > 0) & (som1e_2_2 > 0) & (cleach != _TARGET_NODATA)) rceof1_2 = numpy.zeros(som1c_2.shape) rceof1_2[valid_mask] = ( som1c_2[valid_mask] / som1e_2_2[valid_mask] * 35.) orgflow = numpy.empty(som1c_2.shape, dtype=numpy.float32) orgflow[:] = _IC_NODATA orgflow[valid_mask] = cleach[valid_mask] / rceof1_2[valid_mask] return orgflow with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name if iel == 1: pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som1e_2_iel_path, cleach_path]], calc_leached_N, operand_temp_path, gdal.GDT_Float32, _TARGET_NODATA) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som1e_2_iel_path, cleach_path]], calc_leached_P, operand_temp_path, gdal.GDT_Float32, _TARGET_NODATA) # remove leached iel from SOM1 shutil.copyfile(d_som1e_2_iel_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_som1e_2_iel_path, _IC_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def calc_pflow(pstatv, rate_param, defac): """Calculate the flow of mineral P flowing from one pool to another. Mineral P contains multiple pools, including parent material, labile P, sorbed and strongly sorbed P, and occluded P. Calculate the flow from one mineral P pool to another. Parameters: pstatv (numpy.ndarray): state variable, P in donating mineral pool rate_param (numpy.ndarray): parameter, base rate of flow defac (numpy.ndarray): derived, decomposition rate Returns: pflow, mineral P flowing from donating to receiving pool """ valid_mask = ( (~numpy.isclose(pstatv, _SV_NODATA)) & (rate_param != _IC_NODATA) & (defac != _TARGET_NODATA)) pflow = numpy.empty(pstatv.shape, dtype=numpy.float64) pflow[:] = _IC_NODATA pflow[valid_mask] = ( pstatv[valid_mask] * rate_param[valid_mask] * defac[valid_mask] * 0.020833) return pflow def calc_pflow_to_secndy(minerl_lyr_2, pmnsec_2, fsol, defac): """Calculate the flow of mineral to secondary P in one soil layer. P flows from the mineral pool of each soil layer into secondary P (strongly sorbed P) according to the amount in the mineral pool and the amount of P in solution. Parameters: minerl_lyr_2 (numpy.ndarray): state variable, mineral P in soil layer lyr pmnsec_2 (numpy.ndarray): parameter, base flow rate fsol (numpy.ndarray): derived, fraction of P in solution defac (numpy.ndarray): derived, decomposition factor Returns: fmnsec, flow of mineral P to secondary in one soil layer """ valid_mask = ( (~numpy.isclose(minerl_lyr_2, _SV_NODATA)) & (pmnsec_2 != _IC_NODATA) & (fsol != _TARGET_NODATA) & (defac != _TARGET_NODATA)) fmnsec = numpy.empty(minerl_lyr_2.shape, dtype=numpy.float64) fmnsec[:] = _IC_NODATA fmnsec[valid_mask] = ( pmnsec_2[valid_mask] * minerl_lyr_2[valid_mask] * (1. - fsol[valid_mask]) * defac[valid_mask] * 0.020833) return fmnsec def update_aminrl( minerl_1_1_path, minerl_1_2_path, fsol_path, aminrl_1_path, aminrl_2_path): """Update aminrl_1 and aminrl_2, average mineral N and P in surface soil. Aminrl_1, average mineral N, and aminrl_2, average mineral P, represent labile N or P available for decomposition. They are kept as a running average of the minerl_1_1 (for N) or minerl_1_2 (for P) state variable across decomposition time steps. Parameters: minerl_1_1_path (string): path to raster giving current mineral N in soil layer 1 minerl_1_2_path (string): path to raster giving current mineral N in soil layer 2 fsol_path (string): path to raster giving fraction of mineral P in solution aminrl_1_path (string): path to raster containing average mineral N aminrl_2_path (string): path to raster containing average mineral P Side effects: modifies or creates the raster indicated by `aminrl_1_path` modifies or creates the raster indicated by `aminrl_2_path Returns: None """ def update_aminrl_1(aminrl_1_prev, minerl_1_1): """Update average mineral N.""" valid_mask = ( (~numpy.isclose(aminrl_1_prev, _SV_NODATA)) & (~numpy.isclose(minerl_1_1, _SV_NODATA))) aminrl_1 = numpy.empty(aminrl_1_prev.shape, dtype=numpy.float32) aminrl_1[:] = _SV_NODATA aminrl_1[valid_mask] = ( aminrl_1_prev[valid_mask] + minerl_1_1[valid_mask] / 2.) return aminrl_1 def update_aminrl_2(aminrl_2_prev, minerl_1_2, fsol): """Update average mineral P. Average mineral P is calculated from the fraction of mineral P in soil layer 1 that is in solution. Parameters: aminrl_2_prev (numpy.ndarray): derived, previous average surface mineral P minerl_1_2 (numpy.ndarray): state variable, current mineral P in soil layer 1 fsol (numpy.ndarray): derived, fraction of labile P in solution Returns: aminrl_2, updated average mineral P """ valid_mask = ( (~numpy.isclose(aminrl_2_prev, _SV_NODATA)) & (~numpy.isclose(minerl_1_2, _SV_NODATA)) & (fsol != _TARGET_NODATA)) aminrl_2 = numpy.empty(aminrl_2_prev.shape, dtype=numpy.float32) aminrl_2[:] = _SV_NODATA aminrl_2[valid_mask] = ( aminrl_2_prev[valid_mask] + (minerl_1_2[valid_mask] * fsol[valid_mask]) / 2.) return aminrl_2 with tempfile.NamedTemporaryFile( prefix='aminrl_prev', dir=PROCESSING_DIR) as aminrl_prev_file: aminrl_prev_path = aminrl_prev_file.name shutil.copyfile(aminrl_1_path, aminrl_prev_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [aminrl_prev_path, minerl_1_1_path]], update_aminrl_1, aminrl_1_path, gdal.GDT_Float32, _SV_NODATA) shutil.copyfile(aminrl_2_path, aminrl_prev_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ aminrl_prev_path, minerl_1_2_path, fsol_path]], update_aminrl_2, aminrl_2_path, gdal.GDT_Float32, _SV_NODATA) # clean up os.remove(aminrl_prev_path) def sum_biomass( weighted_live_c, weighted_dead_c, strucc_1, metabc_1, elitst): """Calculate total biomass for the purposes of soil shading. Total aboveground biomass for the purposes of soil shading is the sum of live biomass, standing dead biomass, and litter. The impact of litter is modifed by the parameter elitst. Parameters: weighted_live_c (numpy.ndarray): derived, sum of the state variable aglivc across plant functional types weighted_dead_c (numpy.ndarray): derived, sum of the state variable stdedc across plant functional types strucc_1 (numpy.ndarray): state variable, surface structural c metabc_1 (numpy.ndarray): state variable, surface metabolic c elitst (numpy.ndarray): parameter, effect of litter on soil temperature relative to live and standing dead biomass Returns: biomass, total biomass for purposes of soil shading """ valid_mask = ( (weighted_live_c != _TARGET_NODATA) & (weighted_dead_c != _TARGET_NODATA) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(metabc_1, _SV_NODATA)) & (elitst != _IC_NODATA)) biomass = numpy.empty(weighted_live_c.shape, dtype=numpy.float32) biomass[:] = _TARGET_NODATA biomass[valid_mask] = ( (weighted_live_c[valid_mask] + weighted_dead_c[valid_mask]) * 2.5 + (strucc_1[valid_mask] + metabc_1[valid_mask]) * 2.5 * elitst[valid_mask]) return biomass def _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg): """Update soil C, N and P after decomposition. C, N and P move from one surface or soil stock to another depending on the availability of N and P in the decomposing stock. This function covers lines 118-323 in Simsom.f, including decomp.f, litdec.f, somdec.f, and pschem.f. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, and site spatial index current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation pft_id_set (set): set of integers identifying plant functional types site_param_table (dict): map of site spatial indices to dictionaries containing site parameters year_reg (dict): map of key, path pairs giving paths to annual precipitation and annual N deposition rasters month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving persistent parameters including required ratios for decomposition, the effect of soil texture on decomposition rate, and the effect of soil texture on the rate of organic leaching sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates all rasters in sv_reg pertaining to structural, metabolic, som1, som2, and som3 C, N, and P; mineral N and P; and parent, secondary, and occluded mineral P Returns: None """ def calc_N_fixation(precip, annual_precip, baseNdep, epnfs_2): """Calculate monthly atmospheric N fixation. Atmospheric N fixation for the month is calculated from annual N deposition, calculated once per year, according to the ratio of monthly precipitation to annual precipitation. Total N fixed in this month is scheduled to be added to the surface mineral N pool. Lines 193-205, Simsom.f Parameters: precip (numpy.ndarray): input, monthly precipitation annual_precip (numpy.ndarray): derived, annual precipitation baseNdep (numpy.ndarray): derived, annual atmospheric N deposition epnfs_2 (numpy.ndarray): parameter, intercept of regression predicting N deposition from annual precipitation Returns: wdfxm, atmospheric N deposition for the current month """ valid_mask = ( (~numpy.isclose(precip, precip_nodata)) & (annual_precip != _TARGET_NODATA) & (annual_precip > 0) & (baseNdep != _TARGET_NODATA) & (epnfs_2 != _IC_NODATA)) wdfxm = numpy.zeros(precip.shape, dtype=numpy.float32) wdfxm[valid_mask] = ( baseNdep[valid_mask] * (precip[valid_mask] / annual_precip[valid_mask]) + epnfs_2[valid_mask] * numpy.minimum(annual_precip[valid_mask], 100.) * (precip[valid_mask] / annual_precip[valid_mask])) return wdfxm def calc_rprpet(pevap, snowmelt, avh2o_3, precip): """Calculate the ratio of precipitation to ref evapotranspiration. The ratio of precipitation or snowmelt to reference evapotranspiration influences agdefac and bgdefac, the above- and belowground decomposition factors. Parameters: pevap (numpy.ndarray): derived, reference evapotranspiration snowmelt (numpy.ndarray): derived, snowmelt occuring this month avh2o_3 (numpy.ndarray): derived, moisture in top two soil layers precip (numpy.ndarray): input, precipitation for this month Returns: rprpet, the ratio of precipitation or snowmelt to reference evapotranspiration """ valid_mask = ( (pevap != _TARGET_NODATA) & (snowmelt != _TARGET_NODATA) & (avh2o_3 != _TARGET_NODATA) & (~numpy.isclose(precip, precip_nodata))) rprpet = numpy.empty(pevap.shape, dtype=numpy.float32) rprpet[:] = _TARGET_NODATA snowmelt_mask = (valid_mask & (snowmelt > 0) & (pevap > 0)) rprpet[snowmelt_mask] = snowmelt[snowmelt_mask] / pevap[snowmelt_mask] no_melt_mask = (valid_mask & (snowmelt <= 0)) rprpet[no_melt_mask] = ( (avh2o_3[no_melt_mask] + precip[no_melt_mask]) / pevap[no_melt_mask]) return rprpet def calc_bgwfunc(rprpet): """Calculate the impact of belowground water content on decomposition. Bgwfunc reflects the effect of soil moisture on decomposition and is also used to calculate shoot senescence due to water stress. It is calculated from the ratio of soil water in the top two soil layers to reference evapotranspiration. Parameters: rprpet (numpy.ndarray): derived, ratio of precipitation or snowmelt to reference evapotranspiration Returns: bgwfunc, the effect of soil moisture on decomposition """ valid_mask = (rprpet != _TARGET_NODATA) bgwfunc = numpy.empty(rprpet.shape, dtype=numpy.float32) bgwfunc[:] = _TARGET_NODATA bgwfunc[valid_mask] = ( 1. / (1. + 30 * numpy.exp(-8.5 * rprpet[valid_mask]))) bgwfunc[(valid_mask & (rprpet > 9))] = 1 return bgwfunc def calc_stemp( biomass, snow, max_temp, min_temp, daylength, pmntmp, pmxtmp): """Calculate mean soil surface temperature for decomposition. Soil surface temperature is modified from monthly temperature inputs by estimated impacts of shading by aboveground biomass and litter, and estimated daylength. Surftemp.f Parameters: biomass (numpy.ndarray): derived, sum of aboveground biomass and surface litter across plant functional types snow (numpy.ndarray): state variable, current snowpack max_temp (numpy.ndarray): input, maximum temperature this month min_temp (numpy.ndarray): input, minimum temperature this month daylength (numpy.ndarray): derived, estimated hours of daylight pmntmp (numpy.ndarray): parameter, effect of biomass on minimum surface temperature pmxtmp (numpy.ndarray): parameter, effect of biomass on maximum surface temperature Returns: stemp, mean soil surface temperature for decomposition """ valid_mask = ( (biomass != _TARGET_NODATA) & (snow != _SV_NODATA) & (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata)) & (daylength != _TARGET_NODATA) & (pmntmp != _IC_NODATA) & (pmxtmp != _IC_NODATA)) tmxs = numpy.empty(biomass.shape, dtype=numpy.float32) tmxs[valid_mask] = ( max_temp[valid_mask] + (25.4 / (1. + 18. * numpy.exp( -0.2 * max_temp[valid_mask]))) * (numpy.exp(pmxtmp[valid_mask] * biomass[valid_mask]) - 0.13)) tmns = numpy.empty(biomass.shape, dtype=numpy.float32) tmns[valid_mask] = ( min_temp[valid_mask] + pmntmp[valid_mask] * biomass[valid_mask] - 1.78) shortday_mask = ((daylength < 12.) & valid_mask) snow_mask = ((snow > 0) & valid_mask) tmns_mlt = numpy.empty(biomass.shape, dtype=numpy.float32) tmns_mlt[valid_mask] = ( ((12. - daylength[valid_mask]) * 1.2 + 12.) / 24.) tmns_mlt[shortday_mask] = ( ((12 - daylength[shortday_mask]) * 3. + 12.) / 24.) tmns_mlt[valid_mask] = numpy.clip(tmns_mlt[valid_mask], 0.05, 0.95) stemp = numpy.empty(biomass.shape, dtype=numpy.float32) stemp[:] = _TARGET_NODATA stemp[valid_mask] = ( (1 - tmns_mlt[valid_mask]) * tmxs[valid_mask] + tmns_mlt[valid_mask] * tmns[valid_mask]) stemp[snow_mask] = 0. return stemp def calc_defac(bgwfunc, stemp, teff_1, teff_2, teff_3, teff_4): """Calculate decomposition factor. The decomposition factor influences the rate of surface and soil decomposition and reflects the influence of soil temperature and moisture. Lines 151-200, Cycle.f. Parameters: bgwfunc (numpy.ndarray): derived, effect of soil moisture on decomposition stemp (numpy.ndarray): derived, average soil surface temperature teff_1 (numpy.ndarray): parameter, x location of inflection point for calculating the effect of soil temperature on decomposition factor teff_2 (numpy.ndarray): parameter, y location of inflection point for calculating the effect of soil temperature on decomposition factor teff_3 (numpy.ndarray): parameter, step size for calculating the effect of soil temperature on decomposition factor teff_4 (numpy.ndarray): parameter, slope of the line at the inflection point, for calculating the effect of soil temperature on decomposition factor Returns: defac, aboveground and belowground decomposition factor """ valid_mask = ( (bgwfunc != _TARGET_NODATA) & (teff_1 != _IC_NODATA) & (teff_2 != _IC_NODATA) & (teff_3 != _IC_NODATA) & (teff_4 != _IC_NODATA)) tfunc = numpy.empty(bgwfunc.shape, dtype=numpy.float32) tfunc[:] = _TARGET_NODATA tfunc[valid_mask] = numpy.maximum( 0.01, (teff_2[valid_mask] + (teff_3[valid_mask] / numpy.pi) * numpy.arctan(numpy.pi * teff_4[valid_mask] * (stemp[valid_mask] - teff_1[valid_mask]))) / (teff_2[valid_mask] + (teff_3[valid_mask] / numpy.pi) * numpy.arctan(numpy.pi * teff_4[valid_mask] * (30.0 - teff_1[valid_mask])))) defac = numpy.empty(bgwfunc.shape, dtype=numpy.float32) defac[:] = _TARGET_NODATA defac[valid_mask] = numpy.maximum( 0., tfunc[valid_mask] * bgwfunc[valid_mask]) return defac def calc_pheff_struc(pH): """Calculate the effect of soil pH on decomp of structural material. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of structural material differs from the effect on decomposition of metabolic material in the values of two constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_struc, the effect of soil pH on decomposition rate of structural material """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_struc = numpy.empty(pH.shape, dtype=numpy.float32) pheff_struc[valid_mask] = numpy.clip( (0.5 + (1.1 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 4.))), 0, 1) return pheff_struc def calc_pheff_metab(pH): """Calculate the effect of soil pH on decomp of metabolic material. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of structural material differs from the effect on decomposition of metabolic material in the values of two constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_metab, the effect of soil pH on decomposition rate of metabolic material """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_metab = numpy.empty(pH.shape, dtype=numpy.float32) pheff_metab[valid_mask] = numpy.clip( (0.5 + (1.14 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 4.8))), 0, 1) return pheff_metab def calc_pheff_som3(pH): """Calculate the effect of soil pH on decomposition of SOM3. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of SOM3 differs from the effect of pH on decomposition of other pools in the value of constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_som3, the effect of soil pH on decomposition rate of SOM3 """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_metab = numpy.empty(pH.shape, dtype=numpy.float32) pheff_metab[valid_mask] = numpy.clip( (0.5 + (1.1 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 3.))), 0, 1) return pheff_metab precip_nodata = pygeoprocessing.get_raster_info( aligned_inputs['precip_{}'.format(month_index)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] pH_nodata = pygeoprocessing.get_raster_info( aligned_inputs['ph_path'])['nodata'][0] temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'd_statv_temp', 'operand_temp', 'shwave', 'pevap', 'rprpet', 'daylength', 'sum_aglivc', 'sum_stdedc', 'biomass', 'stemp', 'defac', 'anerb', 'gromin_1', 'pheff_struc', 'pheff_metab', 'aminrl_1', 'aminrl_2', 'fsol', 'tcflow', 'tosom2', 'net_tosom2', 'tosom1', 'net_tosom1', 'tosom3', 'cleach', 'pheff_som3', 'pflow']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) for iel in [1, 2]: for val in ['rceto1', 'rceto2', 'rceto3']: temp_val_dict['{}_{}'.format(val, iel)] = os.path.join( temp_dir, '{}.tif'.format('{}_{}'.format(val, iel))) param_val_dict = {} for val in [ 'fwloss_4', 'elitst', 'pmntmp', 'pmxtmp', 'teff_1', 'teff_2', 'teff_3', 'teff_4', 'drain', 'aneref_1', 'aneref_2', 'aneref_3', 'sorpmx', 'pslsrb', 'strmax_1', 'dec1_1', 'pligst_1', 'strmax_2', 'dec1_2', 'pligst_2', 'rsplig', 'ps1co2_1', 'ps1co2_2', 'dec2_1', 'pcemic1_1_1', 'pcemic1_2_1', 'pcemic1_3_1', 'pcemic1_1_2', 'pcemic1_2_2', 'pcemic1_3_2', 'varat1_1_1', 'varat1_2_1', 'varat1_3_1', 'varat1_1_2', 'varat1_2_2', 'varat1_3_2', 'dec2_2', 'pmco2_1', 'pmco2_2', 'rad1p_1_1', 'rad1p_2_1', 'rad1p_3_1', 'rad1p_1_2', 'rad1p_2_2', 'rad1p_3_2', 'dec3_1', 'p1co2a_1', 'varat22_1_1', 'varat22_2_1', 'varat22_3_1', 'varat22_1_2', 'varat22_2_2', 'varat22_3_2', 'dec3_2', 'animpt', 'varat3_1_1', 'varat3_2_1', 'varat3_3_1', 'varat3_1_2', 'varat3_2_2', 'varat3_3_2', 'omlech_3', 'dec5_2', 'p2co2_2', 'dec5_1', 'p2co2_1', 'dec4', 'p3co2', 'cmix', 'pparmn_2', 'psecmn_2', 'nlayer', 'pmnsec_2', 'psecoc1', 'psecoc2', 'epnfs_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # shwave, shortwave radiation outside the atmosphere _shortwave_radiation( aligned_inputs['site_index'], current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pevap']) # rprpet, ratio of precipitation to reference evapotranspiration pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pevap'], month_reg['snowmelt'], sv_reg['avh2o_3_path'], aligned_inputs['precip_{}'.format(month_index)]]], calc_rprpet, temp_val_dict['rprpet'], gdal.GDT_Float32, _TARGET_NODATA) # bgwfunc, effect of soil moisture on decomposition pygeoprocessing.raster_calculator( [(temp_val_dict['rprpet'], 1)], calc_bgwfunc, month_reg['bgwfunc'], gdal.GDT_Float32, _TARGET_NODATA) # estimated daylength _calc_daylength( aligned_inputs['site_index'], current_month, temp_val_dict['daylength']) # total biomass for purposes of soil shading for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], temp_val_dict['sum_stdedc'], prev_sv_reg['strucc_1_path'], prev_sv_reg['metabc_1_path'], param_val_dict['elitst']]], sum_biomass, temp_val_dict['biomass'], gdal.GDT_Float32, _TARGET_NODATA) # stemp, soil surface temperature for the purposes of decomposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['biomass'], sv_reg['snow_path'], aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['daylength'], param_val_dict['pmntmp'], param_val_dict['pmxtmp']]], calc_stemp, temp_val_dict['stemp'], gdal.GDT_Float32, _TARGET_NODATA) # defac, decomposition factor calculated from soil temp and moisture pygeoprocessing.raster_calculator( [(path, 1) for path in [ month_reg['bgwfunc'], temp_val_dict['stemp'], param_val_dict['teff_1'], param_val_dict['teff_2'], param_val_dict['teff_3'], param_val_dict['teff_4']]], calc_defac, temp_val_dict['defac'], gdal.GDT_Float32, _TARGET_NODATA) # anerb, impact of soil anaerobic conditions on decomposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['rprpet'], temp_val_dict['pevap'], param_val_dict['drain'], param_val_dict['aneref_1'], param_val_dict['aneref_2'], param_val_dict['aneref_3']]], calc_anerb, temp_val_dict['anerb'], gdal.GDT_Float32, _TARGET_NODATA) # initialize gromin_1, gross mineralization of N pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['gromin_1'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # pH effect on decomposition for structural material pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_struc, temp_val_dict['pheff_struc'], gdal.GDT_Float32, _TARGET_NODATA) # pH effect on decomposition for metabolic material pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_metab, temp_val_dict['pheff_metab'], gdal.GDT_Float32, _TARGET_NODATA) # initialize aminrl_1 and aminrl_2 shutil.copyfile(prev_sv_reg['minerl_1_1_path'], temp_val_dict['aminrl_1']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['minerl_1_2_path'], param_val_dict['sorpmx'], param_val_dict['pslsrb']]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) raster_multiplication( prev_sv_reg['minerl_1_2_path'], _SV_NODATA, temp_val_dict['fsol'], _TARGET_NODATA, temp_val_dict['aminrl_2'], _SV_NODATA) # initialize current month state variables and delta state variable dict nlayer_max = int(max( val['nlayer'] for val in site_param_table.values())) delta_sv_dict = { 'minerl_1_1': os.path.join(temp_dir, 'minerl_1_1.tif'), 'parent_2': os.path.join(temp_dir, 'parent_2.tif'), 'secndy_2': os.path.join(temp_dir, 'secndy_2.tif'), 'occlud': os.path.join(temp_dir, 'occlud.tif'), } for lyr in range(1, nlayer_max + 1): state_var = 'minerl_{}_2'.format(lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) # initialize mineral N in current sv_reg for lyr in range(1, nlayer_max + 1): state_var = 'minerl_{}_1'.format(lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['strlig']: for lyr in [1, 2]: state_var = '{}_{}'.format(compartment, lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['som3']: state_var = '{}c'.format(compartment) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for iel in [1, 2]: state_var = '{}e_{}'.format(compartment, iel) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['struc', 'metab', 'som1', 'som2']: for lyr in [1, 2]: state_var = '{}c_{}'.format(compartment, lyr) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for iel in [1, 2]: state_var = '{}e_{}_{}'.format(compartment, lyr, iel) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for state_var in ['parent_2', 'secndy_2', 'occlud']: shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for dtm in range(4): # initialize change (delta, d) in state variables for this decomp step for state_var in delta_sv_dict.keys(): pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], delta_sv_dict[state_var], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[0]) if dtm == 0: # schedule flow of N from atmospheric fixation to surface mineral pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['precip_{}'.format(month_index)], year_reg['annual_precip_path'], year_reg['baseNdep_path'], param_val_dict['epnfs_2']]], calc_N_fixation, delta_sv_dict['minerl_1_1'], gdal.GDT_Float32, _IC_NODATA) # decomposition of structural material in surface and soil for lyr in [1, 2]: if lyr == 1: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['strucc_1_path'], sv_reg['struce_1_1_path'], sv_reg['struce_1_2_path'], pp_reg['rnewas_1_1_path'], pp_reg['rnewas_2_1_path'], param_val_dict['strmax_1'], temp_val_dict['defac'], param_val_dict['dec1_1'], param_val_dict['pligst_1'], sv_reg['strlig_1_path'], temp_val_dict['pheff_struc']]], calc_tcflow_strucc_1, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['strucc_2_path'], sv_reg['struce_2_1_path'], sv_reg['struce_2_2_path'], pp_reg['rnewbs_1_1_path'], pp_reg['rnewbs_2_1_path'], param_val_dict['strmax_2'], temp_val_dict['defac'], param_val_dict['dec1_2'], param_val_dict['pligst_2'], sv_reg['strlig_2_path'], temp_val_dict['pheff_struc'], temp_val_dict['anerb']]], calc_tcflow_strucc_2, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['strucc_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['strucc_{}'.format(lyr)], _IC_NODATA) # structural material decomposes first to SOM2 raster_multiplication( temp_val_dict['tcflow'], _IC_NODATA, sv_reg['strlig_{}_path'.format(lyr)], _SV_NODATA, temp_val_dict['tosom2'], _IC_NODATA) # microbial respiration with decomposition to SOM2 respiration( temp_val_dict['tosom2'], param_val_dict['rsplig'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tosom2'], param_val_dict['rsplig'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tosom2'], param_val_dict['rsplig']]], calc_net_cflow, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_{}'.format(lyr)], _IC_NODATA) if lyr == 1: rcetob = 'rnewas' else: rcetob = 'rnewbs' # N and P flows from STRUC to SOM2 nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], pp_reg['{}_1_2_path'.format(rcetob)], sv_reg['minerl_1_1_path'], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['som2e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], pp_reg['{}_2_2_path'.format(rcetob)], sv_reg['minerl_1_2_path'], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['som2e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # structural material decomposes next to SOM1 raster_difference( temp_val_dict['tcflow'], _IC_NODATA, temp_val_dict['tosom2'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA) # microbial respiration with decomposition to SOM1 respiration( temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)]]], calc_net_cflow, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_{}'.format(lyr)], _IC_NODATA) if lyr == 1: rcetob = 'rnewas' else: rcetob = 'rnewbs' # N and P flows from STRUC to SOM1 nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], pp_reg['{}_1_1_path'.format(rcetob)], sv_reg['minerl_1_1_path'], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['som1e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], pp_reg['{}_2_1_path'.format(rcetob)], sv_reg['minerl_1_2_path'], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['som1e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # decomposition of metabolic material in surface and soil to SOM1 for lyr in [1, 2]: if lyr == 1: for iel in [1, 2]: # required ratio for surface metabolic decomposing to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['metabe_1_{}_path'.format(iel)], sv_reg['metabc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, temp_val_dict['rceto1_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['metabc_1_path'], sv_reg['metabe_1_1_path'], sv_reg['metabe_1_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec2_1'], temp_val_dict['pheff_metab']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) else: for iel in [1, 2]: # required ratio for soil metabolic decomposing to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat1_1_{}'.format(iel)], param_val_dict['varat1_2_{}'.format(iel)], param_val_dict['varat1_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto1_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['metabc_2_path'], sv_reg['metabe_2_1_path'], sv_reg['metabe_2_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec2_2'], temp_val_dict['pheff_metab'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['metabc_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['metabc_{}'.format(lyr)], _IC_NODATA) # microbial respiration with decomposition to SOM1 respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_1_path'.format(lyr)], delta_sv_dict['metabe_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_2_path'.format(lyr)], delta_sv_dict['metabe_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)]]], calc_net_cflow, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_{}'.format(lyr)], _IC_NODATA) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_1_path'.format(lyr)], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['metabe_{}_1'.format(lyr)], delta_sv_dict['som1e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_2_path'.format(lyr)], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['metabe_{}_2'.format(lyr)], delta_sv_dict['som1e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # decomposition of surface SOM1 to surface SOM2: line 63 Somdec.f for iel in [1, 2]: pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['som1c_1_path'], sv_reg['som1e_1_{}_path'.format(iel)], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)]]], calc_surface_som2_ratio, temp_val_dict['rceto2_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], sv_reg['som1e_1_2_path'], temp_val_dict['rceto2_1'], temp_val_dict['rceto2_2'], temp_val_dict['defac'], param_val_dict['dec3_1'], temp_val_dict['pheff_struc']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som1c_1'], _IC_NODATA) # microbial respiration with decomposition to SOM2 respiration( temp_val_dict['tcflow'], param_val_dict['p1co2a_1'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], delta_sv_dict['som1e_1_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p1co2a_1'], sv_reg['som1c_1_path'], sv_reg['som1e_1_2_path'], delta_sv_dict['som1e_1_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p1co2a_1']]], calc_net_cflow, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) # N and P flows from som1e_1 to som2e_1, line 123 Somdec.f nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_1_1'], delta_sv_dict['som2e_1_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_1_2'], delta_sv_dict['som2e_1_2'], delta_sv_dict['minerl_1_2']) # soil SOM1 decomposes to soil SOM3 and SOM2, line 137 Somdec.f for iel in [1, 2]: # required ratio for soil SOM1 decomposing to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat22_1_{}'.format(iel)], param_val_dict['varat22_2_{}'.format(iel)], param_val_dict['varat22_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto2_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto2_1'], temp_val_dict['rceto2_2'], temp_val_dict['defac'], param_val_dict['dec3_2'], pp_reg['eftext_path'], temp_val_dict['anerb'], temp_val_dict['pheff_metab']]], calc_tcflow_som1c_2, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) # microbial respiration with decomposition to SOM3, line 179 respiration( temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['fps1s3_path'], param_val_dict['animpt'], temp_val_dict['anerb']]], calc_som3_flow, temp_val_dict['tosom3'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom3'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) for iel in [1, 2]: # required ratio for soil SOM1 decomposing to SOM3, line 198 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat3_1_{}'.format(iel)], param_val_dict['varat3_2_{}'.format(iel)], param_val_dict['varat3_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto3_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], temp_val_dict['rceto3_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto3_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) # organic leaching: line 204 Somdec.f pygeoprocessing.raster_calculator( [(path, 1) for path in [ month_reg['amov_2'], temp_val_dict['tcflow'], param_val_dict['omlech_3'], pp_reg['orglch_path']]], calc_c_leach, temp_val_dict['cleach'], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: remove_leached_iel( sv_reg['som1c_2_path'], sv_reg['som1e_2_{}_path'.format(iel)], temp_val_dict['cleach'], delta_sv_dict['som1e_2_{}'.format(iel)], iel) # rest of flow from soil SOM1 goes to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], temp_val_dict['tosom3'], temp_val_dict['cleach']]], calc_net_cflow_tosom2, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) # N and P flows from soil SOM1 to soil SOM2, line 257 nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # soil SOM2 decomposing to soil SOM1 and SOM3, line 269 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec5_2'], temp_val_dict['pheff_metab'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # soil SOM2 flows first to SOM3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['fps2s3_path'], param_val_dict['animpt'], temp_val_dict['anerb']]], calc_som3_flow, temp_val_dict['tosom3'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom3'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], temp_val_dict['rceto3_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto3_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) # rest of flow from soil SOM2 goes to soil SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p2co2_2'], temp_val_dict['tosom3']]], calc_net_cflow_tosom1, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) # surface SOM2 decomposes to surface SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec5_1'], temp_val_dict['pheff_struc']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['p2co2_1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p2co2_1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p2co2_1']]], calc_net_cflow, temp_val_dict['tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_1'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA, delta_sv_dict['som1c_1'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['som1e_1_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['som1e_1_2'], delta_sv_dict['minerl_1_2']) # SOM3 decomposing to soil SOM1 # pH effect on decomposition of SOM3 pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_som3, temp_val_dict['pheff_som3'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], sv_reg['som3e_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec4'], temp_val_dict['pheff_som3'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['p3co2'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p3co2'], sv_reg['som3c_path'], sv_reg['som3e_2_path'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p3co2']]], calc_net_cflow, temp_val_dict['tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som3e_1'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som3c_path'], sv_reg['som3e_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som3e_2'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) # Surface SOM2 flows to soil SOM2 via mixing pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['som2c_1_path'], param_val_dict['cmix'], temp_val_dict['defac']]], calc_som2_flow, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) # ratios for N and P entering soil som2 via mixing raster_division( sv_reg['som2c_1_path'], _SV_NODATA, sv_reg['som2e_1_1_path'], _IC_NODATA, temp_val_dict['rceto2_1'], _IC_NODATA) raster_division( sv_reg['som2c_1_path'], _SV_NODATA, sv_reg['som2e_1_2_path'], _IC_NODATA, temp_val_dict['rceto2_2'], _IC_NODATA) nutrient_flow( temp_val_dict['tcflow'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tcflow'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # P flow from parent to mineral: Pschem.f pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['parent_2_path'], param_val_dict['pparmn_2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['parent_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['parent_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_1_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_1_2'], _IC_NODATA) # P flow from secondary to mineral pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['secndy_2_path'], param_val_dict['psecmn_2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_1_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_1_2'], _IC_NODATA) # P flow from mineral to secondary for lyr in range(1, nlayer_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_{}_2_path'.format(lyr)], param_val_dict['pmnsec_2'], temp_val_dict['fsol'], temp_val_dict['defac']]], calc_pflow_to_secndy, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_{}_2'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_{}_2'.format(lyr)], _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) # P flow from secondary to occluded pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['secndy_2_path'], param_val_dict['psecoc1'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['occlud'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['occlud'], _IC_NODATA) # P flow from occluded to secondary pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['occlud_path'], param_val_dict['psecoc2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['occlud'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['occlud'], _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) # accumulate flows compartment = 'som3' state_var = '{}c'.format(compartment) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = '{}e_{}'.format(compartment, iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for compartment in ['struc', 'metab', 'som1', 'som2']: for lyr in [1, 2]: state_var = '{}c_{}'.format(compartment, lyr) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = '{}e_{}_{}'.format(compartment, lyr, iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = 'minerl_1_{}'.format(iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for state_var in ['parent_2', 'secndy_2', 'occlud']: shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) # update aminrl: Simsom.f line 301 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_2_path'], param_val_dict['sorpmx'], param_val_dict['pslsrb']]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) update_aminrl( sv_reg['minerl_1_1_path'], sv_reg['minerl_1_2_path'], temp_val_dict['fsol'], temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2']) # volatilization loss of N: line 323 Simsom.f raster_multiplication( temp_val_dict['gromin_1'], _TARGET_NODATA, pp_reg['vlossg_path'], _IC_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA) shutil.copyfile( sv_reg['minerl_1_1_path'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, sv_reg['minerl_1_1_path'], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def partit( cpart_path, epart_1_path, epart_2_path, frlign_path, site_index_path, site_param_table, lyr, sv_reg): """Partition incoming material into structural and metabolic pools. When organic material is added to the soil, for example as dead biomass falls and becomes litter, or when organic material is added from animal waste, it is partitioned into structural (STRUCC_lyr) and metabolic (METABC_lyr) material according to the ratio of lignin to N in the residue. As residue is partitioned, some N and P may be directly absorbed from surface mineral N or P into the residue. Parameters: cpart_path (string): path to raster containing C in incoming material that is to be partitioned epart_1_path (string): path to raster containing N in incoming material epart_2_path (string): path to raster containing P in incoming material frlign_path (string): path to raster containing fraction of incoming material that is lignin site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters lyr (int): layer which is receiving the incoming material (i.e., 1=surface layer, 2=soil layer) sv_reg (dict): map of key, path pairs giving paths to current state variables Side effects: modifies the rasters indicated by the following paths: sv_reg['minerl_1_1_path'] sv_reg['minerl_1_2_path'] sv_reg['metabc_{}_path'.format(lyr)] sv_reg['strucc_{}_path'.format(lyr)] sv_reg['metabe_{}_1_path'.format(lyr)] sv_reg['metabe_{}_2_path'.format(lyr)] sv_reg['struce_{}_1_path'.format(lyr)] sv_reg['struce_{}_2_path'.format(lyr)] sv_reg['strlig_{}_path'.format(lyr)] Returns: None """ def calc_dirabs( cpart, epart_iel, minerl_1_iel, damr_lyr_iel, pabres, damrmn_iel): """Calculate direct absorption of mineral N or P. When organic material is added to the soil, some mineral N or P may be directly absorbed from the surface mineral layer into the incoming material. the amount transferred depends on the N or P in the incoming material and the required C/N or C/P ratio of receiving material. Parameters: cpart (numpy.ndarray): derived, C in incoming material epart_iel (numpy.ndarray): derived, <iel> in incoming material minerl_1_iel (numpy.ndarray): state variable, surface mineral <iel> damr_lyr_iel (numpy.ndarray): parameter, fraction of iel in lyr absorbed by residue pabres (numpy.ndarray): parameter, amount of residue which will give maximum direct absorption of iel damrmn_iel (numpy.ndarray): parameter, minimum C/iel ratio allowed in residue after direct absorption Returns: dirabs_iel, <iel> (N or P) absorbed from the surface mineral pool """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_iel != _TARGET_NODATA) & (~numpy.isclose(minerl_1_iel, _SV_NODATA)) & (damr_lyr_iel != _IC_NODATA) & (pabres != _IC_NODATA) & (damrmn_iel != _IC_NODATA)) dirabs_iel = numpy.empty(cpart.shape, dtype=numpy.float32) dirabs_iel[:] = _TARGET_NODATA dirabs_iel[valid_mask] = 0. minerl_mask = ((minerl_1_iel >= 0) & valid_mask) dirabs_iel[minerl_mask] = ( damr_lyr_iel[minerl_mask] * minerl_1_iel[minerl_mask] * numpy.maximum(cpart[minerl_mask] / pabres[minerl_mask], 1.)) # rcetot: C/E ratio of incoming material rcetot = numpy.empty(cpart.shape, dtype=numpy.float32) rcetot[:] = _IC_NODATA e_sufficient_mask = (((epart_iel + dirabs_iel) > 0) & valid_mask) rcetot[valid_mask] = 0 rcetot[e_sufficient_mask] = ( cpart[e_sufficient_mask] / ( epart_iel[e_sufficient_mask] + dirabs_iel[e_sufficient_mask])) dirabs_mod_mask = ((rcetot < damrmn_iel) & valid_mask) dirabs_iel[dirabs_mod_mask] = numpy.maximum( cpart[dirabs_mod_mask] / damrmn_iel[dirabs_mod_mask] - epart_iel[dirabs_mod_mask], 0.) return dirabs_iel def calc_d_metabc_lyr(cpart, epart_1, dirabs_1, frlign, spl_1, spl_2): """Calculate the change in metabolic C after addition of new material. Parameters: cpart (numpy.ndarray): C in incoming material epart_1 (numpy.ndarray): N in incoming material dirabs_1 (numpy.ndarray): derived, direct aborption of mineral N into incoming material frlign (numpy.ndarray): fraction of incoming material which is lignin spl_1 (numpy.ndarray): parameter, intercept of regression predicting fraction of residue going to metabolic spl_2 (numpy.ndarray): parameter, slope of regression predicting fraction of residue going to metabolic Returns: d_metabc_lyr, change in metabc_lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_1 != _TARGET_NODATA) & (dirabs_1 != _TARGET_NODATA) & (frlign != _TARGET_NODATA) & (spl_1 != _IC_NODATA) & (spl_2 != _IC_NODATA)) movt_mask = ((cpart > 0) & valid_mask) # rlnres: ratio of lignin to N in the incoming material rlnres = numpy.empty(cpart.shape, dtype=numpy.float32) rlnres[:] = _TARGET_NODATA rlnres[valid_mask] = 0. rlnres[movt_mask] = ( frlign[movt_mask] / ( (epart_1[movt_mask] + dirabs_1[movt_mask]) / (cpart[movt_mask] * 2.5))) # frmet: fraction of cpart that goes to metabolic frmet = numpy.empty(cpart.shape, dtype=numpy.float32) frmet[:] = _TARGET_NODATA frmet[valid_mask] = ( spl_1[valid_mask] - spl_2[valid_mask] * rlnres[valid_mask]) lign_exceeded_mask = ((frlign > (1. - frmet)) & valid_mask) frmet[lign_exceeded_mask] = 1. - frlign[lign_exceeded_mask] d_metabc_lyr = numpy.empty(cpart.shape, dtype=numpy.float32) d_metabc_lyr[:] = _TARGET_NODATA d_metabc_lyr[valid_mask] = cpart[valid_mask] * frmet[valid_mask] return d_metabc_lyr def calc_d_strucc_lyr(cpart, d_metabc_lyr): """Calculate change in structural C after addition of new material. Parameters: cpart (numpy.ndarray): derived, C in incoming material d_metabc_lyr (numpy.ndarray) derived, change in metabc_lyr Returns: d_strucc_lyr, change in strucc_lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (d_metabc_lyr != _TARGET_NODATA)) d_strucc_lyr = numpy.empty(cpart.shape, dtype=numpy.float32) d_strucc_lyr[:] = _TARGET_NODATA d_strucc_lyr[valid_mask] = cpart[valid_mask] - d_metabc_lyr[valid_mask] return d_strucc_lyr def calc_d_struce_lyr_iel(d_strucc_lyr, rcestr_iel): """Calculate the change in N or P in structural material in layer lyr. Parameters: d_strucc_lyr (numpy.ndarray): change in strucc_lyr with addition of incoming material rcestr_iel (numpy.ndarray): parameter, C/<iel> ratio for structural material Returns: d_struce_lyr_iel, change in structural N or P in layer lyr """ valid_mask = ( (d_strucc_lyr != _TARGET_NODATA) & (rcestr_iel != _IC_NODATA)) d_struce_lyr_iel = numpy.empty(d_strucc_lyr.shape, dtype=numpy.float32) d_struce_lyr_iel[valid_mask] = ( d_strucc_lyr[valid_mask] / rcestr_iel[valid_mask]) return d_struce_lyr_iel def calc_d_metabe_lyr_iel(cpart, epart_iel, dirabs_iel, d_struce_lyr_iel): """Calculate the change in N or P in metabolic material in layer lyr. Parameters: cpart (numpy.ndarray): C in incoming material epart_iel (numpy.ndarray): <iel> in incoming material dirabs_iel (numpy.ndarray): <iel> absorbed from the surface mineral pool d_struce_lyr_iel (numpy.ndarray): change in structural N or P in layer lyr Returns: d_metabe_lyr_iel, change in metabolic N or P in layer lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_iel != _TARGET_NODATA) & (dirabs_iel != _TARGET_NODATA) & (d_struce_lyr_iel != _TARGET_NODATA)) d_metabe_lyr_iel = numpy.empty(cpart.shape, dtype=numpy.float32) d_metabe_lyr_iel[:] = _TARGET_NODATA d_metabe_lyr_iel[valid_mask] = ( epart_iel[valid_mask] + dirabs_iel[valid_mask] - d_struce_lyr_iel[valid_mask]) return d_metabe_lyr_iel def calc_d_strlig_lyr(frlign, d_strucc_lyr, cpart, strlig_lyr, strucc_lyr): """Calculate change in fraction of lignin in structural material. Parameters: frlign (numpy.ndarray): fraction of incoming material which is lignin d_strucc_lyr (numpy.ndarray): change in strucc_lyr with addition of incoming material cpart (numpy.ndarray): C in incoming material strlig_lyr (numpy.ndarray): state variable, lignin in structural material in receiving layer strucc_lyr (numpy.ndarray): state variable, C in structural material in layer lyr Returns: d_strlig_lyr, change in fraction of lignin in structural material in layer lyr """ valid_mask = ( (frlign != _TARGET_NODATA) & (d_strucc_lyr != _TARGET_NODATA) & (cpart != _TARGET_NODATA) & (~numpy.isclose(strlig_lyr, _SV_NODATA)) & (~numpy.isclose(strucc_lyr, _SV_NODATA))) movt_mask = ((cpart > 0) & valid_mask) fligst = numpy.empty(frlign.shape, dtype=numpy.float32) fligst[:] = _TARGET_NODATA fligst[valid_mask] = 1. fligst[movt_mask] = numpy.minimum( frlign[movt_mask] / ( d_strucc_lyr[movt_mask] / cpart[movt_mask]), 1.) strlig_lyr_mod = numpy.empty(frlign.shape, dtype=numpy.float32) strlig_lyr_mod[:] = _TARGET_NODATA strlig_lyr_mod[valid_mask] = ( ((strlig_lyr[valid_mask] * strucc_lyr[valid_mask]) + (fligst[valid_mask] * d_strucc_lyr[valid_mask])) / (strucc_lyr[valid_mask] + d_strucc_lyr[valid_mask])) d_strlig_lyr = numpy.empty(frlign.shape, dtype=numpy.float32) d_strlig_lyr[:] = _IC_NODATA d_strlig_lyr[valid_mask] = ( strlig_lyr_mod[valid_mask] - strlig_lyr[valid_mask]) return d_strlig_lyr temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'dirabs_1', 'dirabs_2', 'd_metabc_lyr', 'd_strucc_lyr', 'd_struce_lyr_iel', 'd_statv_temp', 'operand_temp']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in [ 'damr_{}_1'.format(lyr), 'damr_{}_2'.format(lyr), 'pabres', 'damrmn_1', 'damrmn_2', 'spl_1', 'spl_2', 'rcestr_1', 'rcestr_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # direct absorption of N and P from surface mineral layer for iel in [1, 2]: if iel == 1: epart_path = epart_1_path else: epart_path = epart_2_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_path, sv_reg['minerl_1_{}_path'.format(iel)], param_val_dict['damr_{}_{}'.format(lyr, iel)], param_val_dict['pabres'], param_val_dict['damrmn_{}'.format(iel)]]], calc_dirabs, temp_val_dict['dirabs_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # remove direct absorption from surface mineral layer shutil.copyfile( sv_reg['minerl_1_{}_path'.format(iel)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['dirabs_{}'.format(iel)], _TARGET_NODATA, sv_reg['minerl_1_{}_path'.format(iel)], _SV_NODATA) # partition C into structural and metabolic pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_1_path, temp_val_dict['dirabs_1'], frlign_path, param_val_dict['spl_1'], param_val_dict['spl_2']]], calc_d_metabc_lyr, temp_val_dict['d_metabc_lyr'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, temp_val_dict['d_metabc_lyr']]], calc_d_strucc_lyr, temp_val_dict['d_strucc_lyr'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['metabc_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_metabc_lyr'], _TARGET_NODATA, sv_reg['metabc_{}_path'.format(lyr)], _SV_NODATA) shutil.copyfile( sv_reg['strucc_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_strucc_lyr'], _TARGET_NODATA, sv_reg['strucc_{}_path'.format(lyr)], _SV_NODATA) # partition N and P into structural and metabolic for iel in [1, 2]: if iel == 1: epart_path = epart_1_path else: epart_path = epart_2_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['d_strucc_lyr'], param_val_dict['rcestr_{}'.format(iel)]]], calc_d_struce_lyr_iel, temp_val_dict['d_struce_lyr_iel'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['struce_{}_{}_path'.format(lyr, iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_struce_lyr_iel'], _TARGET_NODATA, sv_reg['struce_{}_{}_path'.format(lyr, iel)], _SV_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_path, temp_val_dict['dirabs_{}'.format(iel)], temp_val_dict['d_struce_lyr_iel']]], calc_d_metabe_lyr_iel, temp_val_dict['operand_temp'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['metabe_{}_{}_path'.format(lyr, iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, sv_reg['metabe_{}_{}_path'.format(lyr, iel)], _SV_NODATA) # adjust fraction of lignin in receiving structural pool pygeoprocessing.raster_calculator( [(path, 1) for path in [ frlign_path, temp_val_dict['d_strucc_lyr'], cpart_path, sv_reg['strlig_{}_path'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)]]], calc_d_strlig_lyr, temp_val_dict['operand_temp'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( sv_reg['strlig_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _IC_NODATA, sv_reg['strlig_{}_path'.format(lyr)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_fall_standing_dead(stdedc, fallrt): """Calculate delta C with fall of standing dead. Material falls from standing dead biomass into surface litter according to a constant monthly fall rate. Parameters: stdedc (numpy.ndarray): state variable, C in standing dead material fallrt (numpy.ndarray): parameter, fraction of standing dead material that falls each month Returns: delta_c_standing_dead, change in C in standing dead """ valid_mask = ( (~numpy.isclose(stdedc, _SV_NODATA)) & (fallrt != _IC_NODATA)) delta_c_standing_dead = numpy.empty(stdedc.shape, dtype=numpy.float32) delta_c_standing_dead[:] = _TARGET_NODATA delta_c_standing_dead[valid_mask] = stdedc[valid_mask] * fallrt[valid_mask] return delta_c_standing_dead def calc_root_death( average_temperature, rtdtmp, rdr, avh2o_1, deck5, bglivc): """Calculate delta C with death of roots. Material flows from roots into soil organic matter pools due to root death. Root death rate is limited by average temperature and influenced by available soil moisture. Change in C is calculated by multiplying the root death rate by bglivc, C in live roots. Parameters: average_temperature (numpy.ndarray): derived, average temperature for the current month rtdtmp (numpy.ndarray): parameter, temperature below which root death does not occur rdr (numpy.ndarray): parameter, maximum root death rate at very dry soil conditions avh2o_1 (numpy.ndarray): state variable, water available to the current plant functional type for growth deck5 (numpy.ndarray): parameter, level of available soil water at which root death rate is half maximum bglivc (numpy.ndarray): state variable, C in belowground live roots Returns: delta_c_root_death, change in C during root death """ valid_mask = ( (average_temperature != _IC_NODATA) & (rdr != _IC_NODATA) & (~numpy.isclose(avh2o_1, _SV_NODATA)) & (deck5 != _IC_NODATA) & (~numpy.isclose(bglivc, _SV_NODATA))) root_death_rate = numpy.empty(bglivc.shape, dtype=numpy.float32) root_death_rate[:] = _TARGET_NODATA root_death_rate[valid_mask] = 0. temp_sufficient_mask = ((average_temperature >= rtdtmp) & valid_mask) root_death_rate[temp_sufficient_mask] = numpy.minimum( rdr[temp_sufficient_mask] * (1.0 - avh2o_1[temp_sufficient_mask] / ( deck5[temp_sufficient_mask] + avh2o_1[temp_sufficient_mask])), 0.95) delta_c_root_death = numpy.empty(bglivc.shape, dtype=numpy.float32) delta_c_root_death[:] = _TARGET_NODATA delta_c_root_death[valid_mask] = ( root_death_rate[valid_mask] * bglivc[valid_mask]) return delta_c_root_death def calc_delta_iel(c_state_variable, iel_state_variable, delta_c): """Calculate the change in N or P accompanying change in C. As C flows out of standing dead biomass or roots, the amount of iel (N or P) flowing out of the same pool is calculated from the change in C according to the ratio of C to iel in the pool. Parameters: c_state_variable (numpy.ndarray): state variable, C in the pool that is losing material iel_state_variable (numpy.ndarray): state variable, N or P in the pool that is losing material delta_c (numpy.ndarray): derived, change in C. Change in N or P is proportional to this amount. Returns: delta_iel, change in N or P accompanying the change in C """ valid_mask = ( (~numpy.isclose(c_state_variable, _SV_NODATA)) & (~numpy.isclose(iel_state_variable, _SV_NODATA)) & (c_state_variable > 0) & (delta_c != _TARGET_NODATA)) delta_iel = numpy.empty(c_state_variable.shape, dtype=numpy.float32) delta_iel[:] = _TARGET_NODATA delta_iel[valid_mask] = ( (iel_state_variable[valid_mask] / c_state_variable[valid_mask]) * delta_c[valid_mask]) return delta_iel def _death_and_partition( state_variable, aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg): """Track movement of C, N and P from a pft-level state variable into soil. Calculate C, N and P leaving the specified state variable and entering surface or soil organic matter pools. Subtract the change in C, N and P from the state variable tracked for each pft, sum up the amounts across pfts, and distribute the sum of the material flowing from the state variable to surface or soil structural and metabolic pools. Parameters: state_variable (string): string identifying the state variable that is flowing into organic matter. Must be one of "stded" (for fall of standing dead) or "bgliv" (for death of roots). If the state variable is stded, material flowing from stded enters surface structural and metabolic pools. If the state variable is bgliv, material flowing from bgliv enters soil structural and metabolic pools. aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters current_month (int): month of the year, such that current_month=1 indicates January pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the rasters indicated by sv_reg['<state_variable>c_<pft>_path'] for each pft sv_reg['<state_variable>e_1_<pft>_path'] for each pft sv_reg['<state_variable>e_2_<pft>_path'] for each pft modifies the rasters indicated by sv_reg['minerl_1_1_path'] sv_reg['minerl_1_2_path'] sv_reg['metabc_<lyr>_path'] sv_reg['strucc_<lyr>_path'] sv_reg['metabe_<lyr>_1_path'] sv_reg['metabe_<lyr>_2_path'] sv_reg['struce_<lyr>_1_path'] sv_reg['struce_<lyr>_2_path'] sv_reg['strlig_<lyr>_path'] where lyr=1 if `state_variable` == 'stded' lyr=2 if `state_variable` == 'bgliv' Returns: None """ def calc_avg_temp(max_temp, min_temp): """Calculate average temperature from maximum and minimum temp.""" valid_mask = ( (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata))) tave = numpy.empty(max_temp.shape, dtype=numpy.float32) tave[:] = _IC_NODATA tave[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2. return tave temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'tave', 'delta_c', 'delta_iel', 'delta_sv_weighted', 'operand_temp', 'sum_weighted_delta_C', 'sum_weighted_delta_N', 'sum_weighted_delta_P', 'weighted_lignin', 'sum_lignin', 'fraction_lignin']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} # site-level parameters val = 'deck5' target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # pft-level parameters for val in['fallrt', 'rtdtmp', 'rdr']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path # sum of material across pfts to be partitioned to organic matter pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_C'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_N'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_P'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_lignin'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)]]], calc_avg_temp, temp_val_dict['tave'], gdal.GDT_Float32, _IC_NODATA) for pft_i in pft_id_set: pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] # calculate change in C leaving the given state variable if state_variable == 'stded': fill_val = veg_trait_table[pft_i]['fallrt'] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], param_val_dict['fallrt'], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['stdedc_{}_path'.format(pft_i)], param_val_dict['fallrt']]], calc_fall_standing_dead, temp_val_dict['delta_c'], gdal.GDT_Float32, _TARGET_NODATA) else: for val in ['rtdtmp', 'rdr']: fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], param_val_dict[val], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tave'], param_val_dict['rtdtmp'], param_val_dict['rdr'], sv_reg['avh2o_1_{}_path'.format(pft_i)], param_val_dict['deck5'], prev_sv_reg['bglivc_{}_path'.format(pft_i)]]], calc_root_death, temp_val_dict['delta_c'], gdal.GDT_Float32, _TARGET_NODATA) # subtract delta_c from the pft-level state variable raster_difference( prev_sv_reg['{}c_{}_path'.format(state_variable, pft_i)], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA, sv_reg['{}c_{}_path'.format(state_variable, pft_i)], _SV_NODATA) # calculate delta C weighted by % cover of this pft raster_multiplication( temp_val_dict['delta_c'], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, temp_val_dict['delta_sv_weighted'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['sum_weighted_delta_C'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_C'], _TARGET_NODATA) # calculate weighted fraction of flowing C which is lignin if state_variable == 'stded': frlign_path = year_reg['pltlig_above_{}'.format(pft_i)] else: frlign_path = year_reg['pltlig_below_{}'.format(pft_i)] raster_multiplication( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, frlign_path, _TARGET_NODATA, temp_val_dict['weighted_lignin'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['sum_lignin'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['weighted_lignin'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_lignin'], _TARGET_NODATA) for iel in [1, 2]: # calculate N or P flowing out of the pft-level state variable pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['{}c_{}_path'.format(state_variable, pft_i)], prev_sv_reg['{}e_{}_{}_path'.format( state_variable, iel, pft_i)], temp_val_dict['delta_c']]], calc_delta_iel, temp_val_dict['delta_iel'], gdal.GDT_Float32, _TARGET_NODATA) # subtract delta_iel from the pft-level state variable raster_difference( prev_sv_reg['{}e_{}_{}_path'.format( state_variable, iel, pft_i)], _SV_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA, sv_reg['{}e_{}_{}_path'.format(state_variable, iel, pft_i)], _SV_NODATA) # calculate delta iel weighted by % cover of this pft raster_multiplication( temp_val_dict['delta_iel'], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, temp_val_dict['delta_sv_weighted'], _TARGET_NODATA) if iel == 1: shutil.copyfile( temp_val_dict['sum_weighted_delta_N'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_N'], _TARGET_NODATA) else: shutil.copyfile( temp_val_dict['sum_weighted_delta_P'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_P'], _TARGET_NODATA) # partition sum of C, N and P into structural and metabolic pools if state_variable == 'stded': lyr = 1 else: lyr = 2 raster_division( temp_val_dict['sum_lignin'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_C'], _TARGET_NODATA, temp_val_dict['fraction_lignin'], _TARGET_NODATA) partit( temp_val_dict['sum_weighted_delta_C'], temp_val_dict['sum_weighted_delta_N'], temp_val_dict['sum_weighted_delta_P'], temp_val_dict['fraction_lignin'], aligned_inputs['site_index'], site_param_table, lyr, sv_reg) # clean up temporary files shutil.rmtree(temp_dir) def calc_senescence_water_shading( aglivc, bgwfunc, fsdeth_1, fsdeth_3, fsdeth_4): """Calculate shoot death due to water stress and shading. In months where senescence is not scheduled to occur, some shoot death may still occur due to water stress and shading. Parameters: aglivc (numpy.ndarray): state variable, carbon in aboveground live biomass bgwfunc (numpy.ndarray): derived, effect of soil moisture on decomposition and shoot senescence fsdeth_1 (numpy.ndarray): parameter, maximum shoot death rate at very dry soil conditions fsdeth_3 (numpy.ndarray): parameter, additional fraction of shoots which die when aglivc is greater than fsdeth_4 fsdeth_4 (numpy.ndarray): parameter, threshold value for aglivc above which shading increases senescence Returns: fdeth, fraction of aboveground live biomass that is converted to standing dead """ valid_mask = ( (~numpy.isclose(aglivc, _SV_NODATA)) & (bgwfunc != _TARGET_NODATA) & (fsdeth_1 != _IC_NODATA) & (fsdeth_3 != _IC_NODATA) & (fsdeth_4 != _IC_NODATA)) fdeth = numpy.empty(aglivc.shape, dtype=numpy.float32) fdeth[:] = _TARGET_NODATA fdeth[valid_mask] = fsdeth_1[valid_mask] * (1. - bgwfunc[valid_mask]) shading_mask = ((aglivc > fsdeth_4) & valid_mask) fdeth[shading_mask] = fdeth[shading_mask] + fsdeth_3[shading_mask] fdeth[valid_mask] =
numpy.minimum(fdeth[valid_mask], 1.)
numpy.minimum
# coding=utf-8 # Copyright 2019 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Player from PPO2 cnn checkpoint. Example usage with play_game script: python3 -m gfootball.play_game \ --players "ppo2_cnn:left_players=1,checkpoint=$YOUR_PATH,policy=$POLICY" $POLICY should be one of: cnn, impala_cnn, gfootball_impala_cnn. """ from baselines.common.policies import build_policy from gfootball.env import football_action_set from gfootball.env import observation_preprocessing from gfootball.env import player_base from gfootball.examples import models import gym import joblib import numpy as np import tensorflow.compat.v1 as tf class Player(player_base.PlayerBase): """An agent loaded from PPO2 cnn model checkpoint.""" def __init__(self, player_config, env_config): player_base.PlayerBase.__init__(self, player_config) self._action_set = (env_config['action_set'] if 'action_set' in env_config else 'default') config = tf.ConfigProto() config.gpu_options.allow_growth = True self._sess = tf.Session(config=config) self._player_prefix = 'player_{}'.format(player_config['index']) stacking = 4 if player_config.get('stacked', True) else 1 policy = player_config.get('policy', 'cnn') self._stacker = ObservationStacker(stacking) with tf.variable_scope(self._player_prefix): with tf.variable_scope('ppo2_model'): policy_fn = build_policy(DummyEnv(self._action_set, stacking), policy) self._policy = policy_fn(nbatch=1, sess=self._sess) _load_variables(player_config['checkpoint'], self._sess, prefix=self._player_prefix + '/') def __del__(self): self._sess.close() def take_action(self, observation): assert len(observation) == 1, 'Multiple players control is not supported' observation = observation_preprocessing.generate_smm(observation) observation = self._stacker.get(observation) action = self._policy.step(observation)[0][0] actions = [football_action_set.action_set_dict[self._action_set][action]] return actions def reset(self): self._stacker.reset() def _load_variables(load_path, sess, prefix='', remove_prefix=True): """Loads variables from checkpoint of policy trained by baselines.""" # Forked from address below since we needed loading from different var names: # https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py variables = [v for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if v.name.startswith(prefix)] loaded_params = joblib.load(load_path) restores = [] for v in variables: v_name = v.name[len(prefix):] if remove_prefix else v.name restores.append(v.assign(loaded_params[v_name])) sess.run(restores) class ObservationStacker(object): """Utility class that produces stacked observations.""" def __init__(self, stacking): self._stacking = stacking self._data = [] def get(self, observation): if self._data: self._data.append(observation) self._data = self._data[-self._stacking:] else: self._data = [observation] * self._stacking return
np.concatenate(self._data, axis=-1)
numpy.concatenate
import numpy as np from numpy.testing import assert_allclose from qiskit.quantum_info import random_density_matrix from mps_tomo.uncert import R_hat, iteration, pauli_proj from mps_tomo.utils import fidelity, pauli_group def test_pauli_proj(): NUM_QUBITS = 3 SEED = 7777 TOL = 100 * np.spacing(np.complex128(1.0).real) dens_mat = random_density_matrix(2 ** NUM_QUBITS, seed=SEED) reconstructed = sum(pauli_proj(dens_mat, p) for p in pauli_group(NUM_QUBITS)) assert_allclose(reconstructed, dens_mat, rtol=0.0, atol=TOL) def test_R_hat(): TOL = 100 * np.spacing(np.complex128(1.0).real) SEED = 7777 np.random.seed(SEED) sigmas = [np.random.randn(4, 4) + 1j * np.random.randn(4, 4) for i in range(3)] example = ( np.kron(sigmas[0], np.eye(4)) + np.kron(np.kron(np.eye(2), sigmas[1]), np.eye(2)) + np.kron(np.eye(4), sigmas[2]) ) assert_allclose(R_hat(sigmas, 4), example, rtol=0.0, atol=TOL) def test_iteration_pure_W(): NUM_QUBITS = 5 SEED = 7777 TOL = 0.01 K = 2 np.random.seed(SEED) dim = 2 ** NUM_QUBITS state = np.zeros(dim, dtype=np.complex128) for i in range(NUM_QUBITS): state[1 << i] = 1 state /= np.linalg.norm(state) dens_mat = np.outer(state, state.conj()) def reduce(qubit): left_size = 2 ** qubit reduced_size = 2 ** K right_size = np.size(dens_mat, axis=0) // (left_size * reduced_size) reshaped = np.reshape( dens_mat, (left_size, reduced_size, right_size, left_size, reduced_size, right_size), ) return np.einsum("aibajb->ij", reshaped) sigmas = (reduce(q) for q in range(NUM_QUBITS - K + 1)) y_vec = iteration(K, sigmas, NUM_QUBITS, max_its=100, delta=0.1) overlap = np.abs(state.conj() @ y_vec) ** 2 assert_allclose(overlap, 1, rtol=0.0, atol=TOL) def test_iteration_depolarising_W(): NUM_QUBITS = 5 SEED = 7777 TOL = 0.15 K = 2 DEPOLARISATION = 0.1 np.random.seed(SEED) dim = 2 ** NUM_QUBITS state = np.zeros(dim, dtype=np.complex128) for i in range(NUM_QUBITS): state[1 << i] = 1 state /= np.linalg.norm(state) dens_mat = np.outer(state, state.conj()) dens_mat = ( DEPOLARISATION * (1 / dim) * np.eye(dim) + (1 - DEPOLARISATION) * dens_mat ) purity =
np.trace(dens_mat @ dens_mat)
numpy.trace
import tensorflow as tf import numpy as np import datetime as time # class for the core of the architecture class GNN: def __init__(self, net, input_dim, output_dim, state_dim, max_it=50, optimizer=tf.train.AdamOptimizer, learning_rate=0.01, threshold=0.01, graph_based=False, param=str(time.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')), config=None, tensorboard=False, mask_flag=False): """ create GNN instance. Feed this parameters: :net: Net instance - it contains state network, output network, initialized weights, loss function and metric; :input_dim: dimension of the input :output_dim: dimension of the output :state_dim: dimension for the state :max_it: maximum number of iteration of the state convergence procedure :optimizer: optimizer instance :learning_rate: learning rate value :threshold: value to establish the state convergence :graph_based: flag to denote a graph based problem :param: name of the experiment :config: ConfigProto protocol buffer object, to set configuration options for a session :tensorboard: boolean flag to activate tensorboard """ np.random.seed(0) tf.set_random_seed(0) self.tensorboard = tensorboard self.max_iter = max_it self.net = net self.optimizer = optimizer(learning_rate, name="optim") self.state_threshold = threshold self.input_dim = input_dim self.output_dim = output_dim self.state_dim = state_dim self.graph_based = graph_based self.mask_flag = mask_flag self.build() self.session = tf.Session(config=config) #self.session = tf.Session() self.session.run(tf.global_variables_initializer()) self.init_l = tf.local_variables_initializer() # parameter to monitor the learning via tensorboard and to save the model if self.tensorboard: self.merged_all = tf.summary.merge_all(key='always') self.merged_train = tf.summary.merge_all(key='train') self.merged_val = tf.summary.merge_all(key='val') self.writer = tf.summary.FileWriter('tmp/' + param, self.session.graph) # self.saver = tf.train.Saver() # self.save_path = "tmp/" + param + "saves/model.ckpt" def VariableState(self): '''Define placeholders for input, output, state, state_old, arch-node conversion matrix''' # placeholder for input and output self.comp_inp = tf.placeholder(tf.float32, shape=(None, self.input_dim), name="input") self.y = tf.placeholder(tf.float32, shape=(None, self.output_dim), name="target") if self.mask_flag: self.mask = tf.placeholder(tf.float32, name="mask") # state(t) & state(t-1) self.state = tf.placeholder(tf.float32, shape=(None, self.state_dim), name="state") self.state_old = tf.placeholder(tf.float32, shape=(None, self.state_dim), name="old_state") # arch-node conversion matrix self.ArcNode = tf.sparse_placeholder(tf.float32, name="ArcNode") # node-graph conversion matrix if self.graph_based: self.NodeGraph = tf.sparse_placeholder(tf.float32, name="NodeGraph") else: self.NodeGraph = tf.placeholder(tf.float32, name="NodeGraph") def build(self): '''build the architecture, setting variable, loss, training''' # network self.VariableState() self.loss_op = self.Loop() # loss with tf.variable_scope('loss'): if self.mask_flag: self.loss = self.net.Loss(self.loss_op[0], self.y, mask=self.mask) self.val_loss = self.net.Loss(self.loss_op[0], self.y, mask=self.mask) else: self.loss = self.net.Loss(self.loss_op[0], self.y) # val loss self.val_loss = self.net.Loss(self.loss_op[0], self.y) if self.tensorboard: self.summ_loss = tf.summary.scalar('loss', self.loss, collections=['train']) self.summ_val_loss = tf.summary.scalar('val_loss', self.val_loss, collections=['val']) # optimizer with tf.variable_scope('train'): self.grads = self.optimizer.compute_gradients(self.loss) self.train_op = self.optimizer.apply_gradients(self.grads, name='train_op') if self.tensorboard: for index, grad in enumerate(self.grads): tf.summary.histogram("{}-grad".format(self.grads[index][1].name), self.grads[index], collections=['always']) # metrics with tf.variable_scope('metrics'): if self.mask_flag: self.metrics = self.net.Metric(self.y, self.loss_op[0], mask=self.mask) else: self.metrics = self.net.Metric(self.y, self.loss_op[0]) # val metric with tf.variable_scope('val_metric'): if self.mask_flag: self.val_met = self.net.Metric(self.y, self.loss_op[0], mask=self.mask) else: self.val_met = self.net.Metric(self.y, self.loss_op[0]) if self.tensorboard: self.summ_val_met = tf.summary.scalar('val_metric', self.val_met, collections=['always']) def convergence(self, a, state, old_state, k): with tf.variable_scope('Convergence'): # body of the while cicle used to iteratively calculate state # assign current state to old state old_state = state # grub states of neighboring node gat = tf.gather(old_state, tf.cast(a[:, 1], tf.int32)) # slice to consider only label of the node and that of it's neighbor # sl = tf.slice(a, [0, 1], [tf.shape(a)[0], tf.shape(a)[1] - 1]) # equivalent code sl = a[:, 2:] # concat with retrieved state inp = tf.concat([sl, gat], axis=1) # evaluate next state and multiply by the arch-node conversion matrix to obtain per-node states layer1 = self.net.netSt(inp) state = tf.sparse_tensor_dense_matmul(self.ArcNode, layer1) # update the iteration counter k = k + 1 return a, state, old_state, k def condition(self, a, state, old_state, k): # evaluate condition on the convergence of the state with tf.variable_scope('condition'): # evaluate distance by state(t) and state(t-1) outDistance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(state, old_state)), 1) + 0.00000000001) # vector showing item converged or not (given a certain threshold) checkDistanceVec = tf.greater(outDistance, self.state_threshold) c1 = tf.reduce_any(checkDistanceVec) c2 = tf.less(k, self.max_iter) return tf.logical_and(c1, c2) def Loop(self): # call to loop for the state computation and compute the output # compute state with tf.variable_scope('Loop'): k = tf.constant(0) res, st, old_st, num = tf.while_loop(self.condition, self.convergence, [self.comp_inp, self.state, self.state_old, k]) if self.tensorboard: self.summ_iter = tf.summary.scalar('iteration', num, collections=['always']) if self.graph_based: # stf = tf.transpose(tf.matmul(tf.transpose(st), self.NodeGraph)) stf = tf.sparse_tensor_dense_matmul(self.NodeGraph, st) else: stf = st out = self.net.netOut(stf) return out, num def Train(self, inputs, ArcNode, target, step, nodegraph=0.0, mask=None): ''' train methods: has to receive the inputs, arch-node matrix conversion, target, and optionally nodegraph indicator ''' # Creating a SparseTEnsor with the feeded ArcNode Matrix arcnode_ = tf.SparseTensorValue(indices=ArcNode.indices, values=ArcNode.values, dense_shape=ArcNode.dense_shape) if self.graph_based: nodegraph = tf.SparseTensorValue(indices=nodegraph.indices, values=nodegraph.values, dense_shape=nodegraph.dense_shape) if self.mask_flag: fd = {self.NodeGraph: nodegraph, self.comp_inp: inputs, self.state: np.zeros((ArcNode.dense_shape[0], self.state_dim)), self.state_old:
np.ones((ArcNode.dense_shape[0], self.state_dim))
numpy.ones
import sys import importlib import argparse import numpy as np import random import cmath import math from dft import dft, inv_dft from fft import fft, inv_fft from rsa import * #arguments for dft, fft, inverse dft and inverse fft parameters1 = [] parameters2 = [] i=4 while i<2048: param1 = list(np.random.randint(low = 0, high = 1000, size = i)) parameters1.append(param1) param2 = list(np.random.randint(low = 0, high = 1000, size = i)) parameters2.append(param2) i=i*2 #arguments for RSA encryption and decryption VC = [[5,8,12,56], [0j, (2+1.1102230246251565e-16j), (1.4997597826618576e-32-2.4492935982947064e-16j), (2+4.440892098500626e-16j)]] bits = [] for i in range(7, 11): bits.append(2**i) def test_case(): try: for test in range(len(parameters1)): VA = dft(parameters1[test]) np.allclose(VA, np.fft.fft(parameters1[test])) print("Test Case", (test+1), "for the function DFT passed") except: print("Test Case", (test+1), "for the function DFT failed") try: for test in range(len(parameters1)): VA = fft(parameters1[test]) np.allclose(VA, np.fft.fft(parameters1[test])) print("Test Case", (test+1), "for the function FFT passed") except: print("Test Case", (test+1), "for the function FFT failed") def test_case2(): try: for test in range(len(VC)): mat = VC[test] mat2 = rsaHelper(mat) mat = np.array(mat) mat2 = np.array(mat2)
np.array_equiv(mat, mat2)
numpy.array_equiv
# -*- coding: utf-8 -*- # # Test basic functionality of ComputationalRoutine class # # Builtin/3rd party package imports import os import tempfile import time import pytest import numpy as np from glob import glob from scipy import signal # Local imports from syncopy import __acme__ if __acme__: import dask.distributed as dd from syncopy.datatype import AnalogData from syncopy.datatype.base_data import Selector from syncopy.io import load from syncopy.shared.computational_routine import ComputationalRoutine from syncopy.shared.kwarg_decorators import unwrap_io, unwrap_cfg, unwrap_select from syncopy.tests.misc import generate_artificial_data # Decorator to decide whether or not to run dask-related tests skip_without_acme = pytest.mark.skipif(not __acme__, reason="acme not available") @unwrap_io def lowpass(arr, b, a=None, noCompute=None, chunkShape=None): if noCompute: return arr.shape, arr.dtype res = signal.filtfilt(b, a, arr.T, padlen=200).T return res class LowPassFilter(ComputationalRoutine): computeFunction = staticmethod(lowpass) def process_metadata(self, data, out): if data.selection is not None: chanSec = data.selection.channel trl = data.selection.trialdefinition else: chanSec = slice(None) trl = np.zeros((len(self.trialList), 3), dtype=int) trial_lengths = np.diff(data.sampleinfo) cnt = 0 for row, tlen in enumerate(trial_lengths): trl[row, 0] = cnt trl[row, 1] = cnt + tlen trl[row, 2] = data._t0[row] cnt += tlen if not self.keeptrials: trl = np.array([[0, out.data.shape[0], trl[0, 2]]], dtype=int) out.trialdefinition = trl out.samplerate = data.samplerate out.channel = np.array(data.channel[chanSec]) @unwrap_cfg @unwrap_select def filter_manager(data, b=None, a=None, out=None, select=None, chan_per_worker=None, keeptrials=True, parallel=False, parallel_store=None, log_dict=None): newOut = False if out is None: newOut = True out = AnalogData(dimord=AnalogData._defaultDimord) myfilter = LowPassFilter(b, a=a) myfilter.initialize(data, out._stackingDim, chan_per_worker=chan_per_worker, keeptrials=keeptrials) myfilter.compute(data, out, parallel=parallel, parallel_store=parallel_store, log_dict=log_dict) return out if newOut else None class TestComputationalRoutine(): # Construct linear combination of low- and high-frequency sine waves # and use an IIR filter to reconstruct the low-frequency component nChannels = 32 nTrials = 8 fData = 2 fNoise = 64 fs = 1000 t = np.linspace(-1, 1, fs) orig = np.sin(2 * np.pi * fData * t) sig = orig + np.sin(2 * np.pi * fNoise * t) cutoff = 50 b, a = signal.butter(8, 2 * cutoff / fs) # Blow up the signal to have "channels" and "trials" and inflate the low- # frequency component accordingly for ad-hoc comparisons later sig = np.repeat(sig.reshape(-1, 1), axis=1, repeats=nChannels) sig = np.tile(sig, (nTrials, 1)) orig = np.repeat(orig.reshape(-1, 1), axis=1, repeats=nChannels) orig = np.tile(orig, (nTrials, 1)) # Construct artificial equidistant trial-definition array trl = np.zeros((nTrials, 3), dtype="int") for ntrial in range(nTrials): trl[ntrial, :] = np.array([ntrial * fs, (ntrial + 1) * fs, -500]) # Create reference AnalogData objects with equidistant trial spacing sigdata = AnalogData(data=sig, samplerate=fs, trialdefinition=trl, dimord=["time", "channel"]) origdata = AnalogData(data=orig, samplerate=fs, trialdefinition=trl, dimord=["time", "channel"]) # Set by-worker channel-count for channel-parallelization chanPerWrkr = 7 # Data selections to be tested w/`sigdata` sigdataSelections = [None, {"trials": [3, 1, 0], "channel": ["channel" + str(i) for i in range(12, 28)][::-1]}, {"trials": [0, 1, 2], "channel": range(0, int(nChannels / 2)), "toilim": [-0.25, 0.25]}] # Data selections to be tested w/`artdata` generated below (use fixed but arbitrary # random number seed to randomly select time-points for `toi` (with repetitions) seed = np.random.RandomState(13) artdataSelections = [None, {"trials": [3, 1, 0], "channel": ["channel" + str(i) for i in range(12, 28)][::-1], "toi": None}, {"trials": [0, 1, 2], "channel": range(0, int(nChannels / 2)), "toilim": [-0.5, 0.6]}] # Error tolerances and respective quality metrics (depend on data selection!) tols = [1e-6, 1e-6, 1e-2] metrix = [np.max, np.max, np.mean] def test_sequential_equidistant(self): for sk, select in enumerate(self.sigdataSelections): sel = Selector(self.sigdata, select) out = filter_manager(self.sigdata, self.b, self.a, select=select) # check correct signal filtering (especially wrt data-selection) if select is None: reference = self.orig else: ref = [] for tk, trlno in enumerate(sel.trials): ref.append(self.origdata.trials[trlno][sel.time[tk], sel.channel]) # check for correct time selection assert np.array_equal(out.time[tk], self.sigdata.time[trlno][sel.time[tk]]) reference = np.vstack(ref) assert self.metrix[sk](np.abs(out.data - reference)) < self.tols[sk] assert np.array_equal(out.channel, self.sigdata.channel[sel.channel]) # ensure pre-selection is equivalent to in-place selection if select is None: selected = self.sigdata.selectdata() else: selected = self.sigdata.selectdata(**select) out_sel = filter_manager(selected, self.b, self.a) assert np.array_equal(out.data, out_sel.data) assert
np.array_equal(out.channel, out_sel.channel)
numpy.array_equal
""" This module uses models from the Khalil paper. """ from __future__ import division from scipy.special import cbrt import numpy as np from lmfit import Parameters def qi_error(Q,Q_err,Q_e_real,Q_e_real_err,Q_e_imag,Q_e_imag_err): """ Compute error on Qi Khalil et al defines Qi as 1/Qi = 1/Qr - Real(1/Qe), where Qe is the complex coupling Q. This can be rewritten as: $$ Qi = 1/(1/Q_r - \frac{Q_{e,real}}{Q_{e,real}^2 - Q_{e,imag}^2} $$ Assuming the errors are independent (which they seem to mostly be), the error on Qi will then be: $$ \Delta Q_i = \sqrt( (\Delta Q \diff{Qi}{Q})^2 + (\Delta Q_{e,real} \diff{Qi}{Q_{e,real}})^2 + (\Delta Q_{e,imag} \diff{Qi}{Q_{e,imag}})^2 )$$ The derivatives are: $$ \diff{Qi}{Q} = \frac{(Qer^2-Qei^2)^2}{(Q Qer - Qer^2 + Qei^2)^2} $$ $$ \diff{Qi}{Qer} = -\frac{Qe^2(Qer^2 + Qei^2)}{(Q Qer - Qer^2 + Qei^2)^2} $$ $$ \diff{Qi}{Qei} = \frac{2 Q^2 Qer Qei}{(Q Qer - Qer^2 + Qei^2)^2} $$ """ dQ = Q_err Qer = Q_e_real dQer = Q_e_real_err Qei = Q_e_imag dQei = Q_e_imag_err denom = (Q*Qer - Qer**2 + Qei**2)**2 dQi_dQ = (Qer**2 - Qei**2)**2 / denom dQi_dQer = (Q**2 * (Qer**2 + Qei**2)) / denom dQi_dQei = (2 * Q**2 * Qer * Qei) / denom dQi = np.sqrt((dQ * dQi_dQ)**2 + (dQer * dQi_dQer)**2 + (dQei * dQi_dQei)**2) return dQi def cable_delay(params, f): """ This assumes that signals go as exp(i \omega t) so that a time delay corresponds to negative phase. In our sweeps the phase advances with frequency, so I think that currently either the convention is reversed in the readout or we have a time lead. If *f* is in MHz, *delay* will be in microseconds. If *f* is in Hz, *delay* will be in seconds. Parameter *phi* is the phase at f = f_min. """ delay = params['delay'].value phi = params['phi'].value f_min = params['f_phi'].value return np.exp(1j * (-2 * np.pi * (f - f_min) * delay + phi)) def generic_s21(params, f): """ This is Equation 11, except that the parameter A is a complex prefactor intended to encapsulate the 1 + \hat{\epsilon} as well as any external gains and phase shifts. """ A = (params['A_mag'].value * np.exp(1j * params['A_phase'].value)) f_0 = params['f_0'].value Q = params['Q'].value Q_e = (params['Q_e_real'].value + 1j * params['Q_e_imag'].value) return A * (1 - (Q * Q_e**-1 / (1 + 2j * Q * (f - f_0) / f_0))) def create_model(f_0 = 100e6, Q = 1e4, Q_e = 2e4, A = 1.0, delay = 0.0, a = 0.0): p = Parameters() A_mag = np.abs(A) phi = np.angle(A) Q_e_real = np.real(Q_e) Q_e_imag =
np.imag(Q_e)
numpy.imag
#!/usr/bin/python3 # test_numpy.py # testing script for writing various numpy tensors to QG8 files using # python -m pytest -rP tests/test_numpy.py # # Author : <NAME> <<EMAIL>> # Date created : 18 July 2021 # # Copyright 2021 University of Strasbourg # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from qg8.core import * from qg8.constants import * from qg8 import from_numpy graph = qg8_graph_create() tests = [] # TEST 1 data = 324 dtype = 'int64' test = {"description": "TEST1: Constant integer saved as rank 1 tensor " + dtype, "first_val": np.array(data, dtype), "last_val":
np.array(data, dtype)
numpy.array
# Copyright <NAME> 2019 # Author: <NAME> """ This script contains the utilities for plotting kernel functions. """ from matplotlib import pyplot as plt import numpy as np def rational_quadratic(alpha, lengthscale, kernel_variance, r): """ The rational quadratic kernel as featured in equation 4.19 on pg. 86 of Rasmussen and Williams. The rational quadratic kernel can be seen as a scale mixture (an infinite sum) of squared exponential kernels with different characteristic lengthscales. :param alpha: as alpha goes to infinity the RQ kernel becomes the SQE kernel. :param lengthscale: the lengthscale :param kernel_variance: the kernel variance :param r: The absolute distance in input space :return: The kernel function evaluated at a list of values r. """ fract = (r/lengthscale)**2 * 1/(2*alpha) k_rq = (1 + fract)**(-alpha) k_rq *= kernel_variance return k_rq def ornstein_uhlenbeck(lengthscale, kernel_variance, r): """ The Ornstein-Uhlenbeck kernel (special case of exponential kernel in 1 dimension) defined on pg. 85 of Rasmussen and Williams. :param lengthscale: The lengthscale :param kernel_variance: The kernel variance :param r: The absolute distance in input space :return: The kernel function evaluated at a list of values r. """ k_ou = np.exp(-r/lengthscale) k_ou *= kernel_variance return k_ou def squared_exponential(lengthscale, kernel_variance, r): """ The Squared exponential (RBF) kernel. :param lengthscale: The lengthscale :param kernel_variance: The kernel variance :param r: :return: The kernel function evaluated at a list of values r. """ scaled_squared_dist = (r/lengthscale)**2 k_sqe = np.exp(-0.5*scaled_squared_dist) k_sqe *= kernel_variance return k_sqe def matern12(lengthscale, kernel_variance, r): """ The Matern -1/2 kernel. :param lengthscale: The lengthscale :param kernel_variance: The kernel variance :param r: The absolute distance in input space :return: the kernel function evaluated at a list of values r. """ scaled_distance = (r/lengthscale) k = kernel_variance*np.exp(-scaled_distance) return k kernel = 'RQ' # One of ['Matern', 'RQ'] if __name__ == '__main__': r_vals =
np.arange(0, 10000, 10)
numpy.arange
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """unit tests for numpy array operations""" import functools import pytest import numpy as onp import mindspore.numpy as mnp from mindspore.nn import Cell class Cases(): def __init__(self): self.all_shapes = [ 0, 1, 2, (), (1,), (2,), (1, 2, 3), [], [1], [2], [1, 2, 3] ] self.onp_dtypes = [onp.int32, 'int32', int, onp.float32, 'float32', float, onp.uint32, 'uint32', onp.bool_, 'bool', bool] self.mnp_dtypes = [mnp.int32, 'int32', int, mnp.float32, 'float32', float, mnp.uint32, 'uint32', mnp.bool_, 'bool', bool] self.array_sets = [1, 1.1, True, [1, 0, True], [1, 1.0, 2], (1,), [(1, 2, 3), (4, 5, 6)], onp.random.random( # pylint: disable=no-member (100, 100)).astype(onp.float32), onp.random.random((100, 100)).astype(onp.bool)] self.arrs = [ rand_int(2), rand_int(2, 3), rand_int(2, 3, 4), rand_int(2, 3, 4, 5), ] # scalars expanded across the 0th dimension self.scalars = [ rand_int(), rand_int(1), rand_int(1, 1), rand_int(1, 1, 1), ] # arrays of the same size expanded across the 0th dimension self.expanded_arrs = [ rand_int(2, 3), rand_int(1, 2, 3), rand_int(1, 1, 2, 3), rand_int(1, 1, 1, 2, 3), ] # arrays with dimensions of size 1 self.nested_arrs = [ rand_int(1), rand_int(1, 2), rand_int(3, 1, 8), rand_int(1, 3, 9, 1), ] # arrays which can be broadcast self.broadcastables = [ rand_int(5), rand_int(6, 1), rand_int(7, 1, 5), rand_int(8, 1, 6, 1) ] # boolean arrays which can be broadcast self.bool_broadcastables = [ rand_bool(), rand_bool(1), rand_bool(5), rand_bool(6, 1), rand_bool(7, 1, 5), rand_bool(8, 1, 6, 1), ] self.mnp_prototypes = [ mnp.ones((2, 3, 4)), mnp.ones((0, 3, 0, 2, 5)), onp.ones((2, 7, 0)), onp.ones(()), [mnp.ones(3), (1, 2, 3), onp.ones(3), [4, 5, 6]], ([(1, 2), mnp.ones(2)], (onp.ones(2), [3, 4])), ] self.onp_prototypes = [ onp.ones((2, 3, 4)), onp.ones((0, 3, 0, 2, 5)), onp.ones((2, 7, 0)), onp.ones(()), [onp.ones(3), (1, 2, 3), onp.ones(3), [4, 5, 6]], ([(1, 2), onp.ones(2)], (onp.ones(2), [3, 4])), ] def match_array(actual, expected, error=0): if error > 0: onp.testing.assert_almost_equal(actual.tolist(), expected.tolist(), decimal=error) else: onp.testing.assert_equal(actual.tolist(), expected.tolist()) def check_all_results(onp_results, mnp_results, error=0): """Check all results from numpy and mindspore.numpy""" for i, _ in enumerate(onp_results): match_array(onp_results[i], mnp_results[i].asnumpy()) def run_non_kw_test(mnp_fn, onp_fn): """Run tests on functions with non keyword arguments""" test_case = Cases() for i in range(len(test_case.arrs)): arrs = test_case.arrs[:i] match_res(mnp_fn, onp_fn, *arrs) for i in range(len(test_case.scalars)): arrs = test_case.scalars[:i] match_res(mnp_fn, onp_fn, *arrs) for i in range(len(test_case.expanded_arrs)): arrs = test_case.expanded_arrs[:i] match_res(mnp_fn, onp_fn, *arrs) for i in range(len(test_case.nested_arrs)): arrs = test_case.nested_arrs[:i] match_res(mnp_fn, onp_fn, *arrs) def rand_int(*shape): """return an random integer array with parameter shape""" res = onp.random.randint(low=1, high=5, size=shape) if isinstance(res, onp.ndarray): return res.astype(onp.float32) return float(res) # return an random boolean array def rand_bool(*shape): return onp.random.rand(*shape) > 0.5 def match_res(mnp_fn, onp_fn, *arrs, **kwargs): """Checks results from applying mnp_fn and onp_fn on arrs respectively""" mnp_arrs = map(functools.partial(mnp.asarray, dtype='float32'), arrs) mnp_res = mnp_fn(*mnp_arrs, **kwargs) onp_res = onp_fn(*arrs, **kwargs) match_all_arrays(mnp_res, onp_res) def match_all_arrays(mnp_res, onp_res, error=0): if isinstance(mnp_res, (tuple, list)): for actual, expected in zip(mnp_res, onp_res): match_array(actual.asnumpy(), expected, error) else: match_array(mnp_res.asnumpy(), onp_res, error) def match_meta(actual, expected): # float64 and int64 are not supported, and the defualt type for # float and int are float32 and int32, respectively if expected.dtype == onp.float64: expected = expected.astype(onp.float32) elif expected.dtype == onp.int64: expected = expected.astype(onp.int32) assert actual.shape == expected.shape assert actual.dtype == expected.dtype # Test np.transpose and np.ndarray.transpose def mnp_transpose(input_tensor): a = mnp.transpose(input_tensor, (0, 2, 1)) b = mnp.transpose(input_tensor, [2, 1, 0]) c = mnp.transpose(input_tensor, (1, 0, 2)) d = mnp.transpose(input_tensor) return a, b, c, d def onp_transpose(input_array): a = onp.transpose(input_array, (0, 2, 1)) b = onp.transpose(input_array, [2, 1, 0]) c = onp.transpose(input_array, (1, 0, 2)) d = onp.transpose(input_array) return a, b, c, d @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_transpose(): onp_array = onp.random.random((3, 4, 5)).astype('float32') mnp_array = mnp.asarray(onp_array) o_transposed = onp_transpose(onp_array) m_transposed = mnp_transpose(mnp_array) check_all_results(o_transposed, m_transposed) # Test np.expand_dims def mnp_expand_dims(input_tensor): a = mnp.expand_dims(input_tensor, 0) b = mnp.expand_dims(input_tensor, -1) c = mnp.expand_dims(input_tensor, axis=2) d = mnp.expand_dims(input_tensor, axis=-2) return a, b, c, d def onp_expand_dims(input_array): a = onp.expand_dims(input_array, 0) b = onp.expand_dims(input_array, -1) c = onp.expand_dims(input_array, axis=2) d = onp.expand_dims(input_array, axis=-2) return a, b, c, d @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_expand_dims(): onp_array = onp.random.random((3, 4, 5)).astype('float32') mnp_array = mnp.asarray(onp_array) o_expanded = onp_expand_dims(onp_array) m_expanded = mnp_expand_dims(mnp_array) check_all_results(o_expanded, m_expanded) # Test np.squeeze def mnp_squeeze(input_tensor): a = mnp.squeeze(input_tensor) b = mnp.squeeze(input_tensor, 0) c = mnp.squeeze(input_tensor, axis=None) d = mnp.squeeze(input_tensor, axis=-3) e = mnp.squeeze(input_tensor, (2,)) f = mnp.squeeze(input_tensor, (0, 2)) return a, b, c, d, e, f def onp_squeeze(input_array): a = onp.squeeze(input_array) b = onp.squeeze(input_array, 0) c = onp.squeeze(input_array, axis=None) d = onp.squeeze(input_array, axis=-3) e = onp.squeeze(input_array, (2,)) f = onp.squeeze(input_array, (0, 2)) return a, b, c, d, e, f @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_squeeze(): onp_array = onp.random.random((1, 3, 1, 4, 2)).astype('float32') mnp_array = mnp.asarray(onp_array) o_squeezed = onp_squeeze(onp_array) m_squeezed = mnp_squeeze(mnp_array) check_all_results(o_squeezed, m_squeezed) onp_array = onp.random.random((1, 1, 1, 1, 1)).astype('float32') mnp_array = mnp.asarray(onp_array) o_squeezed = onp_squeeze(onp_array) m_squeezed = mnp_squeeze(mnp_array) check_all_results(o_squeezed, m_squeezed) # Test np.rollaxis def mnp_rollaxis(input_tensor): a = mnp.rollaxis(input_tensor, 0, 1) b = mnp.rollaxis(input_tensor, 0, 2) c = mnp.rollaxis(input_tensor, 2, 1) d = mnp.rollaxis(input_tensor, 2, 2) e = mnp.rollaxis(input_tensor, 0) f = mnp.rollaxis(input_tensor, 1) return a, b, c, d, e, f def onp_rollaxis(input_array): a = onp.rollaxis(input_array, 0, 1) b =
onp.rollaxis(input_array, 0, 2)
numpy.rollaxis
import os import sys import numpy as np MOVIE_LENS_PATH = os.path.join('Datasets', 'MovieLens', 'ml-1m', 'ratings.dat') TEST_INDICES_PATH = os.path.join('Datasets', '1m-indices.txt') TEST_PATH = os.path.join('Datasets', '1m-test.txt') TRAIN_PATH = os.path.join('Datasets', '1m-train.txt') def ReadMovieLens(path): data_set = [] mx_film = -1 f = open(path, 'r') for l in f: l = l.strip() # User ID u_st = l.index('::') u_idx = int(l[0:u_st]) # Movie ID m_st = l.index('::', u_st + 2) m_idx = int(l[u_st + 2 : m_st]) mx_film = max(mx_film, m_idx) # Rating r_st = l.index('::', m_st + 2) u_rate = int(l[m_st + 2 : r_st]) data_set.append((u_idx - 1, m_idx - 1, u_rate)) f.close() return data_set, mx_film if __name__ == '__main__': # Read dataset. ml_dataset, mx_film = ReadMovieLens(MOVIE_LENS_PATH) print('len(dataset) : ', len(ml_dataset)) print('dataset[0] :', ml_dataset[0]) print('dataset[-1] :', ml_dataset[-1]) print('max movie :', mx_film + 1) # Make rating matrix. num_users = ml_dataset[-1][0] + 1 num_movies = mx_film + 1 print(num_users, num_movies) mat = np.zeros((num_users, num_movies), dtype=int) for rec in ml_dataset: u_idx = rec[0] m_idx = rec[1] rate = rec[2] if mat[u_idx][m_idx] != 0: print('mat[u_idx:{}][m_idx:{}] = rate:{}'.format(u_idx, m_idx, rate)) mat[u_idx][m_idx] = rate # Count num of ratings and find positive ratings. rate_counts = np.count_nonzero(mat, 1) print('mat.shape : {}'.format(mat.shape)) print('rate_counts.shape : {}'.format(rate_counts.shape)) num_neg_users = 0 neg_users = [] for y in range(mat.shape[0]): rate_cnt = 0 num_gt_4_rates = 0 for x in range(mat.shape[1]): rate = mat[y][x] rate_cnt += 1 if rate != 0 else 0 num_gt_4_rates += 1 if rate > 3 else 0 if num_gt_4_rates < 10: num_neg_users += 1 neg_users.append(y) print('negative user #{} -> user:{} rate_cnt:{} num+4:{}'.format(num_neg_users, y, rate_cnt, num_gt_4_rates)) print('min_rate_cnt', min(rate_counts), 'max_rate_cnt', max(rate_counts)) print('num_neg_users', num_neg_users) # Calculate number of test users. num_rem_users = num_users - num_neg_users num_tests = 200 percent = int(float(num_tests) / num_rem_users * 100.0) print('{}% users for test : {} of {}'.format(percent, num_tests, num_rem_users)) # Select test users. test_users = [] while len(test_users) < num_tests: r = int(
np.random.uniform(0, num_users)
numpy.random.uniform
import matplotlib.pyplot as plt import numpy as np import os from sklearn.linear_model import LinearRegression from sklearn.decomposition import PCA n = 200 beta = np.array([1.5, 2.5]) p =
np.shape(beta)
numpy.shape
#!/usr/bin/python # -*- coding: utf-8 -*- ########################################################################################## # author: <NAME> # contact: <EMAIL> # date: 2021-05-10 # file: mpl_arrows_absScale_aspect_2.py # tested with python 3.7.6 in conjunction with mpl version 3.4.2 ########################################################################################## import os import platform import datetime import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.ticker import FuncFormatter mpl.ticker._mathdefault = lambda x: '\\mathdefault{%s}'%x today = datetime.datetime.now().strftime("%Y-%m-%d") BASEDIR = os.path.dirname(os.path.abspath(__file__)) OUTDIR = os.path.join(BASEDIR, 'out') os.makedirs(OUTDIR, exist_ok = True) def cleanFormatter(x, pos): ''' will format 0.0 as 0 and will format 1.0 as 1 ''' return '{:g}'.format(x) def getFigureProps(width, height, lFrac = 0.17, rFrac = 0.9, bFrac = 0.17, tFrac = 0.9): ''' True size scaling auxiliary function to setup mpl plots with a desired size. Specify widht and height in cm. lFrac = left fraction in [0, 1] rFrac = right fraction in [0, 1] bFrac = bottom fraction in [0, 1] tFrac = top fraction in [0, 1] returns: fWidth = figure width fHeight = figure height These figure width and height values can then be used to create a figure instance of the desired size, such that the actual plotting canvas has the specified target width and height, as provided by the input parameters of this function. ''' axesWidth = width / 2.54 # convert to inches axesHeight = height / 2.54 # convert to inches fWidth = axesWidth / (rFrac - lFrac) fHeight = axesHeight / (tFrac - bFrac) return fWidth, fHeight, lFrac, rFrac, bFrac, tFrac def Plot(X, outname, outdir, pColors, titlestr = None, grid = False, drawLegend = False, xFormat = None, yFormat = None, savePDF = True, savePNG = False, datestamp = True): mpl.rcParams['xtick.top'] = False mpl.rcParams['xtick.bottom'] = True mpl.rcParams['ytick.right'] = False mpl.rcParams['xtick.direction'] = 'out' mpl.rcParams['ytick.direction'] = 'out' mpl.rc('font', **{'size': 10}) mpl.rc('legend', **{'fontsize': 7.0}) mpl.rc('axes', linewidth = 0.5) # mpl.rc('font', **{'family' : 'sans-serif', 'sans-serif' : ['Myriad Pro']}) mpl.rc('font', **{'family' : 'sans-serif', 'sans-serif' : ['Helvetica']}) mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['text.usetex'] = False mpl.rcParams['mathtext.fontset'] = 'cm' mpl.rcParams['text.latex.preamble'] = \ r'\usepackage{cmbright}' + \ r'\usepackage{amsmath}' ###################################################################################### # set up figure fWidth, fHeight, lFrac, rFrac, bFrac, tFrac =\ getFigureProps(width = 3.0, height = 3.0, lFrac = 0.22, rFrac = 0.95, bFrac = 0.20, tFrac = 0.95) f, ax1 = plt.subplots(1) f.set_size_inches(fWidth, fHeight) f.subplots_adjust(left = lFrac, right = rFrac) f.subplots_adjust(bottom = bFrac, top = tFrac) # minimal layout ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ###################################################################################### labelfontsize = 6.0 for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(labelfontsize) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(labelfontsize) ax1.tick_params('both', length = 2.0, width = 0.5, which = 'major', pad = 3.0) ax1.tick_params('both', length = 1.5, width = 0.25, which = 'minor', pad = 3.0) ax1.tick_params(axis = 'x', which = 'major', pad = 1.5) ax1.tick_params(axis = 'y', which = 'major', pad = 1.5, zorder = 10) ###################################################################################### # labeling if titlestr: plt.title(titlestr) ax1.set_xlabel(r'x label', fontsize = 6.0) ax1.set_ylabel(r'y label', fontsize = 6.0) ax1.xaxis.labelpad = 4.0 ax1.yaxis.labelpad = 4.0 ###################################################################################### # plotting lineWidth = 0.5 ''' mpl.arrows example In this example the arrow position and in particular the arrow head size are specified by absolute scaling. ''' Lx = xFormat[1] - xFormat[0] Ly = yFormat[1] - yFormat[0] ratio = Lx / Ly ###################################################################################### # horizontal reference line ax1.plot([1.2, 1.6], [0.5, 0.5], color = pColors[0], alpha = 1.0, lw = lineWidth, zorder = 2, label = r'') ax1.plot([1.2, 1.2], [0.45, 0.75], linewidth = lineWidth, color = '#CCCCCC', zorder = 1) # horizontal arrows dx = 0.4 # x displacement of the arrow head hWidth = 0.05 hLength = 0.05 * ratio ax1.arrow(1.2, 0.6, dx, 0.0, lw = 0.5, color = 'k', head_width = hWidth, head_length = hLength, length_includes_head = True, clip_on = False, zorder = 3) ax1.arrow(1.2, 0.7, dx, 0.0, lw = 0.5, color = 'k', head_width = hWidth, head_length = hLength, length_includes_head = False, clip_on = False, zorder = 3) ###################################################################################### # vertical reference line ax1.plot([0.2, 0.2], [0.6, 0.8], color = pColors[0], alpha = 1.0, lw = lineWidth, zorder = 2, label = r'') ax1.plot([0.1, 0.7], [0.6, 0.6], linewidth = lineWidth, color = '#CCCCCC', zorder = 1) hWidth = 0.05 * ratio hLength = 0.05 # vertical arrows dy = 0.2 # y displacement of the arrow head ax1.arrow(0.4, 0.6, 0.0, dy, lw = 0.5, color = 'k', head_width = hWidth, head_length = hLength, length_includes_head = True, clip_on = False, zorder = 3) ax1.arrow(0.6, 0.6, 0.0, dy, lw = 0.5, color = 'k', head_width = hWidth, head_length = hLength, length_includes_head = False, clip_on = False, zorder = 3) ###################################################################################### # annotations ax1.annotate(r'horizontal arrows', xy = (0.6, 0.78), xycoords = 'axes fraction', fontsize = 4.0, horizontalalignment = 'left') ax1.annotate(r'vertical arrows', xy = (0.1, 0.90), xycoords = 'axes fraction', fontsize = 4.0, horizontalalignment = 'left') ###################################################################################### # legend if drawLegend: leg = ax1.legend(# bbox_to_anchor = [0.7, 0.8], # loc = 'upper left', handlelength = 1.5, scatterpoints = 1, markerscale = 1.0, ncol = 1) leg.draw_frame(False) plt.gca().add_artist(leg) ###################################################################################### # set plot range and scale if xFormat: xmin, xmax, xTicksMin, xTicksMax, dxMajor, dxMinor = xFormat ax1.set_xlim(xmin, xmax) major_x_ticks = np.arange(xTicksMin, xTicksMax, dxMajor) minor_x_ticks =
np.arange(xTicksMin, xTicksMax, dxMinor)
numpy.arange
# Source Generated with Decompyle++ # File: SPSO2011.cpython-34.pyc (Python 3.4) from copy import deepcopy from operator import attrgetter import numpy as np class Point: def __init__(self, fitness, position): self.fitness = fitness self.position = position class Particle: def __init__(self, fitness, position, velocity): self.current = Point(fitness, position) self.velocity = velocity self.previous_best = deepcopy(self.current) self.previous_best_neighbor = deepcopy(self.current) class PSO: def __init__(self, obj, n_points, dimension, **kwargs): self.obj = obj self.dimension = dimension self.n_points = n_points self.min_bounds = kwargs.get('min_bounds', np.array([0] * dimension)) self.max_bounds = kwargs.get('max_bounds', np.array([1] * dimension)) # Speed limit for SPSO2006 #self.max_velocity = np.abs(self.max_bounds - self.min_bounds) #self.min_velocity = -(self.max_velocity) # Parameters for update self.config = kwargs.get('config', 'SPSO2011') self.topology = self.random_topology(K=3) self.w = 1.0 / (2.0 * np.log(2.0)) self.c = 0.5 + np.log(2.0) # Parameters for termiantion self.iteration = 0 self.update_count = 0 self.update_order = np.random.permutation(self.n_points) self.should_terminate = False self.best_fitness = float('Inf') # Initialize swarm init_positions = kwargs.get('init_positions', None) init_fitnesses = kwargs.get('init_fitnesses', None) if init_positions is not None and init_fitnesses is not None: assert len(init_fitnesses) == n_points assert len(init_positions) == n_points assert len(init_positions[0]) == dimension self.swarm = [] for f, x in zip(init_fitnesses, init_positions): v = [ np.random.uniform(self.min_bounds[d] - x[d], self.max_bounds[d] - x[d]) for d in range(self.dimension) ] self.swarm.append( Particle( f, np.array(x), np.array(v) ) ) else: self.swarm = self.init_swarm() # Ensure exploitation state if particles are within hypersphere self.exploitation = np.zeros(self.n_points) def init_swarm(self): swarm = [] for i in range(self.n_points): x = [
np.random.uniform(self.min_bounds[d], self.max_bounds[d])
numpy.random.uniform