prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy import numpy as np from scipy.sparse import csr_matrix B = np.array([ [1, 1, 1, 1], [1, 1, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0], ]) N = np.array([ [2, 3, 4, 2], [2, 3, 4, 2], [2, 3, 3, 2], [2, 1, 3, 4] ]) W = np.array([ [4, 3, 2, 1], [3, 2, 1, 0], [2, 1, 0, 0], [1, 0, 0, 0], ]) def test_jaccard_scipy(): """ Test Jaccard: scipy.spatial.dist.jaccard """ u = np.array([2, 3, 4, 5]) v = np.array([2, 3, 4, 2]) d = _jaccard_coef_scipy(u, v, min_support=1) assert (d == 0.75) def test_jaccard_binary(): """ Test Jaccard: binary (bitwise) coef """ u = np.array([1, 1, 1, 1]) v = np.array([1, 1, 1, 0]) d = _jaccard_coef_binary(u, v, min_support=1) assert (d == 0.75) def test_jaccard_set(): """ Test Jaccard: set coef """ u = np.array([4, 3, 2, 1]) v = np.array([3, 2, 1, 0]) d = _jaccard_coef_set(u, v, min_support=1) assert (d == 0.6) def test_jaccard_weighted(): """ Test Jaccard: weighted coef """ u = np.array([4, 3, 2, 1]) v = np.array([3, 2, 1, 0]) d = _jaccard_coef_weighted_numpy(u, v, min_support=1) assert (d == 0.6) def test_pairwise_distance_numpy_scipy(): """ Test pairwise distance: using the Numpy (dense matrix) implemmentation for numer jaccard (scipy) coef """ D = pairwise_proximity(N, metric='jaccard') true = np.array([ [1., 1., 0.75, 0.25], [1., 1., 0.75, 0.25], [0.75, 0.75, 1., 0.5], [0.25, 0.25, 0.5, 1.]], dtype=float) assert np.isclose(D, true). all() def test_pairwise_distance_numpy_binary(): """ Test pairwise distance: using the Numpy (dense matrix) implementation for jaccard binary coef """ D = pairwise_proximity(B, metric='jaccard_binary', min_support=1, verbose=True) true = np.array([ [1., 0.75, 0.5, 0.25], [0.75, 1., 0.66666667, 0.33333333], [0.5, 0.66666667, 1., 0.5], [0.25, 0.33333333, 0.5, 1.]], dtype=float) assert np.isclose(D, true).all() def test_pairwise_distance_numpy_set(): """ Test pairwise distance: using the Numpy (dense matrix) implementation for jaccard set coef """ D = pairwise_proximity(W, metric='jaccard_set', min_support=1) true = np.array([ [1., 0.6, 0.4, 0.2], [0.6, 1., 0.75, 0.5], [0.4, 0.75, 1., 0.66666667], [0.2, 0.5, 0.66666667, 1.]], dtype=float) assert np.isclose(D, true).all() def test_pairwise_distance_numpy_weighted(): """ Test pairwise distance: using Numpy (dense matrix) using weighted jaccard """ D = pairwise_proximity(W, metric='weighted_jaccard', min_support=10) true = np.array([ [1., 0.6, 0.3, 0.1], [0.6, 1., 0., 0.], [0.3, 0., 1., 0.], [0.1, 0., 0., 1.]], dtype=float) assert np.isclose(D, true).all() def test_pairwise_distance_sparse_scipy(): """ Test pairwise distance: using the Scipy (sparse matrix) implemmentation for jaccard scipy coef """ N_sparse = csr_matrix(N) D = pairwise_proximity(N_sparse, metric='jaccard', min_support=1) true = np.array([ [1., 1., 0.75, 0.25], [1., 1., 0.75, 0.25], [0.75, 0.75, 1., 0.5], [0.25, 0.25, 0.5, 1.]], dtype=float) assert np.isclose(D.todense(), true). all() def test_pairwise_distance_sparse_binary(): """ Test pairwise distance: using the Scipy (sparse matrix) implementation for jaccard bitwise coef """ B_sparse = csr_matrix(B) D = pairwise_proximity(B_sparse, metric='jaccard_binary', min_support=1) true = np.array([ [1., 0.75, 0.5, 0.25], [0.75, 1., 0.66666667, 0.33333333], [0.5, 0.66666667, 1., 0.5], [0.25, 0.33333333, 0.5, 1.]], dtype=float) assert np.isclose(D.todense(), true).all() def test_pairwise_distance_sparse_set(): """ Test pairwise distance: using the Scipy (sparse matrix) implementation for jaccard set coef """ W_sparse = csr_matrix(W) D = pairwise_proximity(W_sparse, metric='jaccard_set', min_support=1) true = np.array([ [1., 0.75, 0.5, 0.25], [0.75, 1., 0.66666667, 0.33333333], [0.5, 0.66666667, 1., 0.5], [0.25, 0.33333333, 0.5, 1.]], dtype=float) assert np.isclose(D.todense(), true).all() def test_pairwise_distance_sparse_weighted(): """ Test pairwise distance: using the Scipy (sparse matrix) implementation for jaccard weighted coef """ W_sparse = csr_matrix(W) D = pairwise_proximity(W_sparse, metric='jaccard_weighted', min_support=1) true = np.array([ [1., 0.6, 0.3, 0.1], [0.6, 1., 0., 0.], [0.3, 0., 1., 0.], [0.1, 0., 0., 1.]], dtype=float) assert np.isclose(D.todense(), true).all() def test_pairwise_distance_dense_my_own_metric(): """ Test pairwise distance: using the numpy (dense matrix) implementation and my own metric function """ def my_coef(u, v): return 0.25 D = pairwise_proximity(W, metric=my_coef, verbose=True) true = np.array([ [1., .25, .25, .25], [.25, 1., .25, .25], [.25, .25, 1., .25], [.25, .25, .25, 1.]], dtype=float) assert
np.isclose(D, true)
numpy.isclose
# -*- coding: utf-8 -*- import numpy as np import pandas as pd def sigmoid(z): return 1 / (1 + np.exp(-z)) def forward_propagates(X, theta): a = [] z = [] a.append(X) # a[0].shape = (m, n) for i in range(len(theta)): a[i] = np.insert(a[i], 0, values=1, axis=1) # a[0].shape = (m, n+1 or hidden_units + 1) z.append(np.dot(a[i], theta[i].T)) # z.shape = (m, hidden_units or outputs) a.append(sigmoid(z[-1])) # a.shape = (m, hidden_units or outputs) return z, a def cost(params, input_size, hidden_size, num_labels, X, y, regularization): m = len(X) # reshape the parameter array into parameter matrices for each layer theta1 = np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))) theta2 = np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))) z, a = forward_propagates(X, [theta1, theta2]) # compute the cost first_term = (-y) * np.log(a[-1]) second_term = - (1 - y) * np.log(1 - a[-1]) J = np.sum(first_term + second_term) / m # add the regularization cost term J += regularization / (2 * m) * (np.sum(np.power(z[0], 2)) + np.sum(np.power(z[1], 2))) return J def sigmoid_gradient(z): return sigmoid(z) * (1 - sigmoid(z)) def backprop(params, input_size, hidden_size, num_labels, X, y, regularization): m = len(X) # reshape the parameter array into parameter matrices for each layer theta1 = np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))) theta2 = np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))) # initializations delta1 = np.zeros(theta1.shape) # (25, 401) delta2 = np.zeros(theta2.shape) # (10, 26) z, a = forward_propagates(X, [theta1, theta2]) # compute the cost first_term = (-y) * np.log(a[-1]) second_term = - (1 - y) * np.log(1 - a[-1]) J =
np.sum(first_term + second_term)
numpy.sum
""" Container objects for working with geometric information """ import numpy as np class Polygon: type = 'Polygon' shapeType = 5 # pyshp def __init__(self, exterior, interiors=None): """Container for housing and describing polygon geometries (e.g. to be read or written to shapefiles or other geographic data formats) Parameters ---------- exterior : sequence Sequence of coordinates describing the outer ring of the polygon. interiors : sequence of sequences Describes one or more holes within the polygon Attributes ---------- exterior : (x, y, z) coordinates of exterior interiors : tuple of (x, y, z) coordinates of each interior polygon patch : descartes.PolygonPatch representation bounds : (xmin, ymin, xmax, ymax) Tuple describing bounding box for polygon geojson : dict Returns a geojson representation of the feature pyshp_parts : list of lists Returns a list of all parts (each an individual polygon). Can be used as input for the shapefile.Writer.poly method (pyshp package) Methods ------- get_patch Returns a descartes PolygonPatch object representation of the polygon. Accepts keyword arguments to descartes.PolygonPatch. Requires the descartes package (pip install descartes). plot Plots the feature using descartes (via get_patch) and matplotlib.pyplot. Accepts keyword arguments to descartes.PolygonPatch. Requires the descartes package (pip install descartes). Notes ----- Multi-polygons not yet supported. z information is only stored if it was entered. """ self.exterior = tuple(map(tuple, exterior)) self.interiors = tuple() if interiors is None else (map(tuple, i) for i in interiors) def __eq__(self, other): if not isinstance(other, Polygon): return False if other.exterior != self.exterior: return False if other.interiors != self.interiors: return False return True @property def _exterior_x(self): return [x for x, y in self.exterior] @property def _exterior_y(self): return [y for x, y in self.exterior] @property def bounds(self): ymin = np.min(self._exterior_y) ymax = np.max(self._exterior_y) xmin = np.min(self._exterior_x) xmax = np.max(self._exterior_x) return xmin, ymin, xmax, ymax @property def geojson(self): return {'coordinates': tuple([self.exterior] + [i for i in self.interiors]), 'type': self.type} @property def pyshp_parts(self): return [list(self.exterior) + [list(i) for i in self.interiors]] @property def patch(self): return self.get_patch() def get_patch(self, **kwargs): try: from descartes import PolygonPatch except ImportError: print('This feature requires descartes.\nTry "pip install descartes"') return PolygonPatch(self.geojson, **kwargs) def plot(self, ax=None, **kwargs): """Plot the feature. Parameters ---------- ax : matplotlib.pyplot axes instance Accepts keyword arguments to descartes.PolygonPatch. Requires the descartes package (pip install descartes). """ try: import matplotlib.pyplot as plt except ImportError: print('This feature requires matplotlib.') if ax is None: fig, ax = plt.subplots() else: fig = ax.figure try: ax.add_patch(self.get_patch(**kwargs)) xmin, ymin, xmax, ymax = self.bounds ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) plt.show() except: print('could not plot polygon feature') class LineString: type = 'LineString' shapeType = 3 has_z = False def __init__(self, coordinates): """Container for housing and describing linestring geometries (e.g. to be read or written to shapefiles or other geographic data formats) Parameters ---------- coordinates : sequence Sequence of coordinates describing a line Attributes ---------- coords : list of (x, y, z) coordinates x : list of x coordinates y : list of y coordinates z : list of z coordinates bounds : (xmin, ymin, xmax, ymax) Tuple describing bounding box for linestring geojson : dict Returns a geojson representation of the feature pyshp_parts : list of lists Returns a list of all parts (each an individual linestring). Can be used as input for the shapefile.Writer.line method (pyshp package) Methods ------- plot Plots the feature using matplotlib.pyplot. Accepts keyword arguments to pyplot.plot. Notes ----- Multi-linestrings not yet supported. z information is only stored if it was entered. """ self.coords = list(map(tuple, coordinates)) if len(self.coords[0]) == 3: self.has_z = True def __eq__(self, other): if not isinstance(other, LineString): return False if other.x != self.x: return False if other.y != self.y: return False if other.z != self.z: return False return True @property def x(self): return[c[0] for c in self.coords] @property def y(self): return [c[1] for c in self.coords] @property def z(self): return 0 if not self.has_z else [c[2] for c in self.coords] @property def bounds(self): ymin =
np.min(self.y)
numpy.min
""" This module contains functions for: - sorting clusters by size - sorting clusters by clumpiness and declumping - other cluster analyses """ import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.lines import Line2D from skimage import filters from sklearn.neighbors import KDTree from sklearn.cluster import KMeans from instapipeline import util # list of declumping algorithms handled declumping_algs = ['KMeans'] """ Functions for sorting clusters by size """ def get_cluster_size_threshold(clusters): """ Calculate a cluster size threshold for all clusters using K-means in 1D. Assumes a bimodal distribution. Parameters ---------- clusters : pandas dataframe returned by sa.get_clusters() (centroid_x | centroid_y | members) centroid_x = int x coord of cluster centroid centroid_y = int y coord of cluster centroid members = list of annotations belonging to the cluster each annotation is a numpy ndarray of properties: [int x coord, int y coord, int time spent, str worker ID] Returns ------- float cluster size threshold """ total_list = [] for index, row in clusters.iterrows(): members = row['members'] worker_list = [member[3] for member in members] num_members = len(np.unique(worker_list)) total_list.append(num_members) total_array = np.asarray(total_list) km = KMeans(n_clusters=2).fit(total_array.reshape(-1, 1)) cluster_centers = km.cluster_centers_ return (cluster_centers[0][0]+cluster_centers[1][0])/2 def plot_cluster_size_threshold(clusters, threshold): """ Visualize cluster sizes in a histogram with threshold demarcated. Parameters ---------- clusters : pandas dataframe returned by sa.get_clusters() (centroid_x | centroid_y | members) centroid_x = int x coord of cluster centroid centroid_y = int y coord of cluster centroid members = list of annotations belonging to the cluster each annotation is a numpy ndarray of properties: [int x coord, int y coord, int time spent, str worker ID] threshold : float threshold demarcation shown on histogram Returns ------- figure : matplotlib figure object axes : matplotlib axes object """ fig = plt.figure() hist_list = [] for index, row in clusters.iterrows(): members = row['members'] worker_list = [member[3] for member in members] hist_list.append(len(np.unique(worker_list))) width = max(hist_list) plt.hist(hist_list, bins=
np.arange(0, width+4, 2)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np # ----------------------------------------------------------------------------- from guidedprojectionbase import GuidedProjectionBase # ----------------------------------------------------------------------------- # try: from constraints_basic import columnnew,con_planarity_constraints,\ con_isometry from constraints_net import con_unit_edge,con_orthogonal_midline,\ con_isogonal,con_isogonal_diagnet,\ con_anet,con_anet_diagnet,con_gnet,con_gnet_diagnet,\ con_anet_geodesic,con_polyline_ruling,con_osculating_tangents,\ con_planar_1familyof_polylines,con_nonsquare_quadface,\ con_singular_Anet_diag_geodesic,con_gonet, \ con_diag_1_asymptotic_or_geodesic,\ con_ctrlnet_symmetric_1_diagpoly, con_AGnet from singularMesh import quadmesh_with_1singularity from constraints_glide import con_alignment,con_alignments,con_fix_vertices # ----------------------------------------------------------------------------- __author__ = '<NAME>' # ----------------------------------------------------------------------------- class GuidedProjection_AGNet(GuidedProjectionBase): _N1 = 0 _N5 = 0 _N6 = 0 _Nanet = 0 _Ndgeo = 0 _Ndgeoliou = 0 _Ndgeopc = 0 _Nruling = 0 _Noscut = 0 _Nnonsym = 0 _Npp = 0 _Ncd = _Ncds = 0 _Nag = 0 def __init__(self): GuidedProjectionBase.__init__(self) weights = { ## Commen setting: 'geometric' : 0, ##NOTE SHOULD BE 1 ONCE planarity=1 'planarity' : 0, ## shared used: 'unit_edge' : 0, 'unit_diag_edge' : 0, 'orthogonal' :0, 'isogonal' : 0, 'isogonal_diagnet' :0, 'Anet' : 0, 'Anet_diagnet' : 0, 'Gnet' : 0, 'Gnet_diagnet' : 0, 'GOnet' : 0, 'diag_1_asymptotic': 0, 'diag_1_geodesic': 0, 'ctrlnet_symmetric_1diagpoly': 0, 'nonsymmetric' :0, 'isometry' : 0, 'z0' : 0, 'boundary_glide' :0, #Hui in gpbase.py doesn't work, replace here. 'i_boundary_glide' :0, 'fix_point' :0, ## only for AGNet: 'GGGnet': 0, 'GGG_diagnet': 0, #TODO 'AGnet': 0, 'AAGnet': 0, 'GAAnet': 0, 'GGAnet': 0, 'AGGnet': 0, 'AAGGnet': 0, 'GGAAnet': 0, 'planar_geodesic' : 0, 'agnet_liouville': 0, 'ruling': 0,# opt for ruling quadratic mesh, straight lines-mesh 'oscu_tangent' :0, 'AAG_singular' :0, 'planar_ply1' : 0, 'planar_ply2' : 0, } self.add_weights(weights) self.switch_diagmeth = False self.is_initial = True self.if_angle = False self._angle = 90 self._glide_reference_polyline = None self.i_glide_bdry_crv, self.i_glide_bdry_ver = [],[] self.ind_fixed_point, self.fixed_value = None,None self.set_another_polyline = 0 self._ver_poly_strip1,self._ver_poly_strip2 = None,None self.nonsym_eps = 0.01 self.ind_nonsym_v124,self.ind_nonsym_l12 = None,None self.is_singular = False self._singular_polylist = None self._ind_rr_vertex = None self.weight_checker = 1 ### isogonal AGnet: self.is_AG_or_GA = True self.opt_AG_ortho = False self.opt_AG_const_rii = False self.opt_AG_const_r0 = False #-------------------------------------------------------------------------- # #-------------------------------------------------------------------------- @property def mesh(self): return self._mesh @mesh.setter def mesh(self, mesh): self._mesh = mesh self.initialization() @property def max_weight(self): return max(self.get_weight('boundary_glide'), self.get_weight('i_boundary_glide'), self.get_weight('geometric'), self.get_weight('planarity'), self.get_weight('unit_edge'), self.get_weight('unit_diag_edge'), self.get_weight('orthogonal'), self.get_weight('isometry'), self.get_weight('oscu_tangent'), self.get_weight('Anet'), self.get_weight('Anet_diagnet'), self.get_weight('diag_1_asymptotic'), #n defined from only ctrl-net self.get_weight('diag_1_geodesic'), self.get_weight('ctrlnet_symmetric_1diagpoly'), self.get_weigth('nonsymmetric'), self.get_weight('AAG_singular'), self.get_weight('planar_plys'), 1) @property def angle(self): return self._angle @angle.setter def angle(self,angle): if angle != self._angle: self.mesh.angle=angle self._angle = angle @property def glide_reference_polyline(self): if self._glide_reference_polyline is None: polylines = self.mesh.boundary_curves(corner_split=False)[0] N = 5 for polyline in polylines: polyline.refine(N) self._glide_reference_polyline = polyline return self._glide_reference_polyline # @glide_reference_polyline.setter##NOTE: used by reference-mesh case # def glide_reference_polyline(self,polyline): # self._glide_reference_polyline = polyline @property def ver_poly_strip1(self): if self._ver_poly_strip1 is None: if self.get_weight('planar_ply1') or self.opt_AG_const_rii: self.index_of_mesh_polylines() else: self.index_of_strip_along_polyline() return self._ver_poly_strip1 @property def ver_poly_strip2(self): if self._ver_poly_strip2 is None: if self.get_weight('planar_ply2'): self.index_of_mesh_polylines() return self._ver_poly_strip2 @property def singular_polylist(self): if self._singular_polylist is None: self.get_singularmesh_diagpoly() return self._singular_polylist @property def ind_rr_vertex(self): if self._ind_rr_vertex is None: self.get_singularmesh_diagpoly() return self._ind_rr_vertex #-------------------------------------------------------------------------- # Initialization #-------------------------------------------------------------------------- def set_weights(self): #------------------------------------ if self.get_weight('isogonal'): self.set_weight('unit_edge', 1*self.get_weight('isogonal')) elif self.get_weight('isogonal_diagnet'): self.set_weight('unit_diag_edge', 1*self.get_weight('isogonal_diagnet')) if self.get_weight('Gnet') or self.get_weight('GOnet'): self.set_weight('unit_edge', 1) elif self.get_weight('Gnet_diagnet'): self.set_weight('unit_diag_edge', 1) if self.get_weight('GGGnet'): self.set_weight('Gnet', 1) self.set_weight('diag_1_geodesic',1) if self.get_weight('AAGnet'): self.set_weight('Anet', 1) elif self.get_weight('GAAnet'): self.set_weight('Anet_diagnet', 1) elif self.get_weight('GGAnet'): self.set_weight('Gnet', 1) elif self.get_weight('AGGnet'): self.set_weight('Gnet_diagnet', 1) elif self.get_weight('AAGGnet'): self.set_weight('Anet', 1) self.set_weight('Gnet_diagnet', 1) elif self.get_weight('GGAAnet'): self.set_weight('Gnet', 1) self.set_weight('Anet_diagnet', 1) if self.get_weight('AGnet'): self.set_weight('oscu_tangent', self.get_weight('AGnet')) if self.get_weight('AAG_singular'): self.set_weight('Anet', 1*self.get_weight('AAG_singular')) if self.get_weight('diag_1_asymptotic') or self.get_weight('diag_1_geodesic'): self.set_weight('unit_edge',1) if self.get_weight('ctrlnet_symmetric_1diagpoly'): pass #-------------------------------------- def set_dimensions(self): # Huinote: be used in guidedprojectionbase V = self.mesh.V F = self.mesh.F num_regular = self.mesh.num_regular N = 3*V N1 = N5 = N6 = N Nanet = N Ndgeo = Ndgeoliou = Ndgeopc = Nruling = Noscut = N Nnonsym = N Npp = N Ncd = Ncds = N Nag = N #--------------------------------------------- if self.get_weight('planarity'): N += 3*F N1 = N if self.get_weight('unit_edge'): #Gnet "le1,le2,le3,le4,ue1,ue2,ue3,ue4 " if self.get_weight('isogonal'): N += 16*num_regular else: "for Anet" N += 16*len(self.mesh.ind_rr_star_v4f4) N5 = N elif self.get_weight('unit_diag_edge'): #Gnet_diagnet "le1,le2,le3,le4,ue1,ue2,ue3,ue4 " N += 16*len(self.mesh.ind_rr_star_v4f4) N5 = N if self.get_weight('isogonal'): "lt1,lt2, ut1,ut2, cos0" N += 8*num_regular+1 N6 = N elif self.get_weight('isogonal_diagnet'): "lt1,lt2, ut1,ut2, cos0" N += 8*len(self.mesh.ind_rr_star_v4f4)+1 N6 = N if self.get_weight('Anet') or self.get_weight('Anet_diagnet'): N += 3*len(self.mesh.ind_rr_star_v4f4)#3*num_regular Nanet = N if self.get_weight('AAGnet') or self.get_weight('GAAnet'): N += 3*len(self.mesh.ind_rr_star_v4f4) Ndgeo = N elif self.get_weight('GGAnet') or self.get_weight('AGGnet'): N += 9*len(self.mesh.ind_rr_star_v4f4) Ndgeo = N elif self.get_weight('AAGGnet') or self.get_weight('GGAAnet'): N += 6*len(self.mesh.ind_rr_star_v4f4) Ndgeo = N if self.get_weight('oscu_tangent'): "X +=[ll1,ll2,ll3,ll4,lu1,lu2,u1,u2]" N += 12*len(self.mesh.ind_rr_star_v4f4) Noscut = N if self.get_weight('AGnet'): "osculating tangents; X += [surfN; ogN]; if const.ri, X+=[Ri]" N += 6*len(self.mesh.ind_rr_star_v4f4) if self.opt_AG_const_rii: "const rii for each geodesic polylines, default v2-v-v4" N += len(self.ver_poly_strip1)#TODO elif self.opt_AG_const_r0: "unique r" N += 1 Nag = N if self.get_weight('agnet_liouville'): "X +=[lu1,tu1; lla,llc,g1, lg1,tg1, c]" N += 13*len(self.mesh.ind_rr_star_v4f4) +1 Ndgeoliou = N if self.get_weight('planar_geodesic'): N += 3*len(self.ver_poly_strip1[0]) Ndgeopc = N if self.get_weight('ruling'): N += 3*len(self.mesh.get_both_isopolyline(self.switch_diagmeth)) Nruling = N if self.get_weight('nonsymmetric'): "X += [E,s]" N += self.mesh.E + len(self.ind_nonsym_v124[0]) ##self.mesh.num_rrf ##len=self.rr_quadface Nnonsym = N if self.get_weight('AAG_singular'): "X += [on]" N += 3*len(self.singular_polylist[1]) Ndgeo = N ### PPQ-project: if self.get_weight('planar_ply1'): N += 3*len(self.ver_poly_strip1) ## only for \obj_cheng\every_5_PPQ.obj' ##matrix = self.ver_poly_strip1 #matrix = self.mesh.rot_patch_matrix[:,::5].T #N += 3*len(matrix) Nppq = N if self.get_weight('planar_ply2'): N += 3*len(self.ver_poly_strip2) Nppo = N ### CG / CA project: if self.get_weight('diag_1_asymptotic') or self.get_weight('diag_1_geodesic'): if self.get_weight('diag_1_asymptotic'): "[ln,v_N]" N += 4*len(self.mesh.ind_rr_star_v4f4) elif self.get_weight('diag_1_geodesic'): if self.is_singular: "[ln,v_N;la[ind],lc[ind],ea[ind],ec[ind]]" N += (1+3)*len(self.mesh.ind_rr_star_v4f4)+8*len(self.ind_rr_vertex) else: "[ln,v_N;la,lc,ea,ec]" N += (1+3+3+3+1+1)*len(self.mesh.ind_rr_star_v4f4) Ncd = N #ctrl-diag net if self.get_weight('ctrlnet_symmetric_1diagpoly'): N += (1+1+3+3+1+3)*len(self.mesh.ind_rr_star_v4f4) #[e_ac,l_ac] Ncds = N #--------------------------------------------- if N1 != self._N1: self.reinitialize = True if N5 != self._N5 or N6 != self._N6: self.reinitialize = True if Nanet != self._Nanet: self.reinitialize = True if Ndgeo != self._Ndgeo: self.reinitialize = True if Nag != self._Nag: self.reinitialize = True if Ndgeoliou != self._Ndgeoliou: self.reinitialize = True if Ndgeopc != self._Ndgeopc: self.reinitialize = True if Nruling != self._Nruling: self.reinitialize = True if Noscut != self._Noscut: self.reinitialize = True if Nnonsym != self._Nnonsym: self.reinitialize = True if Npp != self._Npp: self.reinitialize = True if Ncd != self._Ncd: self.reinitialize = True if Ncds != self._Ncds: self.reinitialize = True #---------------------------------------------- self._N = N self._N1 = N1 self._N5 = N5 self._N6 = N6 self._Nanet = Nanet self._Ndgeo = Ndgeo self._Ndgeoliou = Ndgeoliou self._Ndgeopc = Ndgeopc self._Nruling = Nruling self._Noscut = Noscut self._Nnonsym = Nnonsym self._Npp = Npp self._Ncd = Ncd self._Ncds = Ncds self._Nag = Nag self.build_added_weight() # Hui add def initialize_unknowns_vector(self): X = self.mesh.vertices.flatten('F') if self.get_weight('planarity'): normals = self.mesh.face_normals() normals = normals.flatten('F') X = np.hstack((X, normals)) if self.get_weight('unit_edge'): if True: "self.get_weight('Gnet')" rr=True l1,l2,l3,l4,E1,E2,E3,E4 = self.mesh.get_v4_unit_edge(rregular=rr) X = np.r_[X,l1,l2,l3,l4] X = np.r_[X,E1.flatten('F'),E2.flatten('F'),E3.flatten('F'),E4.flatten('F')] elif self.get_weight('unit_diag_edge'): l1,l2,l3,l4,E1,E2,E3,E4 = self.mesh.get_v4_diag_unit_edge() X = np.r_[X,l1,l2,l3,l4] X = np.r_[X,E1.flatten('F'),E2.flatten('F'),E3.flatten('F'),E4.flatten('F')] if self.get_weight('isogonal'): lt1,lt2,ut1,ut2,_,_ = self.mesh.get_v4_unit_tangents() cos0 = np.mean(np.einsum('ij,ij->i', ut1, ut2)) X = np.r_[X,lt1,lt2,ut1.flatten('F'),ut2.flatten('F'),cos0] elif self.get_weight('isogonal_diagnet'): lt1,lt2,ut1,ut2,_,_ = self.mesh.get_v4_diag_unit_tangents() cos0 = np.mean(np.einsum('ij,ij->i', ut1, ut2)) X = np.r_[X,lt1,lt2,ut1.flatten('F'),ut2.flatten('F'),cos0] if self.get_weight('Anet'): if True: "only r-regular vertex" v = self.mesh.rr_star[self.mesh.ind_rr_star_v4f4][:,0] else: v = self.mesh.ver_regular V4N = self.mesh.vertex_normals()[v] X = np.r_[X,V4N.flatten('F')] elif self.get_weight('Anet_diagnet'): v = self.mesh.rr_star_corner[0] V4N = self.mesh.vertex_normals()[v] X = np.r_[X,V4N.flatten('F')] if self.get_weight('AAGnet'): on = self.get_agweb_initial(diagnet=False, another_poly_direction=self.set_another_polyline, AAG=True) X = np.r_[X,on] elif self.get_weight('GAAnet'): on = self.get_agweb_initial(diagnet=True, another_poly_direction=self.set_another_polyline, AAG=True) X = np.r_[X,on] elif self.get_weight('GGAnet'): vNoN1oN2 = self.get_agweb_initial(diagnet=False, another_poly_direction=self.set_another_polyline, GGA=True) X = np.r_[X,vNoN1oN2] elif self.get_weight('AGGnet'): vNoN1oN2 = self.get_agweb_initial(diagnet=True, another_poly_direction=self.set_another_polyline, GGA=True) X = np.r_[X,vNoN1oN2] elif self.get_weight('AAGGnet'): oN1oN2 = self.get_agweb_initial(diagnet=False, another_poly_direction=self.set_another_polyline, AAGG=True) X = np.r_[X,oN1oN2] elif self.get_weight('GGAAnet'): oN1oN2 = self.get_agweb_initial(diagnet=True, another_poly_direction=self.set_another_polyline, AAGG=True) X = np.r_[X,oN1oN2] if self.get_weight('oscu_tangent'): "X +=[ll1,ll2,ll3,ll4,lu1,lu2,u1,u2]" if self.get_weight('GAAnet') or self.get_weight('AGGnet') or self.get_weight('GGAAnet'): diag=True else: diag=False l,t,lt1,lt2 = self.mesh.get_net_osculating_tangents(diagnet=diag) [ll1,ll2,ll3,ll4],[lt1,t1],[lt2,t2] = l,lt1,lt2 X = np.r_[X,ll1,ll2,ll3,ll4] X = np.r_[X,lt1,lt2,t1.flatten('F'),t2.flatten('F')] if self.get_weight('AGnet'): "osculating tangent" v,v1,v2,v3,v4 = self.mesh.rr_star[self.mesh.ind_rr_star_v4f4].T V = self.mesh.vertices _,_,lt1,lt2 = self.mesh.get_net_osculating_tangents() srfN = np.cross(lt1[1],lt2[1]) srfN = srfN / np.linalg.norm(srfN,axis=1)[:,None] if not self.is_AG_or_GA: v2,v4 = v1,v3 biN = np.cross(V[v2]-V[v], V[v4]-V[v]) ogN = biN / np.linalg.norm(biN,axis=1)[:,None] X = np.r_[X,srfN.flatten('F'),ogN.flatten('F')] if self.opt_AG_const_rii: "const rii for each geodesic polylines, default v2-v-v4" pass #TODO elif self.opt_AG_const_r0: "unique r" from frenet_frame import FrenetFrame allr = FrenetFrame(V[v],V[v2],V[v4]).radius X = np.r_[X,np.mean(allr)] if self.get_weight('agnet_liouville'): # no need now "X +=[lu1,tu1; lla,llc,g1, lg1,tg1, c]" lulg = self.get_agweb_liouville(diagnet=True) X = np.r_[X,lulg] if self.get_weight('planar_geodesic'): sn = self.get_poly_strip_normal() X = np.r_[X,sn.flatten('F')] if self.get_weight('ruling'): # no need now sn = self.get_poly_strip_ruling_tangent() X = np.r_[X,sn.flatten('F')] if self.get_weight('nonsymmetric'): E, s = self.get_nonsymmetric_edge_ratio(diagnet=False) X = np.r_[X, E, s] if self.get_weight('AAG_singular'): "X += [on]" on = self.get_initial_singular_diagply_normal(is_init=True) X = np.r_[X,on.flatten('F')] if self.get_weight('planar_ply1'): sn = self.get_poly_strip_normal(pl1=True) X = np.r_[X,sn.flatten('F')] if self.get_weight('planar_ply2'): sn = self.get_poly_strip_normal(pl2=True) X = np.r_[X,sn.flatten('F')] ### CG / CA project: if self.get_weight('diag_1_asymptotic') or self.get_weight('diag_1_geodesic'): "X += [ln,uN;la,lc,ea,ec]" v,v1,v2,v3,v4 = self.mesh.rr_star[self.mesh.ind_rr_star_v4f4].T V = self.mesh.vertices v4N = np.cross(V[v3]-V[v1], V[v4]-V[v2]) ln = np.linalg.norm(v4N,axis=1) un = v4N / ln[:,None] if self.get_weight('diag_1_asymptotic'): "X += [ln,un]" X = np.r_[X,ln,un.flatten('F')] elif self.get_weight('diag_1_geodesic'): "X += [ln,un; la,lc,ea,ec]" if self.is_singular: "new, different from below" vl,vc,vr = self.singular_polylist la = np.linalg.norm(V[vl]-V[vc],axis=1) lc = np.linalg.norm(V[vr]-V[vc],axis=1) ea = (V[vl]-V[vc]) / la[:,None] ec = (V[vr]-V[vc]) / lc[:,None] X = np.r_[X,ln,un.flatten('F'),la,lc,ea.flatten('F'),ec.flatten('F')] else: "no singular case" l1,l2,l3,l4,E1,E2,E3,E4 = self.mesh.get_v4_diag_unit_edge() if self.set_another_polyline: "switch to another diagonal polyline" ea,ec,la,lc = E2,E4,l2,l4 else: ea,ec,la,lc = E1,E3,l1,l3 X = np.r_[X,ln,un.flatten('F'),la,lc,ea.flatten('F'),ec.flatten('F')] if self.get_weight('ctrlnet_symmetric_1diagpoly'): "X += [lt1,lt2,ut1,ut2; lac,ud1]" lt1,lt2,ut1,ut2,_,_ = self.mesh.get_v4_unit_tangents() ld1,ld2,ud1,ud2,_,_ = self.mesh.get_v4_diag_unit_tangents() if self.set_another_polyline: "switch to another diagonal polyline" eac,lac = ud2,ld2 else: eac,lac = ud1,ld1 X = np.r_[X,lt1,lt2,ut1.flatten('F'),ut2.flatten('F')] X = np.r_[X,lac,eac.flatten('F')] self._X = X self._X0 = np.copy(X) self.build_added_weight() # Hui add #-------------------------------------------------------------------------- # Errors strings #-------------------------------------------------------------------------- def make_errors(self): self.planarity_error() self.isogonal_error() self.isogonal_diagnet_error() self.anet_error() self.gnet_error() self.gonet_error() #self.oscu_tangent_error() # good enough: mean=meax=90 #self.liouville_error() def planarity_error(self): if self.get_weight('planarity') == 0: return None P = self.mesh.face_planarity() Emean = np.mean(P) Emax = np.max(P) self.add_error('planarity', Emean, Emax, self.get_weight('planarity')) def isogonal_error(self): if self.get_weight('isogonal') == 0: return None cos,cos0 = self.unit_tangent_vectors() err = np.abs(cos-cos0) # no divided by cos emean = np.mean(err) emax = np.max(err) self.add_error('isogonal', emean, emax, self.get_weight('isogonal')) def isogonal_diagnet_error(self): if self.get_weight('isogonal_diagnet') == 0: return None cos,cos0 = self.unit_tangent_vectors_diagnet() err = np.abs(cos-cos0) # no divided by cos emean = np.mean(err) emax = np.max(err) self.add_error('isogonal_diagnet', emean, emax, self.get_weight('isogonal_diagnet')) def isometry_error(self): # Hui "compare all edge_lengths" if self.get_weight('isometry') == 0: return None L = self.edge_lengths_isometry() L0 = self.edge_lengths_isometry(initialized=True) norm = np.mean(L) Err = np.abs(L-L0) / norm Emean = np.mean(Err) Emax = np.max(Err) self.add_error('isometry', Emean, Emax, self.get_weight('isometry')) def anet_error(self): if self.get_weight('Anet') == 0 and self.get_weight('Anet_diagnet')==0: return None if self.get_weight('Anet'): name = 'Anet' if True: star = self.mesh.rr_star v,v1,v2,v3,v4 = star[self.mesh.ind_rr_star_v4f4].T else: v,v1,v2,v3,v4 = self.mesh.ver_regular_star.T elif self.get_weight('Anet_diagnet'): name = 'Anet_diagnet' v,v1,v2,v3,v4 = self.mesh.rr_star_corner if self.is_initial: Nv = self.mesh.vertex_normals()[v] else: num = len(v) c_n = self._Nanet-3*num+np.arange(3*num) Nv = self.X[c_n].reshape(-1,3,order='F') V = self.mesh.vertices err1 = np.abs(np.einsum('ij,ij->i',Nv,V[v1]-V[v])) err2 = np.abs(np.einsum('ij,ij->i',Nv,V[v2]-V[v])) err3 = np.abs(np.einsum('ij,ij->i',Nv,V[v3]-V[v])) err4 = np.abs(np.einsum('ij,ij->i',Nv,V[v4]-V[v])) Err = err1+err2+err3+err4 Emean = np.mean(Err) Emax = np.max(Err) self.add_error(name, Emean, Emax, self.get_weight(name)) def gnet_error(self): if self.get_weight('Gnet') == 0 and self.get_weight('Gnet_diagnet')==0: return None if self.get_weight('Gnet'): name = 'Gnet' if True: star = self.mesh.rr_star v,v1,v2,v3,v4 = star[self.mesh.ind_rr_star_v4f4].T else: v,v1,v2,v3,v4 = self.mesh.ver_regular_star.T elif self.get_weight('Gnet_diagnet'): name = 'Gnet_diagnet' v,v1,v2,v3,v4 = self.mesh.rr_star_corner V = self.mesh.vertices E1 = (V[v1]-V[v]) / np.linalg.norm(V[v1]-V[v],axis=1)[:,None] E2 = (V[v2]-V[v]) / np.linalg.norm(V[v2]-V[v],axis=1)[:,None] E3 = (V[v3]-V[v]) / np.linalg.norm(V[v3]-V[v],axis=1)[:,None] E4 = (V[v4]-V[v]) / np.linalg.norm(V[v4]-V[v],axis=1)[:,None] err1 = np.abs(np.einsum('ij,ij->i',E1,E2)-np.einsum('ij,ij->i',E3,E4)) err2 = np.abs(np.einsum('ij,ij->i',E2,E3)-np.einsum('ij,ij->i',E4,E1)) Err = err1+err2 Emean = np.mean(Err) Emax = np.max(Err) self.add_error(name, Emean, Emax, self.get_weight(name)) def gonet_error(self): if self.get_weight('GOnet') == 0: return None name = 'GOnet' if True: star = self.mesh.rr_star v,v1,v2,v3,v4 = star[self.mesh.ind_rr_star_v4f4].T else: v,v1,v2,v3,v4 = self.mesh.ver_regular_star.T V = self.mesh.vertices E1 = (V[v1]-V[v]) / np.linalg.norm(V[v1]-V[v],axis=1)[:,None] E2 = (V[v2]-V[v]) / np.linalg.norm(V[v2]-V[v],axis=1)[:,None] E3 = (V[v3]-V[v]) / np.linalg.norm(V[v3]-V[v],axis=1)[:,None] E4 = (V[v4]-V[v]) / np.linalg.norm(V[v4]-V[v],axis=1)[:,None] if self.is_AG_or_GA: err1 = np.abs(np.einsum('ij,ij->i',E1,E2)-np.einsum('ij,ij->i',E2,E3)) err2 = np.abs(np.einsum('ij,ij->i',E3,E4)-np.einsum('ij,ij->i',E4,E1)) else: err1 = np.abs(np.einsum('ij,ij->i',E1,E2)-np.einsum('ij,ij->i',E1,E4)) err2 = np.abs(np.einsum('ij,ij->i',E2,E3)-np.einsum('ij,ij->i',E3,E4)) Err = err1+err2 Emean = np.mean(Err) Emax = np.max(Err) self.add_error(name, Emean, Emax, self.get_weight(name)) def oscu_tangent_error(self): if self.get_weight('oscu_tangent') == 0: return None if self.get_weight('GAAnet') or self.get_weight('AGGnet') or self.get_weight('GGAAnet'): diag=True else: diag=False angle = self.mesh.get_net_osculating_tangents(diagnet=diag,printerr=True) emean = '%.2f' % np.mean(angle) emax = '%.2f' % np.max(angle) print('ortho:',emean,emax) #self.add_error('orthogonal', emean, emax, self.get_weight('oscu_tangent')) def liouville_error(self): if self.get_weight('agnet_liouville') == 0: return None cos,cos0 = self.agnet_liouville_const_angle() err = np.abs(cos-cos0) # no divided by cos emean = np.mean(err) emax = np.max(err) self.add_error('Liouville', emean, emax, self.get_weight('agnet_liouville')) def planarity_error_string(self): return self.error_string('planarity') def isogonal_error_string(self): return self.error_string('isogonal') def isogonal_diagnet_error_string(self): return self.error_string('isogonal_diagnet') def isometry_error_string(self): return self.error_string('isometry') def anet_error_string(self): return self.error_string('Anet') def liouville_error_string(self): return self.error_string('agnet_liouville') #-------------------------------------------------------------------------- # Getting (initilization + Plotting): #-------------------------------------------------------------------------- def unit_tangent_vectors(self, initialized=False): if self.get_weight('isogonal') == 0: return None if initialized: X = self._X0 else: X = self.X N6 = self._N6 num = self.mesh.num_regular ut1 = X[N6-6*num-1:N6-3*num-1].reshape(-1,3,order='F') ut2 = X[N6-3*num-1:N6-1].reshape(-1,3,order='F') cos = np.einsum('ij,ij->i',ut1,ut2) cos0 = X[N6-1] return cos,cos0 def unit_tangent_vectors_diagnet(self, initialized=False): if self.get_weight('isogonal_diagnet') == 0: return None if initialized: X = self._X0 else: X = self.X N6 = self._N6 num = len(self.mesh.ind_rr_star_v4f4) ut1 = X[N6-6*num-1:N6-3*num-1].reshape(-1,3,order='F') ut2 = X[N6-3*num-1:N6-1].reshape(-1,3,order='F') cos = np.einsum('ij,ij->i',ut1,ut2) cos0 = X[N6-1] return cos,cos0 def edge_lengths_isometry(self, initialized=False): # Hui "isometry: keeping all edge_lengths" if self.get_weight('isometry') == 0: return None if initialized: X = self._X0 else: X = self.X vi, vj = self.mesh.vertex_ring_vertices_iterators(order=True) # later should define it as global Vi = X[columnnew(vi,0,self.mesh.V)].reshape(-1,3,order='F') Vj = X[columnnew(vj,0,self.mesh.V)].reshape(-1,3,order='F') el = np.linalg.norm(Vi-Vj,axis=1) return el def get_agweb_initial(self,diagnet=False,another_poly_direction=False, AAG=False,GGA=False,AAGG=False): "initilization of AG-net project" V = self.mesh.vertices v,v1,v2,v3,v4 = self.mesh.rr_star[self.mesh.ind_rr_star_v4f4].T # regular v,va,vb,vc,vd = self.mesh.rr_star_corner# in diagonal direction V0,V1,V2,V3,V4,Va,Vb,Vc,Vd = V[v],V[v1],V[v2],V[v3],V[v4],V[va],V[vb],V[vc],V[vd] vnn = self.mesh.vertex_normals()[v] if diagnet: "GGAA / GAA" Vg1,Vg2,Vg3,Vg4 = V1,V2,V3,V4 else: "AAGG / AAG" Vg1,Vg2,Vg3,Vg4 = Va,Vb,Vc,Vd "X +=[ln, vN] + [oNi]; oNi not need to be unit; all geodesics matter" if AAGG: "oN1,oN2 from Gnet-osculating_normals,s.t. anetN*oN1(oN2)=0" oN1,oN2 = np.cross(Vg3-V0,Vg1-V0),np.cross(Vg4-V0,Vg2-V0) X = np.r_[oN1.flatten('F'),oN2.flatten('F')] elif AAG: "oN from geodesic-osculating-normal (not unit)" if another_poly_direction: Vl,Vr = Vg2, Vg4 else: Vl,Vr = Vg1, Vg3 oN = np.cross(Vr-V0,Vl-V0) X = np.r_[oN.flatten('F')] elif GGA: "X +=[vN, oN1, oN2]; oN1,oN2 from Gnet-osculating_normals" if diagnet: "AGG" Vg1,Vg2,Vg3,Vg4 = Va,Vb,Vc,Vd # different from above else: "GGA" Vg1,Vg2,Vg3,Vg4 = V1,V2,V3,V4 # different from above oN1,oN2 = np.cross(Vg3-V0,Vg1-V0),np.cross(Vg4-V0,Vg2-V0) vn = np.cross(oN1,oN2) vN = vn / np.linalg.norm(vn,axis=1)[:,None] ind = np.where(np.einsum('ij,ij->i',vnn,vN)<0)[0] vN[ind]=-vN[ind] X = np.r_[vN.flatten('F'),oN1.flatten('F'),oN2.flatten('F')] return X def get_agweb_an_n_on(self,is_n=False,is_on=False,is_all_n=False): V = self.mesh.vertices v = self.mesh.rr_star[:,0]#self.mesh.rr_star_corner[0] an = V[v] n = self.mesh.vertex_normals()[v] on1=on2=n num = len(self.mesh.ind_rr_star_v4f4) if self.is_initial: if self.get_weight('AAGnet') or self.get_weight('GAAnet'): "vertex normal from A-net" X = self.get_agweb_initial(AAG=True) #on = X[:3*num].reshape(-1,3,order='F') elif self.get_weight('GGAnet') or self.get_weight('AGGnet'): "X=+[N,oN1,oN2]" X = self.get_agweb_initial(GGA=True) n = X[:3*num].reshape(-1,3,order='F') on1 = X[3*num:6*num].reshape(-1,3,order='F') on2 = X[6*num:9*num].reshape(-1,3,order='F') elif self.get_weight('AAGGnet') or self.get_weight('GGAAnet'): "vertex-normal from Anet, X+=[on1,on2]" X = self.get_agweb_initial(AAGG=True) on1 = X[:3*num].reshape(-1,3,order='F') on2 = X[3*num:6*num].reshape(-1,3,order='F') elif self.get_weight('Anet'): pass # v = v[self.mesh.ind_rr_star_v4f4] # n = n[v] elif self.get_weight('AGnet'): if False: _,_,lt1,lt2 = self.mesh.get_net_osculating_tangents() n = np.cross(lt1[1],lt2[1]) n = n / np.linalg.norm(n,axis=1)[:,None] else: _,_,ut1,ut2,_,_ = self.mesh.get_v4_unit_tangents(False,True) n = np.cross(ut1,ut2) n = n / np.linalg.norm(n,axis=1)[:,None] else: X = self.X if self.get_weight('AAGnet') or self.get_weight('GAAnet'): "X=+[oNg]" ##print(v,self.mesh.ind_rr_star_v4f4,len(v),len(self.mesh.ind_rr_star_v4f4)) v = v[self.mesh.ind_rr_star_v4f4] n = X[self._Nanet-3*num:self._Nanet].reshape(-1,3,order='F') d = self._Ndgeo-3*num #on = X[d:d+3*num].reshape(-1,3,order='F') elif self.get_weight('GGAnet') or self.get_weight('AGGnet'): d = self._Ndgeo-9*num n = X[d:d+3*num].reshape(-1,3,order='F') on1 = X[d+3*num:d+6*num].reshape(-1,3,order='F') on2 = X[d+6*num:d+9*num].reshape(-1,3,order='F') elif self.get_weight('AAGGnet') or self.get_weight('GGAAnet'): v = v[self.mesh.ind_rr_star_v4f4] n = X[self._Nanet-3*num:self._Nanet].reshape(-1,3,order='F') d = self._Ndgeo-6*num on1 = X[d:d+3*num].reshape(-1,3,order='F') on2 = X[d+3*num:d+6*num].reshape(-1,3,order='F') elif self.get_weight('Anet'): v = v[self.mesh.ind_rr_star_v4f4] n = X[self._Nanet-3*num:self._Nanet].reshape(-1,3,order='F') elif self.get_weight('AGnet'): if False: Nag = self._Nag arr3 = np.arange(3*num) if self.opt_AG_const_rii or self.opt_AG_const_r0: if self.opt_AG_const_rii: #k = len(igeo) #c_ri = Nag-k+np.arange(k) pass #c_srfN = Nag-6*num+arr3-k #c_ogN = Nag-4*num+arr3-k elif self.opt_AG_const_r0: #c_r = Nag-1 c_srfN = Nag-6*num+arr3-1 #c_ogN = Nag-4*num+arr3-1 else: c_srfN = Nag-6*num+arr3 #c_ogN = Nag-3*num+arr3 n = X[c_srfN].reshape(-1,3,order='F') #on = X[c_ogN].reshape(-1,3,order='F') elif False: ie1 = self._N5-12*num+np.arange(3*num) ue1 = X[ie1].reshape(-1,3,order='F') ue2 = X[ie1+3*num].reshape(-1,3,order='F') ue3 = X[ie1+6*num].reshape(-1,3,order='F') ue4 = X[ie1+9*num].reshape(-1,3,order='F') #try: if self.is_AG_or_GA: n = ue2+ue4 else: n = ue1+ue3 n = n / np.linalg.norm(n,axis=1)[:,None] # except: # t1,t2 = ue1-ue3,ue2-ue4 # n = np.cross(t1,t2) # n = n / np.linalg.norm(n,axis=1)[:,None] v = v[self.mesh.ind_rr_star_v4f4] else: c_srfN = self._Nag-3*num+np.arange(3*num) n = X[c_srfN].reshape(-1,3,order='F') if is_n: n = n / np.linalg.norm(n,axis=1)[:,None] alln = self.mesh.vertex_normals() n0 = alln[v] j = np.where(np.einsum('ij,ij->i',n0,n)<0)[0] n[j] = -n[j] return V[v],n elif is_on: on1 = on1 / np.linalg.norm(on1,axis=1)[:,None] on2 = on2 / np.linalg.norm(on2,axis=1)[:,None] return an,on1,on2 elif is_all_n: alln = self.mesh.vertex_normals() n0 = alln[v] j = np.where(np.einsum('ij,ij->i',n0,n)<0)[0] n[j] = -n[j] alln[v] = n return alln def get_agnet_normal(self,is_biN=False): V = self.mesh.vertices v,v1,v2,v3,v4 = self.mesh.rr_star[self.mesh.ind_rr_star_v4f4].T an = V[v] if is_biN: "AGnet: Asy(v1-v-v3), Geo(v2-v-v4), binormal of geodesic crv" if self.is_AG_or_GA: eb = (V[v2]-V[v])#/np.linalg.norm(V[v2]-V[v],axis=1)[:,None] ed = (V[v4]-V[v])#/np.linalg.norm(V[v4]-V[v],axis=1)[:,None] else: eb = (V[v1]-V[v])#/np.linalg.norm(V[v1]-V[v],axis=1)[:,None] ed = (V[v3]-V[v])#/np.linalg.norm(V[v3]-V[v],axis=1)[:,None] n =
np.cross(eb,ed)
numpy.cross
from crossSection import sigma_with_masses, PMNS_matrix, neutrino_masses, mfp_gpc import numpy as np import pandas as pd import matplotlib.pyplot as plt import sys import random import warnings import sys import os warnings.filterwarnings("ignore") plt.style.use('ja') data_dir = '/Users/james/allMyStuff/Neutrinos/Constraints/highenergy/' if __name__ == '__main__': Enu_TeV_arr = [290., 3000., 6000.] labels = ['290 TeV', '3 PeV', '6 PeV'] colors = ['#357DED', '#0D0221', '#0D0221'] lss = ['-', '--', ':'] plt.figure(figsize=(8, 5)) for idx, Enu_TeV in enumerate(Enu_TeV_arr): min_nu_mass = 0.03 # GeV hierarchy = 'normal' nu_masses = neutrino_masses(min_nu_mass, hierarchy) Ecom_MeV = np.sqrt(0.5*nu_masses*Enu_TeV) s_arr = 4 * np.power(Ecom_MeV, 2) ge = 0 gt = 3*np.power(10.0, -1) gm = np.power(10.0, -2) # Fix neutrino number density and mass (multiply by 3 in complex case assuming small splitting) n_nu = 340 # cm^-3 n_eff = (340/6.0) * 3.0 # Conversion factors cm = 3.240755 * np.power(10.0, -28) # Gpc MeV = 8065.54429 * np.power(10.0, 6) # cm^-1 # Distance to blazar D_blazar = 1.3 # Gpc # PMNS matrix t12 = 33.63 t23 = 47.2 t13 = 8.54 dcp = 234 pmns = PMNS_matrix(t12, t23, t13, dcp) mn = np.linspace(0.0, 15.0, 500) mp = np.linspace(0.0, 15.0, 500) MN, MP = np.meshgrid(mn, mp) sigma_cm = sigma_with_masses(s_arr, ge, gm, gt, MP, MN, pmns)*np.power(MeV, -2) mfp = mfp_gpc(n_eff, sigma_cm, cm) region = (MN <= MP) mfp[region] = np.ma.masked ctr = plt.contour(MP, MN, mfp, colors=colors[idx], levels=[D_blazar], linewidths=0.0) mp_trace, mn_trace = ctr.allsegs[0][0].T mask = (mp_trace < 0.9*mn_trace) plt.plot(mp_trace[mask], mn_trace[mask], c=colors[idx], ls=lss[idx], label=labels[idx]) if idx == 0: plt.plot([mp_trace[0], mp_trace[0]], [mn_trace[0], mp_trace[0]], c=colors[idx], ls=lss[idx],) plt.fill(np.append(mp_trace, [0, mp_trace[0]]), np.append(mn_trace, [0, mp_trace[0]]), color=colors[idx], alpha=0.1) plt.plot(np.linspace(0.1, 10),
np.linspace(0.1, 10)
numpy.linspace
from __future__ import absolute_import import logging import numpy as np from . import numpy as npext from ..exceptions import ValidationError logger = logging.getLogger(__name__) def spikes2events(t, spikes): """Return an event-based representation of spikes (i.e. spike times)""" spikes = npext.array(spikes, copy=False, min_dims=2) if spikes.ndim > 2: raise ValidationError("Cannot handle %d-dimensional arrays" % spikes.ndim, attr='spikes') if spikes.shape[-1] != len(t): raise ValidationError("Last dimension of 'spikes' must equal 'len(t)'", attr='spikes') # find nonzero elements (spikes) in each row, and translate to times return [t[spike != 0] for spike in spikes] def _rates_isi_events(t, events, midpoint, interp): import scipy.interpolate if len(events) == 0: return np.zeros_like(t) isis =
np.diff(events)
numpy.diff
# %% #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created/Last Edited: December 30, 2019 @author: <NAME> @maintainer: <NAME> Notes: Script for calculating the cartridge masks and the center of rotation. """ # %% All imports import numpy as np from skimage.transform import hough_circle, hough_circle_peaks from skimage.feature import canny import nibabel as nib, nilearn as nil import matplotlib.patches as mpatches from skimage.draw import circle_perimeter,line, polygon,circle, line_aa import matplotlib.pyplot as plt from skimage import exposure from skimage.measure import find_contours from skimage.transform import (rotate as rt,rescale,downscale_local_mean) from skimage.filters import sobel # %% # ============================================================================= # Finding the inner cartridge # ============================================================================= def findcartridge(data,slice_num,volume_num,sig=2,lt=0,ht=100,rad1=8,rad2=52, step=1, n =3): image = data.get_data()[:,:,slice_num,volume_num] edges = canny(image, sigma=sig, low_threshold=lt, high_threshold=ht) hough_radii = np.arange(rad1, rad2, step) hough_res = hough_circle(edges, hough_radii) accums, cr, cc, radii = hough_circle_peaks(hough_res, hough_radii, total_num_peaks=n) return [image,edges,cr,cc,radii] # %% # ============================================================================================================= # Mask calculation for the inner cartridge (Obsolete!! Changed to the new algorith based on finding the notch!) # ============================================================================================================= #def inner_mask(data,findcartridge_parameters,slice_num,volume_num): #data_best_slices = data #temp_ind = findcartridge_parameters #count = 0 #choice = 0 #while(choice != 1): #if count == 0: #r_cord_ind = np.argmin(temp_ind[4]) #r_cord = temp_ind[4][r_cord_ind] #x_cord = temp_ind[2][r_cord_ind] #y_cord = temp_ind[3][r_cord_ind] #else: #user_input = [float(p) for p in input('Enter x,y,r with a space').split()] #x_cord = user_input[0] #y_cord = user_input[1] #r_cord = user_input[2] #mask_image = np.zeros(data_best_slices.get_data()[:,:,slice_num,volume_num].shape) #patch = mpatches.Wedge((y_cord,x_cord),r_cord,0,360) #vertices = patch.get_path().vertices #x=[] #y=[] #for k in range(len(vertices)): #x.append(int(vertices[k][0])) #y.append(int(vertices[k][1])) #x.append(x[0]) #y.append(y[0]) #rr,cc = polygon(x,y) #mask_image[rr, cc] = 1 #plt.figure() #plt.imshow(mask_image*np.mean(data_best_slices.get_data()[:,:,slice_num,volume_num].flatten())*5 + data_best_slices.get_data()[:,:,slice_num,volume_num]) #plt.show() #print('Currently used x,y,r',[x_cord,y_cord,r_cord]) #choice_list = [int(x) for x in input('Enter 1 to go to next slice, 0 to change x,y,r').split()] #choice = choice_list[0] #if choice == 1: #mask = mask_image #center = [x_cord,y_cord,r_cord] # this is the center of the mask #count +=1 #return mask,center # %% # ================================================================================================= # Mask calculation for the inner cartridge # ================================================================================================= def inner_mask(data_path,slice_num,volume_num=0,lvl=0.004,rad1=7,rad2=50,step=1, img_path=None): im = nib.load(data_path).get_data()[:,:,slice_num,volume_num] im_sobel = sobel(im) repeat = 1 while(repeat): contours =find_contours(im_sobel,level=lvl,fully_connected='high') for n, contour in enumerate(contours): plt.plot(contour[:, 1], contour[:, 0], linewidth=2) if img_path: plt.savefig(img_path) plt.close() repeat = 0 else: plt.show() print('If this is not showing four circle boundaries, clearly - you need to change the thresholding level for finding contours again. If not changed, all subsequent estimation might fail.') repeat = int(input('Do you want to repeat and change the thresholding level? 1 for yes, 0 for no')) if repeat: print('Current level is:',lvl) print('\n') lvl = input('Enter the new lvl (integer)') smallest_circle = [] #detects the inner circle with notch for i in range(len(contours)): smallest_circle.append(contours[i].shape[0]) temp_var = np.array(smallest_circle) temp_var = np.delete(temp_var,np.argmax(temp_var)) temp_var = np.delete(temp_var,np.argmax(temp_var)) temp_var = np.delete(temp_var,np.argmax(temp_var)) index = np.argwhere(np.array(smallest_circle)==np.max(temp_var))[0][0] img = np.zeros(im.shape) img[(contours[index][:,0]).astype('int'),(contours[index][:,1]).astype('int')]=1 hough_radii = np.arange(rad1, rad2, step) hough_res = hough_circle(img, hough_radii) accums, cx, cy, radii = hough_circle_peaks(hough_res, hough_radii, total_num_peaks=2) radii_complete = radii[np.argmax(radii)] # complete refers to the full circle with notch cx_complete = cx[np.argmax(radii)] cy_complete = cy[np.argmax(radii)] radii_incomplete = radii[np.argmin(radii)] # complete refers to the circle without notch cx_incomplete = cx[np.argmin(radii)] cy_incomplete = cy[np.argmin(radii)] rr,cc = circle(cy_complete,cx_complete,radii_complete-1) # Erroded by 1 voxel for removing the notch img_complete = np.zeros(im.shape) img_complete[rr,cc]=1 rr,cc = circle(cy_incomplete,cx_incomplete,radii_incomplete) img_incomplete = np.zeros(im.shape) img_incomplete[rr,cc]=1 return img_complete,cy_complete,cx_complete,radii_complete # %% # ================================================================================================= # Finding the center of rotation # ================================================================================================= def cen_rotation(data_path,slice_num,img_complete,cy_complete,cx_complete,radii_complete,canny_sgm=1,img_path=None): temp_img= img_complete * (nib.load(data_path).get_data()[:,:,slice_num,0]) cir_mask = np.zeros(temp_img.shape) rr,cc = circle(cy_complete,cx_complete,radii_complete-2) # erosion to get rid of boundaries cir_mask[rr,cc] = 1 contrast_enh= exposure.equalize_hist(temp_img) sobel_edges = sobel(contrast_enh) sobel_masked = sobel_edges *cir_mask im = np.power(sobel_masked,5) # increases the contrast such that the quadrant intersection is visible; depends on T2* relaxation, so can vary with the age of the cartridge. dotp_all = [] for i in range(len(np.nonzero(cir_mask)[0])): possible_angles =
np.linspace(0,360,720)
numpy.linspace
# %% from multiprocessing import Pool import time import numpy as np from scipy.stats import mvn import os import pickle import copy import matplotlib.pyplot as plt from scipy import interpolate from scipy.stats import norm # %% exec(open('../../env_vars.py').read()) dir_picklejar = os.environ['dir_picklejar'] filename = os.path.join(os.path.realpath(dir_picklejar), 'data_day_limits') infile = open(filename,'rb') data_day_limits = pickle.load(infile) infile.close() filename = os.path.join(os.path.realpath(dir_picklejar), 'init_latent_data_small') infile = open(filename,'rb') init_dict_latent_data = pickle.load(infile) # Initialization of the latent smoking times infile.close() filename = os.path.join(os.path.realpath(dir_picklejar), 'observed_dict_eod_survey') infile = open(filename,'rb') init_dict_observed_eod_survey = pickle.load(infile) infile.close() filename = os.path.join(os.path.realpath(dir_picklejar), 'observed_dict_all_ema') infile = open(filename,'rb') init_dict_observed_ema = pickle.load(infile) infile.close() # %% def grow_tree(depth): if depth==1: current_data = list([0,1]) return current_data elif depth > 1: curr_level = 1 current_data = list([0,1]) curr_level = 2 while curr_level <= depth: # Sweep through all leaves at the current level list_curr_level = list(np.repeat(np.nan, repeats=2**curr_level)) for i in range(0, len(current_data)): left_leaf = np.append(np.array(current_data[i]), 0) right_leaf = np.append(np.array(current_data[i]), 1) list_curr_level[2*i] = list(left_leaf) list_curr_level[2*i + 1] = list(right_leaf) # Go one level below current_data = list_curr_level curr_level += 1 return current_data else: return 0 # %% class Latent: ''' A collection of objects and methods related to latent process subcomponent ''' def __init__(self, participant = None, day = None, latent_data = None, params = None, index = None): self.participant = participant self.day = day self.latent_data = copy.deepcopy(latent_data) self.params = copy.deepcopy(params) self.index = index def update_params(self, new_params): ''' Update parameters ''' self.params = copy.deepcopy(new_params) def calc_loglik(self): ''' Calculate loglikelihood for latent process subcomponent ''' smoking_times = self.latent_data['hours_since_start_day'] day_length = self.latent_data['day_length'] lambda_prequit = self.params['lambda_prequit'] lambda_postquit = self.params['lambda_postquit'] # Calculate the total number of latent smoking times in the current iteration m = len(smoking_times) # lambda_prequit: number of events per hour during prequit period # lambda_postquit: number of events per hour during postquit period # day_length: total number of hours between wakeup time to sleep time on a given participant day if self.day <4: lik = np.exp(-lambda_prequit*day_length) * ((lambda_prequit*day_length) ** m) / np.math.factorial(m) loglik = np.log(lik) else: lik = np.exp(-lambda_postquit*day_length) * ((lambda_postquit*day_length) ** m) / np.math.factorial(m) loglik = np.log(lik) return loglik # %% class EODSurvey: ''' A collection of objects and methods related to end-of-day survey subcomponent ''' def __init__(self, participant = None, day = None, latent_data = None, observed_data = None, params = None, index = None): self.participant = participant self.day = day self.latent_data = copy.deepcopy(latent_data) self.observed_data = copy.deepcopy(observed_data) self.params = copy.deepcopy(params) self.index = index def update_params(self, new_params): ''' Update parameters ''' self.params = copy.deepcopy(new_params) def calc_loglik(self): ''' Calculate loglikelihood corresponding to end-of-day EMA subcomponent ''' # Inputs to be checked ---------------------------------------------------------------------------- any_eod_ema = len(self.observed_data['assessment_begin']) if any_eod_ema > 0: # Begin after checks on inputs have been passed --------------------------------------------------- # Go through each box one by one collect_box_probs = np.array([]) arr_ticked = self.observed_data['ticked_box_raw'] # which boxes were ticked? m = len(self.latent_data['hours_since_start_day']) # are there any latent smoking events? all_boxes = np.array([8,9,10,11,12,13,14,15,16,17,18,19,20]) if (m == 0) and (len(arr_ticked) == 0): collect_box_probs = np.repeat(1, len(all_boxes)) elif (m == 0) and (len(arr_ticked) > 0): collect_box_probs = np.repeat(0, len(all_boxes)) else: start_day = 0 end_day = 24 # Rescale time to be within 24 hour clock all_true_smoke_times = self.latent_data['hours_since_start_day'] + self.observed_data['start_time_hour_of_day'] for k in range(0, len(all_boxes)): curr_box = all_boxes[k] # lower limit of Box k; setting curr_lk and curr_box to be separate variables in case change of scale is needed for curr_lk curr_lk = all_boxes[k] # lower limit of Box k curr_uk = curr_lk + 1 # upper limit of Box k; add one hour to lower limit recall_epsilon = self.params['recall_epsilon'] # in hours num_points_to_sample = self.params['budget'] if len(all_true_smoke_times) <= num_points_to_sample: true_smoke_times = all_true_smoke_times else: true_smoke_times = all_true_smoke_times[(all_true_smoke_times > curr_lk - recall_epsilon) * (all_true_smoke_times < curr_uk + recall_epsilon)] if len(true_smoke_times) > num_points_to_sample: true_smoke_times = np.random.choice(a = true_smoke_times, size = num_points_to_sample, replace = False) # At this point, the length of true_smoke_times will always be at most num_points_to_sample if len(true_smoke_times) > 0: # Specify covariance matrix based on an exchangeable correlation matrix rho = self.params['rho'] use_cormat = np.eye(len(true_smoke_times)) + rho*(np.ones((len(true_smoke_times),1)) * np.ones((1,len(true_smoke_times))) - np.eye(len(true_smoke_times))) use_sd = self.params['sd'] use_covmat = (use_sd**2) * use_cormat # Calculate total possible probability total_possible_prob, error_code_total_possible_prob = mvn.mvnun(lower = np.repeat(start_day, len(true_smoke_times)), upper = np.repeat(end_day, len(true_smoke_times)), means = true_smoke_times, covar = use_covmat) # Begin calculating edge probabilities collect_edge_probabilities = np.array([]) limits_of_integration = grow_tree(depth=len(true_smoke_times)) for j in range(0, len(limits_of_integration)): curr_limits = np.array(limits_of_integration[j]) curr_lower_limits = np.where(curr_limits==0, start_day, curr_uk) curr_upper_limits = np.where(curr_limits==0, curr_lk, end_day) edge_probabilities, error_code_edge_probabilities = mvn.mvnun(lower = curr_lower_limits, upper = curr_upper_limits, means = true_smoke_times, covar = use_covmat) collect_edge_probabilities = np.append(collect_edge_probabilities, edge_probabilities) total_edge_probabilities = np.sum(collect_edge_probabilities) prob_none_recalled_within_current_box = total_edge_probabilities/total_possible_prob # prob_none_recalled_within_current_box may be slightly above 1, e.g., 1.000000XXXXX if (prob_none_recalled_within_current_box-1) > 0: prob_none_recalled_within_current_box = 1 prob_at_least_one_recalled_within_box = 1-prob_none_recalled_within_current_box else: prob_none_recalled_within_current_box = 1 prob_at_least_one_recalled_within_box = 1-prob_none_recalled_within_current_box # Exit the first IF-ELSE statement if curr_box in arr_ticked: collect_box_probs = np.append(collect_box_probs, prob_at_least_one_recalled_within_box) else: collect_box_probs = np.append(collect_box_probs, prob_none_recalled_within_current_box) # Exit if-else statement prob_observed_box_checking_pattern = np.prod(collect_box_probs) loglik = np.log(prob_observed_box_checking_pattern) self.observed_data['prob_bk'] = collect_box_probs self.observed_data['product_prob_bk'] = prob_observed_box_checking_pattern self.observed_data['log_product_prob_bk'] = loglik else: # If participant did not complete EOD survey, then this measurement type should NOT contribute to the loglikelihood loglik = 0 return loglik # %% class SelfReport: def __init__(self, participant = None, day = None, latent_data = None, observed_data = None, params = None, index = None): self.participant = participant self.day = day self.latent_data = copy.deepcopy(latent_data) self.observed_data = copy.deepcopy(observed_data) self.params = copy.deepcopy(params) self.index = index def update_params(self, new_params): ''' Update parameters ''' self.params = copy.deepcopy(new_params) def match(self): ''' Matches each EMA with one latent smoking time occurring before the Self Report EMA After a latent smoking time is matched, it is removed ''' # Inputs to be checked -------------------------------------------- all_latent_times = self.latent_data['hours_since_start_day'] tot_ema = len(self.observed_data['assessment_type']) if tot_ema > 0: self.observed_data['matched_latent_time'] = np.repeat(np.nan, tot_ema) remaining_latent_times = copy.deepcopy(all_latent_times) remaining_latent_times = np.sort(remaining_latent_times) for i in range(0, tot_ema): current_lb = self.observed_data['assessment_begin_shifted'][i] current_ub = self.observed_data['assessment_begin'][i] #current_assessment_type = self.observed_data['assessment_type'][i] which_within = (remaining_latent_times >= 0) & (remaining_latent_times < current_ub) if np.sum(which_within)>0: which_idx = np.where(which_within) matched_idx = np.max(which_idx) matched_latent_time = remaining_latent_times[matched_idx] self.observed_data['matched_latent_time'][i] = matched_latent_time remaining_latent_times = np.delete(remaining_latent_times, matched_idx) remaining_latent_times = np.sort(remaining_latent_times) else: # This case can occur when between time 0 and time t there is no # latent smoking time, but a self-report occurred between time 0 and time t # This case may happen after a dumb death move self.observed_data['matched_latent_time'][i] = np.nan else: self.observed_data['matched_latent_time'] =
np.array([])
numpy.array
import numpy as np from .orcadaq import OrcaDecoder, get_ccc, get_readout_info, get_auxhw_info from .fcdaq import FlashCamEventDecoder class ORCAFlashCamListenerConfigDecoder(OrcaDecoder): ''' Decoder for FlashCam listener config written by ORCA ''' def __init__(self, *args, **kwargs): self.decoder_name = 'ORFlashCamListenerConfigDecoder' self.orca_class_name = 'ORFlashCamListenerModel' # up through ch_inputnum, these are in order of the fcio data format # for similicity. append any additional values after this. self.decoded_values = { 'readout_id': { 'dtype': 'uint16', }, 'listener_id': { 'dtype': 'uint16', }, 'telid': { 'dtype': 'int32', }, 'nadcs': { 'dtype': 'int32', }, 'ntriggers': { 'dtype': 'int32', }, 'nsamples': { 'dtype': 'int32', }, 'adcbits': { 'dtype': 'int32', }, 'sumlength': { 'dtype': 'int32', }, 'blprecision': { 'dtype': 'int32', }, 'mastercards': { 'dtype': 'int32', }, 'triggercards': { 'dtype': 'int32', }, 'adccards': { 'dtype': 'int32', }, 'gps': { 'dtype': 'int32', }, 'ch_boardid': { 'dtype': 'uint16', 'datatype': 'array_of_equalsized_arrays<1,1>{real}', 'length': 2400, }, 'ch_inputnum': { 'dtype': 'uint16', 'datatype': 'array_of_equalsized_arrays<1,1>{real}', 'length': 2400, }, } super().__init__(args, kwargs) def get_decoded_values(self, channel=None): return self.decoded_values def max_n_rows_per_packet(self): return 1 def decode_packet(self, packet, lh5_tables, packet_id, header_dict, verbose=False): data = np.frombuffer(packet, dtype=np.int32) tbl = lh5_tables ii = tbl.loc tbl['readout_id'].nda[ii] = (data[0] & 0xffff0000) >> 16 tbl['listener_id'].nda[ii] = data[0] & 0x0000ffff for i,k in enumerate(self.decoded_values): if i < 2: continue tbl[k].nda[ii] = data[i-1] if k == 'gps': break data = np.frombuffer(packet, dtype=np.uint32) data = data[list(self.decoded_values.keys()).index('ch_boardid')-1:] for i in range(len(data)): tbl['ch_boardid'].nda[ii][i] = (data[i] & 0xffff0000) >> 16 tbl['ch_inputnum'].nda[ii][i] = data[i] & 0x0000ffff tbl.push_row() class ORCAFlashCamListenerStatusDecoder(OrcaDecoder): ''' Decoder for FlashCam status packets written by ORCA Some of the card level status data contains an array of values (temperatures for instance) for each card. Since lh5 currently only supports a 1d vector of 1d vectors, this (card,value) data has to be flattened before populating the lh5 table. ''' def __init__(self, *args, **kwargs): self.decoder_name = 'ORFlashCamListenerStatusDecoder' self.orca_class_name = 'ORFlashCamListenerModel' self.nOtherErrors = np.uint32(5) self.nEnvMonitors = np.uint32(16) self.nCardTemps = np.uint32(5) self.nCardVoltages = np.uint32(6) self.nADCTemps = np.uint32(2) self.nCTILinks = np.uint32(4) self.nCards = np.uint32(1) self.decoded_values = { 'readout_id': { 'dtype': 'uint16', }, 'listener_id': { 'dtype': 'uint16', }, 'cards': { 'dtype': 'int32', }, 'status': { 'dtype': 'int32', }, 'statustime': { 'dtype': 'float64', 'units': 's', }, 'cputime': { 'dtype': 'float64', 'units': 's', }, 'startoffset': { 'dtype': 'float64', 'units': 's', }, 'card_fcio_id': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_status': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_event_number': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_pps_count': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_tick_count': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_max_ticks': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_total_errors': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_env_errors': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_cti_errors': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_link_errors': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, }, 'card_other_errors': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards * self.nOtherErrors, }, 'card_temp': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards * self.nCardTemps, 'units': 'mC', }, 'card_voltage': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards * self.nCardVoltages, 'units': 'mV', }, 'card_current': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, 'units': 'mA', }, 'card_humidity': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards, 'units': 'o/oo', }, 'card_adc_temp': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards * self.nADCTemps, 'units': 'mC', }, 'card_cti_link': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards * self.nCTILinks, }, 'card_card_link_state': { 'dtype': 'uint32', 'datatype': 'array<1>{array<1>{real}}', 'length_guess': self.nCards * self.nCards, }, } # arrays to temporarily store card-level decoded data self.cdata = {} self.resize_card_data(ncards=self.nCards) super().__init__(args, kwargs) def resize_card_data(self, ncards): try: ncards = np.uint32(ncards) except ValueError: return if ncards == 0: return for key in self.decoded_values: # ignore keys that aren't card level if key.find('card_') != 0: continue try: # skip keys for things that aren't arrays with a length_guess if self.decoded_values[key]['datatype'].find('array') != 0: continue length = self.decoded_values[key]['length_guess'] try: # resize if ncards differs from the old shape oldshape = self.cdata[key].shape if oldshape[0] == ncards: continue if key.find('card_card_') == 0: self.cdata[key].resize((ncards,ncards,) + oldshape[2:]) else: self.cdata[key].resize((ncards,) + oldshape[1:]) except KeyError: # if the key didn't exist set the ndarray for this key if ((length == ncards or (length % ncards) != 0) and key.find('card_card_') == -1): self.cdata[key] = np.ndarray(shape=(length), dtype=np.uint32) else: nval = np.uint32(length / ncards) self.cdata[key] = np.ndarray(shape=(ncards, nval), dtype=np.uint32) except KeyError: continue # set nCards to allow for not calling this function during decoding self.nCards = ncards def get_decoded_values(self, channel=None): return self.decoded_values def max_n_rows_per_packet(self): return 1 def decode_packet(self, packet, lh5_tables, packet_id, header_dict, verbose=False): data = np.frombuffer(packet, dtype=np.uint32) tbl = lh5_tables ii = tbl.loc # populate the packet header information tbl['readout_id'].nda[ii] = (data[0] & 0xffff0000) >> 16 tbl['listener_id'].nda[ii] = data[0] & 0x0000ffff tbl['status'].nda[ii] = np.int32(data[1]) tbl['statustime'].nda[ii] = np.float64(data[2] + data[3] / 1.0e6) tbl['cputime'].nda[ii] = np.float64(data[4] + data[5] / 1.0e6) tbl['startoffset'].nda[ii] = np.float64(data[7] + data[8] / 1.0e6) tbl['cards'].nda[ii] = np.int32(data[12]) # resize the card level data if necessary if data[12] != self.nCards: print('ORlashCamListenerStatusDecoder: resizing card arrays ' 'from', self.nCards, ' cards to', data[12]) self.resize_card_data(ncards=data[12]) # set the local card level data for i in range(np.int(data[12])): j = 14 + i * (data[12] + 14 + self.nOtherErrors + self.nEnvMonitors + self.nCTILinks) self.cdata['card_fcio_id'][i] = data[j] self.cdata['card_status'][i] = data[j+1] self.cdata['card_event_number'][i] = data[j+2] self.cdata['card_pps_count'][i] = data[j+3] self.cdata['card_tick_count'][i] = data[j+4] self.cdata['card_max_ticks'][i] = data[j+5] self.cdata['card_total_errors'][i] = data[j+10] self.cdata['card_env_errors'][i] = data[j+11] self.cdata['card_cti_errors'][i] = data[j+12] self.cdata['card_link_errors'][i] = data[j+13] k = j + 14 self.cdata['card_other_errors'][i][:]= data[k:k+self.nOtherErrors] k += self.nOtherErrors self.cdata['card_temp'][i][:] = data[k:k+self.nCardTemps] k += self.nCardTemps self.cdata['card_voltage'][i][:] = data[k:k+self.nCardVoltages] k += self.nCardVoltages self.cdata['card_current'][i] = data[k] self.cdata['card_humidity'][i] = data[k+1] k += 2 self.cdata['card_adc_temp'][i][:] = data[k:k+self.nADCTemps] k += self.nADCTemps self.cdata['card_cti_link'][i][:] = data[k:k+self.nCTILinks] k += self.nCTILinks self.cdata['card_card_link_state'][i][:] = data[k:k+data[12]] # populate the card level data with the flattened local data, then push for key in self.cdata: tbl[key].set_vector(ii, self.cdata[key].flatten()) tbl.push_row() class ORCAFlashCamADCWaveformDecoder(OrcaDecoder): """ Decoder for FlashCam ADC data written by ORCA """ def __init__(self, *args, **kwargs): self.decoder_name = 'ORFlashCamADCWaveformDecoder' self.orca_class_name = 'ORFlashCamADCModel' # header values from Orca, then the values defined in fcdaq self.decoded_values_template = { 'crate': { 'dtype': 'uint8', }, 'card': { 'dtype': 'uint8', }, 'channel': { 'dtype': 'uint8', }, 'fcio_id': { 'dtype': 'uint16', } } fc = FlashCamEventDecoder() self.decoded_values_template.update(fc.decoded_values) super().__init__(*args, **kwargs) self.decoded_values = {} self.skipped_channels = {} def get_decoded_values(self, channel=None): if channel is None: dec_vals_list = self.decoded_values.items() if len(dec_vals_list) == 0: print('ORFlashCamADCModel: error - decoded_values not built') return None return list(dec_vals_list)[0][1] # return first thing found if channel in self.decoded_values: return self.decoded_values[channel] print('ORFlashCamADCModel: error - ' 'no decoded values for channel ', channel) return None def max_n_rows_per_packet(self): return 1 def set_object_info(self, object_info): self.object_info = object_info # get the readout list for looking up the waveform length. # catch AttributeError for when the header_dict is not yet set. roi = [] try: roi=get_readout_info(self.header_dict, 'ORFlashCamListenerModel') except AttributeError: pass for card_dict in self.object_info: crate = card_dict['Crate'] card = card_dict['Card'] enabled = card_dict['Enabled'] # find the listener id for this card from the readout list listener = -1 for ro in roi: try: for obj in ro['children']: if obj['crate'] == crate and obj['station'] == card: listener = ro['uniqueID'] break except KeyError: pass # with the listener id, find the event samples for that listener samples = 0 if listener >= 0: aux = get_auxhw_info(self.header_dict, 'ORFlashCamListenerModel', listener) for info in aux: try: samples = max(samples, info['eventSamples']) except KeyError: continue # for each enabled channel, set the decoded values and wf length for channel in range(len(enabled)): if not enabled[channel]: continue ccc = get_ccc(crate, card, channel) self.decoded_values[ccc] = {} self.decoded_values[ccc].update(self.decoded_values_template) if samples > 0: self.decoded_values[ccc]['waveform']['length'] = samples def decode_packet(self, packet, lh5_tables, packet_id, header_dict, verbose=False): data = np.frombuffer(packet, dtype=np.uint32) # unpack lengths and ids from the header words orca_header_length = (data[0] & 0xf0000000) >> 28 fcio_header_length = (data[0] & 0x0fc00000) >> 22 #wf_samples = (data[0] & 0x003fffc0) >> 6 wf_samples = 2048#(data[0] & 0x003fffc0) >> 6 crate = (data[1] & 0xf8000000) >> 27 card = (data[1] & 0x07c00000) >> 22 channel = (data[1] & 0x00003c00) >> 10 fcio_id = data[1] & 0x000003ff ccc = get_ccc(crate, card, channel) # get the table for this crate/card/channel tbl = lh5_tables if isinstance(list(tbl.keys())[0], int): if ccc not in lh5_tables: if ccc not in self.skipped_channels: self.skipped_channels[ccc] = 0 self.skipped_channels[ccc] += 1 return tbl = lh5_tables[ccc] ii = tbl.loc # check that the waveform length is as expected if wf_samples != tbl['waveform']['values'].nda.shape[1]: print('ORCAFlashCamADCWaveformDecoder warning: ' 'waveform of length ', wf_samples,' with expected length ', self.decoded_values[ccc]['waveform']['length']) # set the values decoded from the header words tbl['packet_id'].nda[ii] = packet_id tbl['crate'].nda[ii] = crate tbl['card'].nda[ii] = card tbl['channel'].nda[ii] = channel tbl['fcio_id'].nda[ii] = fcio_id tbl['numtraces'].nda[ii] = 1 # set the time offsets offset = orca_header_length - 1 tbl['to_mu_sec'].nda[ii] = np.int32(data[offset]) tbl['to_mu_usec'].nda[ii] = np.int32(data[offset+1]) tbl['to_master_sec'].nda[ii] = np.int32(data[offset+2]) tbl['to_dt_mu_usec'].nda[ii] = np.int32(data[offset+3]) tbl['to_abs_mu_usec'].nda[ii] = np.int32(data[offset+4]) tbl['to_start_sec'].nda[ii] = np.int32(data[offset+5]) tbl['to_start_usec'].nda[ii] = np.int32(data[offset+6]) toff = np.float64(data[offset+2]) + np.float64(data[offset+3])*1e-6 # set the dead region values offset += 7 tbl['dr_start_pps'].nda[ii] = np.int32(data[offset]) tbl['dr_start_ticks'].nda[ii] = np.int32(data[offset+1]) tbl['dr_stop_pps'].nda[ii] = np.int32(data[offset+2]) tbl['dr_stop_ticks'].nda[ii] = np.int32(data[offset+3]) tbl['dr_maxticks'].nda[ii] = np.int32(data[offset+4]) # set the event number and clock counters offset += 5 tbl['ievt'].nda[ii] = np.int32(data[offset]) tbl['ts_pps'].nda[ii] = np.int32(data[offset+1]) tbl['ts_ticks'].nda[ii] = np.int32(data[offset+2]) tbl['ts_maxticks'].nda[ii] = np.int32(data[offset+3]) # set the runtime and timestamp tstamp =
np.float64(data[offset]+1)
numpy.float64
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + [markdown] slideshow={"slide_type": "notes"} # # Dynamic Experiments: Feature points # + [markdown] hide_input=false slideshow={"slide_type": "slide"} # <h1>Dynamic Experiments: Feature points</h1> # # <p> # <b>Quantitative Big Imaging - ETHZ: 227-0966-00L</b> # <br /> # </p> # <br /> # <p style="font-size:1em;">April 29, 2021</p> # <br /><br /> # <p style="font-size:1.5em;padding-bottom: 0.25em;"><NAME></p> # <p style="font-size:1em;">Laboratory for Neutron Scattering and Imaging<br />Paul Scherrer Institut</p> # + slideshow={"slide_type": "skip"} import matplotlib.pyplot as plt import seaborn as sns # %load_ext autoreload # %autoreload 2 plt.rcParams["figure.figsize"] = (8, 8) plt.rcParams["figure.dpi"] = 150 plt.rcParams["font.size"] = 14 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['DejaVu Sans'] plt.style.use('ggplot') sns.set_style("whitegrid", {'axes.grid': False}) # + [markdown] slideshow={"slide_type": "slide"} # ### Papers / Sites # # - Keypoint and Corner Detection # - Distinctive Image Features from Scale-Invariant Keypoints - https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf # - https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html # # + [markdown] slideshow={"slide_type": "slide"} # # Key Points (or feature points) # # - Registration using the full data set is time demaning. # - We can detect feature points in an image and use them to make a registration. # # + [markdown] slideshow={"slide_type": "subslide"} # # Identifying key points # We first focus on the detection of points. # # A [Harris corner detector](https://en.wikipedia.org/wiki/Harris_Corner_Detector) helps us here: # + slideshow={"slide_type": "-"} from skimage.feature import corner_peaks, corner_harris, BRIEF from skimage.transform import warp, AffineTransform from skimage import data from skimage.io import imread import matplotlib.pyplot as plt import seaborn as sns import numpy as np # %matplotlib inline tform = AffineTransform(scale=(1.3, 1.1), rotation=0, shear=0.1, translation=(0, 0)) image = warp(data.checkerboard(), tform.inverse, output_shape=(200, 200)) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) ax1.imshow(image); ax1.set_title('Raw Image') ax2.imshow(corner_harris(image)); ax2.set_title('Corner Features') peak_coords = corner_peaks(corner_harris(image),threshold_rel=0) ax3.imshow(image); ax3.set_title('Raw Image') ax3.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs'); # + [markdown] slideshow={"slide_type": "subslide"} # ## Let's try the corner detection on real data # + slideshow={"slide_type": "-"} full_img = imread("figures/bonegfiltslice.png").mean(axis=2) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) ax1.imshow(full_img,cmap='bone') ax1.set_title('Raw Image') ax2.imshow(2e8<corner_harris(full_img),cmap='viridis'), ax2.set_title('Corner Features') peak_coords = corner_peaks(corner_harris(full_img),threshold_rel=0.1) ax3.imshow(full_img,cmap='bone'), ax3.set_title('Raw Image') ax3.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs'); # + [markdown] slideshow={"slide_type": "slide"} # # # Tracking with Points # # __Goal:__ To reducing the tracking efforts # # We can use the corner points to track features between multiple frames. # # In this sample, we see that they are # - quite stable # - and fixed # # on the features. # + [markdown] slideshow={"slide_type": "subslide"} # ## We need data - a series transformed images # + slideshow={"slide_type": "-"} from matplotlib.animation import FuncAnimation from IPython.display import HTML fig, c_ax = plt.subplots(1, 1, figsize=(5, 5), dpi=100) def update_frame(i): c_ax.cla() tform = AffineTransform(scale=(1.3+i/20, 1.1-i/20), rotation=-i/10, shear=i/20, translation=(0, 0)) image = warp(data.checkerboard(), tform.inverse, output_shape=(200, 200)) c_ax.imshow(image) peak_coords = corner_peaks(corner_harris(image),threshold_rel=0.1) c_ax.plot(peak_coords[:, 1], peak_coords[:, 0], 'rs') # write animation frames anim_code = FuncAnimation(fig, update_frame, frames=np.linspace(0, 5, 10), interval=1000, repeat_delay=2000).to_html5_video() plt.close('all') HTML(anim_code) # + [markdown] slideshow={"slide_type": "slide"} # # Features and Descriptors # We can move beyond just key points to keypoints and feature vectors (called descriptors) at those points. # # A descriptor is a vector that describes a given keypoint uniquely. # # This will be demonstrated using two methods in the following notebook cells... # # + slideshow={"slide_type": "subslide"} from skimage.feature import ORB full_img = imread("figures/bonegfiltslice.png").mean(axis=2) orb_det = ORB(n_keypoints=10) det_obj = orb_det.detect_and_extract(full_img) fig, (ax3, ax4, ax5) = plt.subplots(1, 3, figsize=(15, 5)) ax3.imshow(full_img, cmap='gray') ax3.set_title('Raw Image') for i in range(orb_det.keypoints.shape[0]): ax3.plot(orb_det.keypoints[i, 1], orb_det.keypoints[i, 0], 's', label='Keypoint {}'.format(i)) ax4.bar(np.arange(10)+i/10.0, orb_det.descriptors[i][:10]+1e-2, width=1/10.0, alpha=0.5, label='Keypoint {}'.format(i)) ax5.imshow(np.stack([x[:20] for x in orb_det.descriptors], 0)) ax5.set_title('Descriptor') ax3.legend(facecolor='white', framealpha=0.5) ax4.legend(); # + [markdown] slideshow={"slide_type": "subslide"} # ### Defining a supporting function to show the matches # + slideshow={"slide_type": "-"} from skimage.feature import match_descriptors, plot_matches import matplotlib.pyplot as plt def show_matches(img1, img2, feat1, feat2): matches12 = match_descriptors( feat1['descriptors'], feat2['descriptors'], cross_check=True) fig, (ax3, ax2) = plt.subplots(1, 2, figsize=(15, 5)) c_matches = match_descriptors(feat1['descriptors'], feat2['descriptors'], cross_check=True) plot_matches(ax3, img1, img2, feat1['keypoints'], feat1['keypoints'], matches12) ax2.plot(feat1['keypoints'][:, 1], feat1['keypoints'][:, 0], '.', label='Before') ax2.plot(feat2['keypoints'][:, 1], feat2['keypoints'][:, 0], '.', label='After') for i, (c_idx, n_idx) in enumerate(c_matches): x_vec = [feat1['keypoints'][c_idx, 0], feat2['keypoints'][n_idx, 0]] y_vec = [feat1['keypoints'][c_idx, 1], feat2['keypoints'][n_idx, 1]] dist = np.sqrt(np.square(np.diff(x_vec))+np.square(np.diff(y_vec))) alpha =
np.clip(50/dist, 0, 1)
numpy.clip
# author: <NAME> # <EMAIL> # 1/15/2022 import jax.numpy as jnp from jax import vmap, jit from jax.config import config; config.update("jax_enable_x64", True) # numpy import numpy as onp from numpy import random import argparse import logging import datetime from time import time import os # solving Burgers: u_t+ u u_x- nu u_xx=0 def get_parser(): parser = argparse.ArgumentParser(description='Burgers equation GP solver') # equation parameters parser.add_argument("--nu", type=float, default = 0.01/onp.pi) # parser.add_argument("--nu", type=float, default = 0.02) # kernel setting parser.add_argument("--kernel", type=str, default="gaussian", choices=["gaussian","inv_quadratics","Matern_3half","Matern_5half","Matern_7half","Matern_9half","Matern_11half"]) parser.add_argument("--sigma", type = float, default = 0.01) # sampling points parser.add_argument("--dt", type = float, default = 0.04) parser.add_argument("--T", type = float, default = 1.0) parser.add_argument("--N_domain", type = int, default = 500) parser.add_argument("--time_stepping",type=str, default = "CrankNicolson", choices = ["CrankNicolson", "BackwardEuler"]) # GN iterations parser.add_argument("--nugget", type = float, default = 1e-10) parser.add_argument("--GNsteps", type = int, default = 2) parser.add_argument("--logroot", type=str, default='./logs/') parser.add_argument("--randomseed", type=int, default=9999) parser.add_argument("--show_figure", type=bool, default=True) args = parser.parse_args() return args # sample points according to a grid def sample_points(num_pts, dt, T, option = 'grid'): Nt = int(T/dt)+1 X_domain = onp.zeros((Nt,num_pts,2)) X_boundary = onp.zeros((Nt,2,2)) if option == 'grid': for i in range(Nt): X_domain[i,:,0] = i*dt X_domain[i,:,1] = onp.linspace(-1.0,1.0, num_pts) X_boundary[i,:,0] = i*dt X_boundary[i,:,1] = [-1.0,1.0] return X_domain, X_boundary @jit def get_GNkernel_train(x,y,wx0,wx1,wxg,wy0,wy1,wyg,d,sigma): # wx0 * delta_x + wxg * nabla delta_x + wx1 * Delta delta_x return wx0*wy0*kappa(x,y,d,sigma) + wx0*wy1*Delta_y_kappa(x,y,d,sigma) + wy0*wx1*Delta_x_kappa(x,y,d,sigma) + wx1*wy1*Delta_x_Delta_y_kappa(x,y,d,sigma) + wx0*D_wy_kappa(x,y,d,sigma,wyg) + wy0*D_wx_kappa(x,y,d,sigma,wxg) + wx1*Delta_x_D_wy_kappa(x,y,d,sigma,wyg) + wy1*D_wx_Delta_y_kappa(x,y,d,sigma,wxg) + D_wx_D_wy_kappa(x,y,d,sigma,wxg,wyg) @jit def get_GNkernel_train_boundary(x,y,wy0,wy1,wyg,d,sigma): return wy0*kappa(x,y,d,sigma) + wy1*Delta_y_kappa(x,y,d,sigma) + D_wy_kappa(x,y,d,sigma,wyg) @jit def get_GNkernel_val_predict(x,y,wy0,wy1,wyg,d,sigma): return wy0*kappa(x,y,d,sigma) + wy1*Delta_y_kappa(x,y,d,sigma) + D_wy_kappa(x,y,d,sigma,wyg) @jit def get_GNkernel_ux_predict(x,y,wy0,wy1,wyg,d,sigma): wxg = 1.0 return wy0*D_wx_kappa(x,y,d,sigma,wxg) + wy1*D_wx_Delta_y_kappa(x,y,d,sigma,wxg) + D_wx_D_wy_kappa(x,y,d,sigma,wxg, wyg) @jit def get_GNkernel_uxx_predict(x,y,wy0,wy1,wyg,d,sigma): return wy0*Delta_x_kappa(x,y,d,sigma) + wy1*Delta_x_Delta_y_kappa(x,y,d,sigma) + Delta_x_D_wy_kappa(x,y,d,sigma,wyg) def assembly_Theta(X_domain, X_boundary, w0, w1, wg, sigma): # X_domain, dim: N_domain*d; # w0 col vec: coefs of Diracs, dim: N_domain; # w1 coefs of Laplacians, dim: N_domain N_domain,d = onp.shape(X_domain) N_boundary,_ = onp.shape(X_boundary) Theta = onp.zeros((N_domain+N_boundary,N_domain+N_boundary)) XdXd0 = onp.reshape(onp.tile(X_domain,(1,N_domain)),(-1,d)) XdXd1 = onp.tile(X_domain,(N_domain,1)) XbXd0 = onp.reshape(onp.tile(X_boundary,(1,N_domain)),(-1,d)) XbXd1 = onp.tile(X_domain,(N_boundary,1)) XbXb0 = onp.reshape(onp.tile(X_boundary,(1,N_boundary)),(-1,d)) XbXb1 = onp.tile(X_boundary,(N_boundary,1)) arr_wx0 = onp.reshape(onp.tile(w0,(1,N_domain)),(-1,1)) arr_wx1 = onp.reshape(onp.tile(w1,(1,N_domain)),(-1,1)) arr_wxg = onp.reshape(onp.tile(wg,(1,N_domain)),(-1,d)) arr_wy0 = onp.tile(w0,(N_domain,1)) arr_wy1 = onp.tile(w1,(N_domain,1)) arr_wyg = onp.tile(wg,(N_domain,1)) arr_wy0_bd = onp.tile(w0,(N_boundary,1)) arr_wy1_bd = onp.tile(w1,(N_boundary,1)) arr_wyg_bd =
onp.tile(wg,(N_boundary,1))
numpy.tile
import numpy as np import copy from ..Utils.geometry import * class LinearLeastSquare: """ Linear Least Square Fitting solution. Parameters ---------- parameter_space : :obj:`ParaMol.Parameter_space.parameter_space.ParameterSpace` Instance of the parameter space. include_regulatization : bool Flag that signal whether or not to include regularization. method : str Type of regularization. Options are 'L2' or 'hyperbolic'. scaling_factor : float Scaling factor of the regularization value. hyperbolic_beta : float Hyperbolic beta value. Only used if `regularization_type` is `hyperbolic`. weighting_method : str Method used to weight the conformations. Available methods are "uniform, "boltzmann" and "manual". weighting_temperature : unit.simtk.Quantity Temperature used in the weighting. Only relevant if `weighting_method` is "boltzmann". Attributes ---------- include_regulatization : bool Flag that signal whether or not to include regularization. regularization_type : str Type of regularization. Options are 'L2' or 'hyperbolic'. scaling_factor : float Scaling factor of the regularization value. hyperbolic_beta : float Hyperbolic beta value. Only used if `regularization_type` is `hyperbolic`. weighting_method : str Method used to weight the conformations. Available methods are "uniform, "boltzmann" and "manual". weighting_temperature : unit.simtk.Quantity Temperature used in the weighting. Only relevant if `weighting_method` is "boltzmann". """ def __init__(self, parameter_space, include_regularization, method, scaling_factor, hyperbolic_beta, weighting_method, weighting_temperature, **kwargs): # Matrices used in the explicit solution of the LLS equations self._parameter_space = parameter_space self._parameters = None self._n_parameters = None # Private variables self._A = None self._B = None self._Aw = None self._Bw = None self._param_keys_list = None self._p0 = None self._initial_param_regularization = None # Regularization variables self._include_regularization = include_regularization self._regularization_type = method self._scaling_factor = scaling_factor self._hyperbolic_beta = hyperbolic_beta # Weighting variables self._weighting_method = weighting_method self._weighting_temperature = weighting_temperature def fit_parameters_lls(self, systems, alpha_bond=0.05, alpha_angle=0.05): """ Method that fits bonded parameters using LLS. Notes ----- Only one ParaMol system is supported at once. Parameters ---------- systems : list of :obj:`ParaMol.System.system.ParaMolSystem` List containing instances of ParaMol systems. alpha_bond : float alpha_angle : float Returns ------- systems, parameter_space, objective_function, optimizer """ assert self._weighting_method.upper() != "NON_BOLTZMANN", "LLS does not support {} weighting method.".format(self._weighting_method) # TODO: In the future, adapt this to multiple systems system = systems[0] # Compute A matrix self._calculate_a(system, alpha_bond, alpha_angle) self._n_parameters = self._A.shape[1] # Compute B matrix self._calculate_b(system) # ---------------------------------------------------------------- # # Calculate conformations weights # # ---------------------------------------------------------------- # system.compute_conformations_weights(temperature=self._weighting_temperature, weighting_method=self._weighting_method, emm=None) # Weight conformations for row in range(system.n_structures): self._A[row, :] = self._A[row, :] * np.sqrt(system.weights[row]) / np.sqrt(np.var(system.ref_energies)) self._B = self._B * np.sqrt(system.weights) / np.sqrt(np.var(system.ref_energies)) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Preconditioning # # ---------------------------------------------------------------- # # Preconditioning self._calculate_scaling_constants() for row in range(system.n_structures): self._A[row, :] = self._A[row, :] / self._scaling_constants # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Regularization # # ---------------------------------------------------------------- # if self._include_regularization: # Add regularization self._A, self._B = self._add_regularization() # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Symmetries # # ---------------------------------------------------------------- # self._add_symmetries(system) # ---------------------------------------------------------------- # # Perform LLS self._parameters = np.linalg.lstsq(self._A, self._B, rcond=None)[0] # Revert scaling self._parameters = self._parameters / self._scaling_constants # Reconstruct parameters self._reconstruct_parameters(self._parameters) # Get optimizable parameters self._parameter_space.get_optimizable_parameters([system], symmetry_constrained=False) return self._parameter_space.optimizable_parameters_values def fit_parameters_lls2(self, systems, alpha_bond=0.05, alpha_angle=0.05): """ Method that fits bonded parameters using LLS. Notes ----- Only one ParaMol system is supported at once. Experimental function. Parameters ---------- systems : list of :obj:`ParaMol.System.system.ParaMolSystem` List containing instances of ParaMol systems. alpha_bond : float alpha_angle : float Returns ------- systems, parameter_space, objective_function, optimizer """ # TODO: In the future, adapt this to multiple systems system = systems[0] n_iter = 1 rmsd = 999 rmsd_tol = 1e-20 max_iter = 100000 # Self-consistent solution while n_iter < max_iter and rmsd > rmsd_tol: # Compute A matrix self._calculate_a(system, alpha_bond, alpha_angle) self._n_parameters = self._A.shape[1] # Compute B matrix self._calculate_b(system) # ---------------------------------------------------------------- # # Calculate conformations weights # # ---------------------------------------------------------------- # system.compute_conformations_weights(temperature=self._weighting_temperature, weighting_method=self._weighting_method, emm=system.get_energies_ensemble()) print(system.get_energies_ensemble()) # Weight conformations for row in range(system.n_structures): self._A[row, :] = self._A[row, :] * np.sqrt(system.weights[row]) self._B = self._B * np.sqrt(system.weights) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Preconditioning # # ---------------------------------------------------------------- # # Preconditioning self._calculate_scaling_constants() for row in range(system.n_structures): self._A[row, :] = self._A[row, :] / self._scaling_constants # ---------------------------------------------------------------- # new_param = self._parameter_space.optimizable_parameters_values / self._parameter_space.scaling_constants # ---------------------------------------------------------------- # # Regularization # # ---------------------------------------------------------------- # if self._include_regularization: # Add regularization self._A, self._B = self._add_regularization() # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Symmetries # # ---------------------------------------------------------------- # self._add_symmetries(system) # ---------------------------------------------------------------- # # Perform LLS self._parameters = np.linalg.lstsq(self._A, self._B, rcond=None)[0] # Revert scaling self._parameters = self._parameters / self._scaling_constants # Reconstruct parameters self._reconstruct_parameters(self._parameters) # Get optimizable parameters self._parameter_space.get_optimizable_parameters([system], symmetry_constrained=False) self._parameter_space.update_systems(systems, self._parameter_space.optimizable_parameters_values, symmetry_constrained=False) old_param = copy.deepcopy(new_param) new_param = self._parameter_space.optimizable_parameters_values /self._parameter_space.scaling_constants rmsd = np.sqrt(np.sum((old_param - new_param) ** 2) / len(self._parameter_space.optimizable_parameters_values)) a = np.sum(system.weights * (system.get_energies_ensemble() - system.ref_energies - np.mean(system.get_energies_ensemble() - system.ref_energies)) ** 2) / (np.var(system.ref_energies)) n_iter+=1 print("RMSD",n_iter, rmsd, a) print("RMSD",n_iter, rmsd) system.compute_conformations_weights(temperature=self._weighting_temperature, weighting_method=self._weighting_method, emm=system.get_energies_ensemble()) a = np.sum(system.weights*(system.get_energies_ensemble()-system.ref_energies-np.mean(system.get_energies_ensemble()-system.ref_energies)) **2) / (np.var(system.ref_energies)) print("FINAL",a) return self._parameter_space.optimizable_parameters_values def _add_regularization(self): """ Method that adds the regularization part of the A and B matrices. Returns ------- self._A, self._B """ # Create alpha=scaling_factor / scaling_constants alpha = self._scaling_factor / self._scaling_constants # TODO: think of how to make this division general # Divide by two to make this approach equivalent to the remainder of ParaMol # alpha = 0.5 * alpha # Calculate prior widths self._calculate_prior_widths() # Calculate A_reg A_reg = np.identity(self._n_parameters) for row in range(A_reg.shape[0]): A_reg[row, :] = (A_reg[row, :]) / self._prior_widths A_reg = A_reg * alpha # Update A matrix self._A = np.vstack((self._A, A_reg)) # Calculate B_reg #B_reg = np.zeros((n_parameters)) B_reg = alpha * self._initial_param_regularization # Update B matrix self._B = np.concatenate((self._B, B_reg)) print("Added regularization.") return self._A, self._B def _add_symmetries(self, system): """ Method that adds the symmetrie part of the A and B matrices. Returns ------- self._A, self._B """ n_symmetries = 0 symm_covered = [] A_symm = [] for i in range(len(self._param_symmetries_list)): symm_i = self._param_symmetries_list[i] if symm_i in symm_covered or symm_i in ["X_x", "X_y", "X"]: continue for j in range(i + 1, len(self._param_symmetries_list)): symm_j = self._param_symmetries_list[j] if symm_i == symm_j: A_symm_row = np.zeros((self._n_parameters)) A_symm_row[i] = 1.0 A_symm_row[j] = -1.0 A_symm.append(A_symm_row) n_symmetries += 1 symm_covered.append(symm_i) A_symm = np.asarray(A_symm) # Update matrices if n_symmetries > 0: self._A = np.vstack((self._A, A_symm)) # Calculate B_reg B_symm = np.zeros((n_symmetries)) # Update B matrix self._B = np.concatenate((self._B, B_symm)) print("{} symmetries were found".format(n_symmetries)) return self._A, self._B def _calculate_prior_widths(self, method=None): """" Method that generates the prior_widths vector. Parameters ---------- method : str, optional Method used to generate the prior widths. Returns ------- self._prior_widths : np.array Array containing the prior widths. """ self._prior_widths = [] prior_widths_dict, prior_widths = self._parameter_space.calculate_prior_widths(method=method) for i in range(self._n_parameters): self._prior_widths.append(prior_widths_dict[self._param_keys_list[i]]) self._prior_widths = np.asarray(self._prior_widths) return self._prior_widths def _calculate_scaling_constants(self, method=None): """ Method that generates the scaling constant's vector. Parameters ---------- method : str, optional Method used to generate the prior widths. Returns ------- self._prior_widths : np.array Array containing the scaling constants. """ self._scaling_constants = [] scaling_constants_dict, scaling_constants = self._parameter_space.calculate_scaling_constants(method=method) for i in range(self._n_parameters): self._scaling_constants.append(scaling_constants_dict[self._param_keys_list[i]]) self._scaling_constants = np.asarray(self._scaling_constants) return self._scaling_constants def _reconstruct_parameters(self, final_parameters): """ Method that reconstructs the parameters after the LLS. Parameters ---------- final_parameters : np.array or list List containing the final parameters. Returns ------- """ m = 0 for parameter in self._parameter_space.optimizable_parameters: ff_term = parameter.ff_term # ---------------------------------------------------------------- # # Bonds # # ---------------------------------------------------------------- # if parameter.param_key == "bond_k": if ff_term.parameters["bond_eq"].optimize: k_xy = np.asarray(final_parameters[m:m + 2]) x0_xy = np.asarray(self._p0[m:m+2]) # Update value of "bond_k" parameter.value = np.sum(k_xy) # Update value of "bond_eq" ff_term.parameters["bond_eq"].value = np.sum(k_xy*x0_xy) / np.sum(k_xy) m += 2 else: k_xy = final_parameters[m] # Update value of "bond_k" parameter.value = k_xy m += 1 # ---------------------------------------------------------------- # # Angles # # ---------------------------------------------------------------- # elif parameter.param_key == "angle_k": if ff_term.parameters["angle_eq"].optimize: k_xy = np.asarray(final_parameters[m:m + 2]) theta0_xy = np.asarray(self._p0[m:m+2]) # Update value of "bond_k" parameter.value = np.sum(k_xy) # Update value of "bond_eq" ff_term.parameters["angle_eq"].value = np.sum(k_xy*theta0_xy) / np.sum(k_xy) m += 2 else: k_xy = final_parameters[m] # Update value of "bond_k" parameter.value = k_xy m += 1 # ---------------------------------------------------------------- # # Torsions # # ---------------------------------------------------------------- # elif parameter.param_key == "torsion_k": if ff_term.parameters["torsion_phase"].optimize: k_xy = np.asarray(final_parameters[m:m + 2]) delta_xy = np.asarray(self._p0[m:m + 2]) # Define phasors p_x = k_xy[0]*np.exp(1j*delta_xy[0]) p_y = k_xy[1]*np.exp(1j*delta_xy[1]) p_xy = p_x + p_y # Update value of "bond_k" parameter.value = np.linalg.norm(p_xy) # parameter.value = np.sqrt(np.sum(k_xy*k_xy)) # alternative expression # Update value of "bond_eq" ff_term.parameters["torsion_phase"].value = np.angle(p_xy) m += 2 else: k_xy = final_parameters[m] # Update value of "bond_k" parameter.value = k_xy m += 1 elif parameter.param_key not in ["torsion_phase", "bond_eq", "angle_eq"]: raise NotImplementedError("Fitting of {} not implemented in LLS.".format(parameter.param_key)) return def _calculate_a(self, system, alpha_bond=None, alpha_angle=None): """ Method that calculates the A matrix. Parameters ---------- system : :obj:`ParaMol.System.system.ParaMolSystem` Instance of a ParaMol System. alpha_bond : float alpha_angle : float Returns ------- self._A : np.array Array containing the A matrix. """ self._initial_param_regularization = [] self._param_keys_list = [] self._p0 = [] self._param_symmetries_list = [] r_matrix = [] for parameter in self._parameter_space.optimizable_parameters: ff_term = parameter.ff_term # ---------------------------------------------------------------- # # Bonds # # ---------------------------------------------------------------- # if parameter.param_key == "bond_k": # Calculate distances distances = [] at1, at2 = ff_term.atoms for conformation in system.ref_coordinates: distances.append(calculate_distance(conformation[at1], conformation[at2])) distances = np.asarray(distances) if ff_term.parameters["bond_eq"].optimize: #x0_x = np.min(distances) #x0_y = np.max(distances) # Alternative way of calculating x0_x and x0_y, leave it here x0_x = ff_term.parameters["bond_eq"].value * (1 - alpha_bond) x0_y = ff_term.parameters["bond_eq"].value * (1 + alpha_bond) r_vec = np.empty((system.n_structures, 2)) for m in range(system.n_structures): r_vec[m, 0] = 0.5 * (distances[m] - x0_x) * (distances[m] - x0_x) r_vec[m, 1] = 0.5 * (distances[m] - x0_y) * (distances[m] - x0_y) r_matrix.append(r_vec) self._p0.append(x0_x) self._p0.append(x0_y) self._param_keys_list.append(parameter.param_key) self._param_keys_list.append(parameter.param_key) self._initial_param_regularization.append(parameter.value) self._initial_param_regularization.append(parameter.value) self._param_symmetries_list.append(parameter.symmetry_group+"_x") self._param_symmetries_list.append(parameter.symmetry_group+"_y") else: x0 = ff_term.parameters["bond_eq"].value r_vec = np.empty((system.n_structures, 1)) for m in range(system.n_structures): r_vec[m, 0] = 0.5 * (distances[m] - x0) * (distances[m] - x0) r_matrix.append(r_vec) self._p0.append(x0) self._param_keys_list.append(parameter.param_key) self._initial_param_regularization.append(parameter.value) self._param_symmetries_list.append(parameter.symmetry_group) # ---------------------------------------------------------------- # # Angles # # ---------------------------------------------------------------- # elif parameter.param_key == "angle_k": # Calculate angles angles = [] at1, at2, at3 = ff_term.atoms for conformation in system.ref_coordinates: v1 = conformation[at1]-conformation[at2] v2 = conformation[at3]-conformation[at2] angles.append(calculate_angle(v1, v2)) angles =
np.asarray(angles)
numpy.asarray
#!/usr/bin/python2.7 ''' --------------------------- Licensing and Distribution --------------------------- Program name: Pilgrim Version : 1.0 License : MIT/x11 Copyright (c) 2019, <NAME> (<EMAIL>) and <NAME> (<EMAIL>) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --------------------------- *----------------------------------* | Package : common | | Module : internal | | Last Update: 2019/04/03 (Y/M/D) | | Main Author: <NAME> | *----------------------------------* This module contains some functions related to internal coordinates Functions (internal.py): * ic2string(ic) * string2ic(icstring) * merge_ics(ics_st,ics_ab,ics_lb,ics_it,ics_pt) * unmerge_ics(all_ics) * count_ics(all_ics) * get_adjmatrix(xcc,symbols,scale=1.2,mode="bool") * get_numbonds(amatrix) * adjacency_matrix2list(amatrix) * get_subgraph(node,alist,fragment=[]) * get_fragments(alist) * distance_2fragments(frg1,frg2,xcc) * distance_allfragments(fragments,xcc) * frags_distances(fragments) * link_fragments(xcc,amatrix,nfrags=1) * ics_value(xcc,ic) * ics_get_stretchings(cmatrix,natoms) * ics_get_iccentral(adj_list) * ics_classify_bends(xcc,ic_3ats,eps_lin=5.0) * ics_get_ptorsions(ics_st,adj_list,xcc,epslin=5.0) * ics_get_ltorsions(ics_lb,adj_list) * ics_from_geom(xcc,symbols,scale=1.3,nfrags=1,eps_lin=5.0) * ics_from_gts(gtsfile,scale=1.3,nfrags=1,eps_lin=5.0) * ics_depure_bendings(ic_3ats,keep=[]) * ics_depure_itorsions(ic_4ats,keep=[]) * ics_depure_ptorsions(ic_4ats,keep=[]) * ics_depure(ics,keep=[]) * ics_correctdir(x1,evec,ic,sign) * ics_idir(xcc,symbols,masses,freqs,ms_evecs,ics=[],mu=1.0/AMU) * wilson_bvecs(xcc) * wilson_stretch(bond_vectors,ij,natoms) * wilson_abend(bond_vectors,ijk,natoms) * wilson_auxlinB(m,o,n,k) * wilson_auxlinC(m,o,n,k,Bk=None,Dk=None) * wilson_lbend(m,o,n,MON,natoms) * wilson_torsion(bond_vectors,ijkl,natoms) * wilson_getBC(xcc,all_ics) * wilson_getu(masses) * wilson_getG(u,B) * wilson_gf_internal(u,B,C,Ginv,gcc,Fcc) * wilson_gf_nonred(G,Ginv,g,f) * wilson_prj_rc(gnr,fnr,G,nics) * wilson_evecsincart(L,G,A,masses) * calc_icfreqs(Fcc,masses,xcc,gcc,all_ics,bool_prc=False) * nonredundant(xcc,masses,gcc,Fcc,all_ics,ccfreqs,unremov=[],ncycles=None) * nonredundant_gtsfiles(gtsfiles,all_ics,unremov=[],ncycles=None) ''' import random import os import sys import numpy as np import fncs as fncs from scipy.optimize import brenth from dicts import dpt_s2cr from physcons import AMU from files import read_gtsfile from criteria import EPS_SCX from criteria import EPS_SVD from criteria import EPS_GIV from criteria import EPS_ICF from criteria import EPS_SMALLANGLE #===============================================# # Internal coordinates / Graph Theory # #===============================================# def ic2string(ic): ictype, icatoms = ic if ictype == "st": return "-".join(["%i"%(at+1) for at in icatoms]) if ictype == "ab": return "-".join(["%i"%(at+1) for at in icatoms]) if ictype == "pt": return "-".join(["%i"%(at+1) for at in icatoms]) if ictype == "lb": return "=".join(["%i"%(at+1) for at in icatoms]) if ictype == "it": return "_".join(["%i"%(at+1) for at in icatoms]) #---------------------------------------------# def string2ic(icstring): if "-" in icstring: atoms = [int(at)-1 for at in icstring.split("-")] if len(atoms) == 2: case = "st" elif len(atoms) == 3: case = "ab" elif len(atoms) == 4: case = "pt" else: exit("Problems with internal coordinate!") if atoms[0] > atoms[-1]: atoms = atoms[::-1] if "=" in icstring: atoms = [int(at)-1 for at in icstring.split("=")] case = "lb" if len(atoms) != 3: exit("Problems with internal coordinate!") if atoms[0] > atoms[-1]: atoms = atoms[::-1] if "_" in icstring: atoms = [int(at)-1 for at in icstring.split("_")] case = "it" if len(atoms) != 4: exit("Problems with internal coordinate!") atoms = tuple(sorted(atoms[0:3])+atoms[3:4]) return (case,atoms) #-----------------------------------------------# def merge_ics(ics_st,ics_ab,ics_lb,ics_it,ics_pt): all_ics = [ ("st",ic) for ic in sorted(ics_st)] # stretching all_ics += [ ("ab",ic) for ic in sorted(ics_ab)] # angular bending all_ics += [ ("lb",ic) for ic in sorted(ics_lb)] # linear bending all_ics += [ ("it",ic) for ic in sorted(ics_it)] # improper torsion all_ics += [ ("pt",ic) for ic in sorted(ics_pt)] # proper torsion return all_ics #-----------------------------------------------# def unmerge_ics(all_ics): ics_st = [ ic for ic_type,ic in all_ics if ic_type=="st"] ics_ab = [ ic for ic_type,ic in all_ics if ic_type=="ab"] ics_lb = [ ic for ic_type,ic in all_ics if ic_type=="lb"] ics_it = [ ic for ic_type,ic in all_ics if ic_type=="it"] ics_pt = [ ic for ic_type,ic in all_ics if ic_type=="pt"] return ics_st,ics_ab,ics_lb,ics_it,ics_pt #-----------------------------------------------# def count_ics(all_ics): ics_st,ics_ab,ics_lb,ics_it,ics_pt = unmerge_ics(all_ics) nICs = len(ics_st)+len(ics_ab)+2*len(ics_lb)+len(ics_it)+len(ics_pt) return nICs #-----------------------------------------------# def get_adjmatrix(xcc,symbols,scale=1.2,mode="bool"): ''' returns adjacency matrix (connection matrix); also distance matrix and number of bonds * mode = bool, int ''' nbonds = 0 nat = fncs.howmanyatoms(xcc) dmatrix = fncs.get_distmatrix(xcc) if mode == "bool": no, yes = False, True if mode == "int" : no, yes = 0 , 1 cmatrix = [ [no for ii in range(nat)] for jj in range(nat)] for ii in range(nat): cr_ii = dpt_s2cr[symbols[ii]] # covalent radius for jj in range(ii+1,nat): cr_jj = dpt_s2cr[symbols[jj]] dref = (cr_ii+cr_jj)*scale if dmatrix[ii][jj] < dref: nbonds += 1 cmatrix[ii][jj] = yes cmatrix[jj][ii] = yes return cmatrix, dmatrix, nbonds #-----------------------------------------------# def get_numbonds(amatrix): nbonds = 0 nnodes = len(amatrix) for node1 in range(nnodes): for node2 in range(node1+1,nnodes): if amatrix[node1][node2] in [True,1]: nbonds += 1 return nbonds #-----------------------------------------------# def adjacency_matrix2list(amatrix): alist = {} for node1,row in enumerate(amatrix): alist[node1]= [node2 for node2, bonded in enumerate(row) if bonded in [True,1]] return alist #-----------------------------------------------# def get_subgraph(node,alist,fragment=[]): fragment += [node] neighbors = alist[node] for neighbor in neighbors: if neighbor not in fragment: fragment = get_subgraph(neighbor,alist,fragment) return fragment #-----------------------------------------------# def get_fragments(alist): fragments = [] visited = set([]) for node in alist.keys(): if node in visited: continue fragment = set(get_subgraph(node,alist,[])) if fragment not in fragments: fragments.append(fragment) visited = visited.union(fragment) return fragments #-----------------------------------------------# def distance_2fragments(frg1,frg2,xcc): min_dist = float("inf") pair = (None,None) for at1 in frg1: x1 = fncs.xyz(xcc,at1) for at2 in frg2: x2 = fncs.xyz(xcc,at2) dist = fncs.distance(x1,x2) if dist < min_dist: min_dist = dist pair = (at1,at2) return min_dist, pair #-----------------------------------------------# def distance_allfragments(fragments,xcc): nfrags = len(fragments) the_list = [] for idx1 in range(nfrags): frg1 = fragments[idx1] for idx2 in range(idx1+1,nfrags): frg2 = fragments[idx2] dist, (at1,at2) = distance_2fragments(frg1,frg2,xcc) the_list.append( (dist,idx1,idx2,at1,at2) ) return sorted(the_list) #-----------------------------------------------# def frags_distances(fragments): ''' use distance_allfragments - this one returns distance of 1 and just first atom in each fragment''' fdists = [] nfrags = len(fragments) for idx1 in range(nfrags): for idx2 in range(idx1+1,nfrags): dist = 1.0 atf1 = list(fragments[idx1])[0] atf2 = list(fragments[idx2])[0] fdists.append( (1.0,idx1,idx2,atf1,atf2) ) fdists.sort() return fdists #-----------------------------------------------# def link_fragments(xcc,amatrix,nfrags=1): if amatrix[0][0] is False: bonded = True elif amatrix[0][0] is 0 : bonded = 1 else: exit("sth wrong in adjacency matrix!") alist = adjacency_matrix2list(amatrix) fragments = get_fragments(alist) #fdists = frags_distances(fragments) fdists = distance_allfragments(fragments,xcc) inumfrags = len(fragments) fnumfrags = len(fragments) for dist,idx1,idx2,atf1,atf2 in fdists: fragments[idx1] = fragments[idx1].union(fragments[idx2]) fragments[idx2] = set([]) amatrix[atf1][atf2] = bonded amatrix[atf2][atf1] = bonded fnumfrags = sum([1 for frag in fragments if len(frag)!=0]) if fnumfrags == nfrags: break fragments = [frag for frag in fragments if len(frag) != 0] return amatrix, fragments, inumfrags, fnumfrags #-----------------------------------------------# def ics_value(xcc,ic): ''' ic = (ic_type,ic_atoms)''' if type(ic) == type("string"): ic_type,ic_atoms = string2ic(ic) else: ic_type,ic_atoms = ic if ic_type == "st": return fncs.distance( *(fncs.xyz(xcc,at) for at in ic_atoms) ) if ic_type == "ab": return fncs.angle( *(fncs.xyz(xcc,at) for at in ic_atoms) ) if ic_type == "lb": return fncs.angle( *(fncs.xyz(xcc,at) for at in ic_atoms) ) if ic_type == "it": return fncs.dihedral( *(fncs.xyz(xcc,at) for at in ic_atoms) ) if ic_type == "pt": return fncs.dihedral( *(fncs.xyz(xcc,at) for at in ic_atoms) ) #-----------------------------------------------# def ics_get_stretchings(cmatrix,natoms): ics_st = [(at1,at2) for at1 in range(natoms) for at2 in range(at1,natoms) if cmatrix[at1][at2] in [True,1]] return ics_st #-----------------------------------------------# def ics_get_iccentral(adj_list): ic_3ats = [] ic_4ats = [] for at2 in adj_list.keys(): bonded = adj_list[at2] nbonded = len(bonded) if nbonded < 2: continue for idx1 in range(nbonded): for idx3 in range(idx1+1,nbonded): bending = (bonded[idx1],at2,bonded[idx3]) ic_3ats.append(bending) if nbonded < 3: continue for idx4 in range(idx3+1,nbonded): improper_torsion = (bonded[idx1],bonded[idx3],bonded[idx4],at2) ic_4ats.append(improper_torsion) return ic_3ats, ic_4ats #-----------------------------------------------# def ics_classify_bends(xcc,ic_3ats,eps_lin=5.0): ics_lb = [] ics_ab = [] thetas = {} for at1,at2,at3 in ic_3ats: x1 = fncs.xyz(xcc,at1) x2 = fncs.xyz(xcc,at2) x3 = fncs.xyz(xcc,at3) theta = abs(fncs.rad2deg(fncs.angle(x1,x2,x3))) if theta < eps_lin or theta > 180-eps_lin: ics_lb.append( (at1,at2,at3) ) else: ics_ab.append( (at1,at2,at3) ) thetas[(at1,at2,at3)] = theta return ics_lb, ics_ab, thetas #-----------------------------------------------# def ics_get_ptorsions(ics_st,adj_list,xcc,epslin=5.0): '''epslin in degrees''' ics_pt = [] for at2,at3 in ics_st: x2 = fncs.xyz(xcc,at2) x3 = fncs.xyz(xcc,at3) bondedto2 = list(adj_list[at2]) bondedto3 = list(adj_list[at3]) bondedto2.remove(at3) bondedto3.remove(at2) if len(bondedto2) == 0: continue if len(bondedto3) == 0: continue for at1 in bondedto2: x1 = fncs.xyz(xcc,at1) for at4 in bondedto3: if at1 == at4: continue x4 = fncs.xyz(xcc,at4) # the two angles angA = fncs.rad2deg(fncs.angle(x1,x2,x3)) angB = fncs.rad2deg(fncs.angle(x2,x3,x4)) # linear? booleanA = angA < epslin or angA > 180-epslin booleanB = angB < epslin or angB > 180-epslin if booleanA or booleanB: continue ptorsion = (at1,at2,at3,at4) ics_pt.append(ptorsion) return ics_pt #-----------------------------------------------# def ics_get_ltorsions(ics_lb,adj_list): ic_ltors = [] for at1,at2,at3 in ics_lb: bondedto1 = list(adj_list[at1]) bondedto3 = list(adj_list[at3]) if at1 in bondedto3: bondedto3.remove(at1) if at2 in bondedto3: bondedto3.remove(at2) if at2 in bondedto1: bondedto1.remove(at2) if at3 in bondedto1: bondedto1.remove(at3) for at0 in bondedto1: for at4 in bondedto3: if at0 == at4: continue ltorsion = (at0,at1,at3,at4) ic_ltors.append(ltorsion) return ic_ltors #-----------------------------------------------# def ics_from_geom(xcc,symbols,scale=1.3,nfrags=1,eps_lin=5.0): natoms = len(symbols) amatrix, dmatrix, nbonds = get_adjmatrix(xcc,symbols,scale=scale,mode="bool") amatrix, fragments, inumfrags, fnumfrags = link_fragments(xcc,amatrix,nfrags=nfrags) if inumfrags != fnumfrags: nbonds = get_numbonds(amatrix) alist = adjacency_matrix2list(amatrix) ics_st = ics_get_stretchings(amatrix,natoms) ic_3ats, ics_it = ics_get_iccentral(alist) ics_lb, ics_ab, angles = ics_classify_bends(xcc,ic_3ats,eps_lin) ics_pt = ics_get_ptorsions(ics_st,alist,xcc,eps_lin) ics_pt += ics_get_ltorsions(ics_lb,alist) return merge_ics(ics_st,ics_ab,ics_lb,ics_it,ics_pt) #-----------------------------------------------# def ics_from_gts(gtsfile,scale=1.3,nfrags=1,eps_lin=5.0): xcc,atonums,ch,mtp,E,gcc,Fcc,masses,pgroup,rotsigma,freq_list = read_gtsfile(gtsfile) symbols = fncs.get_symbols(atonums) return ics_from_geom(xcc,symbols,scale,nfrags,eps_lin) #-----------------------------------------------# def ics_depure_bendings(ic_3ats,keep=[]): ''' up to 3 bendings per central atom''' centers = [at2 for at1,at2,at3 in keep] random.shuffle(ic_3ats) for at1,at2,at3 in ic_3ats: if centers.count(at2) >= 3: continue #if at2 in centers: continue keep.append( (at1,at2,at3) ) centers.append(at2) return keep #-----------------------------------------------# def ics_depure_itorsions(ic_4ats,keep=[]): ''' up to two improper torsions per atom''' centers = [at4 for at1,at2,at3,at4 in keep] random.shuffle(ic_4ats) for at1,at2,at3,at4 in ic_4ats: if centers.count(at4) >= 2: continue #if at4 in centers: continue keep.append( (at1,at2,at3,at4) ) centers.append(at4) return keep #-----------------------------------------------# def ics_depure_ptorsions(ic_4ats,keep=[]): ''' one torsion per bond''' centers = [(at2,at3) for at1,at2,at3,at4 in keep] random.shuffle(ic_4ats) for at1,at2,at3,at4 in ic_4ats: if (at2,at3) in centers: continue if (at3,at2) in centers: continue keep.append( (at1,at2,at3,at4) ) centers.append((at2,at3)) return keep #-----------------------------------------------# def ics_depure(ics,keep=[]): ''' keep: those that cannot be removed ''' ics_st ,ics_ab ,ics_lb ,ics_it ,ics_pt = unmerge_ics(ics) keep_st,keep_ab,keep_lb,keep_it,keep_pt = unmerge_ics(keep) # depure angular bendings ics_ab = ics_depure_bendings(ics_ab,keep_ab) # depure torsions ics_it = ics_depure_itorsions(ics_it,keep_it) ics_pt = ics_depure_ptorsions(ics_pt,keep_pt) # merge again ics = merge_ics(ics_st,ics_ab,ics_lb,ics_it,ics_pt) return ics #-----------------------------------------------# def ics_correctdir(x1,evec,ic,sign,masses=None,mu=None): ''' x1 and evec NOT in mass-scaled ''' x2 = [xi+ei for xi,ei in zip(x1,evec)] if masses is not None: x1 = fncs.ms2cc_x(x1,masses,mu) x2 = fncs.ms2cc_x(x2,masses,mu) val1 = ics_value(x1,ic) val2 = ics_value(x2,ic) diff = val2-val1 if diff > 0.0: if sign == "++": return True if sign == "--": return False elif diff < 0.0: if sign == "++": return False if sign == "--": return True #-----------------------------------------------# def ics_idir(xcc,symbols,masses,freqs,ms_evecs,ics=[],mu=1.0/AMU): ''' returns the IC which varies the most due to the imaginary frequency ''' if len(ics) == 0: ics = ics_from_geom(xcc,symbols) for freq,Lms in zip(freqs,ms_evecs): # only imaginary frequency if freq >= 0.0: continue Lcc = fncs.ms2cc_x(Lms,masses,mu) xfin = [xi+ei for xi,ei in zip(xcc,Lcc)] target_ic = None target_sign = None maxdiff = -float("inf") for ic in ics: ival = ics_value(xcc ,ic) fval = ics_value(xfin,ic) # the sign if fval >= ival: sign = "++" else : sign = "--" # reference for bonds or angles if len(ic[1]) == 2: reference = 1.0 # 1.0 bohr else : reference = np.pi/2.0 # 90 degrees # get absolute diff if len(ic[1]) == 4: adiff = abs(fncs.angular_dist(fval,ival,'rad')) else : adiff = abs(fval - ival) # get relative difference with regards to reference reldiff = abs(adiff/reference) # get the one that changes the most if reldiff > maxdiff: target_ic = ic target_sign = sign maxdiff = reldiff return target_ic,target_sign #===============================================# #===============================================# # WILSON method for freqs in internal coords # #===============================================# ''' Some references: [1] <NAME> and <NAME>, The Wilson GF Matrix Method of Vibrational Analysis. Part I, II, and III Can.J.Spectros., 24, 1-10 (1979) ; Can.J.Spectros., 24, 35-40 (1979) ; Can.J.Spectros., 24, 65-74 (1979) [2] <NAME>, Torsional Internal Coordinates in Normal Coordinate Calculations J. Mol. Spectros., 66, 288-301 (1977) [3] <NAME>, <NAME>, <NAME>, Reaction-path potential and vibrational frequencies in terms of curvilinear internal coordinates J. Chem. Phys. 102, 3188-3201 (1995) [4] <NAME> and <NAME>, Reaction-Path Dynamics in Redundant Internal Coordinates J. Phys. Chem. A, 102, 242-247 (1998) [5] <NAME> and <NAME>, The efficient optimization of molecular geometries using redundant internal coordinates J. Chem. Phys., 117, 9160-9174 (2002) ''' #-----------------------------------------------# def wilson_bvecs(xcc): ''' This functions calculates the distance between each pair of atoms (dij) and also the unit bond vector eij = (rj - ri)/dij ''' nat = fncs.howmanyatoms(xcc) bond_vectors = {} for ii in range(nat): ri = np.array(fncs.xyz(xcc,ii)) for jj in range(ii+1,nat): rj = np.array(fncs.xyz(xcc,jj)) eij = rj-ri dij = np.linalg.norm(eij) eij = eij / dij bond_vectors[(ii,jj)] = ( eij, dij) bond_vectors[(jj,ii)] = (-eij, dij) return bond_vectors #-----------------------------------------------# def wilson_stretch(bond_vectors,ij,natoms): ''' Returns the row of the B matrix associated to the bond length between atom i and atom j and also the corresponding C matrix. Check ref [1] and [5]. ''' # Using nomenclature of reference [5] n = min(ij) m = max(ij) u, r = bond_vectors[(n,m)] # Calculating 1st derivatives: row of B matrix B_row = [0.0 for idx in range(3*natoms)] for a in [m,n]: if a == m: zeta_amn = +1.0 if a == n: zeta_amn = -1.0 for i in [0,1,2]: dr_dai = zeta_amn * u[i] B_row[3*a+i] = dr_dai # Calculating 2nd derivatives: 2D matrix of C tensor C_matrix = [ [0.0 for idx1 in range(3*natoms)] for idx2 in range(3*natoms)] #C_matrix = np.zeros( (3*natoms,3*natoms) ) for a in [m,n]: for i in [0,1,2]: for b in [m,n]: for j in [0,1,2]: if C_matrix[3*a+i][3*b+j] != 0.0: continue # Get delta values if a == b: delta_ab = 1.0 else: delta_ab = 0.0 if i == j: delta_ij = 1.0 else: delta_ij = 0.0 # Get C element dr_daidbj = ((-1.0) ** delta_ab) * (u[i]*u[j] - delta_ij) / r # Save data in both positions C_matrix[3*a+i][3*b+j] = dr_daidbj C_matrix[3*b+j][3*a+i] = dr_daidbj return [B_row], [C_matrix] #-----------------------------------------------# def wilson_abend(bond_vectors,ijk,natoms): ''' Returns the row of the B matrix associated to the i-j-k angle bend and the corresponding C matrix. Check ref [1] and [5]. ''' # Using nomenclature of reference [5] m, o, n = ijk u, lambda_u = bond_vectors[(o,m)] v, lambda_v = bond_vectors[(o,n)] # Get internal coordinate: bond angle q = fncs.angle_vecs(u,v) sinq = np.sin(q) cosq = np.cos(q) # Generation of w w = np.cross(u,v) w = w / np.linalg.norm(w) uxw = np.cross(u,w) wxv = np.cross(w,v) # Calculating 1st derivatives: row of B matrix B_row = [0.0 for idx in range(3*natoms)] for a in [m,o,n]: # Get zeta values if a == m: zeta_amo = +1.0; zeta_ano = 0.0 if a == o: zeta_amo = -1.0; zeta_ano = -1.0 if a == n: zeta_amo = 0.0; zeta_ano = +1.0 for i in [0,1,2]: # Get B element dq_dai = zeta_amo * uxw[i] / lambda_u + zeta_ano * wxv[i] / lambda_v B_row[3*a+i] = dq_dai # Calculating 2nd derivatives: 2D matrix of C tensor #C_matrix = np.zeros( (3*natoms,3*natoms) ) C_matrix = [ [0.0 for idx1 in range(3*natoms)] for idx2 in range(3*natoms)] if abs(sinq) < EPS_SCX: return [B_row], [C_matrix] for a in [m,o,n]: for i in [0,1,2]: for b in [m,o,n]: for j in [0,1,2]: if C_matrix[3*a+i][3*b+j] != 0.0: continue # Define all delta and zeta values if a == m: zeta_amo = +1.0; zeta_ano = 0.0 if a == o: zeta_amo = -1.0; zeta_ano = -1.0 if a == n: zeta_amo = 0.0; zeta_ano = +1.0 if b == m: zeta_bmo = +1.0; zeta_bno = 0.0 if b == o: zeta_bmo = -1.0; zeta_bno = -1.0 if b == n: zeta_bmo = 0.0; zeta_bno = +1.0 if i == j: delta_ij = 1.0 else: delta_ij = 0.0 # Get second derivative t1 = zeta_amo*zeta_bmo*(u[i]*v[j]+u[j]*v[i]-3*u[i]*u[j]*cosq+delta_ij*cosq)/(lambda_u**2 * sinq) t2 = zeta_ano*zeta_bno*(v[i]*u[j]+v[j]*u[i]-3*v[i]*v[j]*cosq+delta_ij*cosq)/(lambda_v**2 * sinq) t3 = zeta_amo*zeta_bno*(u[i]*u[j]+v[j]*v[i]-u[i]*v[j]*cosq-delta_ij)/(lambda_u*lambda_v*sinq) t4 = zeta_ano*zeta_bmo*(v[i]*v[j]+u[j]*u[i]-v[i]*u[j]*cosq-delta_ij)/(lambda_u*lambda_v*sinq) t5 = cosq / sinq * B_row[3*a+i] * B_row[3*b+j] dr_daidbj = t1 + t2 + t3 + t4 - t5 C_matrix[3*a+i][3*b+j] = dr_daidbj C_matrix[3*b+j][3*a+i] = dr_daidbj return [B_row], [C_matrix] #-----------------------------------------------# def wilson_auxlinB(m,o,n,k): om = m - o on = n - o dom = np.linalg.norm(om) don = np.linalg.norm(on) qk = ((n[2]-o[2])*(m[k]-o[k]) - (n[k]-o[k])*(m[2]-o[2])) / dom / don Bk = [] Dk = [] for a in ["m","o","n"]: for i in [0,1,2]: if a == "m": dam, dao, dan = 1.0, 0.0, 0.0 if a == "o": dam, dao, dan = 0.0, 1.0, 0.0 if a == "n": dam, dao, dan = 0.0, 0.0, 1.0 if i == 2 : di2 = 1.0 else : di2 = 0.0 if i == k : dik = 1.0 else : dik = 0.0 # Numerator N_ai = dik*(dao-dan)*m[2] + di2*(dan-dao)*m[k] +\ dik*(dan-dam)*o[2] + di2*(dam-dan)*o[k] +\ dik*(dam-dao)*n[2] + di2*(dao-dam)*n[k] # Denominator D_ai = (dam-dao)*(m[i]-o[i]) * don / dom + \ (dan-dao)*(n[i]-o[i]) * dom / don Dk.append(D_ai) # Whole derivative B_ai = (N_ai - qk*D_ai) / (dom*don) Bk.append(B_ai) return np.array(Bk), np.array(Dk) #-----------------------------------------------# def wilson_auxlinC(m,o,n,k,Bk=None,Dk=None): om = m - o on = n - o dom = np.linalg.norm(om) don =
np.linalg.norm(on)
numpy.linalg.norm
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den =
N.array([2,1,2])
numpy.array
import numpy as np def ptiread(file_name): fid = open(file_name, "r", encoding='utf-8', errors='ignore') headerlinecnt = 1 numref = 1 ## Get all information # get hearder information setup # first 15 lines are setup info tline = fid.readline() # determine start header line while tline != '[SETUP START]\n': numref += 1 headerlinecnt += 1 end_setup = numref + 13 tline = fid.readline() while headerlinecnt<end_setup: tline = fid.readline() headerlinecnt = headerlinecnt + 1 if headerlinecnt == (numref+2): RECInfoSectionSize = int(tline.partition('=')[2]) if headerlinecnt == (numref+3): RECInfoSectionPos = int(tline.partition('=')[2]) if headerlinecnt==(numref + 4): SampleFrequency = int(float(tline.partition('=')[2])) if headerlinecnt==(numref+5): numchannels = int(tline.partition('=')[2]) if headerlinecnt==(numref+11): Sample = int(tline.partition('=')[2]) if headerlinecnt==(numref+12): Date = tline.partition('=')[2] if headerlinecnt==(numref+13): Time = tline.partition('=')[2] ## Get channel info # the most important infor is correction factor CorrectionFactor = [] for nchann in range(numchannels): for i in range(10): tline = fid.readline() if tline.partition('=')[0] == 'CorrectionFactor': CorrectionFactor.append(float(tline.partition('=')[2])) if tline.partition('=')[0] == 'SampleFrequency': SampleFrequency = int(tline.partition('=')[2]) ## Read binary data # poiter to main data # 20 bytes may a subheader which may not important fid.seek( RECInfoSectionPos + RECInfoSectionSize + 20, 0) # the size of each segment, it around 250 ms # fro Fs = 8192 Hz, it is 2048*4 bytes data + 4*4 bytes info (channel id) dsize =
np.fromfile(fid, dtype=np.int16, count=1)
numpy.fromfile
""" Implements exhaustive best subset regression for ESL.""" import numpy as np import copy import itertools as itr from typing import List from sklearn.linear_model import LinearRegression from .esl_regressor import EslRegressor class BestSubsetRegression(EslRegressor): """ Exhaustive best subset regression for ESL.""" def __init__(self, subset_size: int): """ Instantiates a Best Subset regressor. Args: regressor: regressor used for regression after subset selection. subset_size: subset size. """ self.subset_size = subset_size self.__best_models = None # type: List[LinearRegression] self.__best_preds = None # type: np.ndarray # shape: (n_responses, subset_size) def best_preds(self, i_resp: int): """ Returns the array of best predictors for a specific response.""" return self.__best_preds[i_resp, :] def _fit(self, X: np.ndarray, Y: np.ndarray = None): """ Trains the regressor. Args: X: numpy matrix of input features, dimensions ``(N, n_features)``. Y: 2d numpy array of responses, dimensions ``(N, n_responses)``. """ best_scores = np.full(shape=(self._n_responses,), fill_value=-np.inf) self.__best_models = [None] * self._n_responses self.__best_preds =
np.zeros((self._n_responses, self.subset_size), dtype=int)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Join Hypocenter-Velocity Inversion on Tetrahedral meshes (JHVIT). 6 functions can be called and run in this package: 1- jntHypoVel_T : Joint hypocenter-velocity inversion of P wave data, parametrized via the velocity model. 2- jntHyposlow_T : Joint hypocenter-velocity inversion of P wave data, parametrized via the slowness model. 3- jntHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, parametrized via the velocity models. 4- jntHyposlowPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, parametrized via the slowness models. 5-jointHypoVel_T : Joint hypocenter-velocity inversion of P wave data. Input data and inversion parameters are downloaded automatically from external text files. 6-jointHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data. Input data and inversion parameters are downloaded automatically from external text files. Notes: - The package ttcrpy must be installed in order to perform the raytracing step. This package can be downloaded from: https://ttcrpy.readthedocs.io/en/latest/ - To prevent bugs, it would be better to use python 3.7 Created on Sat Sep 14 2019 @author: <NAME> """ import numpy as np import scipy.sparse as sp import scipy.sparse.linalg as spl import scipy.stats as scps import re import sys import copy from mesh import MSHReader from ttcrpy import tmesh from multiprocessing import Pool, cpu_count, current_process, Manager import multiprocessing as mp from collections import OrderedDict try: import vtk from vtk.util.numpy_support import numpy_to_vtk except BaseException: print('VTK module not found, saving velocity model in vtk form is disabled') def msh2vtk(nodes, cells, velocity, outputFilename, fieldname="Velocity"): """ Generate a vtk file to store the velocity model. Parameters ---------- nodes : np.ndarray, shape (nnodes, 3) Node coordinates. cells : np.ndarray of int, shape (number of cells, 4) Indices of nodes forming each cell. velocity : np.ndarray, shape (nnodes, 1) Velocity model. outputFilename : string The output vtk filename. fieldname : string, optional The saved field title. The default is "Velocity". Returns ------- float return 0.0 if no bugs occur. """ ugrid = vtk.vtkUnstructuredGrid() tPts = vtk.vtkPoints() tPts.SetNumberOfPoints(nodes.shape[0]) for n in range(nodes.shape[0]): tPts.InsertPoint(n, nodes[n, 0], nodes[n, 1], nodes[n, 2]) ugrid.SetPoints(tPts) VtkVelocity = numpy_to_vtk(velocity, deep=0, array_type=vtk.VTK_DOUBLE) VtkVelocity.SetName(fieldname) ugrid.GetPointData().SetScalars(VtkVelocity) Tetra = vtk.vtkTetra() for n in np.arange(cells.shape[0]): Tetra.GetPointIds().SetId(0, cells[n, 0]) Tetra.GetPointIds().SetId(1, cells[n, 1]) Tetra.GetPointIds().SetId(2, cells[n, 2]) Tetra.GetPointIds().SetId(3, cells[n, 3]) ugrid.InsertNextCell(Tetra.GetCellType(), Tetra.GetPointIds()) gWriter = vtk.vtkUnstructuredGridWriter() gWriter.SetFileName(outputFilename) gWriter.SetInputData(ugrid) gWriter.SetFileTypeToBinary() gWriter.Update() return 0.0 def check_hypo_indomain(Hypo_new, P_Dimension, Mesh=None): """ Check if the new hypocenter is still inside the domain and project it onto the domain surface otherwise. Parameters ---------- Hypo_new : np.ndarray, shape (3, ) or (3,1) The updated hypocenter coordinates. P_Dimension : np.ndarray, shape (6, ) Domain borders: the maximum and minimum of its 3 dimensions. Mesh : instance of the class tmesh, optional The domain discretization. The default is None. Returns ------- Hypo_new : np.ndarray, shape (3, ) The input Hypo_new or its projections on the domain surface. outside : boolean True if Hypo_new was outside the domain. """ outside = False Hypo_new = Hypo_new.reshape([1, -1]) if Hypo_new[0, 0] < P_Dimension[0]: Hypo_new[0, 0] = P_Dimension[0] outside = True if Hypo_new[0, 0] > P_Dimension[1]: Hypo_new[0, 0] = P_Dimension[1] outside = True if Hypo_new[0, 1] < P_Dimension[2]: Hypo_new[0, 1] = P_Dimension[2] outside = True if Hypo_new[0, 1] > P_Dimension[3]: Hypo_new[0, 1] = P_Dimension[3] outside = True if Hypo_new[0, 2] < P_Dimension[4]: Hypo_new[0, 2] = P_Dimension[4] outside = True if Hypo_new[0, 2] > P_Dimension[5]: Hypo_new[0, 2] = P_Dimension[5] outside = True if Mesh: if Mesh.is_outside(Hypo_new): outside = True Hypout = copy.copy(Hypo_new) Hypin = np.array([[Hypo_new[0, 0], Hypo_new[0, 1], P_Dimension[4]]]) distance = np.sqrt(np.sum((Hypin - Hypout)**2)) while distance > 1.e-5: Hmiddle = 0.5 * Hypout + 0.5 * Hypin if Mesh.is_outside(Hmiddle): Hypout = Hmiddle else: Hypin = Hmiddle distance = np.sqrt(np.sum((Hypout - Hypin)**2)) Hypo_new = Hypin return Hypo_new.reshape([-1, ]), outside class Parameters: def __init__(self, maxit, maxit_hypo, conv_hypo, Vlim, VpVslim, dmax, lagrangians, max_sc, invert_vel=True, invert_VsVp=False, hypo_2step=False, use_sc=True, save_vel=False, uncrtants=False, confdce_lev=0.95, verbose=False): """ Parameters ---------- maxit : int Maximum number of iterations. maxit_hypo : int Maximum number of iterations to update hypocenter coordinates. conv_hypo : float Convergence criterion. Vlim : tuple of 3 or 6 floats Vlmin holds the maximum and the minimum values of P- and S-wave velocity models and the slopes of the penalty functions, example Vlim = (Vpmin, Vpmax, PAp, Vsmin, Vsmax, PAs). VpVslim : tuple of 3 floats Upper and lower limits of Vp/Vs ratio and the slope of the corresponding Vp/Vs penalty function. dmax : tuple of four floats It holds the maximum admissible corrections for the velocity models (dVp_max and dVs_max), the origin time (dt_max) and the hypocenter coordinates (dx_max). lagrangians : tuple of 6 floats Penalty and constraint weights: λ (smoothing constraint weight), γ (penalty constraint weight), α (weight of velocity data point const- raint), wzK (vertical smoothing weight), γ_vpvs (penalty constraint weight of Vp/Vs ratio), stig (weight of the constraint used to impose statistical moments on Vp/Vs model). invert_vel : boolean, optional Perform velocity inversion if True. The default is True. invert_VsVp : boolean, optional Find Vp/Vs ratio model rather than S wave model. The default is False. hypo_2step : boolean, optional Relocate hypocenter events in 2 steps. The default is False. use_sc : boolean, optional Use static corrections. The default is 'True'. save_vel : string, optional Save intermediate velocity models or the final model. The default is False. uncrtants : boolean, optional Calculate the uncertainty of the hypocenter parameters. The default is False. confdce_lev : float, optional The confidence coefficient to calculate the uncertainty. The default is 0.95. verbose : boolean, optional Print information messages about inversion progression. The default is False. Returns ------- None. """ self.maxit = maxit self.maxit_hypo = maxit_hypo self.conv_hypo = conv_hypo self.Vpmin = Vlim[0] self.Vpmax = Vlim[1] self.PAp = Vlim[2] if len(Vlim) > 3: self.Vsmin = Vlim[3] self.Vsmax = Vlim[4] self.PAs = Vlim[5] self.VpVsmin = VpVslim[0] self.VpVsmax = VpVslim[1] self.Pvpvs = VpVslim[2] self.dVp_max = dmax[0] self.dx_max = dmax[1] self.dt_max = dmax[2] if len(dmax) > 3: self.dVs_max = dmax[3] self.λ = lagrangians[0] self.γ = lagrangians[1] self.γ_vpvs = lagrangians[2] self.α = lagrangians[3] self.stig = lagrangians[4] self.wzK = lagrangians[5] self.invert_vel = invert_vel self.invert_VpVs = invert_VsVp self.hypo_2step = hypo_2step self.use_sc = use_sc self.max_sc = max_sc self.p = confdce_lev self.uncertainty = uncrtants self.verbose = verbose self.saveVel = save_vel def __str__(self): """ Encapsulate the attributes of the class Parameters in a string. Returns ------- output : string Attributes of the class Parameters written in string. """ output = "-------------------------\n" output += "\nParameters of Inversion :\n" output += "\n-------------------------\n" output += "\nMaximum number of iterations : {0:d}\n".format(self.maxit) output += "\nMaximum number of iterations to get hypocenters" output += ": {0:d}\n".format(self.maxit_hypo) output += "\nVp minimum : {0:4.2f} km/s\n".format(self.Vpmin) output += "\nVp maximum : {0:4.2f} km/s\n".format(self.Vpmax) if self.Vsmin: output += "\nVs minimum : {0:4.2f} km/s\n".format(self.Vsmin) if self.Vsmax: output += "\nVs maximum : {0:4.2f} km/s\n".format(self.Vsmax) if self.VpVsmin: output += "\nVpVs minimum : {0:4.2f} km/s\n".format(self.VpVsmin) if self.VpVsmax: output += "\nVpVs maximum : {0:4.2f} km/s\n".format(self.VpVsmax) output += "\nSlope of the penalty function (P wave) : {0:3f}\n".format( self.PAp) if self.PAs: output += "\nSlope of the penalty function (S wave) : {0:3f}\n".format( self.PAs) if self.Pvpvs: output += "\nSlope of the penalty function" output += "(VpVs ratio wave) : {0:3f}\n".format(self.Pvpvs) output += "\nMaximum time perturbation by step : {0:4.3f} s\n".format( self.dt_max) output += "\nMaximum distance perturbation by step : {0:4.3f} km\n".format( self.dx_max) output += "\nMaximum P wave velocity correction by step" output += " : {0:4.3f} km/s\n".format(self.dVp_max) if self.dVs_max: output += "\nMaximum S wave velocity correction by step" output += " : {0:4.3f} km/s\n".format(self.dVs_max) output += "\nLagrangians parameters : λ = {0:1.1e}\n".format(self.λ) output += " : γ = {0:1.1e}\n".format(self.γ) if self.γ_vpvs: output += " : γ VpVs ratio = {0:1.1e}\n".format( self.γ_vpvs) output += " : α = {0:1.1e}\n".format(self.α) output += " : wzK factor = {0:4.2f}\n".format( self.wzK) if self.stig: output += " : stats. moment. penalty" output += "coef. = {0:1.1e}\n".format(self.stig) output += "\nOther parameters : Inverse Velocity = {0}\n".format( self.invert_vel) output += "\n : Use Vs/Vp instead of Vs = {0}\n".format( self.invert_VpVs) output += "\n : Use static correction = {0}\n".format( self.use_sc) output += "\n : Hyp. parameter Uncertainty estimation = " output += "{0}\n".format(self.uncertainty) if self.uncertainty: output += "\n with a confidence level of" output += " {0:3.2f}\n".format(self.p) if self.saveVel == 'last': output += "\n : Save intermediate velocity models = " output += "last iteration only\n" elif self.saveVel == 'all': output += "\n : Save intermediate velocity models = " output += "all iterations\n" else: output += "\n : Save intermediate velocity models = " output += "False\n" output += "\n : Relocate hypoctenters using 2 steps = " output += "{0}\n".format(self.hypo_2step) output += "\n : convergence criterion = {0:3.4f}\n".format( self.conv_hypo) if self.use_sc: output += "\n : Maximum static correction = " output += "{0:3.2f}\n".format(self.max_sc) return output class fileReader: def __init__(self, filename): """ Parameters ---------- filename : string List of data files and other inversion parameters. Returns ------- None. """ try: open(filename, 'r') except IOError: print("Could not read file:", filename) sys.exit() self.filename = filename assert(self.readParameter('base name')), 'invalid base name' assert(self.readParameter('mesh file')), 'invalid mesh file' assert(self.readParameter('rcvfile')), 'invalid rcv file' assert(self.readParameter('Velocity')), 'invalid Velocity file' assert(self.readParameter('Time calibration') ), 'invalid calibration data file' def readParameter(self, parameter, dtype=None): """ Read the data filename or the inversion parameter value specified by the argument parameter. Parameters ---------- parameter : string Filename or inversion parameter to read. dtype : data type, optional Explicit data type of the filename or the parameter read. The default is None. Returns ------- param : string/int/float File or inversion parameter. """ try: f = open(self.filename, 'r') for line in f: if line.startswith(parameter): position = line.find(':') param = line[position + 1:] param = param.rstrip("\n\r") if dtype is None: break if dtype == int: param = int(param) elif dtype == float: param = float(param) elif dtype == bool: if param == 'true' or param == 'True' or param == '1': param = True elif param == 'false' or param == 'False' or param == '0': param = False else: print(" non recognized format") break return param except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float for " + parameter + "\n") except NameError as NErr: print( parameter + " is not indicated or has bad value:{0}".format(NErr)) except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise finally: f.close() def saveVel(self): """ Method to read the specified option for saving the velocity model(s). Returns ------- bool/string Save or not the velocity model(s) and for which iteration. """ try: f = open(self.filename, 'r') for line in f: if line.startswith('Save Velocity'): position = line.find(':') if position > 0: sv = line[position + 1:].strip() break f.close() if sv == 'last' or sv == 'Last': return 'last' elif sv == 'all' or sv == 'All': return 'all' elif sv == 'false' or sv == 'False' or sv == '0': return False else: print('bad option to save velocity: default value will be used') return False except OSError as err: print("OS error: {0}".format(err)) except NameError as NErr: print("save velocity is not indicated :{0}".format(NErr)) except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def getIversionParam(self): """ Read the inversion parameters and store them in an object of the class Parameters. Returns ------- Params : instance of the class Parameters Inversion parameters and options. """ maxit = self.readParameter('number of iterations', int) maxit_hypo = self.readParameter('num. iters. to get hypo.', int) conv_hypo = self.readParameter('convergence Criterion', float) Vpmin = self.readParameter('Vpmin', float) Vpmax = self.readParameter('Vpmax', float) PAp = self.readParameter('PAp', float) if PAp is None or PAp < 0: print('PAp : default value will be considered\n') PAp = 1. # default value Vsmin = self.readParameter('Vsmin', float) Vsmax = self.readParameter('Vsmax', float) PAs = self.readParameter('PAs', float) if PAs is None or PAs < 0: print('PAs : default value will be considered\n') PAs = 1. # default value VpVsmax = self.readParameter('VpVs_max', float) if VpVsmax is None or VpVsmax < 0: print('default value will be considered (5)\n') VpVsmax = 5. # default value VpVsmin = self.readParameter('VpVs_min', float) if VpVsmin is None or VpVsmin < 0: print('default value will be considered (1.5)\n') VpVsmin = 1.5 # default value Pvpvs = self.readParameter('Pvpvs', float) if Pvpvs is None or Pvpvs < 0: print('default value will be considered\n') Pvpvs = 1. # default value dVp_max = self.readParameter('dVp max', float) dVs_max = self.readParameter('dVs max', float) dx_max = self.readParameter('dx max', float) dt_max = self.readParameter('dt max', float) Alpha = self.readParameter('alpha', float) Lambda = self.readParameter('lambda', float) Gamma = self.readParameter('Gamma', float) Gamma_ps = self.readParameter('Gamma_vpvs', float) stigma = self.readParameter('stigma', float) if stigma is None or stigma < 0: stigma = 0. # default value VerSmooth = self.readParameter('vertical smoothing', float) InverVel = self.readParameter('inverse velocity', bool) InverseRatio = self.readParameter('inverse Vs/Vp', bool) Hyp2stp = self.readParameter('reloc.hypo.in 2 steps', bool) Sc = self.readParameter('use static corrections', bool) if Sc: Sc_max = self.readParameter('maximum stat. correction', float) else: Sc_max = 0. uncrtants = self.readParameter('uncertainty estm.', bool) if uncrtants: confdce_lev = self.readParameter('confidence level', float) else: confdce_lev = np.NAN Verb = self.readParameter('Verbose ', bool) saveVel = self.saveVel() Params = Parameters(maxit, maxit_hypo, conv_hypo, (Vpmin, Vpmax, PAp, Vsmin, Vsmax, PAs), (VpVsmin, VpVsmax, Pvpvs), (dVp_max, dx_max, dt_max, dVs_max), (Lambda, Gamma, Gamma_ps, Alpha, stigma, VerSmooth), Sc_max, InverVel, InverseRatio, Hyp2stp, Sc, saveVel, uncrtants, confdce_lev, Verb) return Params class RCVReader: def __init__(self, p_rcvfile): """ Parameters ---------- p_rcvfile : string File holding receiver coordinates. Returns ------- None. """ self.rcv_file = p_rcvfile assert(self.__ChekFormat()), 'invalid format for rcv file' def getNumberOfStation(self): """ Return the number of receivers. Returns ------- Nstations : int Receiver number. """ try: fin = open(self.rcv_file, 'r') Nstations = int(fin.readline()) fin.close() return Nstations except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to an integer for the station number.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def getStation(self): """ Return coordinates of receivers. Returns ------- coordonates : np.ndarray, shape(receiver number,3) Receiver coordinates. """ try: fin = open(self.rcv_file, 'r') Nsta = int(fin.readline()) coordonates = np.zeros([Nsta, 3]) for n in range(Nsta): line = fin.readline() Coord = re.split(r' ', line) coordonates[n, 0] = float(Coord[0]) coordonates[n, 1] = float(Coord[2]) coordonates[n, 2] = float(Coord[4]) fin.close() return coordonates except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in rcvfile.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def __ChekFormat(self): try: fin = open(self.rcv_file) n = 0 for line in fin: if n == 0: Nsta = int(line) num_lines = sum(1 for line in fin) if(num_lines != Nsta): fin.close() return False if n > 0: Coord = re.split(r' ', line) if len(Coord) != 5: fin.close() return False n += 1 fin.close() return True except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in rcvfile.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def readEventsFiles(time_file, waveType=False): """ Read a list of seismic events and corresponding data from a text file. Parameters ---------- time_file : string Event data filename. waveType : bool True if the seismic phase of each event is identified. The default is False. Returns ------- data : np.ndarray or a list of two np.ndarrays Event arrival time data """ if (time_file == ""): if not waveType: return (np.array([])) elif waveType: return (np.array([]), np.array([])) try: fin = open(time_file, 'r') lstart = 0 for line in fin: lstart += 1 if line.startswith('Ev_idn'): break if not waveType: data = np.loadtxt(time_file, skiprows=lstart, ndmin=2) elif waveType: data = np.loadtxt(fname=time_file, skiprows=2, dtype='S15', ndmin=2) ind = np.where(data[:, -1] == b'P')[0] dataP = data[ind, :-1].astype(float) ind = np.where(data[:, -1] == b'S')[0] dataS = data[ind, :-1].astype(float) data = (dataP, dataS) return data except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in " + time_file + " file.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def readVelpoints(vlpfile): """ Read known velocity points from a text file. Parameters ---------- vlpfile : string Name of the file containing the known velocity points. Returns ------- data : np.ndarray, shape (number of points , 3) Data corresponding to the known velocity points. """ if (vlpfile == ""): return (np.array([])) try: fin = open(vlpfile, 'r') lstart = 0 for line in fin: lstart += 1 if line.startswith('Pt_id'): break data = np.loadtxt(vlpfile, skiprows=lstart) return data except OSError as err: print("OS error: {0}".format(err)) except ValueError: print("Could not convert data to a float in " + vlpfile + " file.") except BaseException: print("Unexpected error:", sys.exc_info()[0]) raise def _hypo_relocation(ev, evID, hypo, data, rcv, sc, convergence, par): """ Location of a single hypocenter event using P arrival time data. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (number of events ,) Event indices. hypo : np.ndarray, shape (number of events ,5) Current hypocenter coordinates and origin time for each event. data : np.ndarray, shape (arrival times number,3) Arrival times for all events. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. sc : np.ndarray, shape (receiver number or 0 ,1) Static correction values. convergence : boolean list, shape (event number) Convergence state of each event. par : instance of the class Parameters The inversion parameters. Returns ------- Hypocenter : np.ndarray, shape (5,) Updated origin time and coordinates of event evID[ev]. """ indh = np.where(hypo[:, 0] == evID[ev])[0] if par.verbose: print("\nEven N {0:d} is relacated in the ".format( int(hypo[ev, 0])) + current_process().name + '\n') sys.stdout.flush() indr = np.where(data[:, 0] == evID[ev])[0] rcv_ev = rcv[data[indr, 2].astype(int) - 1, :] if par.use_sc: sc_ev = sc[data[indr, 2].astype(int) - 1] else: sc_ev = 0. nst = indr.size Hypocenter = hypo[indh[0]].copy() if par.hypo_2step: print("\nEven N {0:d}: Update longitude and latitude\n".format( int(hypo[ev, 0]))) sys.stdout.flush() T0 = np.kron(hypo[indh, 1], np.ones([nst, 1])) for It in range(par.maxit_hypo): Tx = np.kron(Hypocenter[2:], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0 + sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=None, aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones((nst, 2)) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: print('\033[43m' + '\nWarning: raypath failed to converge' ' for even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and ' 'receiver N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[indr[nr], 0]), Tx[nr, 0], Tx[nr, 1], Tx[nr, 2], int(data[indr[nr], 2]), rcv_ev[nr, 0], rcv_ev[nr, 1], rcv_ev[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slow_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 0] = -dx * slw0 / ds Hi[nr, 1] = -dy * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(2)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break indH = np.abs(deltaH) > par.dx_max deltaH[indH] = par.dx_max * np.sign(deltaH[indH]) updatedHypo = np.hstack((Hypocenter[2:4] + deltaH, Hypocenter[-1])) updatedHypo, _ = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[2:] = updatedHypo if np.all(np.abs(deltaH[1:]) < par.conv_hypo): break if par.verbose: print("\nEven N {0:d}: Update all parameters\n".format(int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Tx = np.kron(Hypocenter[2:], np.ones([nst, 1])) T0 = np.kron(Hypocenter[1], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0 + sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=None, aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones([nst, 4]) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: print('\033[43m' + '\nWarning: raypath failed to converge ' 'for even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and ' 'receiver N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[indr[nr], 0]), Tx[nr, 0], Tx[nr, 1], Tx[nr, 2], int(data[indr[nr], 2]), rcv_ev[nr, 0], rcv_ev[nr, 1], rcv_ev[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slow_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(4)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: print('\nEvent cannot be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break if np.abs(deltaH[0]) > par.dt_max: deltaH[0] = par.dt_max * np.sign(deltaH[0]) if np.linalg.norm(deltaH[1:]) > par.dx_max: deltaH[1:] *= par.dx_max / np.linalg.norm(deltaH[1:]) updatedHypo = Hypocenter[2:] + deltaH[1:] updatedHypo, outside = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[1:] = np.hstack((Hypocenter[1] + deltaH[0], updatedHypo)) if outside and It == par.maxit_hypo - 1: print('\nEvent N {0:d} cannot be relocated inside the domain\n'.format( int(hypo[ev, 0]))) convergence[ev] = 'out' return Hypocenter if np.all(np.abs(deltaH[1:]) < par.conv_hypo): convergence[ev] = True if par.verbose: print('\033[42m' + '\nEven N {0:d} has converged at {1:d}' ' iteration(s)\n'.format(int(hypo[ev, 0]), It + 1) + '\n' + '\033[0m') sys.stdout.flush() break else: if par.verbose: print('\nEven N {0:d} : maximum number of iterations' ' was reached\n'.format(int(hypo[ev, 0])) + '\n') sys.stdout.flush() return Hypocenter def _hypo_relocationPS(ev, evID, hypo, data, rcv, sc, convergence, slow, par): """ Relocate a single hypocenter event using P- and S-wave arrival times. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (event number ,) Event indices. hypo : np.ndarray, shape (event number ,5) Current hypocenter coordinates and origin times for each event. data : tuple of two np.ndarrays Arrival times of P- and S-waves. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. sc : tuple of two np.ndarrays (shape(receiver number or 0,1)) Static correction values of P- and S-waves. convergence : boolean list, shape (event number) The convergence state of each event. slow : tuple of two np.ndarrays (shape(nnodes,1)) P and S slowness models. par : instance of the class Parameters The inversion parameters. Returns ------- Hypocenter : np.ndarray, shape (5,) Updated origin time and coordinates of event evID[ev]. """ (slowP, slowS) = slow (scp, scs) = sc (dataP, dataS) = data indh = np.where(hypo[:, 0] == evID[ev])[0] if par.verbose: print("Even N {0:d} is relacated in the ".format( int(hypo[ev, 0])) + current_process().name + '\n') sys.stdout.flush() indrp = np.where(dataP[:, 0] == evID[ev])[0] rcv_evP = rcv[dataP[indrp, 2].astype(int) - 1, :] nstP = indrp.size indrs = np.where(dataS[:, 0] == evID[ev])[0] rcv_evS = rcv[dataS[indrs, 2].astype(int) - 1, :] nstS = indrs.size Hypocenter = hypo[indh[0]].copy() if par.use_sc: scp_ev = scp[dataP[indrp, 2].astype(int) - 1] scs_ev = scs[dataS[indrs, 2].astype(int) - 1] else: scp_ev = np.zeros([nstP, 1]) scs_ev = np.zeros([nstS, 1]) if par.hypo_2step: if par.verbose: print("\nEven N {0:d}: Update longitude and latitude\n".format( int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Txp = np.kron(Hypocenter[1:], np.ones([nstP, 1])) Txp[:, 0] += scp_ev[:, 0] srcP = np.hstack((ev*np.ones([nstP, 1]), Txp)) tcalp, raysP = Mesh3D.raytrace(source=srcP, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcP) Txs = np.kron(Hypocenter[1:], np.ones([nstS, 1])) Txs[:, 0] += scs_ev[:, 0] srcS = np.hstack((ev*np.ones([nstS, 1]), Txs)) tcals, raysS = Mesh3D.raytrace(source=srcS, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowS_0 = Mesh3D.get_s0(srcS) Hi = np.ones((nstP + nstS, 2)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f})and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataP[indrp[nr], 0]), Txp[nr, 1], Txp[nr, 2], Txp[nr, 3], int(dataP[indrp[nr], 2]), rcv_evP[nr, 0], rcv_evP[nr, 1], rcv_evP[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowP_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 0] = -dx * slw0 / ds Hi[nr, 1] = -dy * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataS[indrs[nr], 0]), Txs[nr, 1], Txs[nr, 2], Txs[nr, 3], int(dataS[indrs[nr], 2]), rcv_evS[nr, 0], rcv_evS[nr, 1], rcv_evS[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowS_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr + nstP, 0] = -dx * slw0 / ds Hi[nr + nstP, 1] = -dy * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(2)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: if par.verbose: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping') sys.stdout.flush() break indH = np.abs(deltaH) > par.dx_max deltaH[indH] = par.dx_max * np.sign(deltaH[indH]) updatedHypo = np.hstack((Hypocenter[2:4] + deltaH, Hypocenter[-1])) updatedHypo, _ = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[2:] = updatedHypo if np.all(np.abs(deltaH) < par.conv_hypo): break if par.verbose: print("\nEven N {0:d}: Update all parameters\n".format(int(hypo[ev, 0]))) sys.stdout.flush() for It in range(par.maxit_hypo): Txp = np.kron(Hypocenter[1:], np.ones([nstP, 1])) Txp[:, 0] += scp_ev[:, 0] srcP = np.hstack((ev*np.ones([nstP, 1]), Txp)) tcalp, raysP = Mesh3D.raytrace(source=srcP, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcP) Txs = np.kron(Hypocenter[1:], np.ones([nstS, 1])) Txs[:, 0] += scs_ev[:, 0] srcS = np.hstack((ev*np.ones([nstS, 1]), Txs)) tcals, raysS = Mesh3D.raytrace(source=srcS, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowS_0 = Mesh3D.get_s0(srcS) Hi = np.ones((nstP + nstS, 4)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for ' 'even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataP[indrp[nr], 0]), Txp[nr, 1], Txp[nr, 2], Txp[nr, 3], int(dataP[indrp[nr], 2]), rcv_evP[nr, 0], rcv_evP[nr, 1], rcv_evP[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowP_0[nr] dx = rayi[2, 0] - Hypocenter[2] dy = rayi[2, 1] - Hypocenter[3] dz = rayi[2, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: if par.verbose: print('\033[43m' + '\nWarning: raypath failed to converge for ' 'even N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataS[indrs[nr], 0]), Txs[nr, 1], Txs[nr, 2], Txs[nr, 3], int(dataS[indrs[nr], 2]), rcv_evS[nr, 0], rcv_evS[nr, 1], rcv_evS[nr, 2]) + '\033[0m') sys.stdout.flush() continue slw0 = slowS_0[nr] dx = rayi[1, 0] - Hypocenter[2] dy = rayi[1, 1] - Hypocenter[3] dz = rayi[1, 2] - Hypocenter[4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr + nstP, 1] = -dx * slw0 / ds Hi[nr + nstP, 2] = -dy * slw0 / ds Hi[nr + nstP, 3] = -dz * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] deltaH = np.linalg.lstsq(Hi, res, rcond=1.e-6)[0] if not np.all(np.isfinite(deltaH)): try: U, S, VVh = np.linalg.svd(Hi.T.dot(Hi) + 1e-9 * np.eye(4)) VV = VVh.T deltaH = np.dot(VV, np.dot(U.T, Hi.T.dot(res)) / S) except np.linalg.linalg.LinAlgError: if par.verbose: print('\nEvent could not be relocated (iteration no ' + str(It) + '), skipping\n') sys.stdout.flush() break if np.abs(deltaH[0]) > par.dt_max: deltaH[0] = par.dt_max * np.sign(deltaH[0]) if np.linalg.norm(deltaH[1:]) > par.dx_max: deltaH[1:] *= par.dx_max / np.linalg.norm(deltaH[1:]) updatedHypo = Hypocenter[2:] + deltaH[1:] updatedHypo, outside = check_hypo_indomain(updatedHypo, Dimensions, Mesh3D) Hypocenter[1:] = np.hstack((Hypocenter[1] + deltaH[0], updatedHypo)) if outside and It == par.maxit_hypo - 1: if par.verbose: print('\nEvent N {0:d} could not be relocated inside ' 'the domain\n'.format(int(hypo[ev, 0]))) sys.stdout.flush() convergence[ev] = 'out' return Hypocenter if np.all(np.abs(deltaH[1:]) < par.conv_hypo): convergence[ev] = True if par.verbose: print('\033[42m' + '\nEven N {0:d} has converged at ' ' iteration {1:d}\n'.format(int(hypo[ev, 0]), It + 1) + '\n' + '\033[0m') sys.stdout.flush() break else: if par.verbose: print('\nEven N {0:d} : maximum number of iterations was' ' reached'.format(int(hypo[ev, 0])) + '\n') sys.stdout.flush() return Hypocenter def _uncertaintyEstimat(ev, evID, hypo, data, rcv, sc, slow, par, varData=None): """ Estimate origin time uncertainty and confidence ellipsoid. Parameters ---------- ev : int Event index in the array evID. evID : np.ndarray, shape (event number,) Event indices. hypo : np.ndarray, shape (event number,5) Estimated hypocenter coordinates and origin time. data : np.ndarray, shape (arrival time number,3) or tuple if both P and S waves are used. Arrival times of seismic events. rcv : np.ndarray, shape (receiver number ,3) coordinates of receivers. sc : np.ndarray, shape (receiver number or 0 ,1) or tuple if both P and S waves are used. Static correction values. slow : np.ndarray or tuple, shape(nnodes,1) P or P and S slowness models. par : instance of the class Parameters The inversion parameters. varData : list of two lists Number of arrival times and the sum of residuals needed to compute the noise variance. See Block's Thesis, 1991 (P. 63) The default is None. Returns ------- to_confInterv : float Origin time uncertainty interval. axis1 : np.ndarray, shape(3,) Coordinates of the 1st confidence ellipsoid axis (vector). axis2 : np.ndarray, shape(3,) Coordinates of the 2nd confidence ellipsoid axis (vector). axis3 : np.ndarray, shape(3,) Coordinates of the 3rd confidence ellipsoid axis (vector). """ if par.verbose: print("Uncertainty estimation for the Even N {0:d}".format( int(hypo[ev, 0])) + '\n') sys.stdout.flush() indh = np.where(hypo[:, 0] == evID[ev])[0] if len(slow) == 2: (slowP, slowS) = slow (dataP, dataS) = data (scp, scs) = sc indrp = np.where(dataP[:, 0] == evID[ev])[0] rcv_evP = rcv[dataP[indrp, 2].astype(int) - 1, :] nstP = indrp.size T0p = np.kron(hypo[indh, 1], np.ones([nstP, 1])) indrs = np.where(dataS[:, 0] == evID[ev])[0] rcv_evS = rcv[dataS[indrs, 2].astype(int) - 1, :] nstS = indrs.size T0s = np.kron(hypo[indh, 1], np.ones([nstS, 1])) Txp = np.kron(hypo[indh, 2:], np.ones([nstP, 1])) Txs = np.kron(hypo[indh, 2:], np.ones([nstS, 1])) if par.use_sc: scp_ev = scp[dataP[indrp, 2].astype(int) - 1, :] scs_ev = scs[dataS[indrs, 2].astype(int) - 1, :] else: scp_ev = np.zeros([nstP, 1]) scs_ev = np.zeros([nstS, 1]) srcp = np.hstack((ev*np.ones([nstP, 1]), T0p + scp_ev, Txp)) srcs = np.hstack((ev*np.ones([nstS, 1]), T0s + scs_ev, Txs)) tcalp, raysP = Mesh3D.raytrace(source=srcp, rcv=rcv_evP, slowness=slowP, aggregate_src=False, compute_L=False, return_rays=True) tcals, raysS = Mesh3D.raytrace(source=srcs, rcv=rcv_evS, slowness=slowS, aggregate_src=False, compute_L=False, return_rays=True) slowP_0 = Mesh3D.get_s0(srcp) slowS_0 = Mesh3D.get_s0(srcs) Hi = np.ones((nstP + nstS, 4)) for nr in range(nstP): rayi = raysP[nr] if rayi.shape[0] == 1: continue slw0 = slowP_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds for nr in range(nstS): rayi = raysS[nr] if rayi.shape[0] == 1: continue slw0 = slowS_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds tcal = np.hstack((tcalp, tcals)) res = np.hstack((dataP[indrp, 1], dataS[indrs, 1])) - tcal convrays = np.where(tcal != 0)[0] if convrays.size < (nstP + nstS): res = res[convrays] Hi = Hi[convrays, :] elif len(slow) == 1: indr = np.where(data[0][:, 0] == evID[ev])[0] rcv_ev = rcv[data[0][indr, 2].astype(int) - 1, :] if par.use_sc: sc_ev = sc[data[0][indr, 2].astype(int) - 1] else: sc_ev = 0. nst = indr.size T0 = np.kron(hypo[indh, 1], np.ones([nst, 1])) Tx = np.kron(hypo[indh, 2:], np.ones([nst, 1])) src = np.hstack((ev*np.ones([nst, 1]), T0+sc_ev, Tx)) tcal, rays = Mesh3D.raytrace(source=src, rcv=rcv_ev, slowness=slow[0], aggregate_src=False, compute_L=False, return_rays=True) slow_0 = Mesh3D.get_s0(src) Hi = np.ones([nst, 4]) for nr in range(nst): rayi = rays[nr] if rayi.shape[0] == 1: # unconverged ray continue slw0 = slow_0[nr] dx = rayi[1, 0] - hypo[indh, 2] dy = rayi[1, 1] - hypo[indh, 3] dz = rayi[1, 2] - hypo[indh, 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx * slw0 / ds Hi[nr, 2] = -dy * slw0 / ds Hi[nr, 3] = -dz * slw0 / ds convrays = np.where(tcal != 0)[0] res = data[0][indr, 1] - tcal if convrays.size < nst: res = res[convrays] Hi = Hi[convrays, :] N = res.shape[0] try: Q = np.linalg.inv(Hi.T @ Hi) except np.linalg.linalg.LinAlgError: if par.verbose: print("ill-conditioned Jacobian matrix") sys.stdout.flush() U, S, V = np.linalg.svd(Hi.T @ Hi) Q = V.T @ np.diag(1./(S + 1.e-9)) @ U.T eigenVals, eigenVec = np.linalg.eig(Q[:3, :3]) ind = np.argsort(eigenVals) if varData: s2 = 1 varData[0] += [np.sum(res**2)] varData[1] += [N] else: s2 = np.sum(res**2) / (N - 4) alpha = 1 - par.p coef = scps.t.ppf(1 - alpha / 2., N - 4) axis1 = np.sqrt(eigenVals[ind[2]] * s2) * coef * eigenVec[:, ind[2]] axis2 = np.sqrt(eigenVals[ind[1]] * s2) * coef * eigenVec[:, ind[1]] axis3 = np.sqrt(eigenVals[ind[0]] * s2) * coef * eigenVec[:, ind[0]] to_confInterv = np.sqrt(Q[-1, -1] * s2) * coef return to_confInterv, axis1, axis2, axis3 def jntHypoVel_T(data, caldata, Vinit, cells, nodes, rcv, Hypo0, par, threads=1, vPoints=np.array([]), basename='Vel'): """ Joint hypocenter-velicoty inversion from P wave arrival time data parametrized using the velocity model. Parameters ---------- data : np.ndarray, shape(arrival time number, 3) Arrival times and corresponding receivers for each event.. caldata : np.ndarray, shape(number of calibration shots, 3) Calibration shot data. Vinit : np.ndarray, shape(nnodes,1) or (1,1) Initial velocity model. cells : np.ndarray of int, shape (cell number, 4) Indices of nodes forming the cells. nodes : np.ndarray, shape (nnodes, 3) Node coordinates. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. Hypo0 : np.ndarray, shape(event number, 5) First guesses of the hypocenter coordinates (must be all diffirent). par : instance of the class Parameters The inversion parameters. threads : int, optional Thread number. The default is 1. vPoints : np.ndarray, shape(point number,4), optional Known velocity points. The default is np.array([]). basename : string, optional The filename used to save the output file. The default is 'Vel'. Returns ------- output : python dictionary It contains the estimated hypocenter coordinates and their origin times, static correction values, velocity model, convergence states, parameter uncertainty and residual norm in each iteration. """ if par.verbose: print(par) print('inversion involves the velocity model\n') sys.stdout.flush() if par.use_sc: nstation = rcv.shape[0] else: nstation = 0 Static_Corr = np.zeros([nstation, 1]) nnodes = nodes.shape[0] # observed traveltimes if data.shape[0] > 0: evID = np.unique(data[:, 0]).astype(int) tObserved = data[:, 1] numberOfEvents = evID.size else: tObserved = np.array([]) numberOfEvents = 0 rcvData = np.zeros([data.shape[0], 3]) for ev in range(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] rcvData[indr] = rcv[data[indr, 2].astype(int) - 1, :] # calibration data if caldata.shape[0] > 0: calID = np.unique(caldata[:, 0]) ncal = calID.size time_calibration = caldata[:, 1] TxCalib = np.zeros((caldata.shape[0], 5)) TxCalib[:, 2:] = caldata[:, 3:] TxCalib[:, 0] = caldata[:, 0] rcvCalib = np.zeros([caldata.shape[0], 3]) if par.use_sc: Msc_cal = [] for nc in range(ncal): indr = np.where(caldata[:, 0] == calID[nc])[0] rcvCalib[indr] = rcv[caldata[indr, 2].astype(int) - 1, :] if par.use_sc: Msc_cal.append(sp.csr_matrix( (np.ones([indr.size, ]), (range(indr.size), caldata[indr, 2]-1)), shape=(indr.size, nstation))) else: ncal = 0 time_calibration = np.array([]) # initial velocity model if Vinit.size == 1: Velocity = Vinit * np.ones([nnodes, 1]) Slowness = 1. / Velocity elif Vinit.size == nnodes: Velocity = Vinit Slowness = 1. / Velocity else: print("invalid Velocity Model\n") sys.stdout.flush() return 0 # used threads nThreadsSystem = cpu_count() nThreads = np.min((threads, nThreadsSystem)) global Mesh3D, Dimensions Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, n_threads=nThreads, n_secondary=2, n_tertiary=1, process_vel=1, radius_factor_tertiary=2, translate_grid=1) Mesh3D.set_slowness(Slowness) Dimensions = np.empty(6) Dimensions[0] = min(nodes[:, 0]) Dimensions[1] = max(nodes[:, 0]) Dimensions[2] = min(nodes[:, 1]) Dimensions[3] = max(nodes[:, 1]) Dimensions[4] = min(nodes[:, 2]) Dimensions[5] = max(nodes[:, 2]) # Hypocenter if numberOfEvents > 0 and Hypo0.shape[0] != numberOfEvents: print("invalid Hypocenters0 format\n") sys.stdout.flush() return 0 else: Hypocenters = Hypo0.copy() ResidueNorm = np.zeros([par.maxit]) if par.invert_vel: if par.use_sc: U = sp.bsr_matrix( np.vstack((np.zeros([nnodes, 1]), np.ones([nstation, 1])))) nbre_param = nnodes + nstation if par.max_sc > 0. and par.max_sc < 1.: N = sp.bsr_matrix( np.hstack((np.zeros([nstation, nnodes]), np.eye(nstation)))) NtN = (1. / par.max_sc**2) * N.T.dot(N) else: U = sp.csr_matrix(np.zeros([nnodes, 1])) nbre_param = nnodes # build matrix D if vPoints.size > 0: if par.verbose: print('\nBuilding velocity data point matrix D\n') sys.stdout.flush() D = Mesh3D.compute_D(vPoints[:, 2:]) D = sp.hstack((D, sp.csr_matrix((D.shape[0], nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) # Build regularization matrix if par.verbose: print('\n...Building regularization matrix K\n') sys.stdout.flush() kx, ky, kz = Mesh3D.compute_K(order=2, taylor_order=2, weighting=1, squared=0, s0inside=0, additional_points=3) KX = sp.hstack((kx, sp.csr_matrix((nnodes, nstation)))) KX_Square = KX.transpose().dot(KX) KY = sp.hstack((ky, sp.csr_matrix((nnodes, nstation)))) KY_Square = KY.transpose().dot(KY) KZ = sp.hstack((kz, sp.csr_matrix((nnodes, nstation)))) KZ_Square = KZ.transpose().dot(KZ) KtK = KX_Square + KY_Square + par.wzK * KZ_Square nK = spl.norm(KtK) if nThreads == 1: hypo_convergence = list(np.zeros(numberOfEvents, dtype=bool)) else: manager = Manager() hypo_convergence = manager.list(np.zeros(numberOfEvents, dtype=bool)) for i in range(par.maxit): if par.verbose: print("Iteration N : {0:d}\n".format(i + 1)) sys.stdout.flush() if par.invert_vel: if par.verbose: print('Iteration {0:d} - Updating velocity model\n'.format(i + 1)) print("Updating penalty vector\n") sys.stdout.flush() # Build vector C cx = kx.dot(Velocity) cy = ky.dot(Velocity) cz = kz.dot(Velocity) # build matrix P and dP indVmin = np.where(Velocity < par.Vpmin)[0] indVmax = np.where(Velocity > par.Vpmax)[0] indPinality = np.hstack([indVmin, indVmax]) dPinality_V = np.hstack( [-par.PAp * np.ones(indVmin.size), par.PAp * np.ones(indVmax.size)]) pinality_V = np.vstack( [par.PAp * (par.Vpmin - Velocity[indVmin]), par.PAp * (Velocity[indVmax] - par.Vpmax)]) d_Pinality = sp.csr_matrix( (dPinality_V, (indPinality, indPinality)), shape=( nnodes, nbre_param)) Pinality = sp.csr_matrix( (pinality_V.reshape([-1, ]), (indPinality, np.zeros([indPinality.shape[0]]))), shape=(nnodes, 1)) if par.verbose: print('Penalties applied at {0:d} nodes\n'.format( dPinality_V.size)) print('...Start Raytracing\n') sys.stdout.flush() if numberOfEvents > 0: sources = np.empty((data.shape[0], 5)) if par.use_sc: sc_data = np.empty((data.shape[0], )) for ev in np.arange(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] indh = np.where(Hypocenters[:, 0] == evID[ev])[0] sources[indr, :] = Hypocenters[indh, :] if par.use_sc: sc_data[indr] = Static_Corr[data[indr, 2].astype(int) - 1, 0] if par.use_sc: sources[:, 1] += sc_data tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) else: tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) v0 = 1. / Mesh3D.get_s0(sources) if par.verbose: inconverged = np.where(tt == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[icr, 0]), sources[icr, 2], sources[icr, 3], sources[icr, 4], int(data[icr, 2]), rcvData[icr, 0], rcvData[icr, 1], rcvData[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt = np.array([]) if ncal > 0: if par.use_sc: TxCalib[:, 1] = Static_Corr[caldata[:, 2].astype(int) - 1, 0] tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) else: tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) if par.verbose: inconverged = np.where(tt_Calib == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge ' 'for calibration shot N ' '{0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver' ' N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(caldata[icr, 0]), TxCalib[icr, 2], TxCalib[icr, 3], TxCalib[icr, 4], int(caldata[icr, 2]), rcvCalib[icr, 0], rcvCalib[icr, 1], rcvCalib[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt_Calib = np.array([]) Resid = tObserved - tt convrayData = np.where(tt != 0)[0] convrayClib = np.where(tt_Calib != 0)[0] if Resid.size == 0: Residue = time_calibration[convrayClib] - tt_Calib[convrayClib] else: Residue = np.hstack( (np.zeros([np.count_nonzero(tt) - 4 * numberOfEvents]), time_calibration[convrayClib] - tt_Calib[convrayClib])) ResidueNorm[i] = np.linalg.norm(np.hstack( (Resid[convrayData], time_calibration[convrayClib] - tt_Calib[convrayClib]))) if par.verbose: print('...Building matrix M\n') sys.stdout.flush() M = sp.csr_matrix((0, nbre_param)) ir = 0 for even in range(numberOfEvents): indh = np.where(Hypocenters[:, 0] == evID[even])[0] indr = np.where(data[:, 0] == evID[even])[0] Mi = M0[even] nst_ev = Mi.shape[0] Hi = np.ones([indr.size, 4]) for nr in range(indr.size): rayi = rays[indr[nr]] if rayi.shape[0] == 1: continue vel0 = v0[indr[nr]] dx = rayi[1, 0] - Hypocenters[indh[0], 2] dy = rayi[1, 1] - Hypocenters[indh[0], 3] dz = rayi[1, 2] - Hypocenters[indh[0], 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -dx / (vel0 * ds) Hi[nr, 2] = -dy / (vel0 * ds) Hi[nr, 3] = -dz / (vel0 * ds) convrays = np.where(tt[indr] != 0)[0] if convrays.shape[0] < nst_ev: Hi = Hi[convrays, :] nst_ev = convrays.size Q, _ = np.linalg.qr(Hi, mode='complete') Ti = sp.csr_matrix(Q[:, 4:]) Ti = Ti.T if par.use_sc: Lsc = sp.csr_matrix((np.ones(nst_ev,), (range(nst_ev), data[indr[convrays], 2] - 1)), shape=(nst_ev, nstation)) Mi = sp.hstack((Mi, Lsc)) Mi = sp.csr_matrix(Ti @ Mi) M = sp.vstack([M, Mi]) Residue[ir:ir + (nst_ev - 4)] = Ti.dot(Resid[indr[convrays]]) ir += nst_ev - 4 for evCal in range(len(Mcalib)): Mi = Mcalib[evCal] if par.use_sc: indrCal = np.where(caldata[:, 0] == calID[evCal])[0] convraysCal = np.where(tt_Calib[indrCal] != 0)[0] Mi = sp.hstack((Mi, Msc_cal[evCal][convraysCal])) M = sp.vstack([M, Mi]) if par.verbose: print('Assembling matrices and solving system\n') sys.stdout.flush() S = np.sum(Static_Corr) term1 = (M.T).dot(M) nM = spl.norm(term1[:nnodes, :nnodes]) term2 = (d_Pinality.T).dot(d_Pinality) nP = spl.norm(term2) term3 = U.dot(U.T) λ = par.λ * nM / nK if nP != 0: γ = par.γ * nM / nP else: γ = par.γ A = term1 + λ * KtK + γ * term2 + term3 if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: A += NtN term1 = (M.T).dot(Residue) term1 = term1.reshape([-1, 1]) term2 = (KX.T).dot(cx) + (KY.T).dot(cy) + par.wzK * (KZ.T).dot(cz) term3 = (d_Pinality.T).dot(Pinality) term4 = U.dot(S) b = term1 - λ * term2 - γ * term3 - term4 if vPoints.size > 0: α = par.α * nM / nD A += α * DtD b += α * D.T @ (vPoints[:, 1].reshape(-1, 1) - D[:, :nnodes] @ Velocity) x = spl.minres(A, b, tol=1.e-8) deltam = x[0].reshape(-1, 1) # update velocity vector and static correction dVmax = np.max(abs(deltam[:nnodes])) if dVmax > par.dVp_max: deltam[:nnodes] *= par.dVp_max / dVmax if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: sc_mean = np.mean(abs(deltam[nnodes:])) if sc_mean > par.max_sc * np.mean(abs(Residue)): deltam[nnodes:] *= par.max_sc * np.mean(abs(Residue)) / sc_mean Velocity += np.matrix(deltam[:nnodes]) Slowness = 1. / Velocity Static_Corr += deltam[nnodes:] if par.saveVel == 'all': if par.verbose: print('...Saving Velocity models\n') sys.stdout.flush() try: msh2vtk(nodes, cells, Velocity, basename + 'it{0}.vtk'.format(i + 1)) except ImportError: print('vtk module is not installed\n') sys.stdout.flush() elif par.saveVel == 'last' and i == par.maxit - 1: try: msh2vtk(nodes, cells, Velocity, basename + '.vtk') except ImportError: print('vtk module is not installed\n') sys.stdout.flush() ####################################### # relocate Hypocenters ####################################### Mesh3D.set_slowness(Slowness) if numberOfEvents > 0: print("\nIteration N {0:d} : Relocation of events\n".format(i + 1)) sys.stdout.flush() if nThreads == 1: for ev in range(numberOfEvents): Hypocenters[ev, :] = _hypo_relocation( ev, evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par) else: p = mp.get_context("fork").Pool(processes=nThreads) updatedHypo = p.starmap(_hypo_relocation, [(int(ev), evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par)for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() Hypocenters = np.array([updatedHypo])[0] # Calculate the hypocenter parameter uncertainty uncertnty = [] if par.uncertainty and numberOfEvents > 0: print("\nUncertainty evaluation\n") sys.stdout.flush() # estimate data variance if nThreads == 1: varData = [[], []] for ev in range(numberOfEvents): uncertnty.append( _uncertaintyEstimat(ev, evID, Hypocenters, (data,), rcv, Static_Corr, (Slowness,), par, varData)) else: varData = manager.list([[], []]) with Pool(processes=nThreads) as p: uncertnty = p.starmap( _uncertaintyEstimat, [(int(ev), evID, Hypocenters, (data, ), rcv, Static_Corr, (Slowness, ), par, varData) for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() sgmData = np.sqrt(np.sum(varData[0]) / (np.sum(varData[1]) - 4 * numberOfEvents - Static_Corr.size)) for ic in range(numberOfEvents): uncertnty[ic] = tuple([sgmData * x for x in uncertnty[ic]]) output = OrderedDict() output['Hypocenters'] = Hypocenters output['Convergence'] = list(hypo_convergence) output['Uncertainties'] = uncertnty output['Velocity'] = Velocity output['Sts_Corrections'] = Static_Corr output['Residual_norm'] = ResidueNorm return output def jntHyposlow_T(data, caldata, Vinit, cells, nodes, rcv, Hypo0, par, threads=1, vPoints=np.array([]), basename='Slowness'): """ Joint hypocenter-velicoty inversion from P wave arrival time data parametrized using the slowness model. Parameters ---------- data : np.ndarray, shape(arrival time number, 3) Arrival times and corresponding receivers for each event. caldata : np.ndarray, shape(number of calibration shots, 6) Calibration shot data. Vinit : np.ndarray, shape(nnodes,1) or (1,1) Initial velocity model. Cells : np.ndarray of int, shape (cell number, 4) Indices of nodes forming the cells. nodes : np.ndarray, shape (nnodes, 3) Node coordinates. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. Hypo0 : np.ndarray, shape(event number, 5) First guesses of the hypocenter coordinates (must be all diffirent). par : instance of the class Parameters The inversion parameters. threads : int, optional Thread number. The default is 1. vPoints : np.ndarray, shape(point number,4), optional Known velocity points. The default is np.array([]). basename : string, optional The filename used to save the output files. The default is 'Slowness'. Returns ------- output : python dictionary It contains the estimated hypocenter coordinates and their origin times, static correction values, velocity model, convergence states, parameter uncertainty and residual norm in each iteration. """ if par.verbose: print(par) print('inversion involves the slowness model\n') sys.stdout.flush() if par.use_sc: nstation = rcv.shape[0] else: nstation = 0 Static_Corr = np.zeros([nstation, 1]) nnodes = nodes.shape[0] # observed traveltimes if data.shape[0] > 0: evID = np.unique(data[:, 0]).astype(int) tObserved = data[:, 1] numberOfEvents = evID.size else: tObserved = np.array([]) numberOfEvents = 0 rcvData = np.zeros([data.shape[0], 3]) for ev in range(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] rcvData[indr] = rcv[data[indr, 2].astype(int) - 1, :] # get calibration data if caldata.shape[0] > 0: calID = np.unique(caldata[:, 0]) ncal = calID.size time_calibration = caldata[:, 1] TxCalib = np.zeros((caldata.shape[0], 5)) TxCalib[:, 2:] = caldata[:, 3:] TxCalib[:, 0] = caldata[:, 0] rcvCalib = np.zeros([caldata.shape[0], 3]) if par.use_sc: Msc_cal = [] for nc in range(ncal): indr = np.where(caldata[:, 0] == calID[nc])[0] rcvCalib[indr] = rcv[caldata[indr, 2].astype(int) - 1, :] if par.use_sc: Msc_cal.append(sp.csr_matrix( (np.ones([indr.size, ]), (range(indr.size), caldata[indr, 2]-1)), shape=(indr.size, nstation))) else: ncal = 0 time_calibration = np.array([]) # initial velocity model if Vinit.size == 1: Slowness = 1. / (Vinit * np.ones([nnodes, 1])) elif Vinit.size == nnodes: Slowness = 1. / Vinit else: print("invalid Velocity Model") sys.stdout.flush() return 0 # Hypocenter if numberOfEvents > 0 and Hypo0.shape[0] != numberOfEvents: print("invalid Hypocenters0 format\n") sys.stdout.flush() return 0 else: Hypocenters = Hypo0.copy() # number of threads nThreadsSystem = cpu_count() nThreads = np.min((threads, nThreadsSystem)) global Mesh3D, Dimensions # build mesh object Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, n_threads=nThreads, n_secondary=2, n_tertiary=1, radius_factor_tertiary=2, translate_grid=1) Mesh3D.set_slowness(Slowness) Dimensions = np.empty(6) Dimensions[0] = min(nodes[:, 0]) Dimensions[1] = max(nodes[:, 0]) Dimensions[2] = min(nodes[:, 1]) Dimensions[3] = max(nodes[:, 1]) Dimensions[4] = min(nodes[:, 2]) Dimensions[5] = max(nodes[:, 2]) ResidueNorm = np.zeros([par.maxit]) if par.invert_vel: if par.use_sc: U = sp.bsr_matrix(np.vstack((np.zeros([nnodes, 1]), np.ones([nstation, 1])))) nbre_param = nnodes + nstation if par.max_sc > 0. and par.max_sc < 1.: N = sp.bsr_matrix( np.hstack((np.zeros([nstation, nnodes]), np.eye(nstation)))) NtN = (1. / par.max_sc**2) * N.T.dot(N) else: U = sp.csr_matrix(np.zeros([nnodes, 1])) nbre_param = nnodes # build matrix D if vPoints.size > 0: if par.verbose: print('\nBuilding velocity data point matrix D\n') sys.stdout.flush() D = Mesh3D.compute_D(vPoints[:, 2:]) D = sp.hstack((D, sp.csr_matrix((D.shape[0], nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) # Build regularization matrix if par.verbose: print('\n...Building regularization matrix K\n') sys.stdout.flush() kx, ky, kz = Mesh3D.compute_K(order=2, taylor_order=2, weighting=1, squared=0, s0inside=0, additional_points=3) KX = sp.hstack((kx, sp.csr_matrix((nnodes, nstation)))) KX_Square = KX.transpose().dot(KX) KY = sp.hstack((ky, sp.csr_matrix((nnodes, nstation)))) KY_Square = KY.transpose().dot(KY) KZ = sp.hstack((kz, sp.csr_matrix((nnodes, nstation)))) KZ_Square = KZ.transpose().dot(KZ) KtK = KX_Square + KY_Square + par.wzK * KZ_Square nK = spl.norm(KtK) if nThreads == 1: hypo_convergence = list(np.zeros(numberOfEvents, dtype=bool)) else: manager = Manager() hypo_convergence = manager.list(np.zeros(numberOfEvents, dtype=bool)) for i in range(par.maxit): if par.verbose: print("\nIteration N : {0:d}\n".format(i + 1)) sys.stdout.flush() if par.invert_vel: if par.verbose: print( '\nIteration {0:d} - Updating velocity model\n'.format(i + 1)) print("\nUpdating penalty vector\n") sys.stdout.flush() # Build vector C cx = kx.dot(Slowness) cy = ky.dot(Slowness) cz = kz.dot(Slowness) # build matrix P and dP indSmin = np.where(Slowness < 1. / par.Vpmax)[0] indSmax = np.where(Slowness > 1. / par.Vpmin)[0] indPinality = np.hstack([indSmin, indSmax]) dPinality_V = np.hstack( [-par.PAp * np.ones(indSmin.size), par.PAp * np.ones(indSmax.size)]) pinality_V = np.vstack([par.PAp * (1. / par.Vpmax - Slowness[indSmin]), par.PAp * (Slowness[indSmax] - 1. / par.Vpmin)]) d_Pinality = sp.csr_matrix( (dPinality_V, (indPinality, indPinality)), shape=( nnodes, nbre_param)) Pinality = sp.csr_matrix(( pinality_V.reshape([-1, ]), (indPinality, np.zeros([indPinality.shape[0]]))), shape=(nnodes, 1)) if par.verbose: print('\nPenalties applied at {0:d} nodes\n'.format( dPinality_V.size)) print('...Start Raytracing\n') sys.stdout.flush() if numberOfEvents > 0: sources = np.empty((data.shape[0], 5)) if par.use_sc: sc_data = np.empty((data.shape[0], )) for ev in np.arange(numberOfEvents): indr = np.where(data[:, 0] == evID[ev])[0] indh = np.where(Hypocenters[:, 0] == evID[ev])[0] sources[indr, :] = Hypocenters[indh, :] if par.use_sc: sc_data[indr] = Static_Corr[data[indr, 2].astype(int) - 1, 0] if par.use_sc: sources[:, 1] += sc_data tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) else: tt, rays, M0 = Mesh3D.raytrace(source=sources, rcv=rcvData, slowness=None, aggregate_src=False, compute_L=True, return_rays=True) slow_0 = Mesh3D.get_s0(sources) if par.verbose: inconverged = np.where(tt == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver' ' N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(data[icr, 0]), sources[icr, 2], sources[icr, 3], sources[icr, 4], int(data[icr, 2]), rcvData[icr, 0], rcvData[icr, 1], rcvData[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt = np.array([]) if ncal > 0: if par.use_sc: # add static corrections for each station TxCalib[:, 1] = Static_Corr[caldata[:, 2].astype(int) - 1, 0] tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) else: tt_Calib, Mcalib = Mesh3D.raytrace( source=TxCalib, rcv=rcvCalib, slowness=None, aggregate_src=False, compute_L=True, return_rays=False) if par.verbose: inconverged = np.where(tt_Calib == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge' 'for calibration shot N ' '{0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver' ' N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(caldata[icr, 0]), TxCalib[icr, 2], TxCalib[icr, 3], TxCalib[icr, 4], int(caldata[icr, 2]), rcvCalib[icr, 0], rcvCalib[icr, 1], rcvCalib[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() else: tt_Calib = np.array([]) Resid = tObserved - tt convrayData = np.where(tt != 0)[0] convrayClib = np.where(tt_Calib != 0)[0] if Resid.size == 0: Residue = time_calibration[convrayClib] - tt_Calib[convrayClib] else: Residue = np.hstack((np.zeros([np.count_nonzero(tt) - 4 * numberOfEvents]), time_calibration[convrayClib] - tt_Calib[convrayClib])) ResidueNorm[i] = np.linalg.norm(np.hstack( (Resid[convrayData], time_calibration[convrayClib] - tt_Calib[convrayClib]))) if par.verbose: print('\n...Building matrix M\n') sys.stdout.flush() M = sp.csr_matrix((0, nbre_param)) ir = 0 for even in range(numberOfEvents): indh = np.where(Hypocenters[:, 0] == evID[even])[0] indr = np.where(data[:, 0] == evID[even])[0] Mi = M0[even] nst_ev = Mi.shape[0] Hi = np.ones([indr.size, 4]) for nr in range(indr.size): rayi = rays[indr[nr]] if rayi.shape[0] == 1: continue slw0 = slow_0[indr[nr]] dx = rayi[1, 0] - Hypocenters[indh[0], 2] dy = rayi[1, 1] - Hypocenters[indh[0], 3] dz = rayi[1, 2] - Hypocenters[indh[0], 4] ds = np.sqrt(dx * dx + dy * dy + dz * dz) Hi[nr, 1] = -slw0 * dx / ds Hi[nr, 2] = -slw0 * dy / ds Hi[nr, 3] = -slw0 * dz / ds convrays = np.where(tt[indr] != 0)[0] if convrays.shape[0] < indr.size: Hi = Hi[convrays, :] Q, _ = np.linalg.qr(Hi, mode='complete') Ti = sp.csr_matrix(Q[:, 4:]) Ti = Ti.T if par.use_sc: Lsc = sp.csr_matrix((np.ones(nst_ev,), (range(nst_ev), data[indr[convrays], 2] - 1)), shape=(nst_ev, nstation)) Mi = sp.hstack((Mi, Lsc)) Mi = sp.csr_matrix(Ti @ Mi) M = sp.vstack([M, Mi]) Residue[ir:ir + (nst_ev - 4)] = Ti.dot(Resid[indr[convrays]]) ir += nst_ev - 4 for evCal in range(len(Mcalib)): Mi = Mcalib[evCal] if par.use_sc: indrCal = np.where(caldata[:, 0] == calID[evCal])[0] convraysCal = np.where(tt_Calib[indrCal] != 0)[0] Mi = sp.hstack((Mi, Msc_cal[evCal][convraysCal])) M = sp.vstack([M, Mi]) if par.verbose: print('Assembling matrices and solving system\n') sys.stdout.flush() S = np.sum(Static_Corr) term1 = (M.T).dot(M) nM = spl.norm(term1[:nnodes, :nnodes]) term2 = (d_Pinality.T).dot(d_Pinality) nP = spl.norm(term2) term3 = U.dot(U.T) λ = par.λ * nM / nK if nP != 0: γ = par.γ * nM / nP else: γ = par.γ A = term1 + λ * KtK + γ * term2 + term3 if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: A += NtN term1 = (M.T).dot(Residue) term1 = term1.reshape([-1, 1]) term2 = (KX.T).dot(cx) + (KY.T).dot(cy) + par.wzK * (KZ.T).dot(cz) term3 = (d_Pinality.T).dot(Pinality) term4 = U.dot(S) b = term1 - λ * term2 - γ * term3 - term4 if vPoints.size > 0: α = par.α * nM / nD A += α * DtD b += α * D.T @ (1. / (vPoints[:, 1].reshape(-1, 1)) - D[:, :nnodes] @ Slowness) x = spl.minres(A, b, tol=1.e-8) deltam = x[0].reshape(-1, 1) # update velocity vector and static correction deltaV_max = np.max( abs(1. / (Slowness + deltam[:nnodes]) - 1. / Slowness)) if deltaV_max > par.dVp_max: print('\n...Rescale P slowness vector\n') sys.stdout.flush() L1 = np.max(deltam[:nnodes] / (-par.dVp_max * (Slowness**2) / (1 + par.dVp_max * Slowness))) L2 = np.max(deltam[:nnodes] / (par.dVp_max * (Slowness**2) / (1 - par.dVp_max * Slowness))) deltam[:nnodes] /= np.max([L1, L2]) print('P wave: maximum ds = {0:4.3f}, ' 'maximum dV = {1:4.3f}\n'.format(max(abs( deltam[:nnodes]))[0], np.max( abs(1. / (Slowness + deltam[:nnodes]) - 1. / Slowness)))) sys.stdout.flush() if par.use_sc and par.max_sc > 0. and par.max_sc < 1.: sc_mean = np.mean(abs(deltam[nnodes:])) if sc_mean > par.max_sc * np.mean(abs(Residue)): deltam[nnodes:] *= par.max_sc * np.mean(abs(Residue)) / sc_mean Slowness += np.matrix(deltam[:nnodes]) Mesh3D.set_slowness(Slowness) Static_Corr += deltam[nnodes:] if par.saveVel == 'all': if par.verbose: print('...Saving Velocity models') try: msh2vtk(nodes, cells, 1. / Slowness, basename + 'it{0}.vtk'.format(i + 1)) except ImportError: print('vtk module is not installed or encouters problems') elif par.saveVel == 'last' and i == par.maxit - 1: try: msh2vtk(nodes, cells, 1. / Slowness, basename + '.vtk') except ImportError: print('vtk module is not installed or encouters problems') ####################################### # relocate Hypocenters ####################################### if numberOfEvents > 0: print("\nIteration N {0:d} : Relocation of events".format( i + 1) + '\n') sys.stdout.flush() if nThreads == 1: for ev in range(numberOfEvents): Hypocenters[ev, :] = _hypo_relocation( ev, evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par) else: with Pool(processes=nThreads) as p: updatedHypo = p.starmap(_hypo_relocation, [(int(ev), evID, Hypocenters, data, rcv, Static_Corr, hypo_convergence, par) for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() Hypocenters = np.array([updatedHypo])[0] # Calculate the hypocenter parameter uncertainty uncertnty = [] if par.uncertainty and numberOfEvents > 0: print("\nUncertainty evaluation\n") sys.stdout.flush() # estimate data variance if nThreads == 1: varData = [[], []] for ev in range(numberOfEvents): uncertnty.append(_uncertaintyEstimat(ev, evID, Hypocenters, (data,), rcv, Static_Corr, (Slowness,), par, varData)) else: varData = manager.list([[], []]) with Pool(processes=nThreads) as p: uncertnty = p.starmap(_uncertaintyEstimat, [(int(ev), evID, Hypocenters, (data,), rcv, Static_Corr, (Slowness,), par, varData) for ev in range(numberOfEvents)]) p.close() # pool won't take any new tasks p.join() sgmData = np.sqrt(np.sum(varData[0]) / (np.sum(varData[1]) - 4 * numberOfEvents - Static_Corr.size)) for ic in range(numberOfEvents): uncertnty[ic] = tuple([sgmData * x for x in uncertnty[ic]]) output = OrderedDict() output['Hypocenters'] = Hypocenters output['Convergence'] = list(hypo_convergence) output['Uncertainties'] = uncertnty output['Velocity'] = 1. / Slowness output['Sts_Corrections'] = Static_Corr output['Residual_norm'] = ResidueNorm return output def jntHypoVelPS_T(obsData, calibdata, Vinit, cells, nodes, rcv, Hypo0, par, threads=1, vPnts=(np.array([]), np.array([])), basename='Vel'): """ Joint hypocenter-velocity inversion from P- and S-wave arrival time data parametrized using the velocity models. Parameters ---------- obsData : tuple of two np.ndarrays (shape(observed data number, 3)) Observed arrival time data of P- and S-waves. calibdata : tuple of two np.ndarrays (shape (number of calibration shots, 5)) Calibration data of P- and S-waves. Vinit : tuple of np.ndarrays (shape (nnodes, 1) or (1,1)) Initial velocity models of P- and S-waves. cells : np.ndarray of int, shape (cell number, 4) Indices of nodes forming the cells. nodes : np.ndarray, shape (nnodes, 3) Node coordinates. rcv : np.ndarray, shape (receiver number,3) Coordinates of receivers. Hypo0 : np.ndarray, shape(event number, 5) First guesses of the hypocenter coordinates (must be all diffirent). par : instance of the class Parameters The inversion parameters. threads : int, optional Thread number. The default is 1. vPnts : tuple of two np.ndarrays, optional Known velocity points of P- and S-waves. The default is (np.array([]), np.array([])). basename : string, optional The filename used to save the output files. The default is 'Vel'. Raises ------ ValueError If the Vs/Vp ratio is inverted instead of Vs model and some known velocity points are given for the S wave and not for the P wave. Returns ------- output : python dictionary It contains the estimated hypocenter coordinates and their origin times, static correction values, velocity models of P- and S-waves, hypocenter convergence states, parameter uncertainty and residual norm in each iteration. """ if par.verbose: print(par) print('inversion involves the velocity model\n') sys.stdout.flush() if par.use_sc: nstation = rcv.shape[0] else: nstation = 0 scP = np.zeros([nstation, 1]) scS = np.zeros([nstation, 1]) nnodes = nodes.shape[0] # observed traveltimes dataP, dataS = obsData data = np.vstack([dataP, dataS]) if data.size > 0: evID = np.unique(data[:, 0]) tObserved = data[:, 1] numberOfEvents = evID.size else: tObserved = np.array([]) numberOfEvents = 0 rcvData_P = np.zeros([dataP.shape[0], 3]) rcvData_S = np.zeros([dataS.shape[0], 3]) for ev in range(numberOfEvents): indr = np.where(dataP[:, 0] == evID[ev])[0] rcvData_P[indr] = rcv[dataP[indr, 2].astype(int) - 1, :] indr = np.where(dataS[:, 0] == evID[ev])[0] rcvData_S[indr] = rcv[dataS[indr, 2].astype(int) - 1, :] # calibration data caldataP, caldataS = calibdata if caldataP.size * caldataS.size > 0: caldata = np.vstack([caldataP, caldataS]) calID = np.unique(caldata[:, 0]) ncal = calID.size nttcalp = caldataP.shape[0] nttcals = caldataS.shape[0] time_calibration = caldata[:, 1] TxCalibP = np.zeros((caldataP.shape[0], 5)) TxCalibP[:, 0] = caldataP[:, 0] TxCalibP[:, 2:] = caldataP[:, 3:] TxCalibS = np.zeros((caldataS.shape[0], 5)) TxCalibS[:, 0] = caldataS[:, 0] TxCalibS[:, 2:] = caldataS[:, 3:] rcvCalibP = np.zeros([nttcalp, 3]) rcvCalibS = np.zeros([nttcals, 3]) if par.use_sc: Mscp_cal = [] Mscs_cal = [] for nc in range(ncal): indr = np.where(caldataP[:, 0] == calID[nc])[0] rcvCalibP[indr] = rcv[caldataP[indr, 2].astype(int) - 1, :] if par.use_sc: Mscp_cal.append(sp.csr_matrix((np.ones([indr.size, ]), (range(indr.size), caldataP[indr, 2] - 1)), shape=(indr.size, nstation))) indr = np.where(caldataS[:, 0] == calID[nc])[0] rcvCalibS[indr] = rcv[caldataS[indr, 2].astype(int) - 1, :] if par.use_sc: Mscs_cal.append(sp.csr_matrix((np.ones([indr.size, ]), (range(indr.size), caldataS[indr, 2] - 1)), shape=(indr.size, nstation))) else: ncal = 0 time_calibration = np.array([]) # set number of threads nThreadsSystem = cpu_count() nThreads = np.min((threads, nThreadsSystem)) global Mesh3D, Dimensions Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, n_threads=nThreads, n_secondary=2, n_tertiary=1, process_vel=True, radius_factor_tertiary=2, translate_grid=1) # initial velocity models for P and S waves Vpint, Vsint = Vinit if Vpint.size == 1: Velp = Vpint * np.ones([nnodes, 1]) SlowP = 1. / Velp elif Vpint.size == nnodes: Velp = Vpint SlowP = 1. / Velp else: print("invalid P Velocity model\n") sys.stdout.flush() return 0 if Vsint.size == 1: Vels = Vsint * np.ones([nnodes, 1]) SlowS = 1. / Vels elif Vsint.size == nnodes: Vels = Vsint SlowS = 1. / Vels else: print("invalid S Velocity model\n") sys.stdout.flush() return 0 if par.invert_VpVs: VsVp = Vels / Velp Velocity = np.vstack((Velp, VsVp)) else: Velocity = np.vstack((Velp, Vels)) # initial parameters Hyocenters0 and origin times if numberOfEvents > 0 and Hypo0.shape[0] != numberOfEvents: print("invalid Hypocenters0 format\n") sys.stdout.flush() return 0 else: Hypocenters = Hypo0.copy() Dimensions = np.empty(6) Dimensions[0] = min(nodes[:, 0]) Dimensions[1] = max(nodes[:, 0]) Dimensions[2] = min(nodes[:, 1]) Dimensions[3] = max(nodes[:, 1]) Dimensions[4] = min(nodes[:, 2]) Dimensions[5] = max(nodes[:, 2]) if par.invert_vel: if par.use_sc: U = sp.hstack((sp.csr_matrix(np.vstack( (np.zeros([2 * nnodes, 1]), np.ones([nstation, 1]), np.zeros([nstation, 1])))), sp.csr_matrix(np.vstack( (np.zeros([2 * nnodes + nstation, 1]), np.ones([nstation, 1])))))) nbre_param = 2 * (nnodes + nstation) if par.max_sc > 0. and par.max_sc < 1.: N = sp.bsr_matrix(np.hstack( (np.zeros([2 * nstation, 2 * nnodes]), np.eye(2 * nstation)))) NtN = (1. / par.max_sc**2) * N.T.dot(N) else: U = sp.csr_matrix(np.zeros([2 * nnodes, 2])) nbre_param = 2 * nnodes # calculate statistical moments of VpVs ratio if par.stig != 0.: momnts = np.zeros([4, ]) if par.invert_VpVs: Ratio = caldataP[:, 1] / caldataS[:, 1] # Ratio=Vs/Vp else: Ratio = caldataS[:, 1] / caldataP[:, 1] # Ratio=Vp/Vs for m in np.arange(4): if m == 0: momnts[m] = Ratio.mean() * nnodes else: momnts[m] = scps.moment(Ratio, m + 1) * nnodes # build matrix D vPoints_p, vPoints_s = vPnts if vPoints_p.shape[0] > 0 or vPoints_s.shape[0] > 0: if par.invert_VpVs: for i in np.arange(vPoints_s.shape[0]): dist = np.sqrt(np.sum((vPoints_p[:, 2:] - vPoints_s[i, 2:])**2, axis=1)) indp = np.where(dist < 1.e-5)[0] if indp.size > 0: vPoints_s[i, 1] /= vPoints_p[indp, 1] # Vs/Vp else: raise ValueError('Missing Vp data point for Vs data ' 'at ({0:f}, {1:f}, {2:f})'.format( vPoints_s[i, 2], vPoints_s[i, 3], vPoints_s[i, 4])) sys.stdout.flush() vPoints = np.vstack((vPoints_p, vPoints_s)) if par.verbose: print('Building velocity data point matrix D\n') sys.stdout.flush() Ds = Mesh3D.compute_D(vPoints_s[:, 2:]) D = sp.block_diag((Ds, Ds)).tocsr() D = sp.hstack((D, sp.csr_matrix((D.shape[0], 2*nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) else: vPoints = np.vstack((vPoints_p, vPoints_s)) Dp = Mesh3D.compute_D(vPoints_p[:, 2:]) Ds = Mesh3D.compute_D(vPoints_s[:, 2:]) D = sp.block_diag((Dp, Ds)).tocsr() D = sp.hstack((D, sp.csr_matrix((D.shape[0], 2*nstation)))).tocsr() DtD = D.T @ D nD = spl.norm(DtD) else: vPoints = np.array([]) # Build regularization matrix if par.verbose: print('\n...Building regularization matrix K\n') sys.stdout.flush() kx, ky, kz = Mesh3D.compute_K(order=2, taylor_order=2, weighting=1, squared=0, s0inside=0, additional_points=3) kx = sp.block_diag((kx, kx)) ky = sp.block_diag((ky, ky)) kz = sp.block_diag((kz, kz)) KX = sp.hstack((kx, sp.csr_matrix((2 * nnodes, 2 * nstation)))) KX_Square = KX.transpose() @ KX KY = sp.hstack((ky, sp.csr_matrix((2 * nnodes, 2 * nstation)))) KY_Square = KY.transpose() @ KY KZ = sp.hstack((kz, sp.csr_matrix((2 * nnodes, 2 * nstation)))) KZ_Square = KZ.transpose() @ KZ KtK = KX_Square + KY_Square + par.wzK * KZ_Square nK = spl.norm(KtK) if par.invert_VpVs: VsVpmax = 1. / par.VpVsmin VsVpmin = 1. / par.VpVsmax if nThreads == 1: hypo_convergence = list(np.zeros(numberOfEvents, dtype=bool)) else: manager = Manager() hypo_convergence = manager.list(np.zeros(numberOfEvents, dtype=bool)) ResidueNorm = np.zeros([par.maxit]) for i in range(par.maxit): if par.verbose: print("Iteration N : {0:d}\n".format(i + 1)) sys.stdout.flush() if par.invert_vel: if par.verbose: print('\nIteration {0:d} - Updating velocity model\n'.format(i + 1)) print("Updating penalty vector\n") sys.stdout.flush() # Build vector C cx = kx.dot(Velocity) cy = ky.dot(Velocity) cz = kz.dot(Velocity) # build matrix P and dP indVpmin = np.where(Velocity[:nnodes] < par.Vpmin)[0] indVpmax = np.where(Velocity[:nnodes] > par.Vpmax)[0] if par.invert_VpVs: indVsVpmin = np.where(Velocity[nnodes:] < VsVpmin)[0] + nnodes indVsVpmax = np.where(Velocity[nnodes:] > VsVpmax)[0] + nnodes pinality_V = np.vstack([par.PAp * (par.Vpmin - Velocity[indVpmin]), par.PAp * (Velocity[indVpmax] - par.Vpmax), par.Pvpvs * (VsVpmin - Velocity[indVsVpmin]), par.Pvpvs * (Velocity[indVsVpmax] - VsVpmax)]) dPinality_V = np.hstack([-par.PAp * np.ones(indVpmin.size), par.PAp * np.ones(indVpmax.size), -par.Pvpvs * np.ones(indVsVpmin.size), par.Pvpvs * np.ones(indVsVpmax.size)]) indPinality = np.hstack( [indVpmin, indVpmax, indVsVpmin, indVsVpmax]) else: indVsmin = np.where(Velocity[nnodes:] < par.Vsmin)[0] + nnodes indVsmax = np.where(Velocity[nnodes:] > par.Vsmax)[0] + nnodes pinality_V = np.vstack([par.PAp * (par.Vpmin - Velocity[indVpmin]), par.PAp * (Velocity[indVpmax] - par.Vpmax), par.PAs * (par.Vsmin - Velocity[indVsmin]), par.PAs * (Velocity[indVsmax] - par.Vsmax)]) dPinality_V = np.hstack([-par.PAp * np.ones(indVpmin.size), par.PAp * np.ones(indVpmax.size), -par.PAs * np.ones(indVsmin.size), par.PAs * np.ones(indVsmax.size)]) indPinality = np.hstack( [indVpmin, indVpmax, indVsmin, indVsmax]) if par.VpVsmin and par.VpVsmax: indvpvs_min = np.where(Velp / Vels <= par.VpVsmin)[0] indvpvs_max = np.where(Velp / Vels >= par.VpVsmax)[0] if par.verbose and indvpvs_max.size > 0: print('\n{0:d} nodes have Vp/Vs ratio higher than the ' 'upper VpVs limit\n'.format(indvpvs_max.size)) sys.stdout.flush() if par.verbose and indvpvs_min.size > 0: print('\n{0:d} nodes have Vp/Vs ratio lower than the lower ' 'VpVs limit\n'.format(indvpvs_min.size)) sys.stdout.flush() indPnltvpvs = np.hstack([indvpvs_min, indvpvs_max]) no = 2 # order or pinality function pinlt_vpvs = np.vstack([par.Pvpvs * (par.VpVsmin - Velp[indvpvs_min] / Vels[indvpvs_min])**no, par.Pvpvs * (Velp[indvpvs_max] / Vels[indvpvs_max] - par.VpVsmax)**no]) PinltVpVs = sp.csr_matrix((pinlt_vpvs.reshape( [-1, ]), (indPnltvpvs, np.zeros([indPnltvpvs.shape[0]]))), shape=(nnodes, 1)) dPinltVpVsind = (np.hstack([indvpvs_min, indvpvs_max, indvpvs_min, indvpvs_max]), np.hstack([indvpvs_min, indvpvs_max, indvpvs_min + nnodes, indvpvs_max + nnodes])) dPinltVpVs_V = np.vstack( (-par.Pvpvs / Vels[indvpvs_min] * no * (par.VpVsmin - Velp[indvpvs_min] / Vels[indvpvs_min])**(no - 1), par.Pvpvs / Vels[indvpvs_max] * no * (Velp[indvpvs_max] / Vels[indvpvs_max] - par.VpVsmax)**(no - 1), par.Pvpvs * Velp[indvpvs_min] / (Vels[indvpvs_min]**2) * no * (par.VpVsmin - Velp[indvpvs_min] / Vels[indvpvs_min])**(no - 1), -par.Pvpvs * Velp[indvpvs_max] / (Vels[indvpvs_max]**2) * no * (Velp[indvpvs_max] / Vels[indvpvs_max] - par.VpVsmax)**(no - 1))) dPinltVpVs = sp.csr_matrix((dPinltVpVs_V.reshape( [-1, ]), dPinltVpVsind), shape=(nnodes, nbre_param)) d_Pinality = sp.csr_matrix( (dPinality_V, (indPinality, indPinality)), shape=(2 * nnodes, nbre_param)) Pinality = sp.csr_matrix((pinality_V.reshape( [-1, ]), (indPinality, np.zeros([indPinality.shape[0]]))), shape=(2 * nnodes, 1)) if par.verbose: print('P wave Penalties were applied at {0:d} nodes\n'.format( indVpmin.shape[0] + indVpmax.shape[0])) sys.stdout.flush() if par.invert_VpVs: print( 'Vs/Vp ratio Penalties were applied ' 'at {0:d} nodes\n'.format(indVsVpmin.shape[0] + indVsVpmax.shape[0])) sys.stdout.flush() else: print('S wave Penalties were applied at {0:d} nodes\n'.format( indVsmin.shape[0] + indVsmax.shape[0])) sys.stdout.flush() print('...Start Raytracing\n') sys.stdout.flush() if numberOfEvents > 0: sourcesp = np.empty((dataP.shape[0], 5)) if par.use_sc: scp_data = np.zeros((dataP.shape[0], 1)) for ev in np.arange(numberOfEvents): indrp = np.where(dataP[:, 0] == evID[ev])[0] indh = np.where(Hypocenters[:, 0] == evID[ev])[0] sourcesp[indrp, :] = Hypocenters[indh, :] if par.use_sc: scp_data[indrp, :] = scP[dataP[indrp, 2].astype(int) - 1] if par.use_sc: sourcesp[:, 1] += scp_data[:, 0] ttp, raysp, M0p = Mesh3D.raytrace( source=sourcesp, rcv=rcvData_P, slowness=SlowP, aggregate_src=False, compute_L=True, return_rays=True) else: ttp, raysp, M0p = Mesh3D.raytrace( source=sourcesp, rcv=rcvData_P, slowness=SlowP, aggregate_src=False, compute_L=True, return_rays=True) if par.verbose: inconverged = np.where(ttp == 0)[0] for icr in inconverged: print('\033[43m' + '\nWarning: raypath failed to converge for even ' 'N {0:d} :({1:5.4f},{2:5.4f},{3:5.4f}) and receiver ' 'N {4:d} :({5:5.4f},{6:5.4f},{7:5.4f})\n'.format( int(dataP[icr, 0]), sourcesp[icr, 2], sourcesp[icr, 3], sourcesp[icr, 4], int(dataP[icr, 2]), rcvData_P[icr, 0], rcvData_P[icr, 1], rcvData_P[icr, 2]) + '\033[0m') print('\033[43m' + 'ray will be temporary removed' + '\033[0m') sys.stdout.flush() v0p = 1. / Mesh3D.get_s0(sourcesp) sourcesS = np.empty((dataS.shape[0], 5)) if par.use_sc: scs_data = np.zeros((dataS.shape[0], 1)) for ev in np.arange(numberOfEvents): indrs =
np.where(dataS[:, 0] == evID[ev])
numpy.where
# -*- coding: utf-8 -*- import dash import dash_core_components as dcc import dash_html_components as html import dash_daq as daq from dash.dependencies import Output, Input, State import dash_table import pandas as pd import sys import os import plotly.graph_objs as go import numpy as np import pandas as pd from scipy.cluster.vq import vq, kmeans, whiten from collections import OrderedDict from collections import namedtuple # bsplines from bsplines_utilities import point_on_bspline_curve from bsplines_utilities import point_on_bspline_surface from bsplines_utilities import insert_knot_bspline_curve from bsplines_utilities import elevate_degree_bspline_curve from bsplines_utilities import insert_knot_bspline_surface from bsplines_utilities import elevate_degree_bspline_surface # nurbs from bsplines_utilities import point_on_nurbs_curve from bsplines_utilities import point_on_nurbs_surface from bsplines_utilities import insert_knot_nurbs_curve from bsplines_utilities import insert_knot_nurbs_surface from bsplines_utilities import elevate_degree_nurbs_curve from bsplines_utilities import elevate_degree_nurbs_surface # bsplines from bsplines_utilities import translate_bspline_curve from bsplines_utilities import rotate_bspline_curve from bsplines_utilities import homothetic_bspline_curve # nurbs from bsplines_utilities import translate_nurbs_curve from bsplines_utilities import rotate_nurbs_curve from bsplines_utilities import homothetic_nurbs_curve from datatypes import SplineCurve from datatypes import SplineSurface from datatypes import SplineVolume from datatypes import NurbsCurve from datatypes import NurbsSurface from datatypes import NurbsVolume from gallery import make_line from gallery import make_arc from gallery import make_square from gallery import make_circle from gallery import make_half_annulus_cubic from gallery import make_L_shape_C1 # ... global variables namespace = OrderedDict() model_id = 0 # ... # ... global dict for time stamps d_timestamp = OrderedDict() d_timestamp['load'] = -10000 d_timestamp['refine'] = -10000 d_timestamp['transform'] = -10000 d_timestamp['edit'] = -10000 d_timestamp['line'] = -10000 d_timestamp['arc'] = -10000 d_timestamp['square'] = -10000 d_timestamp['circle'] = -10000 d_timestamp['half_annulus_cubic'] = -10000 d_timestamp['L_shape_C1'] = -10000 d_timestamp['cube'] = -10000 d_timestamp['cylinder'] = -10000 d_timestamp['insert'] = -10000 d_timestamp['elevate'] = -10000 d_timestamp['subdivide'] = -10000 d_timestamp['translate'] = -10000 d_timestamp['rotate'] = -10000 d_timestamp['homothetie'] = -10000 # ... # ... def plot_curve(crv, nx=101, control_polygon=False): knots = crv.knots degree = crv.degree P = crv.points n = len(knots) - degree - 1 # ... curve xs = np.linspace(0., 1., nx) Q = np.zeros((nx, 2)) if isinstance(crv, SplineCurve): for i,x in enumerate(xs): Q[i,:] = point_on_bspline_curve(knots, P, x) elif isinstance(crv, NurbsCurve): W = crv.weights for i,x in enumerate(xs): Q[i,:] = point_on_nurbs_curve(knots, P, W, x) line_marker = dict(color='#0066FF', width=2) x = Q[:,0] ; y = Q[:,1] trace_crv = go.Scatter( x=x, y=y, mode = 'lines', name='Curve', line=line_marker, ) # ... if not control_polygon: return [trace_crv] # ... control polygon line_marker = dict(color='#ff7f0e', width=2) x = P[:,0] ; y = P[:,1] trace_ctrl = go.Scatter( x=x, y=y, mode='lines+markers', name='Control polygon', line=line_marker, ) # ... return [trace_crv, trace_ctrl] # ... # ... def plot_surface(srf, Nu=101, Nv=101, control_polygon=False): Tu, Tv = srf.knots pu, pv = srf.degree P = srf.points nu = len(Tu) - pu - 1 nv = len(Tv) - pv - 1 gridu = np.unique(Tu) gridv = np.unique(Tv) us = np.linspace(0., 1., Nu) vs = np.linspace(0., 1., Nv) lines = [] line_marker = dict(color='#0066FF', width=2) # ... Q = np.zeros((len(gridu), Nv, 2)) if isinstance(srf, SplineSurface): for i,u in enumerate(gridu): for j,v in enumerate(vs): Q[i,j,:] = point_on_bspline_surface(Tu, Tv, P, u, v) elif isinstance(srf, NurbsSurface): W = srf.weights for i,u in enumerate(gridu): for j,v in enumerate(vs): Q[i,j,:] = point_on_nurbs_surface(Tu, Tv, P, W, u, v) for i in range(len(gridu)): lines += [go.Scatter(mode = 'lines', line=line_marker, x=Q[i,:,0], y=Q[i,:,1]) ] # ... # ... Q = np.zeros((Nu, len(gridv), 2)) if isinstance(srf, SplineSurface): for i,u in enumerate(us): for j,v in enumerate(gridv): Q[i,j,:] = point_on_bspline_surface(Tu, Tv, P, u, v) elif isinstance(srf, NurbsSurface): W = srf.weights for i,u in enumerate(us): for j,v in enumerate(gridv): Q[i,j,:] = point_on_nurbs_surface(Tu, Tv, P, W, u, v) for j in range(len(gridv)): lines += [go.Scatter(mode = 'lines', line=line_marker, x=Q[:,j,0], y=Q[:,j,1]) ] # ... if not control_polygon: return lines # ... control polygon line_marker = dict(color='#ff7f0e', width=2) for i in range(nu): lines += [go.Scatter(mode = 'lines+markers', line=line_marker, x=P[i,:,0], y=P[i,:,1]) ] for j in range(nv): lines += [go.Scatter(mode = 'lines+markers', line=line_marker, x=P[:,j,0], y=P[:,j,1]) ] # ... return lines # ... # ... def model_from_data(data): # ... weights = None try: knots, degree, points = data points = np.asarray(points) except: try: knots, degree, points, weights = data points = np.asarray(points) weights = np.asarray(weights) except: raise ValueError('Could not retrieve data') # ... if isinstance(knots, (tuple, list)): knots = [np.asarray(T) for T in knots] if isinstance(degree, int): if weights is None: current_model = SplineCurve(knots=knots, degree=degree, points=points) else: current_model = NurbsCurve(knots=knots, degree=degree, points=points, weights=weights) elif len(degree) == 2: if weights is None: current_model = SplineSurface(knots=knots, degree=degree, points=points) else: current_model = NurbsSurface(knots=knots, degree=degree, points=points, weights=weights) return current_model # ... # ================================================================= tab_line = dcc.Tab(label='line', children=[ html.Label('origin'), dcc.Input(id='line_origin', placeholder='Enter a value ...', value='', type='text' ), html.Label('end'), dcc.Input(id='line_end', placeholder='Enter a value ...', value='', type='text' ), html.Button('Submit', id='line_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_arc = dcc.Tab(label='arc', children=[ html.Label('center'), dcc.Input(id='arc_center', placeholder='Enter a value ...', value='', type='text' ), html.Label('radius'), dcc.Input(id='arc_radius', placeholder='Enter a value ...', value='', type='text' ), html.Label('angle'), dcc.Dropdown(id="arc_angle", options=[{'label': '90', 'value': '90'}, {'label': '120', 'value': '120'}, {'label': '180', 'value': '180'}], value=[], multi=False), html.Button('Submit', id='arc_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_square = dcc.Tab(label='square', children=[ html.Label('origin'), dcc.Input(id='square_origin', placeholder='Enter a value ...', value='', type='text' ), html.Label('length'), dcc.Input(id='square_length', placeholder='Enter a value ...', value='', type='text' ), html.Button('Submit', id='square_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_circle = dcc.Tab(label='circle', children=[ html.Label('center'), dcc.Input(id='circle_center', placeholder='Enter a value ...', value='', type='text' ), html.Label('radius'), dcc.Input(id='circle_radius', placeholder='Enter a value ...', value='', type='text' ), html.Button('Submit', id='circle_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_half_annulus_cubic = dcc.Tab(label='half_annulus_cubic', children=[ html.Label('center'), dcc.Input(id='half_annulus_cubic_center', placeholder='Enter a value ...', value='', type='text' ), html.Label('rmax'), dcc.Input(id='half_annulus_cubic_rmax', placeholder='Enter a value ...', value='', type='text' ), html.Label('rmin'), dcc.Input(id='half_annulus_cubic_rmin', placeholder='Enter a value ...', value='', type='text' ), html.Button('Submit', id='half_annulus_cubic_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_L_shape_C1 = dcc.Tab(label='L_shape_C1', children=[ html.Label('center'), dcc.Input(id='L_shape_C1_center', placeholder='Enter a value ...', value='', type='text' ), html.Button('Submit', id='L_shape_C1_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_cube = dcc.Tab(label='cube', children=[ html.Label('origin'), dcc.Input(id='cube_origin', placeholder='Enter a value ...', value='', type='text' ), html.Button('Submit', id='cube_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_cylinder = dcc.Tab(label='cylinder', children=[ html.Label('origin'), dcc.Input(id='cylinder_origin', placeholder='Enter a value ...', value='', type='text' ), html.Button('Submit', id='cylinder_submit', n_clicks_timestamp=0), ]) # ================================================================= tab_geometry_1d = dcc.Tab(label='1D', children=[ dcc.Tabs(children=[ tab_line, tab_arc, ]), ]) # ================================================================= tab_geometry_2d = dcc.Tab(label='2D', children=[ dcc.Tabs(children=[ tab_square, tab_circle, tab_half_annulus_cubic, tab_L_shape_C1, ]), ]) # ================================================================= tab_geometry_3d = dcc.Tab(label='3D', children=[ dcc.Tabs(children=[ tab_cube, tab_cylinder, ]), ]) # ================================================================= tab_loader = dcc.Tab(label='Load', children=[ html.Button('load', id='button_load', n_clicks_timestamp=0), dcc.Store(id='loaded_model'), dcc.Tabs(children=[ tab_geometry_1d, tab_geometry_2d, tab_geometry_3d ]), ]) # ================================================================= tab_insert_knot = dcc.Tab(label='Insert knot', children=[ html.Div([ html.Label('Knot'), dcc.Input(id='insert_knot_value', placeholder='Enter a value ...', value='', # we use text rather than number to avoid # having the incrementation/decrementation type='text' ), html.Label('times'), daq.NumericInput(id='insert_knot_times', min=1, value=0 ), html.Button('Submit', id='insert_submit', n_clicks_timestamp=0), ]), ]) # ================================================================= tab_elevate_degree = dcc.Tab(label='Elevate degree', children=[ html.Div([ html.Label('times'), daq.NumericInput(id='elevate_degree_times', min=0, value=0 ), html.Button('Submit', id='elevate_submit', n_clicks_timestamp=0), ]), ]) # ================================================================= tab_subdivision = dcc.Tab(label='Subdivision', children=[ html.Div([ html.Label('times'), daq.NumericInput(id='subdivision_times', min=0, value=0 ), html.Button('Submit', id='subdivide_submit', n_clicks_timestamp=0), ]), ]) # ================================================================= tab_refinement = dcc.Tab(label='Refinement', children=[ dcc.Store(id='refined_model'), html.Div([ # ... html.Label('Axis'), dcc.Dropdown(id="axis", options=[{'label': 'u', 'value': '0'}, {'label': 'v', 'value': '1'}, {'label': 'w', 'value': '2'}], value=[], multi=True), html.Button('Apply', id='button_refine', n_clicks_timestamp=0), html.Hr(), # ... # ... dcc.Tabs(children=[ tab_insert_knot, tab_elevate_degree, tab_subdivision ]), # ... ]) ]) # ================================================================= tab_translate = dcc.Tab(label='Translate', children=[ html.Div([ html.Label('displacement'), dcc.Input(id='translate_disp', placeholder='Enter a value ...', value='', type='text'), html.Button('Submit', id='translate_submit', n_clicks_timestamp=0), ]), ]) # ================================================================= tab_rotate = dcc.Tab(label='Rotate', children=[ html.Div([ html.Label('center'), dcc.Input(id='rotate_center', placeholder='Enter a value ...', value='', type='text'), html.Label('angle'), dcc.Input(id='rotate_angle', placeholder='Enter a value ...', value='', type='text'), html.Button('Submit', id='rotate_submit', n_clicks_timestamp=0), ]), ]) # ================================================================= tab_homothetie = dcc.Tab(label='Homothetie', children=[ html.Div([ html.Label('center'), dcc.Input(id='homothetie_center', placeholder='Enter a value ...', value='', type='text'), html.Label('scale'), dcc.Input(id='homothetie_alpha', placeholder='Enter a value ...', value='', type='text'), html.Button('Submit', id='homothetie_submit', n_clicks_timestamp=0), ]), ]) # ================================================================= tab_transformation = dcc.Tab(label='Transformation', children=[ dcc.Store(id='transformed_model'), html.Div([ # ... html.Button('Apply', id='button_transform', n_clicks_timestamp=0), dcc.Tabs(children=[ tab_translate, tab_rotate, tab_homothetie, ]), # ... ]) ]) # ================================================================= tab_editor = dcc.Tab(label='Editor', children=[ html.Button('Edit', id='button_edit', n_clicks_timestamp=0), dcc.Store(id='edited_model'), html.Div([ html.Div(id='editor-Tu'), html.Div(id='editor-Tv'), html.Div(id='editor-Tw'), html.Div(id='editor-degree'), dash_table.DataTable(id='editor-table', columns=[], editable=True), ]) ]) # ================================================================= tab_viewer = dcc.Tab(label='Viewer', children=[ html.Label('Geometry'), dcc.Dropdown(id="model", options=[{'label':name, 'value':name} for name in namespace.keys()], value=[], multi=True), html.Div([ daq.BooleanSwitch(label='Control polygon', id='control_polygon', on=False ), # ... html.Div([ dcc.Graph(id="graph")]), # ... ]) ]) # ================================================================= external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div([ # ... html.H1(children='CAID'), # ... # ... dcc.Tabs(id="tabs", children=[ tab_viewer, tab_loader, tab_refinement, tab_transformation, tab_editor, ]), html.Div(id='tabs-content-example') # ... ]) # ================================================================= @app.callback( Output("loaded_model", "data"), [Input('button_load', 'n_clicks_timestamp'), Input('line_origin', 'value'), Input('line_end', 'value'), Input('line_submit', 'n_clicks_timestamp'), Input('arc_center', 'value'), Input('arc_radius', 'value'), Input('arc_angle', 'value'), Input('arc_submit', 'n_clicks_timestamp'), Input('square_origin', 'value'), Input('square_length', 'value'), Input('square_submit', 'n_clicks_timestamp'), Input('circle_center', 'value'), Input('circle_radius', 'value'), Input('circle_submit', 'n_clicks_timestamp'), Input('half_annulus_cubic_center', 'value'), Input('half_annulus_cubic_rmax', 'value'), Input('half_annulus_cubic_rmin', 'value'), Input('half_annulus_cubic_submit', 'n_clicks_timestamp'), Input('L_shape_C1_center', 'value'), Input('L_shape_C1_submit', 'n_clicks_timestamp')] ) def load_model(time_clicks, line_origin, line_end, line_submit_time, arc_center, arc_radius, arc_angle, arc_submit_time, square_origin, square_length, square_submit_time, circle_center, circle_radius, circle_submit_time, half_annulus_cubic_center, half_annulus_cubic_rmax, half_annulus_cubic_rmin, half_annulus_cubic_submit_time, L_shape_C1_center, L_shape_C1_submit_time): global d_timestamp if time_clicks <= d_timestamp['load']: return None d_timestamp['load'] = time_clicks if ( not( line_origin is '' ) and not( line_end is '' ) and not( line_submit_time <= d_timestamp['line'] ) ): # ... try: line_origin = [float(i) for i in line_origin.split(',')] except: raise ValueError('Cannot convert line_origin') # ... # ... try: line_end = [float(i) for i in line_end.split(',')] except: raise ValueError('Cannot convert line_end') # ... d_timestamp['line'] = line_submit_time return make_line(origin=line_origin, end=line_end) elif ( not( arc_center is '' ) and not( arc_radius is '' ) and arc_angle and not( arc_submit_time <= d_timestamp['arc'] ) ): # ... try: arc_center = [float(i) for i in arc_center.split(',')] except: raise ValueError('Cannot convert arc_center') # ... # ... try: arc_radius = float(arc_radius) except: raise ValueError('Cannot convert arc_radius') # ... # ... try: arc_angle = float(arc_angle) except: raise ValueError('Cannot convert arc_angle') # ... d_timestamp['arc'] = arc_submit_time return make_arc(center=arc_center, radius=arc_radius, angle=arc_angle) elif ( not( square_origin is '' ) and not( square_length is '' ) and not( square_submit_time <= d_timestamp['square'] ) ): # ... try: square_origin = [float(i) for i in square_origin.split(',')] except: raise ValueError('Cannot convert square_origin') # ... # ... try: square_length = float(square_length) except: raise ValueError('Cannot convert square_length') # ... d_timestamp['square'] = square_submit_time return make_square(origin=square_origin, length=square_length) elif ( not( circle_center is '' ) and not( circle_radius is '' ) and not( circle_submit_time <= d_timestamp['circle'] ) ): # ... try: circle_center = [float(i) for i in circle_center.split(',')] except: raise ValueError('Cannot convert circle_center') # ... # ... try: circle_radius = float(circle_radius) except: raise ValueError('Cannot convert circle_radius') # ... d_timestamp['circle'] = circle_submit_time return make_circle(center=circle_center, radius=circle_radius) elif ( not( half_annulus_cubic_center is '' ) and not( half_annulus_cubic_rmax is '' ) and not( half_annulus_cubic_rmin is '' ) and not( half_annulus_cubic_submit_time <= d_timestamp['half_annulus_cubic'] ) ): # ... try: half_annulus_cubic_center = [float(i) for i in half_annulus_cubic_center.split(',')] except: raise ValueError('Cannot convert half_annulus_cubic_center') # ... # ... try: half_annulus_cubic_rmax = float(half_annulus_cubic_rmax) except: raise ValueError('Cannot convert half_annulus_cubic_rmax') # ... # ... try: half_annulus_cubic_rmin = float(half_annulus_cubic_rmin) except: raise ValueError('Cannot convert half_annulus_cubic_rmin') # ... d_timestamp['half_annulus_cubic'] = half_annulus_cubic_submit_time return make_half_annulus_cubic(center=half_annulus_cubic_center, rmax=half_annulus_cubic_rmax, rmin=half_annulus_cubic_rmin) elif ( not( L_shape_C1_center is '' ) and not( L_shape_C1_submit_time <= d_timestamp['L_shape_C1'] ) ): # ... try: L_shape_C1_center = [float(i) for i in L_shape_C1_center.split(',')] except: raise ValueError('Cannot convert L_shape_C1_center') # ... d_timestamp['L_shape_C1'] = L_shape_C1_submit_time return make_L_shape_C1(center=L_shape_C1_center) else: return None # ================================================================= @app.callback( Output("refined_model", "data"), [Input("model", "value"), Input('button_refine', 'n_clicks_timestamp'), Input('insert_knot_value', 'value'), Input('insert_knot_times', 'value'), Input('insert_submit', 'n_clicks_timestamp'), Input('elevate_degree_times', 'value'), Input('elevate_submit', 'n_clicks_timestamp'), Input('subdivision_times', 'value'), Input('subdivide_submit', 'n_clicks_timestamp')] ) def apply_refine(models, time_clicks, t, t_times, insert_submit_time, m, elevate_submit_time, levels, subdivide_submit_time): global d_timestamp if time_clicks <= d_timestamp['refine']: return None d_timestamp['refine'] = time_clicks if len(models) == 0: return None if len(models) > 1: return None name = models[0] model = namespace[name] # ... insert knot if not( t is '' ) and not( insert_submit_time <= d_timestamp['insert'] ): times = int(t_times) t = float(t) if isinstance(model, (SplineCurve, NurbsCurve)): t_min = model.knots[ model.degree] t_max = model.knots[-model.degree] if t > t_min and t < t_max: if isinstance(model, SplineCurve): knots, degree, P = insert_knot_bspline_curve( model.knots, model.degree, model.points, t, times=times ) model = SplineCurve(knots=knots, degree=degree, points=P) elif isinstance(model, NurbsCurve): knots, degree, P, W = insert_knot_nurbs_curve( model.knots, model.degree, model.points, model.weights, t, times=times ) model = NurbsCurve(knots=knots, degree=degree, points=P, weights=W) elif isinstance(model, (SplineSurface, NurbsSurface)): u_min = model.knots[0][ model.degree[0]] u_max = model.knots[0][-model.degree[0]] v_min = model.knots[1][ model.degree[1]] v_max = model.knots[1][-model.degree[1]] condition = False # TODO if t > u_min and t < u_max: if isinstance(model, SplineSurface): Tu, Tv, pu, pv, P = insert_knot_bspline_surface( *model.knots, *model.degree, model.points, t, times=times, axis=None) model = SplineSurface(knots=(Tu, Tv), degree=(pu, pv), points=P) elif isinstance(model, NurbsSurface): Tu, Tv, pu, pv, P, W = insert_knot_nurbs_surface( *model.knots, *model.degree, model.points, model.weights, t, times=times, axis=None) model = NurbsSurface(knots=(Tu, Tv), degree=(pu, pv), points=P, weights=W) d_timestamp['insert'] = insert_submit_time # ... # ... degree elevation if m > 0 and not( elevate_submit_time <= d_timestamp['elevate'] ) : m = int(m) if isinstance(model, SplineCurve): knots, degree, P = elevate_degree_bspline_curve( model.knots, model.degree, model.points, m=m) model = SplineCurve(knots=knots, degree=degree, points=P) elif isinstance(model, NurbsCurve): knots, degree, P, W = elevate_degree_nurbs_curve( model.knots, model.degree, model.points, model.weights, m=m) model = NurbsCurve(knots=knots, degree=degree, points=P, weights=W) elif isinstance(model, SplineSurface): Tu, Tv, pu, pv, P = elevate_degree_bspline_surface( *model.knots, *model.degree, model.points, m=m) model = SplineSurface(knots=(Tu, Tv), degree=(pu, pv), points=P) elif isinstance(model, NurbsSurface): Tu, Tv, pu, pv, P, W = elevate_degree_nurbs_surface( *model.knots, *model.degree, model.points, model.weights, m=m) model = NurbsSurface(knots=(Tu, Tv), degree=(pu, pv), points=P, weights=W) d_timestamp['elevate'] = elevate_submit_time # ... # ...subdivision if levels > 0 and not( subdivide_submit_time <= d_timestamp['subdivide'] ): levels = int(levels) for level in range(levels): grid = np.unique(model.knots) for a,b in zip(grid[:-1], grid[1:]): t = (a+b)/2. knots, degree, P = insert_knot_bspline_curve( model.knots, model.degree, model.points, t, times=1 ) model = SplineCurve(knots=knots, degree=degree, points=P) d_timestamp['subdivide'] = subdivide_submit_time # ... print('refinement done') return model # ================================================================= @app.callback( Output("transformed_model", "data"), [Input("model", "value"), Input('button_transform', 'n_clicks_timestamp'), Input('translate_disp', 'value'), Input('translate_submit', 'n_clicks_timestamp'), Input('rotate_center', 'value'), Input('rotate_angle', 'value'), Input('rotate_submit', 'n_clicks_timestamp'), Input('homothetie_alpha', 'value'), Input('homothetie_center', 'value'), Input('homothetie_submit', 'n_clicks_timestamp')] ) def apply_transform(models, time_clicks, translate_disp, translate_submit_time, rotate_center, rotate_angle, rotate_submit_time, homothetie_alpha, homothetie_center, homothetie_submit_time): global d_timestamp if time_clicks <= d_timestamp['transform']: return None d_timestamp['transform'] = time_clicks if len(models) == 0: return None if len(models) > 1: return None name = models[0] model = namespace[name] if not( translate_disp is '' ) and not( translate_submit_time <= d_timestamp['translate'] ): # ... try: displ = [float(i) for i in translate_disp.split(',')] except: raise ValueError('Cannot convert translate_disp') # ... displ = np.asarray(displ) if isinstance(model, SplineCurve): knots, P = translate_bspline_curve(model.knots, model.points, displ) model = SplineCurve(knots=knots, degree=model.degree, points=P) elif isinstance(model, NurbsCurve): knots, P, W = translate_nurbs_curve(model.knots, model.points, model.weights, displ) model = NurbsCurve(knots=knots, degree=model.degree, points=P, weights=W) elif not( rotate_center is '' ) and not( rotate_angle is '' ) and not( rotate_submit_time <= d_timestamp['rotate'] ): # ... try: center = [float(i) for i in rotate_center.split(',')] center =
np.asarray(center)
numpy.asarray
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np from collections import defaultdict import copy np.random.seed=2021 # In[2]: def temp_scaled_softmax(data,temp=1.0): prob=np.exp(data/temp)/np.sum(
np.exp(data/temp)
numpy.exp
# Import Packages import numpy as np import pandas as pd from bitarray import bitarray from sklearn.base import clone from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score, roc_auc_score, average_precision_score from sklearn.utils import shuffle from sklearn.model_selection import LeaveOneOut, StratifiedKFold from sklearn.metrics import SCORERS from sklearn.model_selection import learning_curve import matplotlib.pyplot as plt #Define some useful functions # Load disproportionality data (from Harpaz et al) # calculated on FAERS data through Q3 2011 # I skip LR and ELR here # The LR and ELR they present are calculated differently # by running the regressor on more empirical data, and not just # by running it on calculated ratios (as done here). def loadharpazdata(inputfile, labelfile, harpazfile): tmpvecs = [] tmpqueries = [] with open(inputfile, 'r') as infile: infile.readline()#skip header row for line in infile: tmp = line.strip().split('|') tmpvecs += [np.asarray(bitarray(tmp[1]).tolist(), dtype=int)] tmpqueries += [tmp[0]] tmpdf = pd.DataFrame(np.asarray(tmpvecs)) tmpdf.columns = [str(x) for x in range(1, np.asarray(tmpvecs).shape[1]+1)] tmpdf.insert(0, 'Query', tmpqueries) labsdict = dict() with open(labelfile,'r') as infile: for line in infile: tmp = line.strip().split('\t') labsdict[tmp[1]] = int(tmp[0]) tmpdf.insert(1, 'Label', [labsdict[x] for x in tmpqueries]) prrdict = dict() with open(harpazfile, 'r') as infile: infile.readline() #skip header for line in infile: tmp = line.strip().split('\t') if tmp[0] == 'darunavir' or tmp[0] == 'sitagliptin': continue if tmp[0] == 'tenofovir': prrdict[f'S({tmp[0]})*S({tmp[1]})'] = ['NA']*8 continue prrdict[f'S({tmp[0]})*S({tmp[1]})'] = [tmp[7], tmp[8], tmp[9], tmp[10], tmp[11], tmp[12], tmp[21], tmp[22]] #['EBGM', 'EB05', 'PRR', 'PRR05', 'ROR', 'ROR05', 'EBGM (none-stratified)', 'EB05 (none-stratified)'] tmpdf.insert(2, 'EB05NoStrat', [prrdict[x][-1] for x in tmpqueries]) tmpdf.insert(2, 'EBGMNoStrat', [prrdict[x][-2] for x in tmpqueries]) tmpdf.insert(2, 'ROR05', [prrdict[x][-3] for x in tmpqueries]) tmpdf.insert(2, 'ROR', [prrdict[x][-4] for x in tmpqueries]) tmpdf.insert(2, 'PRR05', [prrdict[x][-5] for x in tmpqueries]) tmpdf.insert(2, 'PRR', [prrdict[x][-6] for x in tmpqueries]) tmpdf.insert(2, 'EB05', [prrdict[x][-7] for x in tmpqueries]) tmpdf.insert(2, 'EBGM', [prrdict[x][-8] for x in tmpqueries]) return tmpdf #Load disproportionality data calculated by Banda et al #from FAERS data through Q2 2015 def loadbandadata(inputfile, labelfile, bandafile): tmpvecs = [] tmpqueries = [] with open(inputfile, 'r') as infile: infile.readline()#skip header row for line in infile: tmp = line.strip().split('|') tmpvecs += [np.asarray(bitarray(tmp[1]).tolist(), dtype=int)] tmpqueries += [tmp[0]] tmpdf = pd.DataFrame(np.asarray(tmpvecs)) tmpdf.columns = [str(x) for x in range(1, np.asarray(tmpvecs).shape[1]+1)] tmpdf.insert(0, 'Query', tmpqueries) labsdict = dict() with open(labelfile,'r') as infile: for line in infile: tmp = line.strip().split('\t') labsdict[tmp[1]] = int(tmp[0]) tmpdf.insert(1, 'Label', [labsdict[x] for x in tmpqueries]) prrdict = dict() with open(bandafile, 'r') as infile: for line in infile: tmp = line.strip().split('\t') prrdict['S(fluvoxamine)*S(diseases_of_mitral_valve)'] = ['NA'] * 10 prrdict['S(captopril)*S(acute_kidney_insufficiency)'] = ['NA'] * 10 prrdict['S(carteolol)*S(liver_failure,_acute)'] = ['NA'] * 10 prrdict[f'S({tmp[0]})*S({tmp[1]})'] = [tmp[2], tmp[3], tmp[4], tmp[5], tmp[6], tmp[7], tmp[8]] #Drug ADE #Reports PRR PRRUB PRRLB ROR RORUB RORLB tmpdf.insert(2, 'RORLB', [prrdict[x][-1] for x in tmpqueries]) tmpdf.insert(2, 'RORUB', [prrdict[x][-2] for x in tmpqueries]) tmpdf.insert(2, 'ROR', [prrdict[x][-3] for x in tmpqueries]) tmpdf.insert(2, 'PRRLB', [prrdict[x][-4] for x in tmpqueries]) tmpdf.insert(2, 'PRRUB', [prrdict[x][-5] for x in tmpqueries]) tmpdf.insert(2, 'PRR', [prrdict[x][-6] for x in tmpqueries]) tmpdf.insert(2, 'CaseReports', [prrdict[x][-7] for x in tmpqueries]) return tmpdf # Leave one out crossvalidation quick test def lootest(df): preds = [] predprob = [] reals = [] vecs = np.asarray(df.iloc[:,2:]) labels = np.asarray(df.Label) for train,test in LeaveOneOut().split(vecs): model = LogisticRegression(penalty='l1', solver='liblinear') model.fit(vecs[train], labels[train]) preds += [model.predict(vecs[test])] predprob += [model.predict_proba(vecs[test])[:,1]] reals += [labels[test]] return(f1_score(reals, preds), roc_auc_score(reals, predprob)) # Stratified 5 Fold crossvalidation quick test # Returns overall F1 and ROC AUC for comparison to other research # That is, we don't compute fold to fold, but over the whole set def skftest(df): reals = np.asarray([]) preds = np.asarray([]) predprob = np.asarray([]) vecs = np.asarray(df.iloc[:,2:]) labels = np.asarray(df.Label) for train,test in StratifiedKFold(n_splits=5, shuffle=True).split(vecs, labels): model = LogisticRegression(penalty='l1', solver='liblinear') model.fit(vecs[train], labels[train]) predprob = np.append(predprob, model.predict_proba(vecs[test])[:,1]) reals = np.append(reals, labels[test]) preds = np.append(preds, model.predict(vecs[test])) return(f1_score(reals, preds), roc_auc_score(reals, predprob)) # Get the average performance across 100 runs for a given LR training model def get_average_performance(df, trainfunc): aucscores = [] fscores = [] for i in range(100): tmpf1, tmpauc = trainfunc(df) fscores += [tmpf1] aucscores += [tmpauc] return(np.average(fscores), 1.96*(np.std(fscores)/np.sqrt(100)), np.average(aucscores), 1.96*(np.std(aucscores)/np.sqrt(100))) # Create an ensemble method which weights the literature at a float between 0 and 1 relative contribution def ensembleskftest(basevecs, dvecs, labels, litweight=0.1): reals = np.asarray([]) preds = np.asarray([]) basepredprob = np.asarray([]) dpredprob = np.asarray([]) predprob = np.asarray([]) for train,test in StratifiedKFold(n_splits=5, shuffle=True).split(basevecs, labels): basemodel = LogisticRegression(penalty='l1', solver='liblinear', max_iter=200) basemodel.fit(basevecs[train], labels[train]) baseprob = basemodel.predict_proba(basevecs[test])[:,1] basepredprob = np.append(basepredprob, baseprob) dmodel = LogisticRegression(penalty='l1', solver='liblinear', max_iter=200) dmodel.fit(dvecs[train], labels[train]) dprob = dmodel.predict_proba(dvecs[test])[:,1] dpredprob = np.append(dpredprob, dprob) ensembleprob = baseprob*litweight+dprob*(1-litweight) predprob = np.append(predprob, ensembleprob) reals = np.append(reals, labels[test]) preds = np.append(preds, np.round(ensembleprob)) return(average_precision_score(reals, preds), roc_auc_score(reals, predprob)) def get_average_performance_ensemble(trainfunc, litvecs, dvecs, labels, weight): aucscores = [] fscores = [] runs = 100 for i in range(runs): tmpf1, tmpauc = trainfunc(litvecs, dvecs, labels, weight) fscores += [tmpf1] aucscores += [tmpauc] return(np.average(fscores), np.std(fscores)/np.sqrt(runs), np.average(aucscores), np.std(aucscores)/np.sqrt(runs)) #1.96 is multiplied later in graphing #Define graphing functions def plot_ensemble(df, disproidx, title='Ensemble Model Performance'): plt.figure(figsize=(15,10), dpi=300) plt.title(title) plt.xlabel("Percent Literature Contribution to Prediction") plt.ylabel("Mean ROC AUC") litvecs = np.asarray(df.iloc[:,disproidx:]) dvecs = np.asarray(df.iloc[:,2:disproidx]) labels = np.asarray(df.Label) litweights = np.linspace(0,1,20) #test_scores = [] baselinedscore = [] test_scores_mean = [] test_scores_std = [] for lw in litweights: ''' _tmpscores = [] for train,test in StratifiedKFold(n_splits=5, shuffle=True).split(litvecs, labels): #Define models and fit litmodel = LogisticRegression(penalty='l1', solver='liblinear') litmodel.fit(litvecs[train], labels[train]) dmodel = LogisticRegression(penalty='l1', solver='liblinear') dmodel.fit(dvecs[train], labels[train]) #Get respective performance litprob = litmodel.predict_proba(litvecs[test])[:,1] dprob = dmodel.predict_proba(dvecs[test])[:,1] ensembleprob = litprob*lw+dprob*(1-lw) preds = np.round(ensembleprob) _tmpscores += [f1_score(labels[test], preds)] test_scores += [_tmpscores] #print(test_scores) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) ''' _tmpresults = get_average_performance_ensemble(ensembleskftest, litvecs, dvecs, labels, lw) test_scores_mean += [_tmpresults[2]] test_scores_std += [_tmpresults[3]] plt.grid() plt.fill_between(litweights, np.asarray(test_scores_mean) - np.asarray(test_scores_std)*1.96, np.asarray(test_scores_mean) + np.asarray(test_scores_std)*1.96, alpha=0.1, color="g") plt.plot(litweights, np.asarray(test_scores_mean), '^-', color="g", label="Ensemble Model") plt.fill_between(litweights, [test_scores_mean[0] - test_scores_std[0]*1.96]*len(litweights), [test_scores_mean[0]+test_scores_std[0]*1.96]*len(litweights), alpha=0.1, color='b') plt.plot(litweights, [test_scores_mean[0]]*len(litweights), 's-', color='b', label='DPM Only') plt.legend(loc="best") plt.ylim(0.5, 1.0) return plt def plot_shuffle_triple_comparison_learning_curve(estimator, title, X1, y1, X2, y2, X3, y3, ylim=None, cv=None, n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 20), score=None, label1=' ', label2=' ', label3=' '): """ Code adapted from: https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html#sphx-glr-auto-examples-model-selection-plot-learning-curve-py Generate a simple plot of the test and traning learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ fig = plt.figure(figsize=(15,10), dpi=300) plt.title(title) if ylim is not None: plt.ylim(*ylim) if score is None: score = 'average_precision' ylabscore = ' '.join([x.capitalize() for x in score.split('_')]) if ylabscore == 'Roc Auc': ylabscore = 'ROC AUC' plt.xlabel("Training Examples") plt.ylabel(f"Mean {ylabscore}") train_sizes2 = np.asarray(train_sizes) train_sizes3 = np.asarray(train_sizes) test_scores_means = [] test_scores_means2 = [] test_scores_means3 = [] for i in range(100): # probably need to refresh each of the models passed with a clone operation, in all likelihood #Shuffle rows of data ''' This must be done if we don't want the learning curve to essentially pick the same data points for every single run. This is because the learning curve pulls only the first n samples, and StratifiedKFold returns the properly stratified splits, but in index order (i.e. they aren't designed to be subsampled). So, in order to generally keep the same stratification and subsample appropriately (for Standard Error of the Mean, the reporting metric for variances of means), we shuffle the data set on every repetition prior to passing to SKF-CV (note that SKF has a shuffle function, but this only shuffles membership not order). ''' idxs = np.random.permutation(X1.shape[0]) #First Metrics train_sizes, train_scores, test_scores = learning_curve( clone(estimator), X1[idxs], y1[idxs], cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, scoring=score, shuffle=False) #Comparison Metrics train_sizes2, train_scores2, test_scores2 = learning_curve( clone(estimator), X2[idxs], y2[idxs], cv=cv, n_jobs=n_jobs, train_sizes=train_sizes2, scoring=score, shuffle=False) train_sizes3, train_scores3, test_scores3 = learning_curve( clone(estimator), X3[idxs], y3[idxs], cv=cv, n_jobs=n_jobs, train_sizes=train_sizes3, scoring=score, shuffle=False) #train_scores_mean = np.mean(train_scores, axis=1) #train_scores_std = np.std(train_scores, axis=1) test_scores_means += [np.mean(test_scores, axis=1)] #test_scores_std = np.std(test_scores, axis=1) #train_scores_mean2 = np.mean(train_scores2, axis=1) #train_scores_std2 = np.std(train_scores2, axis=1) test_scores_means2 += [np.mean(test_scores2, axis=1)] #test_scores_std2 = np.std(test_scores2, axis=1) test_scores_means3 += [np.mean(test_scores3, axis=1)] test_scores_mean = np.mean(test_scores_means, axis=0) test_scores_std = np.std(test_scores_means, axis=0)/
np.sqrt(100)
numpy.sqrt
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.utils import macos_version from coremltools.models.neural_network import flexible_shape_utils np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2)) input = {'data_0': x1, 'data_1': x2} expected = {'output': np.minimum(x1, x2)} self._test_model(builder.spec, input, expected) def test_conv_same_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='conv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='same', groups=1, W=W, b=None, has_bias=False, input_name='data', output_name='output', same_padding_asymmetry_mode='TOP_LEFT_HEAVY') x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 8, 8)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_valid_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='deconv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=1, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_non_unit_groups(self): input_dim = (16, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) W = np.random.rand(3, 3, 16, 5) builder.add_convolution(name='deconv', kernel_channels=16, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=4, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x =
np.random.rand(*input_dim)
numpy.random.rand
#!/usr/bin/env python # -*- coding: utf-8 -*- """ comparing Auxiliar methods to compare approximate values. """ import numpy as np def approx_equal(a, b, tolerance=0.00001): """Check if a and b can be considered approximately equal. Args: a: A float or int number. b: A float or int number. tolerance: Percentage of discrepancy allowed to be considered equal. Returns: True (a == b) or False (a != b) """ RV = False if a == b: RV = True elif isinstance(a, str) and isinstance(b, str): RV = a == b elif (not a) and (not b): RV = True elif
np.isnan(a)
numpy.isnan
import pickle from hashlib import md5 from shutil import which from textwrap import dedent import geopandas import numpy as np import pandas as pd import pytest from shapely import wkt from shapely.geometry import Point import swn import swn.modflow from swn.file import gdf_to_shapefile from swn.spatial import force_2d, interp_2d_to_3d, wkt_to_geoseries if __name__ != "__main__": from .conftest import datadir, matplotlib, plt else: from conftest import datadir, matplotlib, plt try: import flopy except ImportError: pytest.skip("skipping tests that require flopy", allow_module_level=True) mfnwt_exe = which("mfnwt") mf2005_exe = which("mf2005") requires_mfnwt = pytest.mark.skipif(not mfnwt_exe, reason="requires mfnwt") requires_mf2005 = pytest.mark.skipif(not mf2005_exe, reason="requires mf2005") if mfnwt_exe is None: mfnwt_exe = "mfnwt" if mf2005_exe is None: mf2005_exe = "mf2005" # same valid network used in test_basic n3d_lines = wkt_to_geoseries([ "LINESTRING Z (60 100 14, 60 80 12)", "LINESTRING Z (40 130 15, 60 100 14)", "LINESTRING Z (70 130 15, 60 100 14)", ]) def get_basic_swn(has_z: bool = True, has_diversions: bool = False): if has_z: n = swn.SurfaceWaterNetwork.from_lines(n3d_lines) else: n = swn.SurfaceWaterNetwork.from_lines(force_2d(n3d_lines)) if has_diversions: diversions = geopandas.GeoDataFrame(geometry=[ Point(58, 97), Point(62, 97), Point(61, 89), Point(59, 89)]) n.set_diversions(diversions=diversions) return n def get_basic_modflow( outdir=".", with_top: bool = False, nper: int = 1, hk=1e-2, rech=1e-4): """Returns a basic Flopy MODFLOW model""" if with_top: top = np.array([ [16.0, 15.0], [15.0, 15.0], [14.0, 14.0], ]) else: top = 15.0 m = flopy.modflow.Modflow( version="mf2005", exe_name=mf2005_exe, model_ws=outdir) flopy.modflow.ModflowDis( m, nlay=1, nrow=3, ncol=2, nper=nper, delr=20.0, delc=20.0, top=top, botm=10.0, xul=30.0, yul=130.0) _ = flopy.modflow.ModflowBas(m, strt=top, stoper=5.0) _ = flopy.modflow.ModflowSip(m) _ = flopy.modflow.ModflowLpf(m, ipakcb=52, laytyp=0, hk=hk) _ = flopy.modflow.ModflowRch(m, ipakcb=52, rech=rech) _ = flopy.modflow.ModflowOc( m, stress_period_data={ (0, 0): ["print head", "save head", "save budget"]}) return m def read_head(hed_fname, reaches=None): """Reads MODFLOW Head file If reaches is not None, it is modified inplace to add a "head" column Returns numpy array """ with flopy.utils.HeadFile(hed_fname) as b: data = b.get_data() if reaches is not None: reaches["head"] = data[reaches["k"], reaches["i"], reaches["j"]] return data def read_budget(bud_fname, text, reaches=None, colname=None): """Reads MODFLOW cell-by-cell file If reaches is not None, it is modified inplace to add data in "colname" Returns numpy array """ with flopy.utils.CellBudgetFile(bud_fname) as b: res = b.get_data(text=text) if len(res) != 1: from warnings import warn warn(f"get_data(text={text!r}) returned more than one array") data = res[0] if reaches is not None: if isinstance(data, np.recarray) and "q" in data.dtype.names: reaches[colname] = data["q"] else: reaches[colname] = data[reaches["k"], reaches["i"], reaches["j"]] return data def read_sfl(sfl_fname, reaches=None): """Reads MODFLOW stream flow listing ASCII file If reaches is not None, it is modified inplace to add new columns Returns DataFrame of stream flow listing file """ sfl = flopy.utils.SfrFile(sfl_fname).get_dataframe() # this index modification is only valid for steady models if sfl.index.name is None: sfl.index += 1 sfl.index.name = "reachID" if "col16" in sfl.columns: sfl.rename(columns={"col16": "gradient"}, inplace=True) dont_copy = ["layer", "row", "column", "segment", "reach", "k", "i", "j"] if reaches is not None: if not (reaches.index == sfl.index).all(): raise IndexError("reaches.index is different") for cn in sfl.columns: if cn == "kstpkper": # split tuple into two columns reaches["kstp"] = sfl[cn].apply(lambda x: x[0]) reaches["kper"] = sfl[cn].apply(lambda x: x[1]) elif cn not in dont_copy: reaches[cn] = sfl[cn] return sfl def test_init_errors(): with pytest.raises(ValueError, match="expected 'logger' to be Logger"): swn.SwnModflow(object()) def test_from_swn_flopy_errors(): n = get_basic_swn() m = flopy.modflow.Modflow(version="mf2005", exe_name=mf2005_exe) _ = flopy.modflow.ModflowDis( m, nlay=1, nrow=3, ncol=2, nper=4, delr=20.0, delc=20.0) with pytest.raises( ValueError, match="swn must be a SurfaceWaterNetwork object"): swn.SwnModflow.from_swn_flopy(object(), m) _ = flopy.modflow.ModflowBas(m) m.modelgrid.set_coord_info(epsg=2193) # n.segments.crs = {"init": "epsg:27200"} # with pytest.raises( # ValueError, # match="CRS for segments and modelgrid are different"): # nm = swn.SwnModflow.from_swn_flopy(n, m) n.segments.crs = None with pytest.raises( ValueError, match="modelgrid extent does not cover segments extent"): swn.SwnModflow.from_swn_flopy(n, m) m.modelgrid.set_coord_info(xoff=30.0, yoff=70.0) with pytest.raises(ValueError, match="ibound_action must be one of"): swn.SwnModflow.from_swn_flopy(n, m, ibound_action="foo") @pytest.mark.parametrize("has_diversions", [False, True], ids=["nodiv", "div"]) def test_new_segment_data(has_diversions): n = get_basic_swn(has_diversions=has_diversions) m = get_basic_modflow() nm = swn.SwnModflow.from_swn_flopy(n, m) assert nm.segment_data is None assert nm.segment_data_ts is None nm.new_segment_data() assert nm.segment_data_ts == {} assert (nm.segment_data.icalc == 0).all() if has_diversions: pd.testing.assert_index_equal( nm.segment_data.index, pd.Int64Index([1, 2, 3, 4, 5, 6, 7], name="nseg")) assert list(nm.segment_data.segnum) == [1, 2, 0, -1, -1, -1, -1] assert list(nm.segment_data.divid) == [0, 0, 0, 0, 1, 2, 3] assert list(nm.segment_data.outseg) == [3, 3, 0, 0, 0, 0, 0] assert list(nm.segment_data.iupseg) == [0, 0, 0, 1, 2, 3, 3] else: pd.testing.assert_index_equal( nm.segment_data.index, pd.Int64Index([1, 2, 3], name="nseg")) assert list(nm.segment_data.segnum) == [1, 2, 0] assert "divid" not in nm.segment_data.columns assert list(nm.segment_data.outseg) == [3, 3, 0] assert list(nm.segment_data.iupseg) == [0, 0, 0] @requires_mf2005 def test_n3d_defaults(tmp_path): n = get_basic_swn() m = get_basic_modflow(tmp_path) nm = swn.SwnModflow.from_swn_flopy(n, m) nm.default_segment_data() nm.set_sfr_obj(ipakcb=52, istcb2=-53) assert m.sfr.ipakcb == 52 assert m.sfr.istcb2 == -53 # Data set 1c assert abs(m.sfr.nstrm) == 7 assert m.sfr.nss == 3 assert m.sfr.const == 86400.0 # Data set 2 # Base-0 assert list(m.sfr.reach_data.node) == [0, 1, 3, 1, 3, 3, 5] assert list(m.sfr.reach_data.k) == [0, 0, 0, 0, 0, 0, 0] assert list(m.sfr.reach_data.i) == [0, 0, 1, 0, 1, 1, 2] assert list(m.sfr.reach_data.j) == [0, 1, 1, 1, 1, 1, 1] # Base-1 assert list(m.sfr.reach_data.reachID) == [1, 2, 3, 4, 5, 6, 7] assert list(m.sfr.reach_data.iseg) == [1, 1, 1, 2, 2, 3, 3] assert list(m.sfr.reach_data.ireach) == [1, 2, 3, 1, 2, 1, 2] np.testing.assert_array_almost_equal( m.sfr.reach_data.rchlen, [18.027756, 6.009252, 12.018504, 21.081851, 10.540926, 10.0, 10.0]) np.testing.assert_array_almost_equal( m.sfr.reach_data.strtop, [14.75, 14.416667, 14.16666667, 14.66666667, 14.16666667, 13.5, 12.5]) np.testing.assert_array_almost_equal( m.sfr.reach_data.slope, [0.027735, 0.027735, 0.027735, 0.031622775, 0.031622775, 0.1, 0.1]) np.testing.assert_array_equal(m.sfr.reach_data.strthick, [1.0] * 7) np.testing.assert_array_equal(m.sfr.reach_data.strhc1, [1.0] * 7) # Data set 6 assert len(m.sfr.segment_data) == 1 sd = m.sfr.segment_data[0]
np.testing.assert_array_equal(sd.nseg, [1, 2, 3])
numpy.testing.assert_array_equal
#!/usr/bin/env python """ History: 2002-07-09 ROwen Converted to Python from the TCC's cnv_ZPMFK42J 4-1. 2004-05-18 ROwen Stopped importing math; it wasn't used. 2007-04-24 ROwen Converted from Numeric to numpy. """ __all__ = ["icrsFromFixedFK4"] import numpy import opscore.RO.PhysConst import opscore.RO.MathUtil from opscore.RO.Astro import llv, Tm # Constants _MatPP = numpy.array(( (+0.999925678186902E+00, -0.111820596422470E-01, -0.485794655896000E-02), (+0.111820595717660E-01, +0.999937478448132E+00, -0.271764411850000E-04), (+0.485794672118600E-02, -0.271474264980000E-04, +0.999988199738770E+00), )) _MatVP = numpy.array(( (-0.262600477903207E-10, -0.115370204968080E-07, +0.211489087156010E-07), (+0.115345713338304E-07, -0.128997445928004E-09, -0.413922822287973E-09), (-0.211432713109975E-07, +0.594337564639027E-09, +0.102737391643701E-09), )) def icrsFromFixedFK4(fk4P, fk4Date): """ Converts mean catalog fk4 coordinates to ICRS for a fixed star. Uses the approximation that ICRS = FK5 J2000. Inputs: - fk4Date TDB date of fk4 coordinates (Besselian epoch) note: TDT will always do and UTC is usually adequate - fk4P(3) mean catalog fk4 cartesian position (au) Returns: - icrsP(3) ICRS cartesian position (au), a numpy.array Error Conditions: none Warnings: The FK4 date is in Besselian years. The star is assumed fixed on the celestial sphere. That is a bit different than assuming it has zero proper motion because FK4 system has slight ficticious proper motion. The FK4 system refers to a specific set of precession constants; not all Besselian-epoch data was precessed using these constants (especially data for epochs before B1950). References: P.T. Wallace's routine FK45Z """ # compute new precession constants # note: ETrms and PreBn both want Besselian date eTerms = llv.etrms (fk4Date) precMat = llv.prebn (fk4Date, 1950.0) # subtract e-terms from position. As a minor approximation, # we don't bother to subtract variation in e-terms from proper motion. magP = opscore.RO.MathUtil.vecMag(fk4P) meanFK4P = fk4P - (eTerms * magP) # precess position to B1950, assuming zero fk4 pm # (we'll correct for the fictious fk4 pm later) b1950P = numpy.dot(precMat, meanFK4P) # convert position to ICRS (actually FK5 J2000) # but still containing fk4 fictitious pm; # compute fictitious pm. tempP =
numpy.dot(_MatPP, b1950P)
numpy.dot
import sys import unittest import copy import numpy as np from scipy.linalg import block_diag import pyinduct as pi import pyinduct.hyperbolic.feedforward as hff import pyinduct.parabolic as parabolic import pyinduct.simulation as sim from pyinduct.tests import show_plots import pyqtgraph as pg class SimpleInput(sim.SimulationInput): """ the simplest input we can imagine """ def __init__(self): super().__init__("SimpleInput") def _calc_output(self, **kwargs): return 0 class MonotonousInput(sim.SimulationInput): """ an input that ramps up """ def __init__(self): super().__init__("MonotonousInput") def _calc_output(self, **kwargs): t = kwargs["time"] extra_data = np.sin(t) if np.isclose(t % 2, 0): extra_data = np.nan return dict(output=kwargs["time"], extra_data=extra_data) class CorrectInput(sim.SimulationInput): """ a diligent input """ def __init__(self, output, limits=(0, 1), der_order=0): super().__init__(self) self.out = np.ones(der_order + 1) * output self.t_min, self.t_max = limits def _calc_output(self, **kwargs): if "time" not in kwargs: raise ValueError("mandatory key not found!") if "weights" not in kwargs: raise ValueError("mandatory key not found!") if "weight_lbl" not in kwargs: raise ValueError("mandatory key not found!") return dict(output=self.out) class AlternatingInput(sim.SimulationInput): """ a simple alternating input, composed of smooth transitions """ def _calc_output(self, **kwargs): t = kwargs["time"] % 2 if t < 1: res = self.tr_up(t) else: res = self.tr_down(t) return dict(output=res - .5) def __init__(self): super().__init__(self) self.tr_up = pi.SmoothTransition(states=(0, 1), interval=(0, 1), method="poly") self.tr_down = pi.SmoothTransition(states=(1, 0), interval=(1, 2), method="poly") class SimulationInputTest(unittest.TestCase): def setUp(self): pass def test_abstract_funcs(self): # raise type error since abstract method is not implemented self.assertRaises(TypeError, sim.SimulationInput) # method implemented, should work u = SimpleInput() def test_call_arguments(self): a = np.eye(2, 2) b = np.array([[0], [1]]) u = CorrectInput(output=1, limits=(0, 1)) ic =
np.zeros((2, 1))
numpy.zeros
# -*- coding: utf-8 -*- """Slope and trend utilities.""" __all__ = [ "_slope", "_fit_trend", ] __author__ = ["<NAME>"] import numpy as np from sklearn.utils import check_array def _fit_trend(x, order=0): """Fit linear regression with polynomial terms of given order. x : array_like, shape=[n_samples, n_obs] Time series data, each sample is fitted separately order : int The polynomial order of the trend, zero is constant (mean), one is linear trend, two is quadratic trend, and so on. Returns ------- coefs : ndarray, shape=[n_samples, order + 1] Fitted coefficients of polynomial order for each sample, one column means order zero, two columns mean order 1 (linear), three columns mean order 2 (quadratic), etc See Also -------- add_trend remove_trend """ x = check_array(x) if order == 0: coefs =
np.mean(x, axis=1)
numpy.mean
""" This module implements classes representing gmsh primitives """ import numpy as np class Point: """ Point """ def __init__( self, coordinates, grid_size = None ): self.id = self._next_id Point._next_id += 1 self.coordinates = coordinates self.grid_size = grid_size def __str__( self ): grid_size = '' if self.grid_size is not None: grid_size = ', {}'.format( self.grid_size ) return 'Point( {id} ) = {{ {x}, {y}, {z} {grid_size} }};'.format( id = self.id, x = self.coordinates[ 0 ], y = self.coordinates[ 1 ], z = self.coordinates[ 2 ], grid_size = grid_size ) _next_id = 1 class Curve: """ Base class for all curves """ def __init__( self ): self.id = self._next_id Curve._next_id += 1 _next_id = 1 class Line(Curve): """ Lines """ def __init__(self, begin, end, transfinite = None, progression = 1): super( Line, self ).__init__() self.begin = begin self.end = end self.transfinite = transfinite self.progression = progression def __str__(self): transfinite_statement = '' if self.transfinite is not None: transfinite_statement = 'Transfinite Line {{ {id} }} = {n} Using Progression {p};'.format(id = self.id, n = self.transfinite, p = self.progression) return 'Line( {id} ) = {{ {begin}, {end} }}; {transfinite}'.format( id = self.id, begin = self.begin.id, end = self.end.id, transfinite = transfinite_statement ) def progression_from_width(self, initial_width): """ Sets progression based on a specified initial width :param initial_width: width of first (smallest) element :return: None """ if self.transfinite is None: raise ValueError('Cannot set progression on non-transfinite line') if self.transfinite == 2: # if transfinite is 2, there is no progression and so set a dummy value self.progression = 1 l = np.linalg.norm(np.array(self.begin.coordinates) - np.array(self.end.coordinates)) # line length p = [0] * (self.transfinite + 1) p[0] = 1 p[-2] = -l / initial_width p[-1] = -l / initial_width - 1.0 r =
np.roots(p)
numpy.roots
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ search.py This module holds functions used to find and record the diagonals in the thresholded matrix, T. These functions prepare the diagonals found to for transformation and assembling later. The module contains the following functions: * find_complete_list Finds all smaller diagonals (and the associated pairs of repeats) that are contained in pair_list, which is composed of larger diagonals found in find_initial_repeats. * __find_add_rows Finds pairs of repeated structures, represented as diagonals of a certain length, k, that neither start nor end at the same time steps as previously found pairs of repeated structures of the same length. * find_all_repeats Finds all the diagonals present in thresh_mat. This function is nearly identical to find_initial_repeats except for two crucial differences. First, we do not remove diagonals after we find them. Second, there is no smallest bandwidth size as we are looking for all diagonals. * find_complete_list_anno_only Finds annotations for all pairs of repeats found in find_all_repeats. This list contains all the pairs of repeated structures with their starting/ending indices and lengths. """ import numpy as np from scipy import signal from .utilities import add_annotations def find_complete_list(pair_list, song_length): """ Finds all smaller diagonals (and the associated pairs of repeats) that are contained in pair_list, which is composed of larger diagonals found in find_initial_repeats. Args ---- pair_list : np.ndarray List of pairs of repeats found in earlier steps (bandwidths MUST be in ascending order). If you have run find_initial_repeats before this script, then pair_list will be ordered correctly. song_length : int Song length, which is the number of audio shingles. Returns ------- lst_out : np.ndarray List of pairs of repeats with smaller repeats added. """ # Find the list of unique repeat lengths bw_found = np.unique(pair_list[:, 4]) bw_num = np.size(bw_found, axis=0) # If the longest bandwidth is the length of the song, then remove that row if song_length == bw_found[-1]: pair_list = np.delete(pair_list, -1, 0) bw_found = np.delete(bw_found, -1, 0) bw_num = (bw_num - 1) # Initialize variables p = np.size(pair_list, axis=0) add_mat = np.zeros((1, 5)).astype(int) # Step 1: For each found bandwidth, search upwards (i.e. search the larger # bandwidths) and add all found diagonals to the variable add_mat for j in range(0, bw_num - 1): band_width = bw_found[j] # Isolate pairs of repeats that are length bandwidth # Return the minimum of the array bsnds = np.amin((pair_list[:, 4] == band_width).nonzero()) bends = (pair_list[:, 4] > band_width).nonzero() # Convert bends into an array bend = np.array(bends) if bend.size > 0: bend = np.amin(bend) else: bend = p # Part A1: Isolate all starting time steps of the repeats of length # bandwidth start_I = pair_list[bsnds:bend, 0] start_J = pair_list[bsnds:bend, 2] all_vec_snds = np.concatenate((start_I, start_J), axis=None) int_snds = np.unique(all_vec_snds) # Part A2: Isolate all ending time steps of the repeats of length # bandwidth end_I = pair_list[bsnds:bend, 1] # Similar to definition for start_I end_J = pair_list[bsnds:bend, 3] # Similar to definition for start_J all_vec_ends = np.concatenate((end_I, end_J), axis=None) int_ends = np.unique(all_vec_ends) # Part B: Use the current diagonal information to search for diagonals # of length BW contained in larger diagonals and thus were not # detected because they were contained in larger diagonals that # were removed by our method of eliminating diagonals in # descending order by size add_mrows = __find_add_rows(pair_list, int_snds, band_width) # Check if any of the arrays are empty # Add the new pairs of repeats to the temporary list add_mat if add_mrows.size != 0: add_mat = np.vstack((add_mat, add_mrows)) # Remove the empty row if add_mat.size != 0: add_mat = np.delete(add_mat, 0, 0) # Step 2: Combine pair_list and new_mat. Make sure that you don't have any # double rows in add_mat. Then find the new list of found # bandwidths in combine_mat. combine_mat = np.vstack((pair_list, add_mat)) combine_mat = np.unique(combine_mat, axis=0) # Return the indices that would sort combine_mat's fourth column combine_inds = np.argsort(combine_mat[:, 4]) combine_mat = combine_mat[combine_inds, :] c = np.size(combine_mat, axis=0) # Again, find the list of unique repeat lengths new_bw_found = np.unique(combine_mat[:, 4]) new_bw_num = np.size(new_bw_found, axis=0) full_lst = [] # Step 3: Loop over the new list of found bandwidths to add the annotation # markers to each found pair of repeats for j in range(1, new_bw_num + 1): new_bw = new_bw_found[j - 1] # Isolate pairs of repeats in combine_mat that are length bandwidth # Return the minimum of the array new_bsnds = np.amin((combine_mat[:, 4] == new_bw).nonzero()) new_bends = (combine_mat[:, 4] > new_bw).nonzero() # Convert new_bends into an array new_bend = np.array(new_bends) if new_bend.size > 0: new_bend = np.amin(new_bend) else: new_bend = c band_width_mat = np.array((combine_mat[new_bsnds:new_bend, ])) length_band_width_mat = np.size(band_width_mat, axis=0) temp_anno_lst = np.concatenate((band_width_mat, (np.zeros((length_band_width_mat, 1)))) ,axis=1).astype(int) # Part C: Get annotation markers for this bandwidth temp_anno_lst = add_annotations(temp_anno_lst, song_length) full_lst.append(temp_anno_lst) final_lst = np.vstack(full_lst) tem_final_lst = np.lexsort([final_lst[:, 2], final_lst[:, 0], final_lst[:, 5], final_lst[:, 4]]) final_lst = final_lst[tem_final_lst, :] lst_out = final_lst return lst_out def __find_add_rows(lst_no_anno, check_inds, k): """ Finds pairs of repeated structures, represented as diagonals of a certain length, k, that that start at the same time step, or end at the same time step, or neither start nor end at the same time step as previously found pairs of repeated structures of the same length. Args ---- lst_no_anno : np.ndarray List of pairs of repeats. check_inds : np.ndarray List of ending indices for repeats of length k that we use to check lst_no_anno for more repeats of length k. k : int Length of repeats that we are looking for. Returns ------- add_rows : np.ndarray List of newly found pairs of repeats of length K that are contained in larger repeats in lst_no_anno. """ # Initialize list of pairs L = lst_no_anno add_rows = np.empty(0) # Logically, which pair of repeats has a length greater than k search_inds = (L[:, 4] > k) # If there are no pairs of repeats that have a length greater than k if sum(search_inds) == 0: add_rows = np.full(1, False) return add_rows # Multiply the starting index of all repeats "I" by search_inds SI = np.multiply(L[:, 0], search_inds) # Multiply the starting index of all repeats "J" by search_inds SJ = np.multiply(L[:, 2], search_inds) # Multiply the ending index of all repeats "I" by search_inds EI = np.multiply(L[:, 1], search_inds) # Multiply the ending index of all repeats "J" by search_inds EJ = np.multiply(L[:, 3], search_inds) # Loop over check_inds for i in range(check_inds.size): ci = check_inds[i] # Left Check: Check for CI on the left side of the pairs lnds = ((SI <= ci) & (EI >= (ci + k - 1))) # Check that SI <= CI and that EI >= (CI + K - 1) indicating that there # is a repeat of length k with starting index CI contained in a larger # repeat which is the left repeat of a pair if lnds.sum(axis=0) > 0: # Find the 2nd entry of the row (lnds) whose starting index of the # repeat "I" equals CI SJ_li = L[lnds, 2] EJ_li = L[lnds, 3] l_num = SJ_li.shape[0] # Left side of left pair l_left_k = (ci * np.ones((1, l_num))) - L[lnds, 0] l_add_left = np.vstack((L[lnds, 0] * np.ones((1, l_num)), (ci - 1 * np.ones((1, l_num))), SJ_li * np.ones((1, l_num)), (SJ_li + l_left_k - np.ones((1, l_num))), l_left_k)) l_add_left = np.transpose(l_add_left) # Middle of left pair l_add_mid = np.vstack(((ci * np.ones((1, l_num))), (ci+k-1) * np.ones((1, l_num)), SJ_li + l_left_k, SJ_li + l_left_k + (k-1) * np.ones((1, l_num)), k * np.ones((1, l_num)))) l_add_mid = np.transpose(l_add_mid) # Right side of left pair l_right_k = np.concatenate((L[lnds, 1] - ((ci + k) - 1) * np.ones((1, l_num))), axis=None) l_add_right = np.vstack((((ci + k) * np.ones((1, l_num))), L[lnds, 1], (EJ_li - l_right_k + np.ones((1, l_num))), EJ_li, l_right_k)) l_add_right = np.transpose(l_add_right) # Add the rows found if add_rows.size == 0: add_rows = np.vstack((l_add_left, l_add_mid, l_add_right)).astype(int) else: add_rows = np.vstack((add_rows, l_add_left, l_add_mid, l_add_right)).astype(int) # Right Check: Check for CI on the right side of the pairs rnds = ((SJ <= ci) & (EJ >= (ci + k - 1))) # Check that SI <= CI and that EI >= (CI + K - 1) indicating that there # is a repeat of length K with starting index CI contained in a larger # repeat which is the right repeat of a pair if rnds.sum(axis=0) > 0: SI_ri = L[rnds, 0] EI_ri = L[rnds, 1] r_num = SI_ri.shape[0] # Left side of right pair r_left_k = ci*np.ones((1, r_num)) - L[rnds, 2] r_add_left = np.vstack((SI_ri, (SI_ri + r_left_k - np.ones((1, r_num))), L[rnds, 2], (ci - 1) * np.ones((1, r_num)), r_left_k)) r_add_left = np.transpose(r_add_left) # Middle of right pair r_add_mid = np.vstack(((SI_ri + r_left_k), (SI_ri + r_left_k + (k - 1) * np.ones((1, r_num))), ci * np.ones((1, r_num)), (ci + k - 1) * np.ones((1, r_num)), k * np.ones((1, r_num)))) r_add_mid = np.transpose(r_add_mid) # Right side of right pair r_right_k = L[rnds, 3] - ((ci + k) - 1) *
np.ones((1, r_num))
numpy.ones
from __future__ import division, print_function, absolute_import import numpy as np from scipy.sparse import csr_matrix from scipy.sparse.linalg import eigsh, inv from numpy.linalg import norm, eig from scipy.linalg import eigh from itertools import product from typing import Union class framework(object): """Base class for a framework A framework at a minimum needs an array of coordinates for vertices/sites and a list of edges/bonds where each element represents an bond. Additional information such as boundary conditions, additional constriants such pinning specific vertices, spring constants, etc. are optional. For the complete list of the variables, see the following. Args: coordinates (Union[np.array, list]): Vertex/site coordinates. For ``N`` sites in ``d`` dimensions, the shape is ``(N,d)``. bonds (Union[np.array, list]): Edge list. For ``M`` bonds, its shape is ``(M,2)``. basis (Union[np.array, list], optional): List of basis/repeat/lattice vectors, Default: ``None``.If ``None`` or array of zero vectors, the system is assumed to be finite. Defaults to None. pins (Union[np.array, list], optional): array/list of int, List of sites to be immobilized. Defaults to None. k (Union[np.array, float], optional): Spring constant/stiffness. If an array is supplied, the shape should be ``(M,2)``. Defaults to 1.0. restLengths (Union[np.array, list, float], optional): Equilibrium or rest length of bonds, used for systems with pre-stress. Defaults to None. varcell (Union[np.array, list], optional): (d*d,) array of booleans/int A list of basis vector components allowed to change (1/True) or fixed (0/False). Example: ``[0,1,0,0]`` or ``[False, True, False, False]`` both mean that in two dimensions, only second element of first basis vector is allowed to change.. Defaults to None. power (int, optional): Power of potential energy. power=2 is Hookean, power=5/2 is Hertzian. For non-Hookean potentials, make sure to supply restLengths non-equal to the current length of the bonds, otherwise the calculations will be wrong. Defaults to 2. Raises: ValueError: The bond list should have two columns corresponding to two ends of bonds. Examples: ```python >>> import numpy as np >>> import rigidpy as rp >>> coordinates = np.array([[-1,0], [1,0], [0,1]]) >>> bonds = np.array([[0,1],[1,2],[0,2]]) >>> basis = [[0,0],[0,0]] >>> pins = [0] >>> F = rp.Framework(coordinates, bonds, basis=basis, pins=pins) >>> print ("rigidity matrix:\n",F.RigidityMatrix()) >>> eigvals, eigvecs = F.eigenspace(eigvals=(0,3)) >>> print("vibrational eigenvalues:\n",eigvals) """ def __init__( self, coordinates: Union[np.array, list], bonds: Union[np.array, list], basis: Union[np.array, list] = None, pins: Union[np.array, list] = None, k: Union[np.array, float] = 1.0, restLengths: Union[np.array, list, float] = None, # mass=1, varcell: Union[np.array, list] = None, power: int = 2, ): # Number of sites and spatial dimensions self.coordinates = np.array(coordinates) self.N, self.dim = self.coordinates.shape # Number of bonds and bond list self.bonds = np.array(bonds) self.NB, self.C = self.bonds.shape # Basis vectors and their norms if basis is None: basis = np.zeros(shape=(self.dim, self.dim)) self.boundary = "free" else: self.basis = basis self.boundary = "periodic" self.nbasis = nbasis = len(basis) # number of basis vectors self.basisNorm = np.array([norm(base) for base in basis]) self.cutoff = 0.5 * np.amin(self.basisNorm) if pins is None: self.pins = [] else: self.pins = pins # update the boundary conditions if self.boundary == "periodic": self.boundary = "periodic+pinned" else: self.boundary = "anchored" # index of pinned and non-pinned sites in rigidity matrix dim_idx = np.arange(0, self.dim) if len(self.pins) != 0: self.pins_idx = [pin * self.dim + dim_idx for pin in self.pins] self.keepIdx = np.setdiff1d(np.arange(0, self.dim * self.N), self.pins_idx) # whether cell can deform self.varcell = varcell # volume of the box/cell if nbasis == 1: # in case system is 1D self.volume = self.basisNorm else: volume = np.abs(np.product(eig(basis)[0])) if volume: self.volume = volume else: self.volume = 1 # froce constant matrix if isinstance(k, (int, float)): self.K = np.diagflat(k * np.ones(self.NB)) else: self.K = np.diagflat(k) self.KS = csr_matrix(self.K) # sparse spring constants # Cartesian product for periodic box regionIndex = np.array(list(product([-1, 0, 1], repeat=nbasis))) transVectors = np.einsum("ij,jk->ik", regionIndex, basis) # Identify long bonds if self.C not in [2, 3]: raise ValueError("Second dimension should be 2 or 3.") elif self.C == 2: # vector from node i to node j if bond is (i,j) dr = -np.diff(coordinates[bonds[:, 0:2]], axis=1).reshape(-1, self.dim) # length of dr lengths = norm(dr, axis=1) # which bonds are long == cross the boundary self.indexLong = indexLong = np.nonzero(lengths > self.cutoff)[0] # two ends of long bonds longBonds = bonds[indexLong] # index of neiboring boxes for long bonds only index = [ np.argmin(norm(item[0] - item[1] - transVectors, axis=1)) for item in coordinates[longBonds] ] dr[indexLong] -= transVectors[index] # negihbor is in which neighboring box self.mn = regionIndex[index] # correct vector from particle 1 to particle 2 self.dr = dr else: pass # which bonds are long == cross the boundary # indexLong = np.nonzero(lengths > self.cutoff) # feature for future release # Equilibrium or rest length of springs if restLengths is None: self.L0 =
norm(self.dr, axis=1)
numpy.linalg.norm
import numpy as np from utils.colors import generate_colors from utils.format_image import format_image def semantic2binary(mask): return format_image((mask > 0).max(axis=2)) def single2multi(mask): return np.stack((mask,) * 3, axis=-1) def semantic2binary_list(mask): """Input RGB image""" unsqueezed_mask = mask.reshape(-1, mask.shape[2]) masks_colors = np.unique(unsqueezed_mask, axis=0) background_index = np.argwhere(
np.sum(masks_colors, axis=1)
numpy.sum
import matplotlib.pyplot as plt import numpy as np import pandas as pd # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnLSTMtanhMakespan0=[799, 798, 799, 799, 805, 806, 799, 805, 805, 800, 798, 798] drnnLSTMtanhMakespan1=[800, 798, 796, 800, 796, 794, 795, 798, 800, 798, 805, 798] drnnLSTMtanhMakespan2=[796, 800, 798, 804, 800, 798, 798, 798, 800, 800, 802, 797] drnnLSTMtanhMakespan3=[805, 800, 800, 803, 794, 802, 800, 798, 799, 804, 799, 806] drnnLSTMtanhMakespan4=[796, 798, 795, 798, 796, 799, 800, 796, 796, 798, 806, 800] drnnLSTMtanhMakespan5=[798, 798, 799, 800, 800, 808, 798, 798, 801, 796, 799, 798] drnnLSTMtanhMakespan6=[800, 796, 805, 798, 798, 796, 799, 800, 803, 800, 798, 800] drnnLSTMtanhMakespan7=[799, 805, 802, 805, 800, 799, 800, 799, 805, 800, 794, 796] drnnLSTMtanhMakespan8=[799, 798, 800, 798, 798, 800, 800, 800, 804, 799, 800, 804] drnnLSTMtanhMakespan9=[795, 800, 795, 796, 798, 796, 797, 800, 797, 798, 796, 795] drnnLSTMtanhMakespan10=[804, 799, 805, 798, 798, 798, 805, 800, 796, 804, 796, 799] drnnLSTMtanhMakespan11=[795, 803, 805, 798, 795, 801, 798, 798, 804, 803, 799, 804] drnnLSTMtanhMakespan12=[798, 798, 799, 800, 798, 798, 799, 799, 801, 796, 799, 798] drnnLSTMtanhMakespan13=[798, 798, 799, 797, 796, 796, 800, 797, 805, 800, 800, 794] drnnLSTMtanhMakespan14=[800, 798, 798, 796, 800, 800, 798, 798, 802, 798, 802, 798] drnnLSTMtanhMakespan15=[796, 796, 800, 801, 800, 800, 796, 794, 796, 800, 796, 798] drnnLSTMtanhMakespan16=[798, 798, 795, 797, 795, 799, 800, 796, 795, 796, 800, 800] drnnLSTMtanhMakespan17=[794, 795, 800, 798, 795, 796, 798, 796, 795, 794, 798, 796] drnnLSTMtanhMakespan18=[797, 795, 794, 794, 800, 796, 796, 795, 798, 795, 798, 794] drnnLSTMtanhMakespan19=[797, 795, 795, 796, 798, 799, 795, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan20=[796, 794, 798, 797, 798, 799, 795, 795, 797, 795, 795, 792] drnnLSTMtanhMakespan21=[797, 795, 797, 793, 794, 794, 800, 794, 798, 795, 797, 795] drnnLSTMtanhMakespan22=[794, 800, 798, 795, 795, 796, 796, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan23=[795, 795, 794, 795, 794, 794, 797, 799, 796, 794, 794, 795] drnnLSTMtanhMakespan24=[798, 795, 795, 795, 792, 794, 795, 794, 794, 795, 795, 795] drnnLSTMtanhMakespan25=[794, 792, 794, 795, 795, 794, 794, 794, 794, 795, 794, 793] drnnLSTMtanhMakespan26=[794, 794, 795, 796, 798, 795, 794, 794, 794, 794, 795, 794] drnnLSTMtanhMakespan27=[795, 794, 795, 795, 795, 794, 794, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan28=[795, 794, 794, 795, 794, 795, 795, 795, 795, 794, 795, 794] drnnLSTMtanhMakespan29=[792, 794, 795, 794, 794, 795, 794, 793, 795, 794, 795, 792] drnnLSTMtanhMakespan30=[795, 794, 795, 795, 794, 794, 794, 795, 794, 794, 794, 794] drnnLSTMtanhMakespan31=[794, 794, 795, 794, 795, 793, 795, 795, 795, 792, 794, 794] drnnLSTMtanhMakespan32=[795, 795, 794, 793, 795, 795, 795, 795, 794, 794, 795, 794] drnnLSTMtanhMakespan33=[793, 794, 795, 793, 792, 795, 794, 794, 794, 794, 794, 795] drnnLSTMtanhMakespan34=[794, 795, 795, 794, 794, 794, 794, 793, 794, 794, 794, 794] drnnLSTMtanhMakespan35=[794, 794, 797, 793, 792, 794, 793, 794, 795, 794, 795, 792] drnnLSTMtanhMakespan36=[794, 794, 793, 794, 795, 797, 795, 795, 794, 795, 793, 794] drnnLSTMtanhMakespan37=[795, 793, 795, 794, 795, 798, 795, 794, 795, 793, 795, 794] drnnLSTMtanhMakespan38=[794, 795, 793, 795, 794, 794, 794, 794, 794, 794, 797, 795] drnnLSTMtanhMakespan39=[794, 794, 795, 794, 795, 795, 794, 795, 794, 795, 798, 797] drnnLSTMtanhMakespan40=[795, 795, 794, 795, 794, 795, 795, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan41=[794, 795, 792, 794, 794, 798, 795, 794, 794, 794, 793, 795] drnnLSTMtanhMakespan42=[793, 795, 794, 793, 794, 794, 792, 794, 795, 794, 794, 793] drnnLSTMtanhMakespan43=[793, 792, 793, 794, 794, 795, 792, 794, 795, 794, 795, 794] drnnLSTMtanhMakespan44=[793, 794, 795, 795, 794, 794, 795, 798, 794, 792, 795, 794] drnnLSTMtanhMakespan45=[795, 794, 794, 794, 794, 792, 794, 795, 794, 796, 795, 794] drnnLSTMtanhMakespan46=[794, 793, 793, 795, 795, 794, 794, 794, 794, 796, 794, 794] drnnLSTMtanhMakespan47=[794, 794, 795, 794, 794, 795, 792, 795, 794, 795, 795, 794] drnnLSTMtanhMakespan48=[794, 795, 794, 794, 794, 792, 794, 795, 796, 794, 794, 795] drnnLSTMtanhMakespan49=[794, 794, 794, 794, 794, 794, 792, 794, 793, 794, 795, 794] drnnLSTMtanhRewards0=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17725973169122497, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards1=[-0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards2=[-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17653532907770195, -0.17562802996914942] drnnLSTMtanhRewards3=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17671654929577466, -0.17508269018743108, -0.17653532907770195, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.1768976897689769, -0.1759911894273128, -0.17725973169122497] drnnLSTMtanhRewards4=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.17617264919621228] drnnLSTMtanhRewards5=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards6=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMtanhRewards7=[-0.1759911894273128, -0.177078750549934, -0.17653532907770195, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drnnLSTMtanhRewards8=[-0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769] drnnLSTMtanhRewards9=[-0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drnnLSTMtanhRewards10=[-0.1768976897689769, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128] drnnLSTMtanhRewards11=[-0.17526455026455026, -0.17671654929577466, -0.177078750549934, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.1759911894273128, -0.1768976897689769] drnnLSTMtanhRewards12=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108] drnnLSTMtanhRewards14=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765] drnnLSTMtanhRewards15=[-0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnLSTMtanhRewards16=[-0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228] drnnLSTMtanhRewards17=[-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drnnLSTMtanhRewards18=[-0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drnnLSTMtanhRewards19=[-0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards20=[-0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards21=[-0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards22=[-0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards23=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards24=[-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards25=[-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards26=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards27=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards28=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards29=[-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards31=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards32=[-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards33=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards34=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards35=[-0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards36=[-0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108] drnnLSTMtanhRewards37=[-0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards38=[-0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards39=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drnnLSTMtanhRewards40=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards41=[-0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drnnLSTMtanhRewards42=[-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards43=[-0.1749007498897221, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards44=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards45=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards46=[-0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards48=[-0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards49=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnLSTMreluMakespan0=[805, 800, 800, 800, 794, 800, 798, 809, 795, 800, 798, 798] drnnLSTMreluMakespan1=[798, 798, 796, 799, 800, 796, 796, 798, 798, 794, 798, 800] drnnLSTMreluMakespan2=[805, 805, 798, 799, 806, 799, 806, 799, 800, 798, 805, 795] drnnLSTMreluMakespan3=[800, 800, 800, 796, 800, 800, 799, 806, 808, 798, 797, 798] drnnLSTMreluMakespan4=[805, 805, 795, 796, 799, 804, 798, 794, 798, 794, 796, 810] drnnLSTMreluMakespan5=[798, 798, 798, 795, 800, 798, 796, 802, 800, 800, 805, 801] drnnLSTMreluMakespan6=[800, 798, 798, 795, 800, 796, 800, 798, 799, 796, 805, 800] drnnLSTMreluMakespan7=[800, 800, 800, 799, 798, 798, 800, 805, 800, 799, 800, 801] drnnLSTMreluMakespan8=[799, 800, 800, 799, 795, 795, 805, 795, 798, 800, 798, 800] drnnLSTMreluMakespan9=[800, 796, 805, 798, 798, 795, 805, 800, 799, 795, 800, 805] drnnLSTMreluMakespan10=[805, 798, 805, 800, 801, 805, 799, 805, 798, 800, 800, 798] drnnLSTMreluMakespan11=[798, 803, 800, 797, 795, 796, 794, 799, 800, 800, 800, 796] drnnLSTMreluMakespan12=[799, 798, 799, 795, 798, 795, 798, 798, 798, 795, 798, 798] drnnLSTMreluMakespan13=[798, 798, 799, 796, 798, 796, 800, 799, 796, 794, 796, 795] drnnLSTMreluMakespan14=[796, 798, 806, 799, 804, 798, 805, 798, 800, 805, 794, 800] drnnLSTMreluMakespan15=[806, 795, 800, 796, 798, 796, 810, 798, 799, 798, 800, 800] drnnLSTMreluMakespan16=[799, 796, 798, 798, 798, 800, 798, 810, 796, 805, 800, 795] drnnLSTMreluMakespan17=[798, 798, 798, 794, 798, 805, 801, 798, 800, 799, 798, 798] drnnLSTMreluMakespan18=[795, 800, 794, 798, 797, 798, 794, 800, 797, 796, 794, 794] drnnLSTMreluMakespan19=[798, 802, 794, 798, 799, 795, 797, 795, 800, 796, 797, 796] drnnLSTMreluMakespan20=[794, 797, 795, 794, 799, 795, 795, 795, 800, 797, 794, 798] drnnLSTMreluMakespan21=[799, 798, 796, 795, 794, 798, 795, 795, 798, 798, 795, 794] drnnLSTMreluMakespan22=[794, 794, 795, 797, 795, 795, 795, 792, 794, 795, 794, 794] drnnLSTMreluMakespan23=[794, 794, 794, 794, 795, 796, 793, 794, 795, 794, 797, 795] drnnLSTMreluMakespan24=[794, 792, 792, 794, 796, 792, 794, 795, 794, 792, 796, 795] drnnLSTMreluMakespan25=[794, 795, 795, 794, 794, 792, 795, 792, 795, 794, 794, 794] drnnLSTMreluMakespan26=[795, 794, 794, 795, 794, 794, 793, 794, 797, 795, 794, 795] drnnLSTMreluMakespan27=[794, 794, 795, 796, 795, 797, 794, 794, 795, 801, 794, 795] drnnLSTMreluMakespan28=[795, 795, 795, 795, 794, 792, 794, 797, 794, 795, 795, 795] drnnLSTMreluMakespan29=[794, 792, 798, 794, 797, 795, 793, 795, 795, 794, 795, 795] drnnLSTMreluMakespan30=[795, 794, 798, 794, 794, 795, 792, 796, 794, 796, 794, 794] drnnLSTMreluMakespan31=[794, 795, 795, 794, 795, 794, 795, 795, 794, 794, 795, 795] drnnLSTMreluMakespan32=[798, 794, 794, 794, 798, 792, 795, 795, 795, 796, 794, 795] drnnLSTMreluMakespan33=[794, 796, 794, 794, 794, 795, 794, 794, 797, 793, 793, 795] drnnLSTMreluMakespan34=[794, 794, 795, 794, 794, 793, 794, 795, 793, 795, 795, 794] drnnLSTMreluMakespan35=[798, 796, 795, 794, 795, 795, 795, 795, 794, 795, 797, 795] drnnLSTMreluMakespan36=[794, 796, 794, 794, 794, 794, 795, 795, 797, 796, 795, 795] drnnLSTMreluMakespan37=[795, 794, 796, 795, 795, 795, 795, 794, 792, 797, 794, 793] drnnLSTMreluMakespan38=[794, 798, 794, 792, 794, 792, 795, 797, 793, 794, 794, 797] drnnLSTMreluMakespan39=[792, 794, 794, 794, 792, 795, 795, 795, 794, 794, 795, 794] drnnLSTMreluMakespan40=[792, 795, 795, 792, 795, 795, 794, 795, 794, 795, 794, 795] drnnLSTMreluMakespan41=[794, 797, 795, 794, 795, 795, 798, 794, 795, 796, 796, 794] drnnLSTMreluMakespan42=[794, 795, 795, 795, 794, 795, 795, 794, 794, 795, 793, 795] drnnLSTMreluMakespan43=[795, 794, 795, 794, 795, 795, 792, 794, 794, 795, 794, 795] drnnLSTMreluMakespan44=[795, 794, 792, 795, 794, 794, 795, 794, 796, 795, 796, 794] drnnLSTMreluMakespan45=[795, 794, 793, 794, 793, 795, 794, 794, 795, 794, 795, 794] drnnLSTMreluMakespan46=[794, 796, 793, 794, 794, 795, 799, 795, 794, 794, 794, 794] drnnLSTMreluMakespan47=[794, 794, 794, 794, 795, 793, 795, 795, 794, 795, 795, 795] drnnLSTMreluMakespan48=[794, 794, 795, 794, 795, 795, 795, 794, 794, 795, 795, 794] drnnLSTMreluMakespan49=[795, 795, 795, 794, 795, 795, 794, 795, 793, 793, 792, 792] drnnLSTMreluRewards0=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.1778021978021978, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards1=[-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards2=[-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17526455026455026] drnnLSTMreluRewards3=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnLSTMreluRewards4=[-0.177078750549934, -0.177078750549934, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17798286090969018] drnnLSTMreluRewards5=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17653532907770195, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.1763540290620872] drnnLSTMreluRewards6=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.17617264919621228] drnnLSTMreluRewards7=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872] drnnLSTMreluRewards8=[-0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards9=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17617264919621228, -0.177078750549934] drnnLSTMreluRewards10=[-0.177078750549934, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drnnLSTMreluRewards11=[-0.17580964970257765, -0.17671654929577466, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387] drnnLSTMreluRewards12=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards14=[-0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228] drnnLSTMreluRewards15=[-0.17725973169122497, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17798286090969018, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnLSTMreluRewards16=[-0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17544633017412387, -0.177078750549934, -0.17617264919621228, -0.17526455026455026] drnnLSTMreluRewards17=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards18=[-0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards19=[-0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387] drnnLSTMreluRewards20=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765] drnnLSTMreluRewards21=[-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards22=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards23=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards24=[-0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17544633017412387, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards25=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards26=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards27=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards28=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards29=[-0.17508269018743108, -0.17471872931833224, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards31=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards32=[-0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards33=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards34=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards35=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards36=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards37=[-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17562802996914942, -0.17508269018743108, -0.1749007498897221] drnnLSTMreluRewards38=[-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] drnnLSTMreluRewards39=[-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards40=[-0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards41=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards42=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards43=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards44=[-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards45=[-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards46=[-0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards48=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards49=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.1749007498897221, -0.17471872931833224, -0.17471872931833224] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnGRUtanhMakespan0 = [798, 799, 798, 804, 805, 799, 801, 801, 801, 799, 798, 796] drnnGRUtanhMakespan1 = [800, 798, 798, 798, 798, 798, 801, 798, 795, 796, 800, 796] drnnGRUtanhMakespan2 = [795, 804, 805, 800, 800, 796, 804, 800, 795, 798, 798, 801] drnnGRUtanhMakespan3 = [806, 796, 794, 797, 798, 800, 800, 808, 805, 798, 800, 809] drnnGRUtanhMakespan4 = [805, 801, 795, 798, 798, 800, 796, 796, 805, 798, 799, 798] drnnGRUtanhMakespan5 = [804, 799, 798, 804, 796, 799, 798, 805, 796, 805, 798, 800] drnnGRUtanhMakespan6 = [800, 799, 794, 801, 799, 796, 800, 804, 797, 796, 800, 798] drnnGRUtanhMakespan7 = [798, 800, 810, 810, 805, 800, 795, 798, 800, 805, 799, 800] drnnGRUtanhMakespan8 = [798, 797, 800, 800, 804, 805, 798, 798, 801, 795, 798, 809] drnnGRUtanhMakespan9 = [803, 800, 800, 805, 805, 798, 804, 803, 805, 801, 810, 801] drnnGRUtanhMakespan10 = [798, 799, 798, 798, 805, 804, 805, 798, 799, 798, 800, 800] drnnGRUtanhMakespan11 = [796, 795, 805, 800, 800, 798, 795, 804, 805, 798, 800, 800] drnnGRUtanhMakespan12 = [799, 799, 809, 800, 799, 799, 797, 805, 799, 800, 798, 795] drnnGRUtanhMakespan13 = [805, 800, 800, 805, 800, 799, 798, 801, 798, 797, 805, 800] drnnGRUtanhMakespan14 = [800, 798, 800, 800, 800, 804, 804, 799, 799, 800, 798, 798] drnnGRUtanhMakespan15 = [805, 800, 795, 800, 804, 795, 800, 798, 799, 798, 800, 796] drnnGRUtanhMakespan16 = [806, 795, 801, 799, 799, 796, 796, 794, 802, 796, 800, 802] drnnGRUtanhMakespan17 = [796, 800, 798, 800, 794, 800, 804, 805, 798, 810, 800, 798] drnnGRUtanhMakespan18 = [798, 800, 794, 794, 797, 798, 800, 805, 798, 798, 804, 798] drnnGRUtanhMakespan19 = [796, 800, 806, 799, 796, 800, 798, 805, 798, 799, 797, 805] drnnGRUtanhMakespan20 = [805, 800, 799, 796, 805, 805, 805, 794, 809, 796, 800, 797] drnnGRUtanhMakespan21 = [798, 800, 800, 800, 798, 801, 796, 801, 801, 801, 795, 799] drnnGRUtanhMakespan22 = [798, 801, 797, 800, 799, 795, 799, 799, 800, 801, 800, 799] drnnGRUtanhMakespan23 = [800, 798, 799, 805, 794, 800, 798, 796, 796, 804, 800, 794] drnnGRUtanhMakespan24 = [800, 800, 798, 805, 804, 799, 798, 801, 800, 798, 798, 798] drnnGRUtanhMakespan25 = [798, 798, 798, 795, 800, 803, 798, 798, 800, 799, 796, 798] drnnGRUtanhMakespan26 = [796, 798, 798, 798, 805, 796, 798, 798, 805, 795, 801, 796] drnnGRUtanhMakespan27 = [794, 796, 796, 800, 800, 798, 800, 798, 802, 798, 797, 798] drnnGRUtanhMakespan28 = [799, 799, 800, 800, 798, 802, 799, 798, 795, 795, 794, 798] drnnGRUtanhMakespan29 = [798, 796, 796, 797, 796, 798, 800, 800, 796, 798, 800, 795] drnnGRUtanhMakespan30 = [799, 798, 795, 795, 800, 795, 798, 798, 799, 798, 805, 799] drnnGRUtanhMakespan31 = [795, 799, 794, 794, 796, 795, 795, 794, 798, 797, 798, 795] drnnGRUtanhMakespan32 = [797, 798, 795, 796, 798, 795, 797, 798, 795, 794, 795, 796] drnnGRUtanhMakespan33 = [799, 795, 794, 794, 798, 795, 798, 797, 800, 796, 795, 794] drnnGRUtanhMakespan34 = [798, 795, 798, 796, 798, 794, 796, 798, 798, 798, 796, 797] drnnGRUtanhMakespan35 = [795, 798, 796, 798, 794, 801, 795, 800, 795, 800, 794, 800] drnnGRUtanhMakespan36 = [798, 799, 796, 797, 795, 794, 800, 795, 795, 794, 795, 795] drnnGRUtanhMakespan37 = [799, 798, 795, 795, 794, 795, 795, 796, 805, 795, 798, 796] drnnGRUtanhMakespan38 = [798, 794, 795, 795, 795, 796, 795, 796, 800, 798, 797, 796] drnnGRUtanhMakespan39 = [794, 795, 795, 797, 795, 795, 794, 794, 798, 795, 794, 798] drnnGRUtanhMakespan40 = [795, 795, 795, 795, 795, 795, 794, 794, 793, 797, 794, 795] drnnGRUtanhMakespan41 = [794, 794, 795, 793, 795, 795, 792, 794, 795, 794, 794, 794] drnnGRUtanhMakespan42 = [795, 795, 795, 796, 794, 797, 795, 795, 792, 795, 796, 793] drnnGRUtanhMakespan43 = [794, 795, 795, 794, 795, 794, 798, 794, 797, 795, 794, 794] drnnGRUtanhMakespan44 = [795, 795, 793, 794, 795, 794, 795, 795, 794, 794, 795, 794] drnnGRUtanhMakespan45 = [794, 794, 794, 794, 794, 794, 795, 794, 794, 794, 796, 795] drnnGRUtanhMakespan46 = [795, 794, 795, 794, 794, 794, 793, 794, 795, 795, 794, 797] drnnGRUtanhMakespan47 = [794, 794, 794, 794, 795, 794, 795, 792, 794, 795, 794, 794] drnnGRUtanhMakespan48 = [795, 794, 794, 794, 795, 798, 794, 794, 794, 795, 794, 794] drnnGRUtanhMakespan49 = [795, 795, 794, 795, 793, 795, 796, 794, 795, 794, 794, 797] drnnGRUtanhRewards0 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards1 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards2 = [-0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872] drnnGRUtanhRewards3 = [-0.17725973169122497, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1778021978021978] drnnGRUtanhRewards4 = [-0.177078750549934, -0.1763540290620872, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUtanhRewards5 = [-0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUtanhRewards6 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.1763540290620872, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards7 = [-0.17580964970257765, -0.17617264919621228, -0.17798286090969018, -0.177078750549934, -0.17798286090969018, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUtanhRewards8 = [-0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.1778021978021978] drnnGRUtanhRewards9 = [-0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.177078750549934, -0.1763540290620872, -0.17798286090969018, -0.1763540290620872] drnnGRUtanhRewards10 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards11 = [-0.17544633017412387, -0.17526455026455026, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards12 = [-0.1759911894273128, -0.1759911894273128, -0.1778021978021978, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17562802996914942, -0.177078750549934, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards13 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17617264919621228] drnnGRUtanhRewards14 = [-0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1768976897689769, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards15 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.1768976897689769, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards16 = [-0.17725973169122497, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108, -0.17653532907770195, -0.17544633017412387, -0.17617264919621228, -0.17653532907770195] drnnGRUtanhRewards17 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17798286090969018, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards18 = [-0.17580964970257765, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17580964970257765] drnnGRUtanhRewards19 = [-0.17544633017412387, -0.17617264919621228, -0.17725973169122497, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17562802996914942, -0.1759911894273128, -0.177078750549934] drnnGRUtanhRewards20 = [-0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.177078750549934, -0.177078750549934, -0.17508269018743108, -0.1778021978021978, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942] drnnGRUtanhRewards21 = [-0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUtanhRewards22 = [-0.17580964970257765, -0.1763540290620872, -0.17562802996914942, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.1759911894273128] drnnGRUtanhRewards23 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108] drnnGRUtanhRewards24 = [-0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.1768976897689769, -0.17580964970257765, -0.1763540290620872, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards25 = [-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUtanhRewards26 = [-0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387] drnnGRUtanhRewards27 = [-0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnGRUtanhRewards28 = [-0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drnnGRUtanhRewards29 = [-0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026] drnnGRUtanhRewards30 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1759911894273128] drnnGRUtanhRewards31 = [-0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards32 = [-0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards33 = [-0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards34 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942] drnnGRUtanhRewards35 = [-0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drnnGRUtanhRewards36 = [-0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnGRUtanhRewards37 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards38 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387] drnnGRUtanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765] drnnGRUtanhRewards40 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026] drnnGRUtanhRewards41 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards42 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221] drnnGRUtanhRewards43 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards44 = [-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards45 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards46 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942] drnnGRUtanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards49 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnGRUreluMakespan0 = [800, 799, 798, 797, 798, 800, 800, 796, 800, 794, 800, 800] drnnGRUreluMakespan1 = [798, 800, 805, 795, 799, 808, 795, 800, 796, 798, 799, 798] drnnGRUreluMakespan2 = [799, 800, 806, 800, 800, 805, 805, 798, 799, 807, 800, 800] drnnGRUreluMakespan3 = [798, 795, 799, 800, 800, 796, 798, 800, 800, 804, 805, 800] drnnGRUreluMakespan4 = [811, 800, 799, 800, 805, 798, 798, 799, 796, 804, 805, 804] drnnGRUreluMakespan5 = [799, 795, 797, 800, 798, 800, 800, 798, 800, 797, 800, 798] drnnGRUreluMakespan6 = [798, 800, 798, 799, 797, 798, 800, 796, 801, 799, 795, 798] drnnGRUreluMakespan7 = [800, 804, 795, 801, 796, 806, 805, 798, 800, 799, 799, 804] drnnGRUreluMakespan8 = [800, 799, 799, 800, 805, 796, 800, 800, 810, 796, 800, 798] drnnGRUreluMakespan9 = [794, 800, 799, 805, 800, 800, 798, 798, 796, 795, 798, 796] drnnGRUreluMakespan10 = [798, 800, 798, 801, 795, 802, 796, 809, 800, 800, 798, 795] drnnGRUreluMakespan11 = [804, 800, 799, 799, 798, 803, 798, 798, 805, 803, 800, 796] drnnGRUreluMakespan12 = [800, 799, 805, 797, 798, 796, 799, 794, 799, 805, 799, 800] drnnGRUreluMakespan13 = [796, 800, 798, 800, 795, 799, 800, 804, 800, 794, 805, 805] drnnGRUreluMakespan14 = [800, 795, 796, 798, 798, 801, 805, 794, 800, 801, 801, 796] drnnGRUreluMakespan15 = [798, 800, 796, 796, 798, 794, 797, 800, 796, 801, 795, 799] drnnGRUreluMakespan16 = [800, 805, 794, 800, 799, 800, 805, 801, 798, 800, 801, 799] drnnGRUreluMakespan17 = [797, 803, 801, 808, 794, 799, 799, 800, 805, 796, 801, 796] drnnGRUreluMakespan18 = [805, 800, 800, 804, 799, 798, 800, 799, 804, 796, 800, 804] drnnGRUreluMakespan19 = [804, 798, 800, 799, 799, 799, 805, 795, 801, 799, 799, 805] drnnGRUreluMakespan20 = [799, 804, 796, 798, 796, 798, 800, 805, 799, 810, 800, 800] drnnGRUreluMakespan21 = [798, 799, 799, 805, 798, 798, 805, 798, 794, 799, 798, 798] drnnGRUreluMakespan22 = [799, 798, 798, 796, 798, 805, 799, 798, 798, 799, 796, 798] drnnGRUreluMakespan23 = [798, 805, 808, 798, 798, 805, 810, 796, 804, 799, 800, 799] drnnGRUreluMakespan24 = [798, 796, 798, 795, 800, 798, 799, 798, 797, 805, 798, 800] drnnGRUreluMakespan25 = [799, 796, 799, 798, 805, 798, 798, 800, 796, 794, 810, 798] drnnGRUreluMakespan26 = [799, 798, 805, 800, 802, 798, 799, 799, 799, 794, 802, 797] drnnGRUreluMakespan27 = [798, 800, 805, 796, 798, 795, 802, 796, 798, 800, 798, 794] drnnGRUreluMakespan28 = [796, 805, 798, 800, 800, 798, 810, 798, 798, 798, 796, 796] drnnGRUreluMakespan29 = [800, 798, 798, 802, 794, 798, 796, 808, 800, 800, 798, 799] drnnGRUreluMakespan30 = [798, 796, 798, 798, 794, 798, 794, 800, 796, 794, 800, 800] drnnGRUreluMakespan31 = [794, 802, 797, 799, 798, 800, 799, 799, 796, 796, 798, 798] drnnGRUreluMakespan32 = [799, 798, 794, 795, 798, 805, 804, 797, 795, 800, 796, 798] drnnGRUreluMakespan33 = [803, 799, 805, 796, 794, 798, 797, 798, 798, 794, 794, 798] drnnGRUreluMakespan34 = [810, 796, 795, 798, 799, 798, 796, 795, 795, 797, 798, 798] drnnGRUreluMakespan35 = [799, 799, 799, 799, 795, 798, 795, 800, 796, 795, 795, 796] drnnGRUreluMakespan36 = [795, 797, 798, 799, 799, 799, 800, 794, 796, 795, 798, 800] drnnGRUreluMakespan37 = [800, 798, 799, 794, 800, 796, 798, 798, 797, 800, 794, 798] drnnGRUreluMakespan38 = [800, 799, 794, 796, 795, 800, 796, 804, 800, 795, 800, 798] drnnGRUreluMakespan39 = [794, 798, 795, 804, 805, 799, 798, 800, 796, 798, 795, 794] drnnGRUreluMakespan40 = [799, 798, 796, 798, 798, 799, 800, 796, 798, 798, 799, 798] drnnGRUreluMakespan41 = [796, 798, 800, 797, 799, 796, 797, 796, 799, 804, 805, 798] drnnGRUreluMakespan42 = [798, 794, 795, 799, 799, 798, 797, 798, 798, 798, 798, 795] drnnGRUreluMakespan43 = [799, 798, 794, 794, 795, 794, 795, 799, 799, 800, 799, 794] drnnGRUreluMakespan44 = [795, 796, 795, 799, 794, 795, 794, 796, 795, 794, 795, 796] drnnGRUreluMakespan45 = [794, 797, 794, 795, 796, 795, 794, 799, 795, 794, 798, 798] drnnGRUreluMakespan46 = [795, 795, 794, 795, 794, 794, 792, 794, 795, 797, 794, 794] drnnGRUreluMakespan47 = [798, 796, 797, 798, 794, 798, 794, 797, 794, 803, 798, 798] drnnGRUreluMakespan48 = [795, 794, 796, 798, 795, 794, 796, 795, 796, 794, 796, 796] drnnGRUreluMakespan49 = [798, 798, 796, 798, 798, 796, 796, 798, 798, 798, 796, 798] drnnGRUreluRewards0 = [-0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards1 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17526455026455026, -0.1759911894273128, -0.1776214552648934, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards2 = [-0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.1774406332453826, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards3 = [-0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17617264919621228] drnnGRUreluRewards4 = [-0.1781634446397188, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.1768976897689769, -0.177078750549934, -0.1768976897689769] drnnGRUreluRewards5 = [-0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards6 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765] drnnGRUreluRewards7 = [-0.17617264919621228, -0.1768976897689769, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387, -0.17725973169122497, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1768976897689769] drnnGRUreluRewards8 = [-0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17798286090969018, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards9 = [-0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUreluRewards10 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.1778021978021978, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards11 = [-0.1768976897689769, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17671654929577466, -0.17617264919621228, -0.17544633017412387] drnnGRUreluRewards12 = [-0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.1759911894273128, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUreluRewards13 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108, -0.177078750549934, -0.177078750549934] drnnGRUreluRewards14 = [-0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1763540290620872, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards15 = [-0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUreluRewards16 = [-0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128] drnnGRUreluRewards17 = [-0.17562802996914942, -0.17671654929577466, -0.1763540290620872, -0.1776214552648934, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards18 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769] drnnGRUreluRewards19 = [-0.1768976897689769, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.177078750549934] drnnGRUreluRewards20 = [-0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards21 = [-0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards22 = [-0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards23 = [-0.17580964970257765, -0.177078750549934, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17798286090969018, -0.17544633017412387, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128] drnnGRUreluRewards24 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards25 = [-0.1759911894273128, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17798286090969018, -0.17580964970257765] drnnGRUreluRewards26 = [-0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17508269018743108, -0.17653532907770195, -0.17562802996914942] drnnGRUreluRewards27 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17508269018743108] drnnGRUreluRewards28 = [-0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards29 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.1776214552648934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128] drnnGRUreluRewards30 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards31 = [-0.17508269018743108, -0.17653532907770195, -0.17562802996914942, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards32 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards33 = [-0.17671654929577466, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards34 = [-0.17798286090969018, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards35 = [-0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards36 = [-0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards37 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards38 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards39 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnGRUreluRewards40 = [-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards41 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.177078750549934, -0.17580964970257765] drnnGRUreluRewards42 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards43 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.17508269018743108] drnnGRUreluRewards44 = [-0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards45 = [-0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards46 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108] drnnGRUreluRewards47 = [-0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards49 = [-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion tanh, 12 episodios, 50 iteraciones drlTanhMakespan0 = [794, 794, 805, 799, 810, 800, 794, 810, 804, 806, 812, 808] drlTanhMakespan1 = [796, 795, 795, 798, 799, 800, 800, 795, 797, 796, 797, 799] drlTanhMakespan2 = [800, 797, 798, 801, 799, 800, 796, 795, 797, 796, 794, 798] drlTanhMakespan3 = [800, 795, 799, 796, 799, 798, 795, 799, 795, 799, 798, 796] drlTanhMakespan4 = [809, 795, 795, 800, 797, 795, 798, 798, 799, 799, 798, 798] drlTanhMakespan5 = [795, 795, 795, 799, 795, 798, 795, 800, 795, 796, 795, 805] drlTanhMakespan6 = [794, 800, 795, 793, 798, 795, 794, 798, 795, 799, 795, 796] drlTanhMakespan7 = [795, 795, 795, 795, 798, 795, 797, 797, 795, 795, 798, 797] drlTanhMakespan8 = [795, 795, 795, 794, 800, 800, 794, 795, 794, 794, 797, 795] drlTanhMakespan9 = [793, 794, 796, 795, 796, 800, 794, 797, 793, 795, 798, 795] drlTanhMakespan10 = [795, 795, 797, 794, 795, 798, 797, 795, 798, 794, 794, 794] drlTanhMakespan11 = [795, 795, 795, 795, 797, 795, 795, 794, 795, 795, 795, 794] drlTanhMakespan12 = [794, 798, 795, 794, 795, 795, 795, 797, 799, 795, 795, 795] drlTanhMakespan13 = [795, 797, 795, 800, 796, 795, 796, 795, 795, 795, 798, 794] drlTanhMakespan14 = [795, 795, 796, 794, 794, 794, 797, 795, 798, 795, 795, 793] drlTanhMakespan15 = [799, 794, 795, 795, 795, 796, 801, 797, 795, 794, 795, 799] drlTanhMakespan16 = [795, 795, 796, 798, 795, 795, 795, 795, 795, 798, 798, 796] drlTanhMakespan17 = [800, 798, 795, 795, 798, 794, 795, 795, 797, 795, 796, 794] drlTanhMakespan18 = [797, 800, 798, 797, 796, 794, 799, 797, 795, 796, 799, 798] drlTanhMakespan19 = [797, 800, 795, 794, 794, 796, 795, 798, 796, 798, 797, 795] drlTanhMakespan20 = [794, 795, 795, 799, 798, 797, 795, 795, 798, 795, 798, 795] drlTanhMakespan21 = [796, 795, 795, 795, 795, 797, 798, 794, 797, 795, 796, 794] drlTanhMakespan22 = [799, 796, 795, 795, 795, 795, 796, 795, 796, 798, 796, 795] drlTanhMakespan23 = [799, 799, 795, 796, 796, 799, 796, 797, 794, 794, 798, 796] drlTanhMakespan24 = [795, 795, 797, 800, 797, 795, 795, 796, 795, 795, 798, 799] drlTanhMakespan25 = [795, 797, 795, 795, 795, 795, 800, 796, 795, 797, 795, 795] drlTanhMakespan26 = [795, 795, 799, 794, 797, 794, 794, 798, 794, 796, 795, 798] drlTanhMakespan27 = [796, 796, 795, 796, 798, 797, 794, 795, 794, 794, 794, 798] drlTanhMakespan28 = [795, 795, 794, 798, 796, 796, 800, 797, 797, 796, 795, 794] drlTanhMakespan29 = [795, 795, 798, 800, 797, 794, 796, 794, 792, 794, 794, 795] drlTanhMakespan30 = [798, 797, 795, 799, 797, 800, 798, 799, 797, 800, 794, 796] drlTanhMakespan31 = [794, 795, 800, 798, 800, 794, 800, 798, 799, 798, 798, 798] drlTanhMakespan32 = [795, 795, 795, 794, 794, 794, 793, 795, 794, 793, 794, 795] drlTanhMakespan33 = [794, 797, 792, 794, 795, 795, 797, 795, 795, 794, 792, 795] drlTanhMakespan34 = [795, 794, 795, 798, 795, 796, 794, 795, 794, 794, 795, 794] drlTanhMakespan35 = [796, 794, 797, 793, 794, 798, 795, 794, 793, 793, 795, 794] drlTanhMakespan36 = [795, 795, 794, 795, 795, 795, 794, 795, 795, 793, 795, 794] drlTanhMakespan37 = [794, 794, 798, 794, 794, 796, 795, 794, 793, 795, 795, 792] drlTanhMakespan38 = [794, 796, 795, 794, 798, 798, 795, 795, 794, 794, 795, 794] drlTanhMakespan39 = [794, 795, 795, 796, 792, 794, 795, 794, 795, 794, 794, 795] drlTanhMakespan40 = [798, 795, 794, 795, 794, 794, 793, 795, 794, 794, 797, 794] drlTanhMakespan41 = [795, 792, 795, 794, 794, 795, 794, 795, 792, 797, 795, 795] drlTanhMakespan42 = [792, 794, 794, 795, 794, 794, 795, 794, 792, 794, 794, 794] drlTanhMakespan43 = [794, 796, 794, 793, 795, 795, 793, 798, 794, 794, 798, 794] drlTanhMakespan44 = [794, 794, 794, 794, 795, 794, 793, 794, 794, 795, 795, 794] drlTanhMakespan45 = [790, 794, 793, 794, 793, 794, 795, 794, 791, 795, 795, 794] drlTanhMakespan46 = [792, 794, 794, 794, 794, 794, 794, 793, 794, 794, 794, 794] drlTanhMakespan47 = [794, 794, 794, 794, 794, 794, 794, 794, 792, 795, 793, 795] drlTanhMakespan48 = [794, 794, 792, 792, 797, 794, 792, 794, 794, 795, 794, 795] drlTanhMakespan49 = [795, 794, 794, 796, 794, 797, 794, 794, 794, 794, 794, 794] drlTanhMakespan50 = [794, 792, 795, 794, 794, 794, 794, 794, 795, 794, 795, 794] drlTanhMakespan51 = [794, 792, 796, 795, 794, 794, 795, 794, 795, 795, 795, 794] drlTanhMakespan52 = [794, 794, 795, 792, 795, 795, 795, 792, 794, 793, 795, 794] drlTanhMakespan53 = [794, 792, 794, 792, 794, 794, 794, 795, 795, 794, 794, 792] drlTanhMakespan54 = [795, 793, 794, 794, 794, 792, 795, 794, 794, 792, 794, 796] drlTanhMakespan55 = [795, 794, 794, 795, 795, 793, 794, 795, 794, 797, 795, 792] drlTanhMakespan56 = [795, 795, 792, 795, 794, 795, 794, 794, 794, 795, 795, 795] drlTanhMakespan57 = [795, 792, 795, 794, 795, 795, 792, 795, 794, 797, 792, 792] drlTanhMakespan58 = [795, 795, 794, 795, 792, 794, 794, 794, 792, 792, 792, 793] drlTanhMakespan59 = [795, 794, 792, 794, 794, 794, 792, 794, 794, 794, 793, 795] drlTanhMakespan60 = [794, 795, 795, 795, 798, 794, 794, 794, 794, 794, 794, 792] drlTanhMakespan61 = [792, 795, 794, 794, 795, 794, 792, 795, 795, 794, 794, 795] drlTanhMakespan62 = [795, 794, 794, 794, 799, 794, 792, 794, 795, 795, 794, 793] drlTanhMakespan63 = [791, 795, 792, 796, 794, 794, 792, 795, 793, 794, 792, 794] drlTanhRewards0 = [-0.17508269018743108, -0.17508269018743108, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17508269018743108, -0.17798286090969018, -0.1768976897689769, -0.17725973169122497, -0.17834394904458598, -0.1776214552648934] drlTanhRewards1 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlTanhRewards2 = [-0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765] drlTanhRewards3 = [-0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drlTanhRewards4 = [-0.1778021978021978, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drlTanhRewards5 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.177078750549934] drlTanhRewards6 = [-0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387] drlTanhRewards7 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drlTanhRewards8 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drlTanhRewards9 = [-0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026] drlTanhRewards10 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards11 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards12 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards13 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drlTanhRewards14 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1749007498897221] drlTanhRewards15 = [-0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1763540290620872, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128] drlTanhRewards16 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drlTanhRewards17 = [-0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards18 = [-0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drlTanhRewards19 = [-0.17562802996914942, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026] drlTanhRewards20 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026] drlTanhRewards21 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards22 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drlTanhRewards23 = [-0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drlTanhRewards24 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128] drlTanhRewards25 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards26 = [-0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765] drlTanhRewards27 = [-0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards28 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlTanhRewards29 = [-0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards30 = [-0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drlTanhRewards31 = [-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drlTanhRewards32 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026] drlTanhRewards33 = [-0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026] drlTanhRewards34 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards35 = [-0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards36 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards37 = [-0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224] drlTanhRewards38 = [-0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108] drlTanhRewards41 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026] drlTanhRewards42 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards43 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards44 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards45 = [-0.1749007498897221, -0.17435444714191128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17453662842012357, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards46 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drlTanhRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards49 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards50 = [-0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drlTanhRewards51 = [-0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards52 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards53 = [-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards54 = [-0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387] drlTanhRewards55 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drlTanhRewards56 = [-0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards57 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17471872931833224] drlTanhRewards58 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17471872931833224, -0.1749007498897221] drlTanhRewards59 = [-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drlTanhRewards60 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards61 = [-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards62 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drlTanhRewards63 = [-0.17453662842012357, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion relu, 12 episodios, 50 iteraciones drlReluMakespan0 = [796, 798, 809, 798, 796, 800, 798, 799, 800, 794, 800, 798] drlReluMakespan1 = [800, 800, 801, 806, 804, 806, 808, 798, 796, 796, 798, 800] drlReluMakespan2 = [805, 805, 798, 800, 800, 798, 801, 799, 800, 806, 800, 800] drlReluMakespan3 = [798, 799, 798, 795, 798, 808, 803, 800, 798, 795, 799, 800] drlReluMakespan4 = [805, 805, 799, 796, 798, 803, 799, 800, 800, 800, 795, 794] drlReluMakespan5 = [799, 796, 795, 800, 801, 796, 800, 795, 803, 800, 800, 805] drlReluMakespan6 = [799, 795, 798, 794, 805, 796, 795, 799, 798, 795, 804, 796] drlReluMakespan7 = [795, 798, 799, 798, 798, 799, 795, 794, 796, 794, 795, 805] drlReluMakespan8 = [805, 794, 794, 795, 798, 795, 798, 795, 799, 800, 796, 798] drlReluMakespan9 = [797, 797, 797, 794, 795, 794, 794, 797, 796, 795, 801, 799] drlReluMakespan10 = [799, 794, 797, 795, 794, 794, 795, 795, 795, 796, 797, 799] drlReluMakespan11 = [796, 798, 800, 795, 805, 794, 798, 796, 795, 794, 798, 795] drlReluMakespan12 = [800, 795, 794, 798, 800, 805, 800, 798, 804, 799, 794, 803] drlReluMakespan13 = [796, 799, 798, 794, 800, 794, 795, 796, 798, 795, 794, 799] drlReluMakespan14 = [795, 798, 798, 798, 805, 798, 798, 798, 795, 794, 800, 796] drlReluMakespan15 = [795, 798, 795, 805, 798, 794, 795, 798, 796, 794, 795, 796] drlReluMakespan16 = [798, 795, 796, 799, 796, 798, 798, 795, 795, 795, 795, 799] drlReluMakespan17 = [794, 798, 796, 798, 795, 801, 794, 798, 797, 795, 796, 801] drlReluMakespan18 = [798, 795, 798, 798, 801, 798, 795, 795, 797, 800, 794, 800] drlReluMakespan19 = [795, 798, 794, 800, 796, 795, 798, 797, 795, 794, 796, 796] drlReluMakespan20 = [794, 794, 795, 795, 795, 795, 796, 798, 799, 799, 799, 795] drlReluMakespan21 = [802, 796, 794, 797, 797, 800, 794, 794, 804, 803, 798, 797] drlReluMakespan22 = [794, 795, 795, 795, 798, 795, 794, 799, 794, 803, 795, 794] drlReluMakespan23 = [794, 798, 799, 794, 795, 795, 799, 795, 796, 795, 797, 799] drlReluMakespan24 = [795, 794, 797, 800, 794, 795, 795, 795, 795, 800, 800, 798] drlReluMakespan25 = [795, 794, 797, 796, 798, 795, 795, 794, 799, 795, 794, 798] drlReluMakespan26 = [801, 795, 800, 794, 794, 796, 800, 798, 798, 799, 794, 796] drlReluMakespan27 = [796, 795, 796, 795, 796, 795, 795, 800, 794, 794, 794, 796] drlReluMakespan28 = [794, 794, 795, 796, 794, 795, 795, 797, 794, 794, 796, 795] drlReluMakespan29 = [793, 794, 795, 800, 795, 795, 794, 798, 798, 796, 795, 794] drlReluMakespan30 = [802, 794, 794, 798, 794, 796, 805, 794, 800, 794, 796, 794] drlReluMakespan31 = [797, 794, 794, 794, 800, 800, 794, 794, 798, 795, 794, 798] drlReluMakespan32 = [794, 798, 794, 795, 794, 795, 798, 794, 794, 795, 794, 798] drlReluMakespan33 = [798, 794, 798, 795, 794, 793, 797, 798, 794, 794, 801, 793] drlReluMakespan34 = [794, 798, 794, 795, 794, 793, 798, 795, 794, 800, 794, 795] drlReluMakespan35 = [794, 796, 794, 796, 806, 795, 795, 795, 796, 795, 795, 799] drlReluMakespan36 = [795, 794, 794, 796, 796, 798, 794, 796, 794, 795, 794, 795] drlReluMakespan37 = [795, 794, 795, 798, 794, 794, 794, 794, 794, 794, 795, 797] drlReluMakespan38 = [794, 798, 794, 798, 797, 794, 794, 795, 795, 794, 795, 795] drlReluMakespan39 = [797, 794, 795, 796, 796, 796, 798, 794, 794, 795, 794, 798] drlReluMakespan40 = [798, 795, 795, 798, 792, 795, 795, 794, 795, 794, 798, 794] drlReluMakespan41 = [795, 794, 794, 794, 794, 794, 798, 793, 794, 794, 794, 793] drlReluMakespan42 = [794, 794, 794, 794, 799, 794, 795, 794, 796, 794, 794, 794] drlReluMakespan43 = [794, 797, 795, 794, 795, 794, 794, 795, 794, 794, 793, 794] drlReluMakespan44 = [794, 792, 793, 794, 794, 796, 794, 798, 795, 794, 794, 796] drlReluMakespan45 = [795, 794, 799, 794, 794, 793, 794, 795, 795, 793, 796, 794] drlReluMakespan46 = [794, 796, 794, 794, 794, 794, 794, 793, 799, 792, 794, 794] drlReluMakespan47 = [795, 794, 793, 794, 796, 797, 794, 794, 795, 794, 794, 794] drlReluMakespan48 = [794, 794, 794, 792, 794, 794, 795, 794, 794, 794, 794, 794] drlReluMakespan49 = [794, 794, 795, 792, 797, 797, 794, 794, 792, 800, 795, 795] drlReluRewards0 = [-0.17544633017412387, -0.17580964970257765, -0.1778021978021978, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards1 = [-0.17617264919621228, -0.17617264919621228, -0.1763540290620872, -0.17725973169122497, -0.1768976897689769, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228] drlReluRewards2 = [-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228] drlReluRewards3 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1776214552648934, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228] drlReluRewards4 = [-0.177078750549934, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17671654929577466, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108] drlReluRewards5 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.1763540290620872, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934] drlReluRewards6 = [-0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.177078750549934, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.17544633017412387] drlReluRewards7 = [-0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.177078750549934] drlReluRewards8 = [-0.177078750549934, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drlReluRewards9 = [-0.17562802996914942, -0.17562802996914942, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128] drlReluRewards10 = [-0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlReluRewards11 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.177078750549934, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026] drlReluRewards12 = [-0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466] drlReluRewards13 = [-0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128] drlReluRewards14 = [-0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387] drlReluRewards15 = [-0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drlReluRewards16 = [-0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards17 = [-0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1763540290620872] drlReluRewards18 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drlReluRewards19 = [-0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drlReluRewards20 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026] drlReluRewards21 = [-0.17653532907770195, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.17562802996914942] drlReluRewards22 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466, -0.17526455026455026, -0.17508269018743108] drlReluRewards23 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128] drlReluRewards24 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards25 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards26 = [-0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387] drlReluRewards27 = [-0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards28 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drlReluRewards29 = [-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlReluRewards30 = [-0.17653532907770195, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108] drlReluRewards31 = [-0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765] drlReluRewards32 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards33 = [-0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.1763540290620872, -0.1749007498897221] drlReluRewards34 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026] drlReluRewards35 = [-0.17508269018743108, -0.17544633017412387, -0.17725973169122497, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards36 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlReluRewards37 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942] drlReluRewards38 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drlReluRewards39 = [-0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlReluRewards41 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drlReluRewards42 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards43 = [-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108] drlReluRewards44 = [-0.17508269018743108, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards45 = [-0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17544633017412387, -0.17508269018743108] drlReluRewards46 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108] drlReluRewards47 = [-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards49 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026] if __name__ == "__main__": ############################################## ############################################## ############################################## # Deep Recurrent Reinforcement Learning with 1 GRU layer and 4 Dense layers drnnGRUtanhMakespan = [] drnnGRUtanhRewards = [] drnnGRUtanhMakespanList = [] drnnGRUtanhRewardsList = [] drnnGRUtanhMakespanValues = [] drnnGRUtanhRewardsValues = [] drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan0)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan1)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan2)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan3)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan4)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan5)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan6)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan7)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan8)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan9)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan10)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan11)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan12)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan13)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan14)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan15)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan16)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan17)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan18)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan19)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan20)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan21)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan22)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan23)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan24)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan25)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan26)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan27)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan28)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan29)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan30)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan31)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan32)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan33)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan34)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan35)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan36)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan37)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan38)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan39)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan40)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan41)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan42)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan43)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan44)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan45)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan46)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan47)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan48)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan49)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards0)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards1)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards2)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards3)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards4)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards5)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards6)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards7)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards8)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards9)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards10)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards11)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards12)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards13)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards14)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards15)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards16)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards17)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards18)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards19)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards20)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards21)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards22)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards23)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards24)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards25)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards26)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards27)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards28)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards29)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards30)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards31)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards32)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards33)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards34)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards35)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards36)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards37)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards38)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards39)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards40)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards41)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards42)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards43)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards44)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards45)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards46)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards47)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards48)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards49)) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan0) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan1) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan2) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan3) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan4) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan5) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan6) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan7) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan8) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan9) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan10) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan11) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan12) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan13) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan14) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan15) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan16) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan17) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan18) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan19) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan20) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan21) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan22) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan23) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan24) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan25) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan26) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan27) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan28) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan29) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan30) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan31) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan32) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan33) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan34) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan35) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan36) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan37) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan38) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan39) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan40) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan41) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan42) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan43) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan44) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan45) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan46) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan47) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan48) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan49) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards0) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards1) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards2) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards3) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards4) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards5) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards6) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards7) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards8) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards9) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards10) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards11) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards12) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards13) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards14) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards15) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards16) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards17) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards18) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards19) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards20) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards21) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards22) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards23) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards24) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards25) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards26) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards27) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards28) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards29) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards30) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards31) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards32) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards33) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards34) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards35) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards36) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards37) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards38) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards39) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards40) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards41) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards42) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards43) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards44) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards45) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards46) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards47) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards48) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards49) drnnGRUreluMakespan = [] drnnGRUreluRewards = [] drnnGRUreluMakespanList = [] drnnGRUreluRewardsList = [] drnnGRUreluMakespanValues = [] drnnGRUreluRewardsValues = [] drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan0)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan1)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan2)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan3)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan4)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan5)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan6)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan7)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan8)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan9)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan10)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan11)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan12)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan13)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan14)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan15)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan16)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan17)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan18)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan19)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan20)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan21)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan22)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan23)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan24)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan25)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan26)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan27)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan28)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan29)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan30)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan31)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan32)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan33)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan34)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan35)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan36)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan37)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan38)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan39)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan40)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan41)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan42)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan43)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan44)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan45)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan46)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan47)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan48)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan49)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards0)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards1)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards2)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards3)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards4)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards5)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards6)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards7)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards8)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards9)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards10)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards11)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards12)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards13)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards14)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards15)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards16)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards17)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards18)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards19)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards20)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards21)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards22)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards23)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards24)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards25)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards26)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards27)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards28)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards29)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards30)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards31)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards32)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards33)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards34)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards35)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards36)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards37)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards38)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards39)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards40)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards41)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards42)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards43)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards44)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards45)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards46)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards47)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards48)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards49)) drnnGRUreluMakespanList.append(drnnGRUreluMakespan0) drnnGRUreluMakespanList.append(drnnGRUreluMakespan1) drnnGRUreluMakespanList.append(drnnGRUreluMakespan2) drnnGRUreluMakespanList.append(drnnGRUreluMakespan3) drnnGRUreluMakespanList.append(drnnGRUreluMakespan4) drnnGRUreluMakespanList.append(drnnGRUreluMakespan5) drnnGRUreluMakespanList.append(drnnGRUreluMakespan6) drnnGRUreluMakespanList.append(drnnGRUreluMakespan7) drnnGRUreluMakespanList.append(drnnGRUreluMakespan8) drnnGRUreluMakespanList.append(drnnGRUreluMakespan9) drnnGRUreluMakespanList.append(drnnGRUreluMakespan10) drnnGRUreluMakespanList.append(drnnGRUreluMakespan11) drnnGRUreluMakespanList.append(drnnGRUreluMakespan12) drnnGRUreluMakespanList.append(drnnGRUreluMakespan13) drnnGRUreluMakespanList.append(drnnGRUreluMakespan14) drnnGRUreluMakespanList.append(drnnGRUreluMakespan15) drnnGRUreluMakespanList.append(drnnGRUreluMakespan16) drnnGRUreluMakespanList.append(drnnGRUreluMakespan17) drnnGRUreluMakespanList.append(drnnGRUreluMakespan18) drnnGRUreluMakespanList.append(drnnGRUreluMakespan19) drnnGRUreluMakespanList.append(drnnGRUreluMakespan20) drnnGRUreluMakespanList.append(drnnGRUreluMakespan21) drnnGRUreluMakespanList.append(drnnGRUreluMakespan22) drnnGRUreluMakespanList.append(drnnGRUreluMakespan23) drnnGRUreluMakespanList.append(drnnGRUreluMakespan24) drnnGRUreluMakespanList.append(drnnGRUreluMakespan25) drnnGRUreluMakespanList.append(drnnGRUreluMakespan26) drnnGRUreluMakespanList.append(drnnGRUreluMakespan27) drnnGRUreluMakespanList.append(drnnGRUreluMakespan28) drnnGRUreluMakespanList.append(drnnGRUreluMakespan29) drnnGRUreluMakespanList.append(drnnGRUreluMakespan30) drnnGRUreluMakespanList.append(drnnGRUreluMakespan31) drnnGRUreluMakespanList.append(drnnGRUreluMakespan32) drnnGRUreluMakespanList.append(drnnGRUreluMakespan33) drnnGRUreluMakespanList.append(drnnGRUreluMakespan34) drnnGRUreluMakespanList.append(drnnGRUreluMakespan35) drnnGRUreluMakespanList.append(drnnGRUreluMakespan36) drnnGRUreluMakespanList.append(drnnGRUreluMakespan37) drnnGRUreluMakespanList.append(drnnGRUreluMakespan38) drnnGRUreluMakespanList.append(drnnGRUreluMakespan39) drnnGRUreluMakespanList.append(drnnGRUreluMakespan40) drnnGRUreluMakespanList.append(drnnGRUreluMakespan41) drnnGRUreluMakespanList.append(drnnGRUreluMakespan42) drnnGRUreluMakespanList.append(drnnGRUreluMakespan43) drnnGRUreluMakespanList.append(drnnGRUreluMakespan44) drnnGRUreluMakespanList.append(drnnGRUreluMakespan45) drnnGRUreluMakespanList.append(drnnGRUreluMakespan46) drnnGRUreluMakespanList.append(drnnGRUreluMakespan47) drnnGRUreluMakespanList.append(drnnGRUreluMakespan48) drnnGRUreluMakespanList.append(drnnGRUreluMakespan49) drnnGRUreluRewardsList.append(drnnGRUreluRewards0) drnnGRUreluRewardsList.append(drnnGRUreluRewards1) drnnGRUreluRewardsList.append(drnnGRUreluRewards2) drnnGRUreluRewardsList.append(drnnGRUreluRewards3) drnnGRUreluRewardsList.append(drnnGRUreluRewards4) drnnGRUreluRewardsList.append(drnnGRUreluRewards5) drnnGRUreluRewardsList.append(drnnGRUreluRewards6) drnnGRUreluRewardsList.append(drnnGRUreluRewards7) drnnGRUreluRewardsList.append(drnnGRUreluRewards8) drnnGRUreluRewardsList.append(drnnGRUreluRewards9) drnnGRUreluRewardsList.append(drnnGRUreluRewards10) drnnGRUreluRewardsList.append(drnnGRUreluRewards11) drnnGRUreluRewardsList.append(drnnGRUreluRewards12) drnnGRUreluRewardsList.append(drnnGRUreluRewards13) drnnGRUreluRewardsList.append(drnnGRUreluRewards14) drnnGRUreluRewardsList.append(drnnGRUreluRewards15) drnnGRUreluRewardsList.append(drnnGRUreluRewards16) drnnGRUreluRewardsList.append(drnnGRUreluRewards17) drnnGRUreluRewardsList.append(drnnGRUreluRewards18) drnnGRUreluRewardsList.append(drnnGRUreluRewards19) drnnGRUreluRewardsList.append(drnnGRUreluRewards20) drnnGRUreluRewardsList.append(drnnGRUreluRewards21) drnnGRUreluRewardsList.append(drnnGRUreluRewards22) drnnGRUreluRewardsList.append(drnnGRUreluRewards23) drnnGRUreluRewardsList.append(drnnGRUreluRewards24) drnnGRUreluRewardsList.append(drnnGRUreluRewards25) drnnGRUreluRewardsList.append(drnnGRUreluRewards26) drnnGRUreluRewardsList.append(drnnGRUreluRewards27) drnnGRUreluRewardsList.append(drnnGRUreluRewards28) drnnGRUreluRewardsList.append(drnnGRUreluRewards29) drnnGRUreluRewardsList.append(drnnGRUreluRewards30) drnnGRUreluRewardsList.append(drnnGRUreluRewards31) drnnGRUreluRewardsList.append(drnnGRUreluRewards32) drnnGRUreluRewardsList.append(drnnGRUreluRewards33) drnnGRUreluRewardsList.append(drnnGRUreluRewards34) drnnGRUreluRewardsList.append(drnnGRUreluRewards35) drnnGRUreluRewardsList.append(drnnGRUreluRewards36) drnnGRUreluRewardsList.append(drnnGRUreluRewards37) drnnGRUreluRewardsList.append(drnnGRUreluRewards38) drnnGRUreluRewardsList.append(drnnGRUreluRewards39) drnnGRUreluRewardsList.append(drnnGRUreluRewards40) drnnGRUreluRewardsList.append(drnnGRUreluRewards41) drnnGRUreluRewardsList.append(drnnGRUreluRewards42) drnnGRUreluRewardsList.append(drnnGRUreluRewards43) drnnGRUreluRewardsList.append(drnnGRUreluRewards44) drnnGRUreluRewardsList.append(drnnGRUreluRewards45) drnnGRUreluRewardsList.append(drnnGRUreluRewards46) drnnGRUreluRewardsList.append(drnnGRUreluRewards47) drnnGRUreluRewardsList.append(drnnGRUreluRewards48) drnnGRUreluRewardsList.append(drnnGRUreluRewards49) for vector in drnnGRUtanhMakespanList: for element in vector: drnnGRUtanhMakespanValues.append(element) for vector in drnnGRUtanhRewardsList: for element in vector: drnnGRUtanhRewardsValues.append(element) ################## for vector in drnnGRUreluMakespanList: for element in vector: drnnGRUreluMakespanValues.append(element) for vector in drnnGRUreluRewardsList: for element in vector: drnnGRUreluRewardsValues.append(element) ##################### smoothGRUtanhMakespanValues = pd.Series(drnnGRUtanhMakespanValues).rolling(12).mean() plt.plot(smoothGRUtanhMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.show() smoothGRUtanhRewardsValues = pd.Series(drnnGRUtanhRewardsValues).rolling(12).mean() plt.plot(smoothGRUtanhRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.show() ##################### smoothGRUreluMakespanValues = pd.Series(drnnGRUreluMakespanValues).rolling(12).mean() plt.plot(smoothGRUreluMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() smoothGRUreluRewardsValues = pd.Series(drnnGRUreluRewardsValues).rolling(12).mean() plt.plot(smoothGRUreluRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() ################### plt.plot(smoothGRUtanhMakespanValues, color='blue', label='tanh') plt.plot(smoothGRUreluMakespanValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### plt.plot(smoothGRUtanhRewardsValues, color='blue', label='tanh') plt.plot(smoothGRUreluRewardsValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### drnnLSTMtanhMakespan = [] drnnLSTMtanhRewards = [] drnnLSTMtanhMakespanList = [] drnnLSTMtanhRewardsList = [] drnnLSTMtanhMakespanValues = [] drnnLSTMtanhRewardsValues = [] drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan0)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan1)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan2)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan3)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan4)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan5)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan6)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan7)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan8)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan9)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan10)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan11)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan12)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan13)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan14)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan15)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan16)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan17)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan18)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan19)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan20)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan21)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan22)) drnnLSTMtanhMakespan.append(
np.mean(drnnLSTMtanhMakespan23)
numpy.mean
import argparse import cv2 import numpy as np import torch from torch.autograd import Function from torchvision import models import torch.nn as nn from model import * import matplotlib.pyplot as plt class FeatureExtractor(): """ Class for extracting activations and registering gradients from targetted intermediate layers """ def __init__(self, model, target_layers): self.model = model self.target_layers = target_layers self.gradients = [] def save_gradient(self, grad): self.gradients.append(grad) def __call__(self, x): outputs = [] self.gradients = [] for name, module in self.model._modules.items(): x = module(x) if name in self.target_layers: x.register_hook(self.save_gradient) outputs += [x] return outputs, x class ModelOutputs(): """ Class for making a forward pass, and getting: 1. The network output. 2. Activations from intermeddiate targetted layers. 3. Gradients from intermeddiate targetted layers. """ def __init__(self, model, target_layers): self.model = model self.feature_extractor = FeatureExtractor(self.model.features, target_layers) def get_gradients(self): return self.feature_extractor.gradients def __call__(self, x): target_activations, output = self.feature_extractor(x) output = output.view(output.size(0), -1) output = self.model.classifier(output) return target_activations, output def preprocess_image(img): means = [0.485, 0.456, 0.406] stds = [0.229, 0.224, 0.225] preprocessed_img = img.copy()[:, :, ::-1] for i in range(3): preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i] preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i] preprocessed_img = \ np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1))) preprocessed_img = torch.from_numpy(preprocessed_img) preprocessed_img.unsqueeze_(0) input = preprocessed_img.requires_grad_(True) return input def show_cam_on_image(img, mask): heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 cam = heatmap + np.float32(img) cam = cam / np.max(cam) print("Cam Shape" , cam.shape) fig = plt.figure() cam = cv2.cvtColor(cam, cv2.COLOR_RGB2BGR) plt.axis("off") plt.imshow(cam) plt.show() fig.savefig("People_class_GC_1.png", transparent=True) class GradCam: def __init__(self, model, target_layer_names, use_cuda): self.model = model self.model.eval() self.cuda = use_cuda if self.cuda: self.model = model.cuda() self.extractor = ModelOutputs(self.model, target_layer_names) def forward(self, input): return self.model(input) def __call__(self, input, index=None): if self.cuda: features, output = self.extractor(input.cuda()) else: features, output = self.extractor(input) if index == None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = torch.from_numpy(one_hot).requires_grad_(True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) self.model.features.zero_grad() self.model.classifier.zero_grad() one_hot.backward(retain_graph=True) grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy() target = features[-1] target = target.cpu().data.numpy()[0, :] weights = np.mean(grads_val, axis=(2, 3))[0, :] cam = np.zeros(target.shape[1:], dtype=np.float32) for i, w in enumerate(weights): cam += w * target[i, :, :] cam = np.maximum(cam, 0) cam = cv2.resize(cam, (224, 224)) cam = cam - np.min(cam) cam = cam / np.max(cam) return cam class GuidedBackpropReLU(Function): @staticmethod def forward(self, input): positive_mask = (input > 0).type_as(input) output = torch.addcmul(torch.zeros(input.size()).type_as(input), input, positive_mask) self.save_for_backward(input, output) return output @staticmethod def backward(self, grad_output): input, output = self.saved_tensors grad_input = None positive_mask_1 = (input > 0).type_as(grad_output) positive_mask_2 = (grad_output > 0).type_as(grad_output) grad_input = torch.addcmul(torch.zeros(input.size()).type_as(input), torch.addcmul(torch.zeros(input.size()).type_as(input), grad_output, positive_mask_1), positive_mask_2) return grad_input class GuidedBackpropReLUModel: def __init__(self, model, use_cuda): self.model = model self.model.eval() self.cuda = use_cuda if self.cuda: self.model = model.cuda() # replace ReLU with GuidedBackpropReLU for idx, module in self.model.features._modules.items(): if module.__class__.__name__ == 'ReLU': self.model.features._modules[idx] = GuidedBackpropReLU.apply def forward(self, input): return self.model(input) def __call__(self, input, index=None): if self.cuda: output = self.forward(input.cuda()) else: output = self.forward(input) if index == None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = torch.from_numpy(one_hot).requires_grad_(True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) # self.model.features.zero_grad() # self.model.classifier.zero_grad() one_hot.backward(retain_graph=True) output = input.grad.cpu().data.numpy() output = output[0, :, :, :] return output def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--use-cuda', action='store_true', default=False, help='Use NVIDIA GPU acceleration') parser.add_argument('--image-path', type=str, default='./examples/both.png', help='Input image path') args = parser.parse_args() args.use_cuda = args.use_cuda and torch.cuda.is_available() if args.use_cuda: print("Using GPU for acceleration") else: print("Using CPU for computation") return args def deprocess_image(img): """ see https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py#L65 """ img = img -
np.mean(img)
numpy.mean
""" This file serves as a playground for understanding some of the concepts used in the development of the DeepDream algorithm. """ import time import os import numpy as np import scipy.ndimage as nd import matplotlib.pyplot as plt import torch import cv2 as cv from torchvision import transforms from utils.constants import IMAGENET_MEAN_1, IMAGENET_STD_1 import utils.utils as utils import utils.video_utils as video_utils from deepdream import gradient_ascent from models.definitions.vggs import Vgg16 # Note: don't use scipy.ndimage it's way slower than OpenCV def understand_frame_transform(): """ Pick different transform matrices here and see what they do. """ height, width, num_channels = [500, 500, 3] s = 0.05 # Create a white square on the black background img = np.zeros((height, width, num_channels)) img[100:400, 100:400] = 1.0 img_center = (width / 2, height / 2) # Translation tx, ty = [10, 5] translation_matrix = np.asarray([[1., 0., tx], [0., 1., ty], [0., 0., 1.]]) # Rotation deg = 10 # rotation in degrees theta = (deg / 180) * np.pi # convert to radians origin_rotation_matrix = np.asarray([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0., 0., 1.]]) # Does a similar thing to above but returns 2x3 matrix so just append the last row rotation_matrix = cv.getRotationMatrix2D(img_center, deg, scale=1.09) full_rotation_matrix = np.vstack([rotation_matrix, np.asarray([0., 0., 1.])]) # Affine pts1 = np.float32([[50, 50], [200, 50], [50, 200]]) pts2 =
np.float32([[10, 100], [200, 50], [100, 250]])
numpy.float32
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Austin """ import numpy as np import threading class GeneticAlgorithm: """ Class to help in testing Genetic Algorithms Args: gene_length => How many possible digits for each gene in a genome genome_length => How many genes in each genome pop_size => How many genomes in the population (default=500) x_rate => Percent chance of performing crossover after parents selected (default=0.9) mutation_rate => Percent chance of performing mutation on any given gene in a selected genome (default=0.005) parent_selection_method => Method used for performing parent-selection… (default='roulette') 'roulette': Choose 2 parents at random where each genome's probability of being chosen is equal to its fitness / total of all fitnesses 'rank': Choose 2 parents at random where each genome's probability of being chosen is equal to its index after sorted by best fitness / the sum of all ranks 'tournament': Randomly select k genomes choose the one with the highest fitness (done twice, to get two parents) 'random': Randomly select 2 genomes at a time k_tournament_select => Number of genomes in a tournament, when using tournament selection (default=3) xover_type => Type of crossover to use… (default='one_point') 'one_point': Pick one split point and swap the following two segments 'two_point': Pick two split points and swap the two middle segments 'uniform': At each gene, "flip a coin" to decide weather or not to crossover genes at that point mutation_type => One of the following options… (default='random_resetting') 'random_resetting': Randomly set mutated gene to another number 'swap_mutation': Pick two genes in a genome to swap 'scramble_mutation': Randomly shuffle a subset of the genome 'inversion_mutation': Invert the genome elitism => What percent of the population (or number of genomes) to preserve unchanged for the next round. (default=0.05) random_seed => Set the random seed (default=None) multithread => Use multithreading for calculating population fitness (default=False) Example: 1. Instantiate your genetic algorithm >>> ga = GeneticAlgorithm(2, 30, 500, x_rate=0.9, mutation_rate=0.005, xover_type='two_point') 2. Redefine the fitness function >>> def fitness(genome): ... return genome.sum() >>> ga.fitness = fitness 3. Run the GA >>> ga.run(500, print_step=5, logfile='logtest.csv', stop_value=30, stop_measure='max') 4. Get the best genomes >>> best_genomes = ga.get_current_population() """ def __init__(self, gene_length, genome_length, pop_size=500, x_rate=0.9, mutation_rate=0.005, parent_selection_method='roulette', k_tournament_select=3, xover_type='one_point', mutation_type='random_resetting', elitism=0.05, random_seed=None, multithread=False): # Settings self.gene_length = gene_length self.genome_length = genome_length self.pop_size = pop_size self.x_rate = x_rate self.mutation_rate = mutation_rate if 0 < elitism < 1: self.elitism = int(np.round(elitism * pop_size)) else: self.elitism = elitism self.population = None self.pop_fitness = None self.generation = 0 self.max_fitness = None self.avg_fitness = None self.std_fitness = None self.min_fitness = None np.random.seed(random_seed) self.multithread = multithread # Set crossover method assert xover_type in ['one_point', 'two_point', 'uniform'],\ "xover_type must be one of the following: 'one_point', 'two_point', 'uniform'" if xover_type == 'one_point': self.crossover = self.one_point_xover elif xover_type == 'two_point': self.crossover = self.two_point_xover elif xover_type == 'uniform': self.crossover = self.uniform_xover self.xover_type = xover_type # Set method of parent selection assert parent_selection_method in ['roulette', 'rank', 'tournament', 'random'],\ "selection_type must be one of the following: 'roulette', 'rank', 'tournament', 'random'" if parent_selection_method == 'roulette': self.parent_selection = self.roulette_selection elif parent_selection_method == 'rank': self.parent_selection = self.rank_selection elif parent_selection_method == 'tournament': self.parent_selection = self.tournament_selection elif parent_selection_method == 'random': self.parent_selection = self.random_selection self.parent_selection_method = parent_selection_method self.k_tournament_select = k_tournament_select # Set mutation method assert mutation_type in ['random_resetting', 'swap_mutation', 'scramble_mutation', 'inversion_mutation'], \ "mutation_type must be one of the following: 'random_resetting', 'swap_mutation', 'scramble_mutation', 'inversion_mutation'" if mutation_type == 'random_resetting': self.mutate = self.random_mutation elif mutation_type == 'swap_mutation': self.mutate = self.swap_mutation elif mutation_type == 'scramble_mutation': self.mutate = self.scramble_mutation elif mutation_type == 'inversion_mutation': self.mutate = self.inversion_mutation self.mutation_type = mutation_type return def random_genome(self): return np.random.randint(self.gene_length, size=(self.genome_length,)) def make_population(self): return np.array([self.random_genome() for _ in range(self.pop_size)]) def fitness(self, genome): """Replace this function with a user-defined fitness function.""" raise FitnessUndefinedError return def place_fitness(self, a, i, genome): a[i] = self.fitness(genome) return def evaluate_pop_fitness(self): try: assert self.population is not None except: raise NoPopulationError if self.multithread: fitnesses = np.zeros(len(self.population)) threads = [] for i, g in enumerate(self.population): threads.append(threading.Thread(target=self.place_fitness, args=(fitnesses, i, g))) for t in threads: t.start() for t in threads: t.join() else: fitnesses = np.array([self.fitness(g) for g in self.population]) # Set current fitness metrics self.max_fitness = fitnesses.max() self.avg_fitness = fitnesses.mean() self.std_fitness = fitnesses.std() self.min_fitness = fitnesses.min() self.pop_fitness = fitnesses return def one_point_xover(self, g1, g2): split = np.random.randint(1, self.genome_length-1) new_g1 = np.concatenate((g1[:split], g2[split:])) new_g2 = np.concatenate((g2[:split], g1[split:])) return new_g1, new_g2 def two_point_xover(self, g1, g2): start =
np.random.randint(0, self.genome_length-1)
numpy.random.randint
import os import random import numpy as np import scipy.io as sio import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt from sklearn.manifold import TSNE from collections import Counter if __name__ == '__main__': k = 20 random.seed(0) plt.figure(figsize=(7.5, 3.5)) source_features_path = 'features/duke/gallery-duke2market-all-intra5-inter15-nomix-scale10_model_60.mat' target_features_path = 'features/market/gallery-duke2market-all-intra5-inter15-nomix-scale10_model_60.mat' print('Loading...') source_mat = sio.loadmat(source_features_path) target_mat = sio.loadmat(target_features_path) print('Done!') source_features = source_mat["feat"] source_ids = source_mat["ids"].squeeze() source_cam_ids = source_mat["cam_ids"].squeeze() source_img_paths = source_mat['img_path'] target_features = target_mat["feat"] target_ids = -target_mat["ids"].squeeze() target_cam_ids = target_mat["cam_ids"].squeeze() target_img_paths = target_mat['img_path'] s_counter = Counter(source_ids) t_counter = Counter(target_ids) s_select_ids = [] t_select_ids = [] for idx, num in s_counter.items(): if 30 < num < 50 and idx not in [0, -1]: s_select_ids.append(idx) for idx, num in t_counter.items(): if 30 < num < 50 and idx not in [0, -1]: t_select_ids.append(idx) assert len(s_select_ids) >= k assert len(t_select_ids) >= k s_select_ids = random.sample(s_select_ids, k) t_select_ids = random.sample(t_select_ids, k) s_flags = np.in1d(source_ids, s_select_ids) t_flags = np.in1d(target_ids, t_select_ids) s_ids = source_ids[s_flags] t_ids = target_ids[t_flags] ids = np.concatenate([s_ids, t_ids], axis=0).tolist() id_map = dict(zip(s_select_ids + t_select_ids, range(2 * k))) new_ids = [] for x in ids: new_ids.append(id_map[x]) s_feats = source_features[s_flags] t_feats = target_features[t_flags] feats = np.concatenate([s_feats, t_feats], axis=0) tsne = TSNE(n_components=2, random_state=0) proj = tsne.fit_transform(feats) ax = plt.subplot(121) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.set_xticks([]) ax.set_yticks([]) t_size = t_feats.shape[0] s_size = s_feats.shape[0] ax.scatter(proj[-t_size:, 0], proj[-t_size:, 1], c=['b'] * t_size, marker='.') ax.scatter(proj[:s_size, 0], proj[:s_size, 1], c=['r'] * s_size, marker='.') # --------------------------------------------------------------------- # source_features_path = 'features/duke/gallery-duke2market-all-intra5-inter15-mix0.6-scale10-0.8_model_60.mat' target_features_path = 'features/market/gallery-duke2market-all-intra5-inter15-mix0.6-scale10-0.8_model_60.mat' print('Loading...') source_mat = sio.loadmat(source_features_path) target_mat = sio.loadmat(target_features_path) print('Done!') source_features = source_mat["feat"] source_ids = source_mat["ids"].squeeze() source_cam_ids = source_mat["cam_ids"].squeeze() target_features = target_mat["feat"] target_ids = -target_mat["ids"].squeeze() target_cam_ids = target_mat["cam_ids"].squeeze() s_flags =
np.in1d(source_ids, s_select_ids)
numpy.in1d
#!/usr/bin/env python from __future__ import division, print_function #import pyximport; pyximport.install() #import cycic import math import numpy as np import matplotlib.pyplot as plt import itertools import readsnapshots.readsnapHDF5 as rs import h5py # Width of simulation box BOXWIDTH = 25.0 # Mpc # Number of cells NDIM = 128 CELLWIDTH = BOXWIDTH / NDIM # Spatial dimensions SPACE = 3 BOXWIDTHS = np.array((BOXWIDTH,) * SPACE) NDIMS = (NDIM,) * SPACE # Unit conversions MPCTOCM = 3.08567758e24 SOLTOGRAM = 1.9891e33 # Baryonic density OMEGAB = 0.18 # Particle mass MPART = OMEGAB * 8.72e6 * SOLTOGRAM # Number of particles for random data generation NPART = 512 # File location SNAPPREFIX = "/home/slz/Dropbox (MIT)/urop/2016-c/data/parent/snapdir_127/snap_127" def cic(points, ndims): """A basic cloud-in-cell algorithm for arbitrary spatial dimensions. Parameters ---------- points : iterable of points ndims : number of cells, per side""" # spatial dimentions space = len(ndims) points = np.array(points, copy=False) ndims = np.array(ndims, copy=False) assert space == points.shape[1] assert (points <= ndims).all() # Initialize number density field ndensity = np.zeros(ndims + 2) for p in points: # Find the cell nearest to p cell = np.array(
np.floor(p - 0.5)
numpy.floor
import numpy as np def get_bands(nscf_out, tgrid0): """Get bands and kgrid info from nscf output data contains: kvecs, bands, tgrid, raxes, gvecs kvecs (nk, ndim) are reciprocal points possible in the irreducible wedge kvecs are in 2\pi/alat units bands (nk, nstate) are the Kohn-Sham eigenvalues bands are in eV units tgrid (ndim) is grid size in each dimension !!!! currently assumed to be the same as x raxes (ndim, ndim) is the reciprocal lattice gvecs (nk, ndim) are reciprocal lattice points (kvecs) converted to integers Args: nscf_out (str): output file tgrid0 (int): grid along x Return: dict: data """ from qharv.inspect import axes_pos import qe_reader as qer # get bands data = qer.parse_nscf_bands(nscf_out) kvecs = data['kvecs'] # get raxes, gvecs tgrid = np.array([tgrid0]*3) axes = qer.read_out_cell(nscf_out) raxes = axes_pos.raxes(axes) gcand = np.dot(kvecs, np.linalg.inv(raxes/tgrid)) gvecs = np.around(gcand).astype(int) data['tgrid'] = tgrid data['raxes'] = raxes data['gvecs'] = gvecs data.pop('nkpt') return data def get_ekmap(scf_out): """Obtain the internal variable 'equiv' from kpoint_grid.f90 in QE/PW store the maps between full BZ (fBZ) and irreducible BZ (iBZ) Args: scf_out (str): output file Return: (dict, dict): (fBZ->iBZ, iBZ->fBZ) maps """ from qharv.reel import ascii_out mm = ascii_out.read(scf_out) text = ascii_out.block_text(mm, 'equivalent kpoints begin', 'end') lines = text.split('\n') emap = {} # full kgrid to irreducible wedge kmap = {} # irreducible wedge to full kgrid for line in lines: tokens = line.split('equiv') if len(tokens) != 2: continue left, right = map(int, tokens) emap[left] = right if right in kmap: kmap[right].append(left) else: kmap[right] = [left] mm.close() return emap, kmap def get_weights(equiv_out): """Get weights of irreducible kpoints. Args: equiv_out (str): QE output file Return: np.array: weights, number of equivalent kpoints for each irrek """ emap, kmap = get_ekmap(equiv_out) sidxl = kmap.keys() sidxl.sort() weights = [] for sidx in sidxl: kwt = len(kmap[sidx]) weights.append(kwt) return np.array(weights) def unfold2(bands, emap, kmap, axis=0): """unfold method 2: steal equivalence map from QE kpoint_grid.f90 kpoints in bands MUST be ordered in the same way as the QE irreducible kpts Args: bands (np.array): band energy with kpoint (and state) labels emap (dict): int -> int equivalence map of kpoint indices (full -> irrek) kmap (dict): inverse of emap axis (int, optional): kpoint axis, default is 0 Return: np.array: unfolded bands """ idxl = kmap.keys() idxl.sort() nktot = len(emap) # extend the kpoint axis new_shape = list(bands.shape) new_shape[axis] = nktot vals = np.zeros(new_shape) # fill existing values for i, idx in enumerate(idxl): if axis == 0: vals[idx-1] = bands[i] elif axis == 1: vals[:, idx-1] = bands[:, i] else: raise RuntimeError('need to implement axis %d (add another :,)' % axis) # map symmetry points for idx0, idx1 in emap.items(): if axis == 0: vals[idx0-1] = vals[idx1-1] elif axis == 1: vals[:, idx0-1] = vals[:, idx1-1] return vals def get_mats_vecs(symops): mats = [] vecs = [] for so in symops: mat = np.array(so['mat'], int) vec = np.array(so['vec'], int) mats.append(mat) vecs.append(vec) return
np.array(mats)
numpy.array
import numpy as np import pickle import pandas as pd import matplotlib.pyplot as plt import seaborn as sns; sns.set() from gurobi import * ########### ## Primal-Dual solver utility functions ########### def in_constraint(v): if v[1]: return True else: return False def make_alpha_mapping(I,J,T,alphas,valid_matches): '''Creates an index into the alpha array for each position in valid matches''' constraints_d, _ = dual_constraint_matrix(valid_matches,pairing_weights,I,J,T,k) constraints_d = constraints_d[:,:alphas.size] alpha_map = np.zeros((*valid_matches.shape,constraints_d.shape[1]),dtype=np.bool) cix=0 for i in range(I): for j in range(J): for t in range(T): if valid_matches[i][j][t]: alpha_map[i,j,t,:] = constraints_d[cix,:] cix += 1 return alpha_map def sum_alpha_it(I,T, alphas,i,t,k): '''Return the alpha terms summed at a given i,t''' alpha_it = alphas.reshape(I,T) startit = max(t-k[i]+1,0) return np.sum(alpha_it[i,startit:t+1]) ########### ## Primal-Dual solver functions ########### ######## ## To make the primal constraint matrix: ## Apply constraint equations for each position in valid matches, then flatten to a 2D form understood by Gurobi ####### def primal_constraint_matrix(valid_matches,I,J,T,k): constraints = np.zeros((T*I+J,valid_matches.size),dtype=np.float128) cix = 0 #constraints limiting to one resource allocation in the time interval for i in range(I): for t in range(T): constraint = np.zeros((I,J,T), np.int) valid_mask = constraint.copy() endix = min(t+k[i],T) valid_mask[i,:,t:endix] = 1 constraint[(valid_mask == 1)] = 1 constraints[cix,:] = constraint.reshape((1, constraint.shape[0] * constraint.shape[1] * constraint.shape[2])) cix += 1 #constraints limiting each agent to only match once for j in range(J): constraint = np.zeros((I,J,T), np.int) valid_mask = constraint.copy() valid_mask[1:,j,:] = 1 constraint[(valid_matches == 1) & (valid_mask ==1)] = 1 constraints[cix+j,:] = constraint.reshape((1, constraint.shape[0] * constraint.shape[1] * constraint.shape[2])) return constraints ######## ## To make the dual constraint matrix: ## Create a constraint map to see which alphas/betas apply at a given location in the primal. ## Each valid location will correspond with a constraint in the dual, and the variables==1 will be those in the `cmap[i][j][t]` ####### def dual_constraint_matrix(valid_matches,pairing_weights,I,J,T,k): ''' Dual constraint matrix: Number IJT positions * number dual variables - Each row corresponds to an IJT position in the grid - Each column corresponds to a dual variable ''' num_positions = I*J*T num_primal_constraints = I*T+J dual_constraint_matrix = np.zeros((num_positions, num_primal_constraints)) inequalities = np.zeros(num_positions) constraint_map =
np.zeros((I,J,T,num_primal_constraints), np.int)
numpy.zeros
import numpy as np import pandas as pd import cv2 import matplotlib.pyplot as plt from tensorflow.keras.models import Model, Sequential from tensorflow.keras import layers import tensorflow as tf from keras.preprocessing.image import img_to_array from tensorflow.keras import backend from tensorflow.keras.preprocessing.image import ImageDataGenerator import os from sklearn.metrics import classification_report import sklearn.metrics as metrics import itertools for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) def data_set(dir_data): data=[] target=[] data_map = { 'with_mask':1, 'without_mask':0 } skipped=0 root=dir_data+'_annotations.csv' df1 = pd.read_csv(root) df1.dataframeName = '_annotations.csv' nRow, nCol = df1.shape for i in range(len(df1)): without_mask='without_mask' k=dir_data+df1['filename'][i] image=cv2.imread(k) xmin=int(df1['xmin'][i]) ymin=int(df1['ymin'][i]) xmax=int(df1['xmax'][i]) ymax=int(df1['ymax'][i]) #image=image[ymin:ymax, xmin:xmax] try: # resizing to (70 x 70) image = cv2.resize(image,(70,70)) except Exception as E: skipped += 1 print(E) continue if(df1['class'][i]=='mask'): without_mask='with_mask' image=img_to_array(image) data.append(image) target.append(data_map[without_mask]) data = np.array(data, dtype="float") / 255.0 target = tf.keras.utils.to_categorical(np.array(target), num_classes=2) return data, target training_data,training_target=data_set('./Face-Mask-Detection/kaggle/input/face-mask-detection/train/') testing_data,testing_target=data_set('./Face-Mask-Detection/kaggle/input/face-mask-detection/test/') valid_data,valid_target=data_set('./Face-Mask-Detection/kaggle/input/face-mask-detection/valid/') plt.figure(0, figsize=(100,100)) for i in range(1,10): plt.subplot(10,5,i) plt.imshow(training_data[i]) img_shape=training_data[0].shape depth, height, width=3, img_shape[0], img_shape[1] img_shape=(height, width, depth) chanDim=-1 if backend.image_data_format() == "channels_first": #Returns a string, either 'channels_first' or 'channels_last' img_shape = (depth, height, width) chanDim = 1 model=Sequential() model.add(layers.Conv2D(32,(3,3),input_shape=img_shape)) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(layers.Conv2D(64,(3,3))) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(layers.Conv2D(128,(3,3))) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(layers.Conv2D(256,(3,3))) model.add(layers.Activation('relu')) model.add(layers.MaxPooling2D(pool_size=(2,2))) model.add(layers.Flatten()) model.add(layers.Dropout(0.5)) model.add(layers.Dense(64,activation='relu')) model.add(layers.Dropout(0.4)) model.add(layers.Dense(2,activation='softmax')) adam =tf.keras.optimizers.Adam(0.001) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) model.summary() aug = ImageDataGenerator(rotation_range=25, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode="nearest") history = model.fit(aug.flow(training_data, training_target, batch_size=10), epochs=70, validation_data=(valid_data, valid_target), verbose=2, shuffle=True) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.ylabel(['accuracy']) plt.xlabel(['epoch']) plt.legend(['accuracy', 'val_accuracy']) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.ylabel(['loss']) plt.xlabel(['epoch']) plt.legend(['loss', 'val_loss']) loss, accuracy = model.evaluate(testing_data,testing_target) print('accuracy= ',loss," loss= ",loss) yhat = model.predict(testing_data) test_pred=
np.argmax(yhat,axis=1)
numpy.argmax
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_strong_dominance [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_strong_dominance&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=doc-s_strong_dominance). # + import numpy as np import scipy as sp import matplotlib.pyplot as plt from arpym.statistics import simulate_normal from arpym.tools import add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_strong_dominance-parameters) mu_ = np.array([1, 0]) # mean vector of jointly normal variables sigma2_ = np.array([[1, 0], [0, 1]]) # covariance matrix j_ = 1000 # number of simulations # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_strong_dominance-implementation-step01): Simulate jointly normal random variables X_1 and X_2 x = simulate_normal(mu_, sigma2_, j_) x_1, x_2 = x[:, 0], x[:, 1] # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_strong_dominance-implementation-step02): Simulate X_3 = X_2 + Y, Y chi-squared with 1 degree of freedom x_3 = x_2 + sp.stats.chi2.rvs(1, size=(1, j_)) # ## Plots # + # set figure specifications plt.style.use('arpm') f, ax = plt.subplots(1, 2, figsize=(1280.0/72.0, 720.0/72.0), dpi=72.0, subplot_kw={'aspect': 'equal'}) # create subplot for general case: x_2 versus x_1 plt.sca(ax[0]) plt.scatter(x_2, x_1, marker='.') min1 = np.floor(mu_[0]-4*np.sqrt(sigma2_[0, 0])) min2 = np.floor(mu_[1]-4*np.sqrt(sigma2_[1, 1])) max1 = np.ceil(mu_[0]+4*np.sqrt(sigma2_[0, 0])) max2 = np.ceil(mu_[1]+4*np.sqrt(sigma2_[1, 1])) plt.axis([min(min1, min2), max(max1, max2), min(min1, min2), max(max1, max2)]) plt.plot(np.linspace(min(min1, min2), max(max1, max2)), np.linspace(min(min1, min2), max(max1, max2)), color='black', lw=2) plt.title('General case', fontsize=20, fontweight='bold') plt.xlabel(r'$X_2$', fontsize=17) plt.ylabel(r'$X_1$', fontsize=17) plt.xticks(fontsize=14) plt.yticks(fontsize=14) ax[0].spines['top'].set_visible(False) ax[0].spines['right'].set_visible(False) # create subplot of strong dominance: x_2 versus x_3 plt.sca(ax[1]) plt.scatter(x_2, x_3, marker='.') plt.axis([min2, max2+4, min2, max2+4]) plt.plot(
np.linspace(min2, max2+4)
numpy.linspace
""" defines various methods to access high level BDF data: - GetCard() - get_card_ids_by_card_types(self, card_types=None, reset_type_to_slot_map=False, stop_on_missing_card=False, combine=False) - get_rslot_map(self, reset_type_to_slot_map=False) - get_cards_by_card_types(self, card_types, reset_type_to_slot_map=False, stop_on_missing_card=False) - get_SPCx_node_ids(self, spc_id, stop_on_failure=True) - get_SPCx_node_ids_c1( spc_id, stop_on_failure=True) - get_MPCx_node_ids( mpc_id, stop_on_failure=True) - get_MPCx_node_ids_c1( mpc_id, stop_on_failure=True) - get_load_arrays(self, subcase_id, nid_map, eid_map, node_ids, normals) - get_pressure_array(self, load_case, eids) - get_reduced_loads(self, load_id, scale=1., skip_scale_factor0=True, msg='') - get_reduced_dloads(self, dload_id, scale=1., skip_scale_factor0=True, msg='') - get_rigid_elements_with_node_ids(self, node_ids) - get_dependent_nid_to_components(self, mpc_id=None) - get_node_ids_with_elements(self, eids, msg='') - get_elements_nodes_by_property_type(self, dtype='int32', save_element_types=False) - get_elements_properties_nodes_by_element_type(self, dtype='int32', solids=None) - get_element_ids_list_with_pids(self, pids=None) - get_pid_to_node_ids_and_elements_array(self, pids=None, etypes=None, idtype='int32') - get_element_ids_dict_with_pids(self, pids=None, stop_if_no_eids=True) - get_node_id_to_element_ids_map(self) - get_node_id_to_elements_map(self) - get_property_id_to_element_ids_map(self): - get_material_id_to_property_ids_map(self) - get_reduced_mpcs(self, mpc_id) - get_reduced_spcs(self, spc_id) - get_spcs(self, spc_id, consider_nodes=False) - get_mpcs(self, mpc_id) """ # pylint: disable=C0103 from __future__ import (nested_scopes, generators, division, absolute_import, print_function, unicode_literals) from copy import deepcopy from collections import defaultdict from typing import List, Dict, Set, Optional, Any from six import string_types import numpy as np from pyNastran.bdf.bdf_interface.get_methods import GetMethods from pyNastran.bdf.cards.optimization import get_dvprel_key from pyNastran.utils.numpy_utils import integer_types from pyNastran.bdf.cards.loads.static_loads import update_pload4_vector_for_surf class GetCard(GetMethods): """defines various methods to access high level BDF data""" def __init__(self): self._type_to_slot_map = {} GetMethods.__init__(self) def get_card_ids_by_card_types(self, card_types=None, reset_type_to_slot_map=False, stop_on_missing_card=False, combine=False): """ Parameters ---------- card_types : str / List[str] / default=None the list of keys to consider (list of strings; string) None : all cards reset_type_to_slot_map : bool should the mapping dictionary be rebuilt (default=False); set to True if you added cards stop_on_missing_card : bool crashes if you request a card and it doesn't exist combine : bool; default=False change out_dict into out_list combine the list of cards Returns ------- out_dict: dict[str]=List[ids] the key=card_type, value=the ID of the card object out_list: List[ids] value=the ID of the card object useful Examples --------- >>> out_dict = model.get_card_ids_by_card_types( card_types=['GRID', 'CTRIA3', 'CQUAD4'], combine=False) >>> out_dict = { 'GRID' : [1, 2, 10, 42, 1000], 'CTRIA3' : [1, 2, 3, 5], 'CQUAD4' : [4], } **shell elements** >>> out_dict = model.get_card_ids_by_card_types( card_types=['CTRIA3', 'CQUAD4'], combine=True) >>> out_dict = { [1, 2, 3, 4, 5], } """ if card_types is None: card_types = list(self.cards_to_read) if isinstance(card_types, string_types): card_types = [card_types] elif not isinstance(card_types, (list, tuple)): raise TypeError('card_types must be a list/tuple; type=%s' % type(card_types)) #if reset_type_to_slot_map or self._type_to_slot_map is None: #self._type_to_slot_map = rslot_map if reset_type_to_slot_map: self._reset_type_to_slot_map() #out_dict = { #(key) : (self._type_to_id_map[key] if key in self.card_count else []) #for key in card_types #} out_dict = {} for key in card_types: if key in self.card_count: out_dict[key] = sorted(self._type_to_id_map[key]) else: if stop_on_missing_card: raise RuntimeError('%r is not in the card_count; keys=%s' % str(sorted(self.card_count.keys()))) out_dict[key] = [] if combine: out_list = [] for key, value in sorted(out_dict.items()): out_list += value return out_list return out_dict def _reset_type_to_slot_map(self): """resets self._type_to_slot_map""" rslot_map = defaultdict(list) for dict_name, card_names in self._slot_to_type_map.items(): #print('card_names=%s dict_name=%s' % (card_names, dict_name)) card_name0 = card_names[0] if card_name0 in ['DTABLE', 'GRDSET', 'SESUP', 'DOPTPRM', 'MONPNT1', 'SUPORT', 'MKAERO1', 'MATHP']: pass else: adict = getattr(self, dict_name) if isinstance(adict, dict): for key, card in adict.items(): if isinstance(card, list): alist = card for cardi in alist: rslot_map[cardi.type].append(key) #msg = '%s; names=%s \ncard=%s' % (type(card), card_names, card) #raise NotImplementedError(msg) else: rslot_map[card.type].append(key) elif isinstance(adict, list): alist = adict for value in alist: if isinstance(value, list): msg = '%s; names=%s value=%s' % (type(value), card_names, value) raise NotImplementedError(msg) else: if value.type in ['CSET1', 'CSET']: pass #rslot_map[value.type] = value. else: raise NotImplementedError('list; names=%s' % card_names) else: raise NotImplementedError('%s; names=%s' % (type(adict), card_names)) return rslot_map def get_rslot_map(self, reset_type_to_slot_map=False): """gets the rslot_map""" if (reset_type_to_slot_map or self._type_to_slot_map is None or len(self._type_to_slot_map) == 0): self.reset_rslot_map() rslot_map = self._type_to_slot_map assert 'GRID' in rslot_map return rslot_map def reset_rslot_map(self): """helper method for get_rslot_map""" rslot_map = {} for key, values in self._slot_to_type_map.items(): for value in values: rslot_map[value] = key self._type_to_slot_map = rslot_map @property def nid_map(self): """ Gets the GRID/SPOINT/EPOINT ids to a sorted order. Parameters ---------- sort_ids : bool; default=True sort the ids Returns ------- nid_map : Dict[nid] : i nid : int the GRID/SPOINT/EPOINT id i : int the index ..note :: GRIDs, SPOINTs, & EPOINTs are stored in separate slots, so they are unorganized. ..note :: see ``self.get_nid_map(sort_ids=False)`` for the unsorted version """ return self.get_nid_map(sort_ids=True) def get_nid_map(self, sort_ids=True): """ Maps the GRID/SPOINT/EPOINT ids to a sorted/unsorted order. Parameters ---------- sort_ids : bool; default=True sort the ids Returns ------- nid_map : Dict[nid] : i nid : int the GRID/SPOINT/EPOINT id i : int the index ..note :: GRIDs, SPOINTs, & EPOINTs are stored in separate slots, so they are unorganized. """ nids = [] index_nids = [] i = 0 for nid in self.nodes: nids.append(nid) index_nids.append(i) i += 1 for nid in self.spoints: nids.append(nid) index_nids.append(i) i += 1 for nid in self.epoints: nids.append(nid) index_nids.append(i) i += 1 if sort_ids: inids = np.argsort(nids) nids = np.sort(nids) index_nids = np.array(index_nids)[inids] nid_map = {} for nid, i in zip(nids, index_nids): nid_map[nid] = i return nid_map def get_cards_by_card_types(self, card_types, reset_type_to_slot_map=False, stop_on_missing_card=False): """ Parameters ---------- card_types : List[str] the list of keys to consider reset_type_to_slot_map : bool should the mapping dictionary be rebuilt (default=False); set to True if you added cards stop_on_missing_card : bool crashes if you request a card and it doesn't exist Returns ------- out_dict : dict[str] = List[BDFCard()] the key=card_type, value=the card object """ if not isinstance(card_types, (list, tuple)): raise TypeError('card_types must be a list/tuple; type=%s' % type(card_types)) #self._type_to_id_map = { # 'CQUAD4' : [1, 2, 3] #} #self._slot_to_type_map = {'elements' : [CQUAD4, CTRIA3]} rslot_map = self.get_rslot_map(reset_type_to_slot_map=False) out = {} for card_type in card_types: if card_type not in self.card_count: if stop_on_missing_card: raise RuntimeError('%r is not in the card_count; keys=%s' % str(sorted(self.card_count.keys()))) out[card_type] = [] continue #print('card_type=%r' % card_type) try: key = rslot_map[card_type] # update attributes.py ~line 640 except: print(rslot_map.keys()) self.log.error("card_type=%r' hasn't been added to " "self._slot_to_type_map...check for typos") raise try: slot = getattr(self, key) except AttributeError: if hasattr(self.zona, key): slot = getattr(self.zona, key) else: raise ids = self._type_to_id_map[card_type] cards = [] if isinstance(ids, bool): continue for idi in ids: try: card = slot[idi] except KeyError: print(slot) msg = 'key=%r id=%r cannot be found\n' % (key, idi) msg += 'id=%s not found. Allowed=%s' % ( key, np.unique(ids)) #print(msg) raise KeyError(msg) except TypeError: msg = 'key=%s id=%s cannot be found' % (key, idi) #print(msg) raise TypeError(msg) if isinstance(card, list): for cardi in card: # loads/spc/mpc if cardi.type == card_type: # loads cards.append(cardi) else: cards.append(card) #for card in cards: #print('%s' % str(card).split('\n')[0]) out[card_type] = cards return out def get_SPCx_node_ids(self, spc_id, stop_on_failure=True): """ Get the SPC/SPCADD/SPC1/SPCAX IDs. Parameters ---------- spc_id : int the SPC id stop_on_failure : bool; default=True errors if parsing something new Returns ------- node_ids : List[int] the constrained associated node ids """ spcs = self.get_reduced_spcs(spc_id, stop_on_failure=stop_on_failure) warnings = '' node_ids = [] for card in spcs: if card.type == 'SPC': nids = card.node_ids elif card.type == 'SPC1': nids = card.node_ids elif card.type in ['GMSPC', 'SPCAX']: warnings += str(card) continue else: warnings += str(card) continue node_ids += nids if warnings: self.log.warning("get_SPCx_node_ids doesn't consider:\n%s" % warnings.rstrip('\n')) return node_ids def get_SPCx_node_ids_c1(self, spc_id, stop_on_failure=True): """ Get the SPC/SPCADD/SPC1/SPCAX IDs. Parameters ---------- spc_id : int the SPC id stop_on_failure : bool; default=True errors if parsing something new Returns ------- node_ids_c1 : Dict[component] = node_ids component : str the DOF to constrain node_ids : List[int] the constrained node ids """ spcs = self.get_reduced_spcs(spc_id, stop_on_failure=stop_on_failure) node_ids_c1 = defaultdict(str) #print('spcs = ', spcs) warnings = '' for card in spcs: # used to be sorted(spcs) if card.type == 'SPC': for nid, c1 in zip(card.node_ids, card.components): assert nid is not None, card.node_ids node_ids_c1[nid] += c1 elif card.type == 'SPC1': nids = card.node_ids c1 = card.components for nid in nids: node_ids_c1[nid] += c1 elif card.type in ['GMSPC', 'SPCAX']: warnings += str(card) else: msg = 'get_SPCx_node_ids_c1 doesnt supprt %r' % card.type if stop_on_failure: raise RuntimeError(msg) else: self.log.warning(msg) if warnings: self.log.warning("get_SPCx_node_ids_c1 doesn't consider:\n%s" % warnings.rstrip('\n')) return node_ids_c1 def get_MPCx_node_ids(self, mpc_id, stop_on_failure=True): r""" Get the MPC/MPCADD IDs. Parameters ---------- mpc_id : int the MPC id stop_on_failure : bool; default=True errors if parsing something new Returns ------- lines : List[[independent, dependent]] independent : int the independent node id dependent : int the dependent node id I I \ / I---D---I """ lines = [] mpcs = self.get_reduced_mpcs(mpc_id, stop_on_failure=stop_on_failure) # dependent, independent for card in mpcs: if card.type == 'MPC': nids = card.node_ids nid0 = nids[0] #component0 = card.components[0] #enforced0 = card.coefficients[0] #card.constraints[1:] for nid, coefficient in zip(nids[1:], card.coefficients[1:]): if coefficient != 0.0: lines.append([nid0, nid]) else: msg = 'get_MPCx_node_ids doesnt support %r' % card.type if stop_on_failure: raise RuntimeError(msg) else: self.log.warning(msg) return lines def get_MPCx_node_ids_c1(self, mpc_id, stop_on_failure=True): r""" Get the MPC/MPCADD IDs. Parameters ---------- mpc_id : int the MPC id stop_on_failure : bool; default=True errors if parsing something new Returns ------- independent_node_ids_c1 : Dict[component] = node_ids component : str the DOF to constrain node_ids : List[int] the constrained node ids dependent_node_ids_c1 : Dict[component] = node_ids component : str the DOF to constrain node_ids : List[int] the constrained node ids I I \ / I---D---I """ if not isinstance(mpc_id, integer_types): msg = 'mpc_id must be an integer; type=%s, mpc_id=\n%r' % (type(mpc_id), mpc_id) raise TypeError(msg) mpcs = self.get_reduced_mpcs(mpc_id, stop_on_failure=stop_on_failure) # dependent, independent independent_node_ids_c1 = defaultdict(list) dependent_node_ids_c1 = defaultdict(list) for card in mpcs: if card.type == 'MPC': nids = card.node_ids nid0 = nids[0] #component0 = card.components[0] #coefficient0 = card.coefficients[0] #card.constraints[1:] dofs = card.components for dof in dofs: independent_node_ids_c1[dof].append(nid0) for nid, coefficient in zip(nids[1:], card.coefficients[1:]): if coefficient != 0.0: for dof in dofs: dependent_node_ids_c1[dof].append(nid) else: msg = 'get_MPCx_node_ids_c1 doesnt support %r' % card.type if stop_on_failure: raise RuntimeError(msg) else: self.log.warning(msg) return independent_node_ids_c1, dependent_node_ids_c1 def get_load_arrays(self, subcase_id, eid_map, node_ids, normals, nid_map=None): """ Gets the following load arrays for the GUI Loads include: - Temperature - Pressure (Centroidal) - Forces - SPCD Parameters ---------- model : BDF() the BDF object subcase_id : int the subcase id Returns ------- found_load : bool a flag that indicates if load data was found found_temperature : bool a flag that indicates if temperature data was found temperature_data : tuple(temperature_key, temperatures) temperature_key : str One of the following: TEMPERATURE(MATERIAL) TEMPERATURE(INITIAL) TEMPERATURE(LOAD) TEMPERATURE(BOTH) temperatures : (nnodes, 1) float ndarray the temperatures load_data : tuple(centroidal_pressures, forces, spcd) centroidal_pressures : (nelements, 1) float ndarray the pressure forces : (nnodes, 3) float ndarray the pressure spcd : (nnodes, 3) float ndarray the SPCD load application """ if nid_map is None: nid_map = self.nid_map assert len(nid_map) == len(node_ids), 'len(nid_map)=%s len(node_ids)=%s' % (len(nid_map), len(node_ids)) subcase = self.subcases[subcase_id] is_loads = False is_temperatures = False load_keys = ( 'LOAD', 'TEMPERATURE(MATERIAL)', 'TEMPERATURE(INITIAL)', 'TEMPERATURE(LOAD)', 'TEMPERATURE(BOTH)') temperature_keys = ( 'TEMPERATURE(MATERIAL)', 'TEMPERATURE(INITIAL)', 'TEMPERATURE(LOAD)', 'TEMPERATURE(BOTH)') centroidal_pressures = None forces = None spcd = None temperature_key = None temperatures = None for key in load_keys: try: load_case_id = subcase.get_parameter(key)[0] except KeyError: # print('no %s for isubcase=%s' % (key, subcase_id)) continue try: load_case = self.get_reduced_loads( load_case_id, scale=1., consider_load_combinations=True, skip_scale_factor0=False, stop_on_failure=False, msg='') except KeyError: self.log.warning('LOAD=%s not found' % load_case_id) continue if key == 'LOAD': p0 = np.array([0., 0., 0.], dtype='float32') centroidal_pressures, forces, spcd = self._get_forces_moments_array( p0, load_case_id, eid_map=eid_map, node_ids=node_ids, normals=normals, dependents_nodes=self.node_ids, nid_map=nid_map, include_grav=False) if centroidal_pressures is not None: # or any of the others is_loads = True elif key in temperature_keys: is_temperatures, temperatures = self._get_temperatures_array( load_case_id, nid_map=nid_map) temperature_key = key else: raise NotImplementedError(key) temperature_data = (temperature_key, temperatures) load_data = (centroidal_pressures, forces, spcd) return is_loads, is_temperatures, temperature_data, load_data def _get_dvprel_ndarrays(self, nelements, pids, fdtype='float32', idtype='int32'): """ creates arrays for dvprel results Parameters ---------- nelements : int the number of elements pids : (nelements,) int ndarray properties array to map the results to fdtype : str; default='float32' the type of the init/min/max arrays idtype : str; default='int32' the type of the design_region Returns ------- dvprel_dict[key] : (design_region, dvprel_init, dvprel_min, dvprel_max) key : str the optimization string design_region : (nelements,) int ndarray dvprel_init : (nelements,) float ndarray the initial values of the variable dvprel_min : (nelements,)float ndarray the min values of the variable dvprel_max : (nelements,)float ndarray the max values of the variable """ dvprel_dict = {} def get_dvprel_data(key): if key in dvprel_dict: return dvprel_dict[key] dvprel_t_init = np.full(nelements, np.nan, dtype=fdtype) dvprel_t_min = np.full(nelements, np.nan, dtype=fdtype) dvprel_t_max = np.full(nelements, np.nan, dtype=fdtype) design_region = np.zeros(nelements, dtype=idtype) dvprel_dict[key] = (design_region, dvprel_t_init, dvprel_t_min, dvprel_t_max) return design_region, dvprel_t_init, dvprel_t_min, dvprel_t_max for dvprel_key, dvprel in self.dvprels.items(): prop_type = dvprel.prop_type desvars = dvprel.dvids if dvprel.pid_ref is not None: pid = dvprel.pid_ref.pid else: pid = dvprel.pid var_to_change = dvprel.pname_fid prop = self.properties[pid] if not prop.type == prop_type: raise RuntimeError('Property type mismatch\n%s%s' % (str(dvprel), str(prop))) key, msg = get_dvprel_key(dvprel, prop) if dvprel.type == 'DVPREL1': assert len(desvars) == 1, len(desvars) coeffs = dvprel.coeffs if msg: self.log.warning(msg) continue i = np.where(pids == pid)[0] if len(i) == 0: continue assert len(i) > 0, i design_region, dvprel_init, dvprel_min, dvprel_max = get_dvprel_data(key) optimization_region = dvprel.oid assert optimization_region > 0, str(self) design_region[i] = optimization_region #value = 0. lower_bound = 0. upper_bound = 0. for desvar, coeff in zip(desvars, coeffs): if isinstance(desvar, integer_types): desvar_ref = self.desvars[desvar] else: desvar_ref = desvar.desvar_ref xiniti = desvar_ref.xinit if desvar_ref.xlb != -1e20: xiniti = max(xiniti, desvar_ref.xlb) lower_bound = desvar_ref.xlb if desvar_ref.xub != 1e20: xiniti = min(xiniti, desvar_ref.xub) upper_bound = desvar_ref.xub # code validation if desvar_ref.delx is not None and desvar_ref.delx != 1e20: pass # TODO: haven't quite decided what to do if desvar_ref.ddval is not None: msg = 'DESVAR id=%s DDVAL is not None\n%s' % str(desvar_ref) assert desvar_ref.ddval is None, desvar_ref xinit = coeff * xiniti dvprel_init[i] = xinit dvprel_min[i] = lower_bound dvprel_max[i] = upper_bound #elif dvprel.type == 'DVPREL2': #print(dvprel.get_stats()) else: msg = 'dvprel.type=%r; dvprel=\n%s' % (dvprel.type, str(dvprel)) raise NotImplementedError(msg) # TODO: haven't quite decided what to do if dvprel.p_max != 1e20: dvprel.p_max # TODO: haven't quite decided what to do if dvprel.p_min is not None: dvprel.p_min #dvprel_dict['PSHELL']['T'] = dvprel_t_init, dvprel_t_min, dvprel_t_max return dvprel_dict def _get_forces_moments_array(self, p0, load_case_id, eid_map, node_ids, normals, dependents_nodes, nid_map=None, include_grav=False): """ Gets the forces/moments on the nodes for the GUI, but there may be a use outside of that Parameters ---------- p0 : (3, ) float ndarray the reference location load_case_id : int the load id nid_map : ??? ??? eid_map : ??? ??? node_ids : ??? ??? normals : (nelements, 3) float ndarray the normal vectors for the shells dependents_nodes : ??? ??? include_grav : bool; default=False is the mass of the elements considered; unused Returns ------- temperature_data : tuple(temperature_key, temperatures) temperature_key : str One of the following: TEMPERATURE(MATERIAL) TEMPERATURE(INITIAL) TEMPERATURE(LOAD) TEMPERATURE(BOTH) temperatures : (nnodes, 1) float ndarray the temperatures load_data : tuple(centroidal_pressures, forces, spcd) centroidal_pressures : (nelements, 1) float ndarray the pressure forces : (nnodes, 3) float ndarray the pressure spcd : (nnodes, 3) float ndarray the SPCD load application Considers FORCE PLOAD2 - CTRIA3, CQUAD4, CSHEAR PLOAD4 - CTRIA3, CTRIA6, CTRIAR CQUAD4, CQUAD8, CQUAD, CQUADR, CSHEAR CTETRA, CPENTA, CHEXA SPCD """ if nid_map is None: nid_map = self.nid_map if not any(['FORCE' in self.card_count, 'PLOAD' in self.card_count, 'PLOAD2' in self.card_count, 'PLOAD4' in self.card_count, 'SPCD' in self.card_count, 'SLOAD' in self.card_count]): return None, None, None nnodes = len(node_ids) assert len(nid_map) == len(node_ids), 'len(nid_map)=%s len(node_ids)=%s' % (len(nid_map), len(node_ids)) loads, scale_factors = self.get_reduced_loads( load_case_id, skip_scale_factor0=True)[:2] #eids = sorted(self.elements.keys()) centroidal_pressures = np.zeros(len(self.elements), dtype='float32') nodal_pressures = np.zeros(len(self.node_ids), dtype='float32') forces =
np.zeros((nnodes, 3), dtype='float32')
numpy.zeros
import numpy as np from ..basic import gamma, gammaRatio def coeff(v, N=7, method='2'): ''' Return the fractional coefficients. Parameters ---------- v : float Order of the diffinetration. N : int, optional Length of the corresponding coefficients. Default is 7. method : str Diffintegration operator. {'1' or '2' (default)}. Returns ---------- coefficients : ndarray Coefficients are from from C_{0} to C_{N-1}. ''' if method == '2': n = N - 2 coefficients = np.zeros(N) temp = np.array([v/4 + v**2 / 8, 1 - v**2 / 4, -v/4 + v**2 / 8]) coefficients[0] = temp[0] coefficients[1] = 1 - v**2 / 2 - v**3 / 8 for k in range(1, n - 1): coefficients[k + 1] = gammaRatio(k - v + 1, -v) / gamma(k + 2) * temp[0] + gammaRatio( k - v, -v) / gamma(k + 1) * temp[1] + gammaRatio(k - v - 1, -v) / gamma(k) * temp[2] coefficients[n] = gammaRatio(n - v - 1, -v) / gamma(n) * \ temp[1] + gammaRatio(n - v - 2, -v) / gamma(n - 1) * temp[2] coefficients[-1] = gammaRatio(n - v - 1, -v) / gamma(n) * temp[2] return coefficients elif method == '1': n = N - 1 coefficients = np.zeros(N) coefficients[0] = 1 coefficients[1] = -v for k in range(2, N): coefficients[k] = gammaRatio(k - v, -v) / gamma(k + 1) return coefficients def dotPos(xq, N=7, a=0, method='2'): ''' Return the position array for the mask convolution. Parameters ---------- xq : float Point at which function is diffintegrated. N : int, optional Length of the corresponding coefficients. Default is 7. a : float, optional Lower limit of the diffintegration. Default is 0. method : str Diffintegration operator. {'1' or '2' (default)}. Returns ---------- h : float Step size of the interval. x_arr : ndarray Positions for mask convolution. ''' if method == '2': h = (xq - a) / (N - 2) x_arr = np.linspace(xq + h, a, N) return h, x_arr elif method == '1': h = (xq - a) / N x_arr = np.linspace(xq, a + h, N) return h, x_arr def deriv(fun, xq, v, N=7, a=0, method='2'): ''' Calculate the fractional diffintegral. Parameters ---------- fun : callable Diffintegrand function. xq : ndarray or float Point at which fun is diffintegrated. v : float Diffintegration order. N : int, optional Length of the corresponding coefficients. Default is 7. a : float, optional Lower limit of the diffintegration. Default is 0. method : str Diffintegration operator. {'1' or '2' (default)}. Returns ---------- yq : ndarray or float The diffintegral value at xq. ''' C = coeff(v, N, method) if hasattr(xq, "__len__"): num = len(xq) yq = np.zeros(num) for i in range(num): h, x_tmp = dotPos(xq[i], N, a, method) yq[i] = np.dot(C, fun(x_tmp)) / h**(v) return yq else: h, x_tmp = dotPos(xq, N, a, method) return np.dot(C, fun(x_tmp)) / h**(v) def mask(v, N=13, method='Tiansi'): ''' Return fractional mask operator. Parameters ---------- v : float Diffintegration order. N : int, optional Mask size of the corresponding operator. Default is 13 x 13. method : str Diffintegration operator. {'Tiansi' (1, default) or 'lcr' (2)}. Returns ---------- result_mask : 2darray The fractional mask. ''' center = int((N - 1) / 2) result_mask = np.zeros((N, N)) if method == 'Tiansi' or method == '1': C = coeff(v, center + 1, '1') elif method == 'lcr' or method == '2': C = coeff(v, center + 2, '2') C[2] += C[0] C = C[1:] result_mask[center, center] = 8 * C[0] for i in range(1, center + 1): c = C[i] result_mask[center - i, center] = c result_mask[center + i, center] = c result_mask[center, center - i] = c result_mask[center, center + i] = c result_mask[center + i, center - i] = c result_mask[center - i, center + i] = c result_mask[center - i, center - i] = c result_mask[center + i, center + i] = c return result_mask def deriv8(A, v, method='2', N=7): ''' Compute the fractional diffintegral in the eight direction of a matrix A Parameters ---------- A : 2darray Matrix (image) that need to be diffintegrated. v : float Diffintegration order. method : str Diffintegration operator. {'1' or '2' (default)}. N : int, optional Length of the corresponding coefficients. Default is 7. Returns ---------- d8 : 3darray fractional diffintegral result. First dimension represents direction in the following order: u, d, l, r, ld, ru, lu, rd. ''' len_x, len_y = A.shape C = coeff(v, N, method) d8 = np.zeros((8, len_x, len_y)) if method == '1': A_pad = np.pad(A, N - 1, mode='symmetric') for k in range(N): c = C[k] d8[0] += c * A_pad[(N - 1 - k):(N - 1 - k + len_x), (N - 1):(N - 1 + len_y)] d8[1] += c * A_pad[(N - 1 + k):(N - 1 + k + len_x), (N - 1):(N - 1 + len_y)] d8[2] += c * A_pad[(N - 1):(N - 1 + len_x), (N - 1 - k):(N - 1 - k + len_y)] d8[3] += c * A_pad[(N - 1):(N - 1 + len_x), (N - 1 + k):(N - 1 + k + len_y)] d8[4] += c * A_pad[(N - 1 + k):(N - 1 + k + len_x), (N - 1 - k):(N - 1 - k + len_y)] d8[5] += c * A_pad[(N - 1 - k):(N - 1 - k + len_x), (N - 1 + k):(N - 1 + k + len_y)] d8[6] += c * A_pad[(N - 1 - k):(N - 1 - k + len_x), (N - 1 - k):(N - 1 - k + len_y)] d8[7] += c * A_pad[(N - 1 + k):(N - 1 + k + len_x), (N - 1 + k):(N - 1 + k + len_y)] elif method == '2': A_pad =
np.pad(A, N - 2, mode='symmetric')
numpy.pad
""" Python script to test the accuracy of the TIME command. Author: <NAME> Date: 4/27/18 """ # This is pyserial import serial import numpy import statistics import cmath import datetime import os import time import matplotlib.pyplot as plt def average(arr): return sum(arr) / len(arr) print("Enter the com port") port = str(input()) print("Enter the frequency in MHz") fMin = int(float(input()) * 1e6) print("Enter number of samples") samp = int(input()) start = time.time() filename = str(os.path.splitext(os.path.basename(__file__))[0]) + "_" + str(datetime.datetime.now()).replace(":", "-")\ .replace(".", "-").replace(" ", "_") + ".dat" if not os.path.exists("measurements"): os.makedirs("measurements") file = open("measurements/" + filename, 'w+') try: ser = serial.Serial(port, 115200, timeout=3) except serial.serialutil.SerialException: print("Could not open the port") exit() if not ser.is_open: print("Could not open port") exit() time.sleep(1) ser.flush() command = "^SAMPLERATE,1"+"$\n" ser.write(command.encode()) Fs = int(ser.readline()) N = int(ser.readline().decode().strip(' \n')) F_IF = int(ser.readline().decode().strip(' \n')) T = 1./float(Fs) file.write("Time Test\n") file.write("Frequency = " + str(fMin) + '\n') file.write("Samples = " + str(samp) + '\n') file.write("Port = " + str(port) + '\n') file.write("FS = " + str(Fs) + '\n') file.write("N = " + str(N) + '\n') file.write("F_IF = " + str(F_IF) + '\n') file.write("T = " + str(T) + '\n\n\n') endRef = [] endMeas = [] for x in range(samp): print("Getting " + str(x) + '\n') command = "^TIME," + str(fMin) + "$\n" ser.write(command.encode()) ref = ser.readline().decode() meas = ser.readline().decode() ref = ref.split(',') meas = meas.split(',') refSanitized = [int(x.strip(' \n')) for x in ref if x.strip(' \n')] measSanitized = [int(x.strip(' \n')) for x in meas if x.strip(' \n')] ref = [x - average(refSanitized) for x in refSanitized] meas = [x - average(measSanitized) for x in measSanitized] endRef.append(ref) endMeas.append(meas) ser.close() plt.plot(numpy.arange(0, len(endRef[0]) / Fs, 1/Fs), endRef[0],numpy.arange(0, len(endMeas[0]) / Fs, 1/Fs), endMeas[0]) plt.show() #plt.plot(numpy.arange(0, len(endMeas[0]) / Fs, 1/Fs), endMeas[0]) #plt.show() ref = [] meas = [] H1 = [] H3 = [] H5 = [] H7 = [] window = numpy.hanning(N) for x in range(samp): print("Computing " + str(x) + '\n') for y in range(len(endRef[x])): endRef[x][y] *= window[y] for y in range(len(endMeas[x])): endMeas[x][y] *= window[y] reffft = numpy.fft.fft(endRef[x]) measfft = numpy.fft.fft(endMeas[x]) ref.append(reffft[int(F_IF*N/Fs+1)]) meas.append(measfft[int(F_IF*N/Fs+1)]) H1.append(measfft[int(F_IF * N / Fs + 1)] / reffft[int(F_IF * N / Fs + 1)]) H3.append(measfft[int(3 * F_IF * N / Fs + 1)] / reffft[int(3 * F_IF * N / Fs + 1)]) H5.append(measfft[int(5 * F_IF * N / Fs + 1)] / reffft[int(5 * F_IF * N / Fs + 1)]) H7.append(measfft[int(7 * F_IF * N / Fs + 1)] / reffft[int(7 * F_IF * N / Fs + 1)]) file.write("Measurement " + str(x + 1) + '\n') file.write('Ref: ' + str(ref[x]) + '\n') file.write('Meas: ' + str(meas[x]) + '\n') file.write('H1: ' + str(H1[x]) + '\n') file.write('H3: ' + str(H3[x]) + '\n') file.write('H5: ' + str(H5[x]) + '\n') file.write('H7: ' + str(H7[x]) + '\n\n\n') X0 = numpy.fft.fftshift(numpy.fft.fft(endRef[0])/N) f = numpy.arange(-1/(2*T),1/(2*T),1/(N*T)) plt.plot(f,numpy.abs(X0)) plt.show() X1 = numpy.fft.fftshift(
numpy.fft.fft(endRef[0])
numpy.fft.fft
"""Simple minimizer is a wrapper around scipy.leastsq, allowing a user to build a fitting model as a function of general purpose Fit Parameters that can be fixed or varied, bounded, and written as a simple expression of other Fit Parameters. The user sets up a model in terms of instance of Parameters and writes a function-to-be-minimized (residual function) in terms of these Parameters. Original copyright: Copyright (c) 2011 <NAME>, The University of Chicago See LICENSE for more complete authorship information and license. """ from collections import namedtuple from copy import deepcopy import multiprocessing import numbers import warnings import numpy as np from numpy import dot, eye, ndarray, ones_like, sqrt, take, transpose, triu from numpy.dual import inv from numpy.linalg import LinAlgError from scipy.optimize import brute as scipy_brute from scipy.optimize import leastsq as scipy_leastsq from scipy.optimize import minimize as scipy_minimize from scipy.optimize import differential_evolution from scipy.stats import cauchy as cauchy_dist from scipy.stats import norm as norm_dist import six # use locally modified version of uncertainties package from . import uncertainties from .parameter import Parameter, Parameters # scipy version notes: # currently scipy 0.15 is required. # feature scipy version added # minimize 0.11 # OptimizeResult 0.13 # diff_evolution 0.15 # least_squares 0.17 # check for scipy.opitimize.least_squares HAS_LEAST_SQUARES = False try: from scipy.optimize import least_squares HAS_LEAST_SQUARES = True except ImportError: pass # check for EMCEE HAS_EMCEE = False try: import emcee as emcee HAS_EMCEE = True except ImportError: pass # check for pandas HAS_PANDAS = False try: import pandas as pd HAS_PANDAS = True except ImportError: pass def asteval_with_uncertainties(*vals, **kwargs): """Calculate object value, given values for variables. This is used by the uncertainties package to calculate the uncertainty in an object even with a complicated expression. """ _obj = kwargs.get('_obj', None) _pars = kwargs.get('_pars', None) _names = kwargs.get('_names', None) _asteval = _pars._asteval if (_obj is None or _pars is None or _names is None or _asteval is None or _obj._expr_ast is None): return 0 for val, name in zip(vals, _names): _asteval.symtable[name] = val return _asteval.eval(_obj._expr_ast) wrap_ueval = uncertainties.wrap(asteval_with_uncertainties) def eval_stderr(obj, uvars, _names, _pars): """Evaluate uncertainty and set .stderr for a parameter `obj`. Given the uncertain values `uvars` (a list of uncertainties.ufloats), a list of parameter names that matches uvars, and a dict of param objects, keyed by name. This uses the uncertainties package wrapped function to evaluate the uncertainty for an arbitrary expression (in obj._expr_ast) of parameters. """ if not isinstance(obj, Parameter) or getattr(obj, '_expr_ast', None) is None: return uval = wrap_ueval(*uvars, _obj=obj, _names=_names, _pars=_pars) try: obj.stderr = uval.std_dev() except: obj.stderr = 0 class MinimizerException(Exception): """General Purpose Exception.""" def __init__(self, msg): Exception.__init__(self) self.msg = msg def __str__(self): return "\n%s" % self.msg SCALAR_METHODS = {'nelder': 'Nelder-Mead', 'powell': 'Powell', 'cg': 'CG', 'bfgs': 'BFGS', 'newton': 'Newton-CG', 'lbfgsb': 'L-BFGS-B', 'l-bfgsb': 'L-BFGS-B', 'tnc': 'TNC', 'cobyla': 'COBYLA', 'slsqp': 'SLSQP', 'dogleg': 'dogleg', 'trust-ncg': 'trust-ncg', 'differential_evolution': 'differential_evolution'} def reduce_chisquare(r): """Reduce residual array to scalar (chi-square). Calculate the chi-square value from the residual array `r`: (r*r).sum() Parameters ---------- r : numpy.ndarray Residual array. Returns ------- float Chi-square calculated from the residual array """ return (r*r).sum() def reduce_negentropy(r): """Reduce residual array to scalar (negentropy). Reduce residual array `r` to scalar using negative entropy and the normal (Gaussian) probability distribution of `r` as pdf: (norm.pdf(r)*norm.logpdf(r)).sum() since pdf(r) = exp(-r*r/2)/sqrt(2*pi), this is ((r*r/2 - log(sqrt(2*pi))) * exp(-r*r/2)).sum() Parameters ---------- r : numpy.ndarray Residual array. Returns ------- float Negative entropy value calculated from the residual array """ return (norm_dist.pdf(r)*norm_dist.logpdf(r)).sum() def reduce_cauchylogpdf(r): """Reduce residual array to scalar (cauchylogpdf). Reduce residual array `r` to scalar using negative log-likelihood and a Cauchy (Lorentzian) distribution of `r`: -scipy.stats.cauchy.logpdf(r) (where the Cauchy pdf = 1/(pi*(1+r*r))). This gives greater suppression of outliers compared to normal sum-of-squares. Parameters ---------- r : numpy.ndarray Residual array. Returns ------- float Negative entropy value calculated from the residual array """ return -cauchy_dist.logpdf(r).sum() class MinimizerResult(object): r""" The results of a minimization. Minimization results include data such as status and error messages, fit statistics, and the updated (i.e., best-fit) parameters themselves in the :attr:`params` attribute. The list of (possible) `MinimizerResult` attributes is given below: Attributes ---------- params : :class:`~lmfit.parameter.Parameters` The best-fit parameters resulting from the fit. status : int Termination status of the optimizer. Its value depends on the underlying solver. Refer to `message` for details. var_names : list Ordered list of variable parameter names used in optimization, and useful for understanding the values in :attr:`init_vals` and :attr:`covar`. covar : numpy.ndarray Covariance matrix from minimization (`leastsq` only), with rows and columns corresponding to :attr:`var_names`. init_vals : list List of initial values for variable parameters using :attr:`var_names`. init_values : dict Dictionary of initial values for variable parameters. nfev : int Number of function evaluations. success : bool True if the fit succeeded, otherwise False. errorbars : bool True if uncertainties were estimated, otherwise False. message : str Message about fit success. ier : int Integer error value from :scipydoc:`optimize.leastsq` (`leastsq` only). lmdif_message : str Message from :scipydoc:`optimize.leastsq` (`leastsq` only). nvarys : int Number of variables in fit: :math:`N_{\rm varys}`. ndata : int Number of data points: :math:`N`. nfree : int Degrees of freedom in fit: :math:`N - N_{\rm varys}`. residual : numpy.ndarray Residual array :math:`{\rm Resid_i}`. Return value of the objective function when using the best-fit values of the parameters. chisqr : float Chi-square: :math:`\chi^2 = \sum_i^N [{\rm Resid}_i]^2`. redchi : float Reduced chi-square: :math:`\chi^2_{\nu}= {\chi^2} / {(N - N_{\rm varys})}`. aic : float Akaike Information Criterion statistic: :math:`N \ln(\chi^2/N) + 2 N_{\rm varys}`. bic : float Bayesian Information Criterion statistic: :math:`N \ln(\chi^2/N) + \ln(N) N_{\rm varys}`. flatchain : pandas.DataFrame A flatchain view of the sampling chain from the `emcee` method. Methods ------- show_candidates Pretty_print() representation of candidates from the `brute` method. """ def __init__(self, **kws): for key, val in kws.items(): setattr(self, key, val) @property def flatchain(self): """A flatchain view of the sampling chain from the `emcee` method.""" if hasattr(self, 'chain'): if HAS_PANDAS: if len(self.chain.shape) == 4: return pd.DataFrame(self.chain[0, ...].reshape((-1, self.nvarys)), columns=self.var_names) elif len(self.chain.shape) == 3: return pd.DataFrame(self.chain.reshape((-1, self.nvarys)), columns=self.var_names) else: raise NotImplementedError('Please install Pandas to see the ' 'flattened chain') else: return None def show_candidates(self, candidate_nmb='all'): """A pretty_print() representation of the candidates. Showing candidates (default is 'all') or the specified candidate-# from the `brute` method. Parameters ---------- candidate_nmb : int or 'all' The candidate-number to show using the :meth:`pretty_print` method. """ if hasattr(self, 'candidates'): try: candidate = self.candidates[candidate_nmb] print("\nCandidate #{}, chisqr = " "{:.3f}".format(candidate_nmb, candidate.score)) candidate.params.pretty_print() except: for i, candidate in enumerate(self.candidates): print("\nCandidate #{}, chisqr = " "{:.3f}".format(i, candidate.score)) candidate.params.pretty_print() class Minimizer(object): """A general minimizer for curve fitting and optimization.""" _err_nonparam = ("params must be a minimizer.Parameters() instance or list " "of Parameters()") _err_maxfev = ("Too many function calls (max set to %i)! Use:" " minimize(func, params, ..., maxfev=NNN)" "or set leastsq_kws['maxfev'] to increase this maximum.") def __init__(self, userfcn, params, fcn_args=None, fcn_kws=None, iter_cb=None, scale_covar=True, nan_policy='raise', reduce_fcn=None, **kws): """ Parameters ---------- userfcn : callable Objective function that returns the residual (difference between model and data) to be minimized in a least-squares sense. This function must have the signature:: userfcn(params, *fcn_args, **fcn_kws) params : :class:`~lmfit.parameter.Parameters` Contains the Parameters for the model. fcn_args : tuple, optional Positional arguments to pass to `userfcn`. fcn_kws : dict, optional Keyword arguments to pass to `userfcn`. iter_cb : callable, optional Function to be called at each fit iteration. This function should have the signature:: iter_cb(params, iter, resid, *fcn_args, **fcn_kws) where `params` will have the current parameter values, `iter` the iteration, `resid` the current residual array, and `*fcn_args` and `**fcn_kws` are passed to the objective function. scale_covar : bool, optional Whether to automatically scale the covariance matrix (`leastsq` only). nan_policy : str, optional Specifies action if `userfcn` (or a Jacobian) returns NaN values. One of: - 'raise' : a `ValueError` is raised - 'propagate' : the values returned from `userfcn` are un-altered - 'omit' : non-finite values are filtered reduce_fcn : str or callable, optional Function to convert a residual array to a scalar value for the scalar minimizers. Optional values are (where `r` is the residual array): - None : sum of squares of residual [default] = (r*r).sum() - 'negentropy' : neg entropy, using normal distribution = rho*log(rho).sum()`, where rho = exp(-r*r/2)/(sqrt(2*pi)) - 'neglogcauchy': neg log likelihood, using Cauchy distribution = -log(1/(pi*(1+r*r))).sum() - callable : must take one argument (`r`) and return a float. **kws : dict, optional Options to pass to the minimizer being used. Notes ----- The objective function should return the value to be minimized. For the Levenberg-Marquardt algorithm from :meth:`leastsq` or :meth:`least_squares`, this returned value must be an array, with a length greater than or equal to the number of fitting variables in the model. For the other methods, the return value can either be a scalar or an array. If an array is returned, the sum of squares of the array will be sent to the underlying fitting method, effectively doing a least-squares optimization of the return values. If the objective function returns non-finite values then a `ValueError` will be raised because the underlying solvers cannot deal with them. A common use for the `fcn_args` and `fcn_kws` would be to pass in other data needed to calculate the residual, including such things as the data array, dependent variable, uncertainties in the data, and other data structures for the model calculation. """ self.userfcn = userfcn self.userargs = fcn_args if self.userargs is None: self.userargs = [] self.userkws = fcn_kws if self.userkws is None: self.userkws = {} self.kws = kws self.iter_cb = iter_cb self.scale_covar = scale_covar self.nfev = 0 self.nfree = 0 self.ndata = 0 self.ier = 0 self._abort = False self.success = True self.errorbars = False self.message = None self.lmdif_message = None self.chisqr = None self.redchi = None self.covar = None self.residual = None self.reduce_fcn = reduce_fcn self.params = params self.jacfcn = None self.nan_policy = nan_policy @property def values(self): """Return Parameter values in a simple dictionary.""" return {name: p.value for name, p in self.result.params.items()} def __residual(self, fvars, apply_bounds_transformation=True): """Residual function used for least-squares fit. With the new, candidate values of `fvars` (the fitting variables), this evaluates all parameters, including setting bounds and evaluating constraints, and then passes those to the user-supplied function to calculate the residual. Parameters ---------- fvars : numpy.ndarray Array of new parameter values suggested by the minimizer. apply_bounds_transformation : bool, optional Whether to apply lmfits parameter transformation to constrain parameters (default is True). This is needed for solvers without inbuilt support for bounds. Returns ------- residual : numpy.ndarray The evaluated function values for given `fvars`. """ # set parameter values if self._abort: return None params = self.result.params if fvars.shape == (): fvars = fvars.reshape((1,)) if apply_bounds_transformation: for name, val in zip(self.result.var_names, fvars): params[name].value = params[name].from_internal(val) else: for name, val in zip(self.result.var_names, fvars): params[name].value = val params.update_constraints() self.result.nfev += 1 out = self.userfcn(params, *self.userargs, **self.userkws) out = _nan_policy(out, nan_policy=self.nan_policy) if callable(self.iter_cb): abort = self.iter_cb(params, self.result.nfev, out, *self.userargs, **self.userkws) self._abort = self._abort or abort self._abort = self._abort and self.result.nfev > len(fvars) if not self._abort: return np.asarray(out).ravel() def __jacobian(self, fvars): """Reuturn analytical jacobian to be used with Levenberg-Marquardt. modified 02-01-2012 by <NAME>, Aberystwyth University modified 06-29-2015 M Newville to apply gradient scaling for bounded variables (thanks to <NAME>, <NAME>) """ pars = self.result.params grad_scale = ones_like(fvars) for ivar, name in enumerate(self.result.var_names): val = fvars[ivar] pars[name].value = pars[name].from_internal(val) grad_scale[ivar] = pars[name].scale_gradient(val) self.result.nfev += 1 pars.update_constraints() # compute the jacobian for "internal" unbounded variables, # then rescale for bounded "external" variables. jac = self.jacfcn(pars, *self.userargs, **self.userkws) jac = _nan_policy(jac, nan_policy=self.nan_policy) if self.col_deriv: jac = (jac.transpose()*grad_scale).transpose() else: jac *= grad_scale return jac def penalty(self, fvars): """Penalty function for scalar minimizers. Parameters ---------- fvars : numpy.ndarray Array of values for the variable parameters. Returns ------- r : float The evaluated user-supplied objective function. If the objective function is an array of size greater than 1, use the scalar returned by `self.reduce_fcn`. This defaults to sum-of-squares, but can be replaced by other options. """ r = self.__residual(fvars) if isinstance(r, ndarray) and r.size > 1: r = self.reduce_fcn(r) if isinstance(r, ndarray) and r.size > 1: r = r.sum() return r def penalty_brute(self, fvars): """Penalty function for brute force method. Parameters ---------- fvars : numpy.ndarray Array of values for the variable parameters Returns ------- r : float The evaluated user-supplied objective function. If the objective function is an array of size greater than 1, use the scalar returned by `self.reduce_fcn`. This defaults to sum-of-squares, but can be replaced by other options. """ r = self.__residual(fvars, apply_bounds_transformation=False) if isinstance(r, ndarray) and r.size > 1: r = (r*r).sum() return r def prepare_fit(self, params=None): """Prepare parameters for fitting. Prepares and initializes model and Parameters for subsequent fitting. This routine prepares the conversion of :class:`Parameters` into fit variables, organizes parameter bounds, and parses, "compiles" and checks constrain expressions. The method also creates and returns a new instance of a :class:`MinimizerResult` object that contains the copy of the Parameters that will actually be varied in the fit. Parameters ---------- params : :class:`~lmfit.parameter.Parameters`, optional Contains the Parameters for the model; if None, then the Parameters used to initialize the Minimizer object are used. Returns ------- :class:`MinimizerResult` Notes ----- This method is called directly by the fitting methods, and it is generally not necessary to call this function explicitly. .. versionchanged:: 0.9.0 Return value changed to :class:`MinimizerResult`. """ # determine which parameters are actually variables # and which are defined expressions. self.result = MinimizerResult() result = self.result if params is not None: self.params = params if isinstance(self.params, Parameters): result.params = deepcopy(self.params) elif isinstance(self.params, (list, tuple)): result.params = Parameters() for par in self.params: if not isinstance(par, Parameter): raise MinimizerException(self._err_nonparam) else: result.params[par.name] = par elif self.params is None: raise MinimizerException(self._err_nonparam) # determine which parameters are actually variables # and which are defined expressions. result.var_names = [] # note that this *does* belong to self... result.init_vals = [] result.params.update_constraints() result.nfev = 0 result.errorbars = False result.aborted = False for name, par in self.result.params.items(): par.stderr = None par.correl = None if par.expr is not None: par.vary = False if par.vary: result.var_names.append(name) result.init_vals.append(par.setup_bounds()) par.init_value = par.value if par.name is None: par.name = name result.nvarys = len(result.var_names) result.init_values = {n: v for n, v in zip(result.var_names, result.init_vals)} # set up reduce function for scalar minimizers # 1. user supplied callable # 2. string starting with 'neglogc' or 'negent' # 3. sum of squares if not callable(self.reduce_fcn): if isinstance(self.reduce_fcn, six.string_types): if self.reduce_fcn.lower().startswith('neglogc'): self.reduce_fcn = reduce_cauchylogpdf elif self.reduce_fcn.lower().startswith('negent'): self.reduce_fcn = reduce_negentropy if self.reduce_fcn is None: self.reduce_fcn = reduce_chisquare return result def unprepare_fit(self): """Clean fit state, so that subsequent fits need to call prepare_fit(). removes AST compilations of constraint expressions. """ pass def scalar_minimize(self, method='Nelder-Mead', params=None, **kws): """Scalar minimization using :scipydoc:`optimize.minimize`. Perform fit with any of the scalar minimization algorithms supported by :scipydoc:`optimize.minimize`. Default argument values are: +-------------------------+-----------------+-----------------------------------------------------+ | :meth:`scalar_minimize` | Default Value | Description | | arg | | | +=========================+=================+=====================================================+ | method | ``Nelder-Mead`` | fitting method | +-------------------------+-----------------+-----------------------------------------------------+ | tol | 1.e-7 | fitting and parameter tolerance | +-------------------------+-----------------+-----------------------------------------------------+ | hess | None | Hessian of objective function | +-------------------------+-----------------+-----------------------------------------------------+ Parameters ---------- method : str, optional Name of the fitting method to use. One of: - 'Nelder-Mead' (default) - 'L-BFGS-B' - 'Powell' - 'CG' - 'Newton-CG' - 'COBYLA' - 'TNC' - 'trust-ncg' - 'dogleg' - 'SLSQP' - 'differential_evolution' params : :class:`~lmfit.parameter.Parameters`, optional Parameters to use as starting point. **kws : dict, optional Minimizer options pass to :scipydoc:`optimize.minimize`. Returns ------- :class:`MinimizerResult` Object containing the optimized parameter and several goodness-of-fit statistics. .. versionchanged:: 0.9.0 Return value changed to :class:`MinimizerResult`. Notes ----- If the objective function returns a NumPy array instead of the expected scalar, the sum of squares of the array will be used. Note that bounds and constraints can be set on Parameters for any of these methods, so are not supported separately for those designed to use bounds. However, if you use the differential_evolution method you must specify finite (min, max) for each varying Parameter. """ result = self.prepare_fit(params=params) result.method = method vars = result.init_vals params = result.params fmin_kws = dict(method=method, options={'maxiter': 1000 * (len(vars) + 1)}) fmin_kws.update(self.kws) fmin_kws.update(kws) # hess supported only in some methods if 'hess' in fmin_kws and method not in ('Newton-CG', 'dogleg', 'trust-ncg'): fmin_kws.pop('hess') # jac supported only in some methods (and Dfun could be used...) if 'jac' not in fmin_kws and fmin_kws.get('Dfun', None) is not None: self.jacfcn = fmin_kws.pop('jac') fmin_kws['jac'] = self.__jacobian if 'jac' in fmin_kws and method not in ('CG', 'BFGS', 'Newton-CG', 'dogleg', 'trust-ncg'): self.jacfcn = None fmin_kws.pop('jac') if method == 'differential_evolution': for par in params.values(): if (par.vary and not (np.isfinite(par.min) and np.isfinite(par.max))): raise ValueError('differential_evolution requires finite ' 'bound for all varying parameters') _bounds = [(-np.pi / 2., np.pi / 2.)] * len(vars) kwargs = dict(args=(), strategy='best1bin', maxiter=None, popsize=15, tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None, callback=None, disp=False, polish=True, init='latinhypercube') for k, v in fmin_kws.items(): if k in kwargs: kwargs[k] = v ret = differential_evolution(self.penalty, _bounds, **kwargs) else: ret = scipy_minimize(self.penalty, vars, **fmin_kws) result.aborted = self._abort self._abort = False if isinstance(ret, dict): for attr, value in ret.items(): setattr(result, attr, value) else: for attr in dir(ret): if not attr.startswith('_'): setattr(result, attr, getattr(ret, attr)) result.x = np.atleast_1d(result.x) result.chisqr = result.residual = self.__residual(result.x) result.nvarys = len(vars) result.ndata = 1 result.nfree = 1 if isinstance(result.residual, ndarray): result.chisqr = (result.chisqr**2).sum() result.ndata = len(result.residual) result.nfree = result.ndata - result.nvarys result.redchi = result.chisqr / max(1, result.nfree) # this is -2*loglikelihood _neg2_log_likel = result.ndata * np.log(result.chisqr / result.ndata) result.aic = _neg2_log_likel + 2 * result.nvarys result.bic = _neg2_log_likel + np.log(result.ndata) * result.nvarys return result def emcee(self, params=None, steps=1000, nwalkers=100, burn=0, thin=1, ntemps=1, pos=None, reuse_sampler=False, workers=1, float_behavior='posterior', is_weighted=True, seed=None): r""" Bayesian sampling of the posterior distribution using `emcee`. Bayesian sampling of the posterior distribution for the parameters using the `emcee` Markov Chain Monte Carlo package. The method assumes that the prior is Uniform. You need to have `emcee` installed to use this method. Parameters ---------- params : :class:`~lmfit.parameter.Parameters`, optional Parameters to use as starting point. If this is not specified then the Parameters used to initialize the Minimizer object are used. steps : int, optional How many samples you would like to draw from the posterior distribution for each of the walkers? nwalkers : int, optional Should be set so :math:`nwalkers >> nvarys`, where `nvarys` are the number of parameters being varied during the fit. "Walkers are the members of the ensemble. They are almost like separate Metropolis-Hastings chains but, of course, the proposal distribution for a given walker depends on the positions of all the other walkers in the ensemble." - from the `emcee` webpage. burn : int, optional Discard this many samples from the start of the sampling regime. thin : int, optional Only accept 1 in every `thin` samples. ntemps : int, optional If `ntemps > 1` perform a Parallel Tempering. pos : numpy.ndarray, optional Specify the initial positions for the sampler. If `ntemps == 1` then `pos.shape` should be `(nwalkers, nvarys)`. Otherwise, `(ntemps, nwalkers, nvarys)`. You can also initialise using a previous chain that had the same `ntemps`, `nwalkers` and `nvarys`. Note that `nvarys` may be one larger than you expect it to be if your `userfcn` returns an array and `is_weighted is False`. reuse_sampler : bool, optional If you have already run `emcee` on a given `Minimizer` object then it possesses an internal ``sampler`` attribute. You can continue to draw from the same sampler (retaining the chain history) if you set this option to True. Otherwise a new sampler is created. The `nwalkers`, `ntemps`, `pos`, and `params` keywords are ignored with this option. **Important**: the Parameters used to create the sampler must not change in-between calls to `emcee`. Alteration of Parameters would include changed ``min``, ``max``, ``vary`` and ``expr`` attributes. This may happen, for example, if you use an altered Parameters object and call the `minimize` method in-between calls to `emcee`. workers : Pool-like or int, optional For parallelization of sampling. It can be any Pool-like object with a map method that follows the same calling sequence as the built-in `map` function. If int is given as the argument, then a multiprocessing-based pool is spawned internally with the corresponding number of parallel processes. 'mpi4py'-based parallelization and 'joblib'-based parallelization pools can also be used here. **Note**: because of multiprocessing overhead it may only be worth parallelising if the objective function is expensive to calculate, or if there are a large number of objective evaluations per step (`ntemps * nwalkers * nvarys`). float_behavior : str, optional Specifies meaning of the objective function output if it returns a float. One of: - 'posterior' - objective function returns a log-posterior probability - 'chi2' - objective function returns :math:`\chi^2` See Notes for further details. is_weighted : bool, optional Has your objective function been weighted by measurement uncertainties? If `is_weighted is True` then your objective function is assumed to return residuals that have been divided by the true measurement uncertainty `(data - model) / sigma`. If `is_weighted is False` then the objective function is assumed to return unweighted residuals, `data - model`. In this case `emcee` will employ a positive measurement uncertainty during the sampling. This measurement uncertainty will be present in the output params and output chain with the name `__lnsigma`. A side effect of this is that you cannot use this parameter name yourself. **Important** this parameter only has any effect if your objective function returns an array. If your objective function returns a float, then this parameter is ignored. See Notes for more details. seed : int or `numpy.random.RandomState`, optional If `seed` is an int, a new `numpy.random.RandomState` instance is used, seeded with `seed`. If `seed` is already a `numpy.random.RandomState` instance, then that `numpy.random.RandomState` instance is used. Specify `seed` for repeatable minimizations. Returns ------- :class:`MinimizerResult` MinimizerResult object containing updated params, statistics, etc. The updated params represent the median (50th percentile) of all the samples, whilst the parameter uncertainties are half of the difference between the 15.87 and 84.13 percentiles. The `MinimizerResult` also contains the ``chain``, ``flatchain`` and ``lnprob`` attributes. The ``chain`` and ``flatchain`` attributes contain the samples and have the shape `(nwalkers, (steps - burn) // thin, nvarys)` or `(ntemps, nwalkers, (steps - burn) // thin, nvarys)`, depending on whether Parallel tempering was used or not. `nvarys` is the number of parameters that are allowed to vary. The ``flatchain`` attribute is a `pandas.DataFrame` of the flattened chain, `chain.reshape(-1, nvarys)`. To access flattened chain values for a particular parameter use `result.flatchain[parname]`. The ``lnprob`` attribute contains the log probability for each sample in ``chain``. The sample with the highest probability corresponds to the maximum likelihood estimate. Notes ----- This method samples the posterior distribution of the parameters using Markov Chain Monte Carlo. To do so it needs to calculate the log-posterior probability of the model parameters, `F`, given the data, `D`, :math:`\ln p(F_{true} | D)`. This 'posterior probability' is calculated as: .. math:: \ln p(F_{true} | D) \propto \ln p(D | F_{true}) + \ln p(F_{true}) where :math:`\ln p(D | F_{true})` is the 'log-likelihood' and :math:`\ln p(F_{true})` is the 'log-prior'. The default log-prior encodes prior information already known about the model. This method assumes that the log-prior probability is `-numpy.inf` (impossible) if the one of the parameters is outside its limits. The log-prior probability term is zero if all the parameters are inside their bounds (known as a uniform prior). The log-likelihood function is given by [1]_: .. math:: \ln p(D|F_{true}) = -\frac{1}{2}\sum_n \left[\frac{(g_n(F_{true}) - D_n)^2}{s_n^2}+\ln (2\pi s_n^2)\right] The first summand in the square brackets represents the residual for a given datapoint (:math:`g` being the generative model, :math:`D_n` the data and :math:`s_n` the standard deviation, or measurement uncertainty, of the datapoint). This term represents :math:`\chi^2` when summed over all data points. Ideally the objective function used to create `lmfit.Minimizer` should return the log-posterior probability, :math:`\ln p(F_{true} | D)`. However, since the in-built log-prior term is zero, the objective function can also just return the log-likelihood, unless you wish to create a non-uniform prior. If a float value is returned by the objective function then this value is assumed by default to be the log-posterior probability, i.e. `float_behavior is 'posterior'`. If your objective function returns :math:`\chi^2`, then you should use a value of `'chi2'` for `float_behavior`. `emcee` will then multiply your :math:`\chi^2` value by -0.5 to obtain the posterior probability. However, the default behaviour of many objective functions is to return a vector of (possibly weighted) residuals. Therefore, if your objective function returns a vector, `res`, then the vector is assumed to contain the residuals. If `is_weighted is True` then your residuals are assumed to be correctly weighted by the standard deviation (measurement uncertainty) of the data points (`res = (data - model) / sigma`) and the log-likelihood (and log-posterior probability) is calculated as: `-0.5 * numpy.sum(res**2)`. This ignores the second summand in the square brackets. Consequently, in order to calculate a fully correct log-posterior probability value your objective function should return a single value. If `is_weighted is False` then the data uncertainty, `s_n`, will be treated as a nuisance parameter and will be marginalized out. This is achieved by employing a strictly positive uncertainty (homoscedasticity) for each data point, :math:`s_n = \exp(\_\_lnsigma)`. `__lnsigma` will be present in `MinimizerResult.params`, as well as `Minimizer.chain`, `nvarys` will also be increased by one. References ---------- .. [1] http://dan.iel.fm/emcee/current/user/line/ """ if not HAS_EMCEE: raise NotImplementedError('You must have emcee to use' ' the emcee method') tparams = params # if you're reusing the sampler then ntemps, nwalkers have to be # determined from the previous sampling if reuse_sampler: if not hasattr(self, 'sampler') or not hasattr(self, '_lastpos'): raise ValueError("You wanted to use an existing sampler, but" "it hasn't been created yet") if len(self._lastpos.shape) == 2: ntemps = 1 nwalkers = self._lastpos.shape[0] elif len(self._lastpos.shape) == 3: ntemps = self._lastpos.shape[0] nwalkers = self._lastpos.shape[1] tparams = None result = self.prepare_fit(params=tparams) result.method = 'emcee' params = result.params # check if the userfcn returns a vector of residuals out = self.userfcn(params, *self.userargs, **self.userkws) out = np.asarray(out).ravel() if out.size > 1 and is_weighted is False: # we need to marginalise over a constant data uncertainty if '__lnsigma' not in params: # __lnsigma should already be in params if is_weighted was # previously set to True. params.add('__lnsigma', value=0.01, min=-np.inf, max=np.inf, vary=True) # have to re-prepare the fit result = self.prepare_fit(params) params = result.params # Removing internal parameter scaling. We could possibly keep it, # but I don't know how this affects the emcee sampling. bounds = [] var_arr = np.zeros(len(result.var_names)) i = 0 for par in params: param = params[par] if param.expr is not None: param.vary = False if param.vary: var_arr[i] = param.value i += 1 else: # don't want to append bounds if they're not being varied. continue param.from_internal = lambda val: val lb, ub = param.min, param.max if lb is None or lb is np.nan: lb = -np.inf if ub is None or ub is np.nan: ub = np.inf bounds.append((lb, ub)) bounds = np.array(bounds) self.nvarys = len(result.var_names) # set up multiprocessing options for the samplers auto_pool = None sampler_kwargs = {} if isinstance(workers, int) and workers > 1: auto_pool = multiprocessing.Pool(workers) sampler_kwargs['pool'] = auto_pool elif hasattr(workers, 'map'): sampler_kwargs['pool'] = workers # function arguments for the log-probability functions # these values are sent to the log-probability functions by the sampler. lnprob_args = (self.userfcn, params, result.var_names, bounds) lnprob_kwargs = {'is_weighted': is_weighted, 'float_behavior': float_behavior, 'userargs': self.userargs, 'userkws': self.userkws, 'nan_policy': self.nan_policy} if ntemps > 1: # the prior and likelihood function args and kwargs are the same sampler_kwargs['loglargs'] = lnprob_args sampler_kwargs['loglkwargs'] = lnprob_kwargs sampler_kwargs['logpargs'] = (bounds,) else: sampler_kwargs['args'] = lnprob_args sampler_kwargs['kwargs'] = lnprob_kwargs # set up the random number generator rng = _make_random_gen(seed) # now initialise the samplers if reuse_sampler: if auto_pool is not None: self.sampler.pool = auto_pool p0 = self._lastpos if p0.shape[-1] != self.nvarys: raise ValueError("You cannot reuse the sampler if the number" "of varying parameters has changed") elif ntemps > 1: # Parallel Tempering # jitter the starting position by scaled Gaussian noise p0 = 1 + rng.randn(ntemps, nwalkers, self.nvarys) * 1.e-4 p0 *= var_arr self.sampler = emcee.PTSampler(ntemps, nwalkers, self.nvarys, _lnpost, _lnprior, **sampler_kwargs) else: p0 = 1 + rng.randn(nwalkers, self.nvarys) * 1.e-4 p0 *= var_arr self.sampler = emcee.EnsembleSampler(nwalkers, self.nvarys, _lnpost, **sampler_kwargs) # user supplies an initialisation position for the chain # If you try to run the sampler with p0 of a wrong size then you'll get # a ValueError. Note, you can't initialise with a position if you are # reusing the sampler. if pos is not None and not reuse_sampler: tpos = np.asfarray(pos) if p0.shape == tpos.shape: pass # trying to initialise with a previous chain elif tpos.shape[0::2] == (nwalkers, self.nvarys): tpos = tpos[:, -1, :] # initialising with a PTsampler chain. elif ntemps > 1 and tpos.ndim == 4: tpos_shape = list(tpos.shape) tpos_shape.pop(2) if tpos_shape == (ntemps, nwalkers, self.nvarys): tpos = tpos[..., -1, :] else: raise ValueError('pos should have shape (nwalkers, nvarys)' 'or (ntemps, nwalkers, nvarys) if ntemps > 1') p0 = tpos # if you specified a seed then you also need to seed the sampler if seed is not None: self.sampler.random_state = rng.get_state() # now do a production run, sampling all the time output = self.sampler.run_mcmc(p0, steps) self._lastpos = output[0] # discard the burn samples and thin chain = self.sampler.chain[..., burn::thin, :] lnprobability = self.sampler.lnprobability[..., burn::thin] # take the zero'th PTsampler temperature for the parameter estimators if ntemps > 1: flatchain = chain[0, ...].reshape((-1, self.nvarys)) else: flatchain = chain.reshape((-1, self.nvarys)) quantiles = np.percentile(flatchain, [15.87, 50, 84.13], axis=0) for i, var_name in enumerate(result.var_names): std_l, median, std_u = quantiles[:, i] params[var_name].value = median params[var_name].stderr = 0.5 * (std_u - std_l) params[var_name].correl = {} params.update_constraints() # work out correlation coefficients corrcoefs = np.corrcoef(flatchain.T) for i, var_name in enumerate(result.var_names): for j, var_name2 in enumerate(result.var_names): if i != j: result.params[var_name].correl[var_name2] = corrcoefs[i, j] result.chain = np.copy(chain) result.lnprob = np.copy(lnprobability) result.errorbars = True result.nvarys = len(result.var_names) if auto_pool is not None: auto_pool.terminate() return result def least_squares(self, params=None, **kws): """Use the `least_squares` (new in scipy 0.17) to perform a fit. It assumes that the input Parameters have been initialized, and a function to minimize has been properly set up. When possible, this calculates the estimated uncertainties and variable correlations from the covariance matrix. This method wraps :scipydoc:`optimize.least_squares`, which has inbuilt support for bounds and robust loss functions. Parameters ---------- params : :class:`~lmfit.parameter.Parameters`, optional Parameters to use as starting point. **kws : dict, optional Minimizer options to pass to :scipydoc:`optimize.least_squares`. Returns ------- :class:`MinimizerResult` Object containing the optimized parameter and several goodness-of-fit statistics. .. versionchanged:: 0.9.0 Return value changed to :class:`MinimizerResult`. """ if not HAS_LEAST_SQUARES: raise NotImplementedError("SciPy with a version higher than 0.17 " "is needed for this method.") result = self.prepare_fit(params) result.method = 'least_squares' replace_none = lambda x, sign: sign*np.inf if x is None else x upper_bounds = [replace_none(i.max, 1) for i in self.params.values()] lower_bounds = [replace_none(i.min, -1) for i in self.params.values()] start_vals = [i.value for i in self.params.values()] ret = least_squares(self.__residual, start_vals, bounds=(lower_bounds, upper_bounds), kwargs=dict(apply_bounds_transformation=False), **kws) for attr in ret: setattr(result, attr, ret[attr]) result.x = np.atleast_1d(result.x) result.chisqr = result.residual = self.__residual(result.x, False) result.nvarys = len(start_vals) result.ndata = 1 result.nfree = 1 if isinstance(result.residual, ndarray): result.chisqr = (result.chisqr**2).sum() result.ndata = len(result.residual) result.nfree = result.ndata - result.nvarys result.redchi = result.chisqr / result.nfree # this is -2*loglikelihood _neg2_log_likel = result.ndata * np.log(result.chisqr / result.ndata) result.aic = _neg2_log_likel + 2 * result.nvarys result.bic = _neg2_log_likel + np.log(result.ndata) * result.nvarys return result def leastsq(self, params=None, **kws): """Use Levenberg-Marquardt minimization to perform a fit. It assumes that the input Parameters have been initialized, and a function to minimize has been properly set up. When possible, this calculates the estimated uncertainties and variable correlations from the covariance matrix. This method calls :scipydoc:`optimize.leastsq`. By default, numerical derivatives are used, and the following arguments are set: +------------------+----------------+------------------------------------------------------------+ | :meth:`leastsq` | Default Value | Description | | arg | | | +==================+================+============================================================+ | xtol | 1.e-7 | Relative error in the approximate solution | +------------------+----------------+------------------------------------------------------------+ | ftol | 1.e-7 | Relative error in the desired sum of squares | +------------------+----------------+------------------------------------------------------------+ | maxfev | 2000*(nvar+1) | Maximum number of function calls (nvar= # of variables) | +------------------+----------------+------------------------------------------------------------+ | Dfun | None | Function to call for Jacobian calculation | +------------------+----------------+------------------------------------------------------------+ Parameters ---------- params : :class:`~lmfit.parameter.Parameters`, optional Parameters to use as starting point. **kws : dict, optional Minimizer options to pass to :scipydoc:`optimize.leastsq`. Returns ------- :class:`MinimizerResult` Object containing the optimized parameter and several goodness-of-fit statistics. .. versionchanged:: 0.9.0 Return value changed to :class:`MinimizerResult`. """ result = self.prepare_fit(params=params) result.method = 'leastsq' vars = result.init_vals nvars = len(vars) lskws = dict(full_output=1, xtol=1.e-7, ftol=1.e-7, col_deriv=False, gtol=1.e-7, maxfev=2000*(nvars+1), Dfun=None) lskws.update(self.kws) lskws.update(kws) self.col_deriv = False if lskws['Dfun'] is not None: self.jacfcn = lskws['Dfun'] self.col_deriv = lskws['col_deriv'] lskws['Dfun'] = self.__jacobian # suppress runtime warnings during fit and error analysis orig_warn_settings = np.geterr() np.seterr(all='ignore') lsout = scipy_leastsq(self.__residual, vars, **lskws) _best, _cov, infodict, errmsg, ier = lsout result.aborted = self._abort self._abort = False result.residual = resid = infodict['fvec'] result.ier = ier result.lmdif_message = errmsg result.success = ier in [1, 2, 3, 4] if result.aborted: result.message = 'Fit aborted by user callback.' result.success = False elif ier in {1, 2, 3}: result.message = 'Fit succeeded.' elif ier == 0: result.message = ('Invalid Input Parameters. I.e. more variables ' 'than data points given, tolerance < 0.0, or ' 'no data provided.') elif ier == 4: result.message = 'One or more variable did not affect the fit.' elif ier == 5: result.message = self._err_maxfev % lskws['maxfev'] else: result.message = 'Tolerance seems to be too small.' result.ndata = len(resid) result.chisqr = (resid**2).sum() result.nfree = (result.ndata - nvars) result.redchi = result.chisqr / result.nfree result.nvarys = nvars # this is -2*loglikelihood _neg2_log_likel = result.ndata * np.log(result.chisqr / result.ndata) result.aic = _neg2_log_likel + 2 * result.nvarys result.bic = _neg2_log_likel + np.log(result.ndata) * result.nvarys params = result.params # need to map _best values to params, then calculate the # grad for the variable parameters grad = ones_like(_best) vbest = ones_like(_best) # ensure that _best, vbest, and grad are not # broken 1-element ndarrays. if len(np.shape(_best)) == 0: _best = np.array([_best]) if len(np.shape(vbest)) == 0: vbest = np.array([vbest]) if len(np.shape(grad)) == 0: grad = np.array([grad]) for ivar, name in enumerate(result.var_names): grad[ivar] = params[name].scale_gradient(_best[ivar]) vbest[ivar] = params[name].value # modified from <NAME>' leastsqbound.py infodict['fjac'] = transpose(transpose(infodict['fjac']) / take(grad, infodict['ipvt'] - 1)) rvec = dot(triu(
transpose(infodict['fjac'])
numpy.transpose
import array from collections import defaultdict import ConfigParser import cPickle as pickle import numpy as np import os __author__ = '<NAME>' __version__ = 1.0 FS_PATHS = 'FileSystemPaths' FS_BASE_DIR = 'base_dir' config = ConfigParser.ConfigParser() config.read('config.ini') EXT_INFO = 'spr' EXT_DATA = 'sdt' TYPES = { 0: 'B', # 'unsigned char', 2: 'i', # 'int', 3: 'f', # 'float', 5: 'd' # 'double' } MODE_CHIPS = 1 MODE_IMAGES = 2 MODE_TABLES = 3 BASE_PATH = config.get(FS_PATHS, FS_BASE_DIR) paths = { MODE_CHIPS: BASE_PATH + 'Chips', MODE_IMAGES: BASE_PATH + 'Images', MODE_TABLES: BASE_PATH + 'Tables' } def get_idx(): if os.path.isfile('idx.p'): return pickle.load(open('idx.p')) else: ci = ChipsIndex() pickle.dump(ci, open('idx.p', 'w')) return ci def normalize_chip(chip, mu, sigma): A = ((chip - mu) * np.ones(chip.shape[0])) / sigma return A class ChipsIndex(object): SPLIT_TRN = 'trn' SPLIT_TST = 'tst' SPLIT_BOTH = ['trn', 'tst'] HOM4 = ['A1', 'A2', 'A3', 'A4'] HOM38 = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6'] HOM56 = ['C1'] HET36 = ['D1', 'D2', 'D3', 'D4'] HET5 = ['E1', 'E2', 'E3', 'E4', 'E5'] ALL = ['C1', 'D4'] def __init__(self, exp='C', do_reshape=False): self.exp = exp self.do_reshape = do_reshape self.vread = vread self.x = None self.y = None self.i = None self.normalized = None self.__populate() self.scoring = {} self._load_scoring_table() self.image_stats = {} self._load_image_stats() def _load_scoring_table(self): with open("{0}/Experiments_Scoring_Table".format(paths[MODE_TABLES])) as fp: data = [x for x in fp.readlines() if not x.startswith("%")] for line in data: exp, sub_exp, img_area, n_detection_opps = line.split() for s in range(int(sub_exp)): key = "{0}{1}".format(exp, s) self.scoring[key] = { 'area': img_area, 'n_detections': n_detection_opps } def _load_image_stats(self): ndim = 1024 ** 2 for i in range(1, 135): A = np.reshape(vread('img' + str(i)), [ndim, 1]) self.image_stats[i] = (np.mean(A), np.std(A)) def __populate(self): matches = defaultdict(dict) for chip_name in get_chip_names(): A = vread(chip_name, MODE_CHIPS) parts = chip_name.split("_") exp_id, exp_letter, exp_split = parts[1], parts[2][0], parts[2][1:] if exp_letter != self.exp: # Only interested in particular experiments continue if A.shape[0] % 15 != 0: raise Exception("This says it's a C experiment, but rows % 15 != 0") continue windows = [] for i in range(A.shape[1]): this_window = A[:,i] if self.do_reshape: this_window = np.reshape(this_window, [15, 15]) windows.append(this_window) matches[exp_id][exp_split] = windows self.idx = matches def reshape(self, source, target_dims=[15, 15]): if source.shape[0] % target_dims[0] != 0: raise Exception("Incorrect dimensions") return
np.reshape(source, target_dims)
numpy.reshape
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This file contains all the classes for copula objects. """ __author__ = "<NAME>" __license__ = "Apache 2.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" from . import archimedean_generators as generators from . import math_misc from .math_misc import multivariate_t_distribution from . import estimation import numpy as np from numpy.linalg import inv import scipy import scipy.misc from scipy.stats import kendalltau, pearsonr, spearmanr, norm, t, multivariate_normal from scipy.linalg import sqrtm from scipy.optimize import fsolve import scipy.integrate as integrate # An abstract copula object class Copula(): def __init__(self, dim=2, name='indep'): """ Creates a new abstract Copula. Parameters ---------- dim : integer (greater than 1) The dimension of the copula. name : string Default copula. 'indep' is for independence copula, 'frechet_up' the upper Fréchet-Hoeffding bound and 'frechet_down' the lower Fréchet-Hoeffding bound. """ if dim < 2 or int(dim) != dim: raise ValueError("Copula dimension must be an integer greater than 1.") self.dim = dim self.name = name self.kendall = None self.pearson = None self.spearman = None def __str__(self): return "Copula ({0}).".format(self.name) def _check_dimension(self, x): if len(x) != self.dim: raise ValueError("Expected vector of dimension {0}, get vector of dimension {1}".format(self.dim, len(x))) def dimension(self): """ Returns the dimension of the copula. """ return self.dim def correlations(self, X): """ Compute the correlations of the specified data. Only available when dimension of copula is 2. Parameters ---------- X : numpy array (of size n * 2) Values to compute correlations. Returns ------- kendall : float The Kendall tau. pearson : float The Pearson's R spearman : float The Spearman's R """ if self.dim != 2: raise Exception("Correlations can not be computed when dimension is greater than 2.") self.kendall = kendalltau(X[:,0], X[:,1])[0] self.pearson = pearsonr(X[:,0], X[:,1])[0] self.spearman = spearmanr(X[:,0], X[:,1])[0] return self.kendall, self.pearson, self.spearman def kendall(self): """ Returns the Kendall's tau. Note that you should previously have computed correlations. """ if self.kendall == None: raise ValueError("You must compute correlations before accessing to Kendall's tau.") return self.kendall def pearson(self): """ Returns the Pearson's r. Note that you should previously have computed correlations. """ if self.pearson == None: raise ValueError("You must compute correlations before accessing to Pearson's r.") return self.pearson def spearman(self): """ Returns the Spearman's rho. Note that you should previously have computed correlations. """ if self.pearson == None: raise ValueError("You must compute correlations before accessing to Spearman's rho.") return self.spearman def cdf(self, x): """ Returns the cumulative distribution function (CDF) of the copula. Parameters ---------- x : numpy array (of size d) Values to compute CDF. """ self._check_dimension(x) if self.name == 'indep': return np.prod(x) elif self.name == 'frechet_up': return min(x) elif self.name == 'frechet_down': return max(sum(x) - self.dim + 1., 0) def pdf(self, x): """ Returns the probability distribution function (PDF) of the copula. Parameters ---------- x : numpy array (of size d) Values to compute PDF. """ self._check_dimension(x) if self.name == 'indep': return sum([ np.prod([ x[j] for j in range(self.dim) if j != i ]) for i in range(self.dim) ]) elif self.name in [ 'frechet_down', 'frechet_up' ]: raise NotImplementedError("PDF is not available for Fréchet-Hoeffding bounds.") def concentration_down(self, x): """ Returns the theoretical lower concentration function. Parameters ---------- x : float (between 0 and 0.5) """ if x > 0.5 or x < 0: raise ValueError("The argument must be included between 0 and 0.5.") return self.cdf([x, x]) / x def concentration_up(self, x): """ Returns the theoritical upper concentration function. Parameters ---------- x : float (between 0.5 and 1) """ if x < 0.5 or x > 1: raise ValueError("The argument must be included between 0.5 and 1.") return (1. - 2*x + self.cdf([x, x])) / (1. - x) def concentration_function(self, x): """ Returns the theoritical concentration function. Parameters ---------- x : float (between 0 and 1) """ if x < 0 or x > 1: raise ValueError("The argument must be included between 0 and 1.") if x < 0.5: return self.concentration_down(x) return self.concentration_up(x) class ArchimedeanCopula(Copula): families = [ 'clayton', 'gumbel', 'frank', 'joe', 'amh' ] def __init__(self, family='clayton', dim=2): """ Creates an Archimedean copula. Parameters ---------- family : str The name of the copula. dim : int The dimension of the copula. """ super(ArchimedeanCopula, self).__init__(dim=dim) self.family = family self.parameter = 1.5 if family == 'clayton': self.generator = generators.claytonGenerator self.generatorInvert = generators.claytonGeneratorInvert elif family == 'gumbel': self.generator = generators.gumbelGenerator self.generatorInvert = generators.gumbelGeneratorInvert elif family == 'frank': self.generator = generators.frankGenerator self.generatorInvert = generators.frankGeneratorInvert elif family == 'joe': self.generator = generators.joeGenerator self.generatorInvert = generators.joeGeneratorInvert elif family == 'amh': self.parameter = 0.5 self.generator = generators.aliMikhailHaqGenerator self.generatorInvert = generators.aliMikhailHaqGeneratorInvert else: raise ValueError("The family name '{0}' is not defined.".format(family)) def __str__(self): return "Archimedean Copula ({0}) :".format(self.family) + "\n*\tParameter : {:1.6f}".format(self.parameter) def generator(self, x): return self.generator(x, self.parameter) def inverse_generator(self, x): return self.generatorInvert(x, self.parameter) def get_parameter(self): return self.parameter def set_parameter(self, theta): self.parameter = theta def getFamily(self): return self.family def _check_dimension(self, x): """ Check if the number of variables is equal to the dimension of the copula. """ if len(x) != self.dim: raise ValueError("Expected vector of dimension {0}, get vector of dimension {1}".format(self.dim, len(x))) def cdf(self, x): """ Returns the CDF of the copula. Parameters ---------- x : numpy array (of size copula dimension or n * copula dimension) Quantiles. Returns ------- float The CDF value on x. """ if len(np.asarray(x).shape) > 1: self._check_dimension(x[0]) return [ self.generatorInvert(sum([ self.generator(v, self.parameter) for v in row ]), self.parameter) for row in x ] else: self._check_dimension(x) return self.generatorInvert(sum([ self.generator(v, self.parameter) for v in x ]), self.parameter) def pdf_param(self, x, theta): """ Returns the PDF of the copula with the specified theta. Use this when you want to compute PDF with another parameter. Parameters ---------- x : numpy array (of size n * copula dimension) Quantiles. theta : float The custom parameter. Returns ------- float The PDF value on x. """ self._check_dimension(x) # prod is the product of the derivatives of the generator for each variable prod = 1 # The sum of generators that will be computed on the invert derivative sumInvert = 0 # The future function (if it exists) corresponding to the n-th derivative of the invert invertNDerivative = None # Exactly 0 causes instability during computing for these copulas if self.family in [ "frank", "clayton"] and theta == 0: theta = 1e-8 # For each family, the structure is the same if self.family == 'clayton': # We compute product and sum for i in range(self.dim): prod *= -x[i]**(-theta - 1.) sumInvert += self.generator(x[i], theta) # We define (when possible) the n-th derivative of the invert of the generator def claytonInvertnDerivative(t, theta, order): product = 1 for i in range(1, order): product *= (-1. / theta - i) if theta * t < -1: return -theta**(order - 1) * product return -theta**(order - 1) * product * (1. + theta * t)**(-1. / theta - order) invertNDerivative = claytonInvertnDerivative elif self.family == 'gumbel': if self.dim == 2: for i in range(self.dim): prod *= (theta / (np.log(x[i]) * x[i]))*(-np.log(x[i]))**theta sumInvert += self.generator(x[i], theta) def gumbelInvertDerivative(t, theta, order): return 1. / theta**2 * t**(1. / theta - 2.) * (theta + t**(1. / theta) - 1.) * np.exp(-t**(1. / theta)) if self.dim == 2: invertNDerivative = gumbelInvertDerivative elif self.family == 'frank': if self.dim == 2: for i in range(self.dim): prod *= theta / (1. - np.exp(theta * x[i])) sumInvert += self.generator(x[i], theta) def frankInvertDerivative(t, theta, order): C = np.exp(-theta) - 1. return - C / theta * np.exp(t) / (C + np.exp(t))**2 invertNDerivative = frankInvertDerivative elif self.family == 'joe': if self.dim == 2: for i in range(self.dim): prod *= -theta * (1. - x[i])**(theta - 1.) / (1. - (1. - x[i])**theta) sumInvert += self.generator(x[i], theta) def joeInvertDerivative(t, theta, order): return 1. / theta**2 * (1. - np.exp(-t))**(1. / theta) * (theta * np.exp(t) - 1.) / (np.exp(t) - 1.)**2 invertNDerivative = joeInvertDerivative elif self.family == 'amh': if self.dim == 2: for i in range(self.dim): prod *= (theta - 1.) / (x[i] * (1. - theta * (1. - x[i]))) sumInvert += self.generator(x[i], theta) def amhInvertDerivative(t, theta, order): return (1. - theta) * np.exp(t) * (theta + np.exp(t)) / (np.exp(t) - theta)**3 invertNDerivative = amhInvertDerivative if invertNDerivative == None: try: invertNDerivative = lambda t, theta, order: scipy.misc.derivative(lambda x: self.generatorInvert(x, theta), t, n=order, order=order+order%2+1) except: raise Exception("The {0}-th derivative of the invert of the generator could not be computed.".format(self.dim)) # We compute the PDF of the copula return prod * invertNDerivative(sumInvert, theta, self.dim) def pdf(self, x): return self.pdf_param(x, self.parameter) def fit(self, X, method='cmle', verbose=False, theta_bounds=None, **kwargs): """ Fit the archimedean copula with specified data. Parameters ---------- X : numpy array (of size n * copula dimension) The data to fit. method : str The estimation method to use. Default is 'cmle'. verbose : bool Output various informations during fitting process. theta_bounds : tuple Definition set of theta. Use this only with custom family. **kwargs Arguments of method. See estimation for more details. Returns ------- float The estimated parameter of the archimedean copula. estimationData Various data from estimation method. Often estimated hyper-parameters. """ n = X.shape[0] if n < 1: raise ValueError("At least two values are needed to fit the copula.") self._check_dimension(X[0,:]) estimationData = None # Moments method (only when dimension = 2) if method == 'moments': if self.kendall == None: self.correlations(X) if self.family == 'clayton': self.parameter = 2. * self.kendall / (1. - self.kendall) elif self.family == 'gumbel': self.parameter = 1. / (1. - self.kendall) elif self.family == 'frank': def target(x): return 1 - 4 / x + 4 / x**2 * integrate.quad(lambda t: t / (np.exp(t) - 1), np.finfo(np.float32).eps, x)[0] - self.kendall self.parameter = fsolve(target, 1)[0] else: raise Exception("Moments estimation is not available for this copula.") # Canonical Maximum Likelihood Estimation elif method == 'cmle': # Pseudo-observations from real data X pobs = [] for i in range(self.dim): order = X[:,i].argsort() ranks = order.argsort() u_i = [ (r + 1) / (n + 1) for r in ranks ] pobs.append(u_i) pobs = np.transpose(np.asarray(pobs)) is_scalar = True theta_start = np.array(0.5) bounds = theta_bounds if bounds == None: if self.family == 'amh': bounds = (-1, 1 - 1e-6) is_scalar = False elif self.family == 'clayton': bounds = (0, 10) elif self.family in ['gumbel', 'joe'] : bounds = (1, None) is_scalar = False def log_likelihood(theta): param_obs = np.apply_along_axis(lambda x: self.pdf_param(x, theta), arr=pobs, axis=1) return -np.log(param_obs).sum() if self.family == 'amh': theta_start = np.array(0.5) elif self.family in ['gumbel', 'joe']: theta_start = np.array(1.5) res = estimation.cmle(log_likelihood, theta_start=theta_start, theta_bounds=bounds, optimize_method=kwargs.get('optimize_method', 'Brent'), bounded_optimize_method=kwargs.get('bounded_optimize_method', 'SLSQP'), is_scalar=is_scalar) self.parameter = res['x'] if is_scalar else res['x'][0] # Maximum Likelihood Estimation and Inference Functions for Margins elif method in [ 'mle', 'ifm' ]: if not('marginals' in kwargs): raise ValueError("Marginals distribution are required for MLE.") if not('hyper_param' in kwargs): raise ValueError("Hyper-parameters are required for MLE.") bounds = theta_bounds if bounds == None: if self.family == 'amh': bounds = (-1, 1 - 1e-6) elif self.family == 'clayton': bounds = (0, None) elif self.family in ['gumbel', 'joe'] : bounds = (1, None) theta_start = [ 2 ] if self.family == 'amh': theta_start = [ 0.5 ] if method == 'mle': res, estimationData = estimation.mle(self, X, marginals=kwargs.get('marginals', None), hyper_param=kwargs.get('hyper_param', None), hyper_param_start=kwargs.get('hyper_param_start', None), hyper_param_bounds=kwargs.get('hyper_param_bounds', None), theta_start=theta_start, theta_bounds=bounds, optimize_method=kwargs.get('optimize_method', 'Nelder-Mead'), bounded_optimize_method=kwargs.get('bounded_optimize_method', 'SLSQP')) else: res, estimationData = estimation.ifm(self, X, marginals=kwargs.get('marginals', None), hyper_param=kwargs.get('hyper_param', None), hyper_param_start=kwargs.get('hyper_param_start', None), hyper_param_bounds=kwargs.get('hyper_param_bounds', None), theta_start=theta_start, theta_bounds=bounds, optimize_method=kwargs.get('optimize_method', 'Nelder-Mead'), bounded_optimize_method=kwargs.get('bounded_optimize_method', 'SLSQP')) self.parameter = res['x'][0] else: raise ValueError("Method '{0}' is not defined.".format(method)) return self.parameter, estimationData class GaussianCopula(Copula): def __init__(self, dim=2, R=[[1, 0.5], [0.5, 1]]): super(GaussianCopula, self).__init__(dim=dim) self.set_corr(R) def __str__(self): return "Gaussian Copula :\n*Correlation : \n" + str(self.R) def cdf(self, x): self._check_dimension(x) return multivariate_normal.cdf([ norm.ppf(u) for u in x ], cov=self.R) def set_corr(self, R): """ Set the Correlation matrix of the copula. Parameters ---------- R : numpy array (of size copula dimensions * copula dimension) The definite positive correlation matrix. Note that you should check yourself if the matrix is definite positive. """ S = np.asarray(R) if len(S.shape) > 2: raise ValueError("2-dimensional array expected, get {0}-dimensional array.".format(len(S.shape))) if S.shape[0] != S.shape[1]: raise ValueError("Correlation matrix must be a squared matrix of dimension {0}".format(self.dim)) if not(np.array_equal(np.transpose(S), S)): raise ValueError("Correlation matrix is not symmetric.") self.R = S self._R_det = np.linalg.det(S) self._R_inv = np.linalg.inv(S) def get_corr(self): return self.R def pdf(self, x): self._check_dimension(x) u_i = norm.ppf(x) return self._R_det**(-0.5) * np.exp(-0.5 * np.dot(u_i, np.dot(self._R_inv - np.identity(self.dim), u_i))) def pdf_param(self, x, R): self._check_dimension(x) if self.dim == 2 and not(hasattr(R, '__len__')): R = [R] if len(np.asarray(R).shape) == 2 and len(R) != self.dim: raise ValueError("Expected covariance matrix of dimension {0}.".format(self.dim)) u = norm.ppf(x) cov = np.ones([ self.dim, self.dim ]) idx = 0 if len(
np.asarray(R)
numpy.asarray
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num =
N.array([1,0,1])
numpy.array
import trimesh import os import numpy as np import xml.etree.ElementTree as ET def generate_grasp_env(model_path, obj_index, out_path): # step 0: read file obj_index = str(obj_index).zfill(3) mesh = trimesh.load(os.path.join(model_path, os.path.join(obj_index, obj_index+'.obj'))) # step 2: write as stl file new_model_path = os.path.join(model_path, os.path.join(obj_index, obj_index+'.stl')) mesh.export(new_model_path) # step 3: record center of mass and box size convex_com = mesh.center_mass half_length = mesh.bounding_box.primitive.extents * 0.5 scale = np.random.uniform(0.02, 0.04)/np.median(half_length) convex_com *= scale half_length *= scale # step 4: read template, change template and write to xml tree = ET.parse(os.path.join("../fetch/random_obj_xml", "grasp_template.xml")) root = tree.getroot() root[3][0].attrib["file"] = os.path.join("..", new_model_path) root[3][0].attrib["scale"] = str(scale) + ' ' + str(scale) + ' ' + str(scale) # root[3][0].attrib -- {'file': path, 'name': 'obj0', 'scale': scale} root[4][4].attrib["pos"] = str(half_length[0]) + ' ' + str(half_length[1]) + ' ' + str(half_length[2]) root[4][4][2].attrib["pos"] = str(convex_com[0]) + ' ' + str(convex_com[1]) + ' ' + str(convex_com[2]) root[4][4][2].attrib["size"] = str(half_length[0]/2) + ' ' + str(half_length[1]/2) + ' ' + str(half_length[2]/2) # root[4][4][2].attrib["pos"] = str(convex_com[0]) + ' ' + str(convex_com[1]) + ' ' + str(convex_com[2]) # root[4][4][2].attrib -- {'type': 'box', 'size': bbox size, 'pos': centroid, 'rgba': '1 0 0 0', 'condim': '3', 'material': 'block_mat', 'mass': '2'} tree.write(out_path) def generate_peg_env(model_path, obj_index, out_path): # step 0: read file obj_index = str(obj_index).zfill(3) mesh = trimesh.load(os.path.join(model_path, os.path.join(obj_index, obj_index+'.obj'))) # step 2: write as stl file new_model_path = os.path.join(model_path, os.path.join(obj_index, obj_index+'.stl')) mesh.export(new_model_path) # step 3: record center of mass and box size convex_com = mesh.center_mass half_length = mesh.bounding_box.primitive.extents * 0.5 scale = 0.04/np.max(half_length) convex_com *= scale half_length *= scale zaxis = np.zeros(3) zaxis[
np.argmin(half_length)
numpy.argmin
import json import os import re from collections import namedtuple import numpy as np ALGORITHMS = [method + '-' + device_type for device_type in ['CPU', 'GPU'] for method in ['catboost', 'xgboost', 'lightgbm']] TIME_REGEX = r'Time: \[\s*(\d+\.?\d*)\s*\]\t' ELAPSED_REGEX = re.compile(r'Elapsed: (\d+\.?\d*)') LOG_LINE_REGEX = { 'lightgbm': re.compile(TIME_REGEX + r'\[(\d+)\]\tvalid_0\'s (\w+): (\d+\.?\d*)'), 'xgboost': re.compile(TIME_REGEX + r'\[(\d+)\]\t([a-zA-Z\-]+):(\d+\.?\d*)'), 'catboost': re.compile(TIME_REGEX + r'(\d+)'), 'catboost-tsv': re.compile(r'(\d+)(\t(\d+\.?\d*))+\n') } class Track: param_regex = re.compile(r'(\w+)\[(\d+\.?\d*)\]') def __init__(self, algorithm_name, experiment_name, task_type, parameters_str, time_series, scores, duration): self.log_name = parameters_str self.algorithm_name = algorithm_name self.scores = scores self.experiment_name = experiment_name self.task_type = task_type self.duration = duration self.parameters_str = parameters_str assert len(time_series), "Empty time series may indicate that this benchmark failed to parse logs for " + str(algorithm_name) for i in range(1, time_series.shape[0]): if time_series[i] - time_series[i - 1] < 0.: time_series[i:] = time_series[i:] + 60. dur_series = time_series[-1] - time_series[0] diff_elapsed_time = np.abs(dur_series - duration) if diff_elapsed_time > 100: print(parameters_str) print('WARNING: difference ' + str(diff_elapsed_time) + ' in calculated duration may indicate broken log.') self.time_series = time_series assert(np.all(self.time_series - self.time_series[0] >= 0.)) self.time_per_iter = time_series[1:] - time_series[:-1] params = Track.param_regex.findall(parameters_str) param_keys = [] param_values = [] for param in sorted(params, key=lambda x: x[0]): param_keys.append(param[0]) param_values.append(float(param[1])) self.params_type = namedtuple('Params', param_keys) self.params = self.params_type(*param_values) self.params_dict = {key: value for key, value in zip(param_keys, param_values)} def __str__(self): params_str = '' for i, field in enumerate(self.params._fields): if field == 'iterations': continue params_str += ', ' + field + ':' + str(self.params[i]) return self.algorithm_name + params_str def __eq__(self, other): return self.algorithm_name == other.owner_name and self.params == other.params @staticmethod def hash(experiment_name, algorithm_name, task_type, parameters_str): return hash(experiment_name + algorithm_name + task_type + parameters_str) def __hash__(self): return Track.hash(self.experiment_name, self.algorithm_name, self.task_type, self.parameters_str) def dump_to_json(self): return { self.__hash__(): { "dataset": self.experiment_name, "algorithm_name": self.algorithm_name, "task_type": self.task_type, "parameters": self.parameters_str, "scores": list(self.scores), "time_series": list(self.time_series), "duration": self.duration } } def get_series(self): return self.time_series, self.scores def get_time_per_iter(self): return self.time_per_iter def get_median_time_per_iter(self): return np.median(self.time_per_iter) def get_fit_iterations(self): return self.time_series.shape[0] def get_best_score(self): return np.min(self.scores) TASK_TYPES_ACCURACY = ['binclass', 'multiclass'] METRIC_NAME = { 'lightgbm': {'regression': 'rmse', 'binclass': 'binary_error', 'multiclass': 'multi_error'}, 'xgboost': {'regression': 'eval-rmse', 'binclass': 'eval-error', 'multiclass': 'eval-merror'}, 'catboost': {'regression': 'RMSE', 'binclass': 'Accuracy', 'multiclass': 'Accuracy'} } def parse_catboost_log(test_error_file, task_type, iterations): values = [] with open(test_error_file) as metric_log: file_content = metric_log.read() first_line_idx = file_content.find('\n') first_line = file_content[:first_line_idx] header = first_line.split('\t') column_idx = header.index(METRIC_NAME['catboost'][task_type]) regex = LOG_LINE_REGEX['catboost-tsv'] matches = regex.findall(file_content) if len(matches) != int(iterations): print('WARNING: Broken log file (num matches not equal num iterations): ' + test_error_file) for match in matches: value = float(match[column_idx]) if task_type in TASK_TYPES_ACCURACY: # Convert to error value = 1. - value values.append(value) return values def parse_log(algorithm_name, experiment_name, task_type, params_str, file_name, iterations): time_series = [] values = [] algorithm = algorithm_name.rstrip('-CPU|GPU') if algorithm == 'catboost': catboost_train_dir = file_name + 'dir' test_error_file = os.path.join(catboost_train_dir, 'test_error.tsv') values = parse_catboost_log(test_error_file, task_type, iterations) with open(file_name, 'r') as log: file_content = log.read() regex = LOG_LINE_REGEX[algorithm] matches = regex.findall(file_content) if len(matches) != int(iterations): print('WARNING: Broken log file ' + file_name) for i, match in enumerate(matches): time_series.append(float(match[0])) if algorithm in ['lightgbm', 'xgboost']: metric = match[2] # Sanity check on parsed metric assert metric == METRIC_NAME[algorithm][task_type] values.append(float(match[3])) duration = ELAPSED_REGEX.findall(file_content) duration = float(duration[0]) if len(duration) > 0 else 0. return Track(algorithm_name, experiment_name, task_type, params_str, np.array(time_series),
np.array(values)
numpy.array
import numpy as np from tidepool_data_science_models.models.simple_metabolism_model import SimpleMetabolismModel def get_bgri(bg_df): # Calculate LBGI and HBGI using equation from # <NAME>., & <NAME>. (2009) bgs = bg_df.copy() bgs[bgs < 1] = 1 # this is added to take care of edge case BG <= 0 transformed_bg = 1.509 * ((np.log(bgs) ** 1.084) - 5.381) risk_power = 10 * (transformed_bg) ** 2 low_risk_bool = transformed_bg < 0 high_risk_bool = transformed_bg > 0 rlBG = risk_power * low_risk_bool rhBG = risk_power * high_risk_bool LBGI =
np.mean(rlBG)
numpy.mean
import time as t from collections import Counter import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from fink_fat.others.utils import load_data from fink_fat.others.utils import get_mpc_database import json import os from astropy.coordinates import SkyCoord from astropy import units as u def plot_orbit_type(orbit_param, title, y, ylabel, savefig=False, test_name=""): g = sns.scatterplot(data=orbit_param, x="a", y=y, hue="Orbit_type") g.set(xlabel="semi-major axis (UA)", ylabel=ylabel) g.set_title(title) # g.legend(bbox_to_anchor= (1.2,1)) if savefig: if not os.path.exists(test_name): os.mkdir(test_name) g.set(xlim=(0, 7)) plt.savefig(os.path.join(test_name, title + "_" + ylabel), dpi=500) g.set(xlim=(6, 500)) plt.savefig(os.path.join(test_name, title + "_" + ylabel + "_distant"), dpi=500) plt.close() # g.set(xlim=(0, 7)) # plt.show() def plot_stat(stat_df, test_name): g = sns.barplot(data=stat_df, x="night", y="time") plt.xticks(rotation=90) g.set(xlabel="night identifier", ylabel="time (sec)") g.set_title("Computation time of the associations algorithm over nights") plt.savefig(os.path.join(test_name, "time_plot")) plt.close() cum_time = np.cumsum(stat_df["time"]) stat_df["cum_time"] = cum_time g = sns.lineplot(data=stat_df, x="night", y="cum_time") plt.xticks(rotation=90) g.set(xlabel="night identifier", ylabel="time (sec)") g.set_title("Cumulative computation time of the associations algorithm over nights") plt.savefig(os.path.join(test_name, "cum_time_plot")) plt.close() g = sns.barplot(data=stat_df, x="night", y="trajectory_size") g.set(xlabel="night identifier", ylabel="number of recorded trajectory") g.set_title("Size of the recorded trajectory set over nights") plt.xticks(rotation=90) plt.savefig(os.path.join(test_name, "trajectory_plot")) plt.close() def detect_tracklets(x, traj_time_window, obs_time_window): counter = x["assoc"] most_c = np.array(counter.most_common()) most_c = most_c[most_c[:, 0].argsort()] if most_c[0][1] == x["trajectory_size"]: return ["tracklets"] # elif np.any(most_c[:, 1] == orbfit_limit): # return ["only detected with tracklets"] # elif np.all(most_c[:, 1] > 1): # return ["tracklets_with_trajectories_associations only"] # elif np.all(most_c[:, 1] == 1): # return ["observations_associations only"] else: counter = np.array([i for i in counter.values()]) diff_nid = np.diff(
np.unique(x["nid"])
numpy.unique
""" Helper function for CQED-CIS in the coherent state basis References: Equations and algorithms from [Haugland:2020:041043], [DePrince:2021:094112], and [McTague:2021:ChemRxiv] """ __authors__ = ["<NAME>", "<NAME>"] __credits__ = ["<NAME>", "<NAME>"] __copyright_amp__ = "(c) 2014-2018, The Psi4NumPy Developers" __license__ = "BSD-3-Clause" __date__ = "2021-01-15" # ==> Import Psi4, NumPy, & SciPy <== import psi4 import numpy as np import scipy.linalg as la import time from helper_cqed_rhf import cqed_rhf def cs_cqed_cis(lambda_vector, omega_val, molecule_string, psi4_options_dict): """Computes the QED-RHF energy and density Arguments --------- lambda_vector : 1 x 3 array of floats the electric field vector, see e.g. Eq. (1) in [DePrince:2021:094112] and (15) in [Haugland:2020:041043] omega_val : complex float the complex energy associated with the photon, see Eq. (3) in [McTague:2021:ChemRxiv] molecule_string : string specifies the molecular geometry psi4_options_dict : dictionary specifies the psi4 options to be used in running requisite psi4 calculations Returns ------- cqed_cis_dictionary : dictionary Contains important quantities from the cqed_rhf calculation, with keys including: 'RHF ENERGY' -> result of canonical RHF calculation using psi4 defined by molecule_string and psi4_options_dict 'CQED-RHF ENERGY' -> result of CQED-RHF calculation, see Eq. (13) of [McTague:2021:ChemRxiv] 'CQED-CIS ENERGY' -> numpy array of complex floats comprising energy eigenvalues of CQED-CIS Hamiltonian 'CQED-CIS L VECTORS' -> numpy array of complex floats comprising the left eigenvectors of CQED-CIS Hamiltonian Example ------- >>> cqed_cis_dictionary = cs_cqed_cis([0., 0., 1e-2], 0.2-0.001j, '''\nMg\nH 1 1.7\nsymmetry c1\n1 1\n''', psi4_options_dictionary) """ # define geometry using the molecule_string mol = psi4.geometry(molecule_string) # define options for the calculation psi4.set_options(psi4_options_dict) # run psi4 to get ordinary scf energy and wavefunction object # scf_e, wfn = psi4.energy('scf', return_wfn=True) # run cqed_rhf method cqed_rhf_dict = cqed_rhf(lambda_vector, molecule_string, psi4_options_dict) # grab necessary quantities from cqed_rhf_dict scf_e = cqed_rhf_dict["RHF ENERGY"] cqed_scf_e = cqed_rhf_dict["CQED-RHF ENERGY"] wfn = cqed_rhf_dict["PSI4 WFN"] C = cqed_rhf_dict["CQED-RHF C"] eps = cqed_rhf_dict["CQED-RHF EPS"] cqed_rhf_dipole_moment = cqed_rhf_dict["CQED-RHF DIPOLE MOMENT"] # Create instance of MintsHelper class mints = psi4.core.MintsHelper(wfn.basisset()) # Grab data from wavfunction # number of doubly occupied orbitals ndocc = wfn.nalpha() # total number of orbitals nmo = wfn.nmo() # number of virtual orbitals nvirt = nmo - ndocc # need to update the Co and Cv core matrix objects so we can # utlize psi4s fast integral transformation! # collect rhf wfn object as dictionary wfn_dict = psi4.core.Wavefunction.to_file(wfn) # update wfn_dict with orbitals from CQED-RHF wfn_dict["matrix"]["Ca"] = C wfn_dict["matrix"]["Cb"] = C # update wfn object wfn = psi4.core.Wavefunction.from_file(wfn_dict) # occupied orbitals as psi4 objects but they correspond to CQED-RHF orbitals Co = wfn.Ca_subset("AO", "OCC") # virtual orbitals same way Cv = wfn.Ca_subset("AO", "VIR") # 2 electron integrals in CQED-RHF basis ovov = np.asarray(mints.mo_eri(Co, Cv, Co, Cv)) # build the (oo|vv) integrals: oovv = np.asarray(mints.mo_eri(Co, Co, Cv, Cv)) # strip out occupied orbital energies, eps_o spans 0..ndocc-1 eps_o = eps[:ndocc] # strip out virtual orbital energies, eps_v spans 0..nvirt-1 eps_v = eps[ndocc:] # Extra terms for Pauli-Fierz Hamiltonian # nuclear dipole mu_nuc_x = mol.nuclear_dipole()[0] mu_nuc_y = mol.nuclear_dipole()[1] mu_nuc_z = mol.nuclear_dipole()[2] # l \cdot \mu_nuc for d_c l_dot_mu_nuc = lambda_vector[0] * mu_nuc_x l_dot_mu_nuc += lambda_vector[1] * mu_nuc_y l_dot_mu_nuc += lambda_vector[2] * mu_nuc_z # dipole arrays in AO basis mu_ao_x = np.asarray(mints.ao_dipole()[0]) mu_ao_y = np.asarray(mints.ao_dipole()[1]) mu_ao_z = np.asarray(mints.ao_dipole()[2]) # transform dipole array to CQED-RHF basis mu_cmo_x = np.dot(C.T, mu_ao_x).dot(C) mu_cmo_y = np.dot(C.T, mu_ao_y).dot(C) mu_cmo_z = np.dot(C.T, mu_ao_z).dot(C) # \lambda \cdot < \mu > # e.g. line 6 of Eq. (18) in [McTague:2021:ChemRxiv] l_dot_mu_exp = 0.0 for i in range(0, 3): l_dot_mu_exp += lambda_vector[i] * cqed_rhf_dipole_moment[i] # \lambda \cdot \mu_{el} # e.g. line 4 Eq. (18) in [McTague:2021:ChemRxiv] l_dot_mu_el = lambda_vector[0] * mu_cmo_x l_dot_mu_el += lambda_vector[1] * mu_cmo_y l_dot_mu_el += lambda_vector[2] * mu_cmo_z # dipole constants to add to E_CQED_CIS, # 0.5 * (\lambda \cdot \mu_{nuc})** 2 # - (\lambda \cdot <\mu> ) ( \lambda \cdot \mu_{nuc}) # +0.5 * (\lambda \cdot <\mu>) ** 2 # Eq. (14) of [McTague:2021:ChemRxiv] d_c = ( 0.5 * l_dot_mu_nuc ** 2 - l_dot_mu_nuc * l_dot_mu_exp + 0.5 * l_dot_mu_exp ** 2 ) # check to see if d_c what we have from CQED-RHF calculation assert np.isclose(d_c, cqed_rhf_dict["DIPOLE ENERGY"]) # create Hamiltonian for elements H[ias, jbt] Htot = np.zeros((ndocc * nvirt * 2 + 2, ndocc * nvirt * 2 + 2), dtype=complex) Hep = np.zeros((ndocc * nvirt * 2 + 2, ndocc * nvirt * 2 + 2), dtype=complex) H1e = np.zeros((ndocc * nvirt * 2 + 2, ndocc * nvirt * 2 + 2), dtype=complex) H2e = np.zeros((ndocc * nvirt * 2 + 2, ndocc * nvirt * 2 + 2), dtype=complex) H2edp = np.zeros((ndocc * nvirt * 2 + 2, ndocc * nvirt * 2 + 2), dtype=complex) Hp = np.zeros((ndocc * nvirt * 2 + 2, ndocc * nvirt * 2 + 2), dtype=complex) # elements corresponding to <s|<\Phi_0 | H | \Phi_0>|t> # Eq. (16) of [McTague:2021:ChemRxiv] Hp[0, 0] = 0.0 Hp[1, 1] = omega_val # elements corresponding to <s|<\Phi_0 | H | \Phi_i^a>|t> # Eq. (17) of [McTague:2021:ChemRxiv] for i in range(0, ndocc): for a in range(0, nvirt): A = a + ndocc ia0 = 2 * (i * nvirt + a) + 2 ia1 = 2 * (i * nvirt + a) + 3 Hep[0, ia1] = Hep[ia1, 0] = ( -
np.sqrt(omega_val)
numpy.sqrt
import pyglet from pyglet.gl import * from .globs import * from .constants import * from . import config import ctypes import math from .colors import _getColor, color, blue try: import numpy npy = True numpy.seterr(divide='ignore') except: npy = False # exports __all__ = ['PImage', 'loadImage', 'image', 'get', 'setScreen', 'save', 'createImage', 'loadPixels', 'updatePixels', 'screenFilter', 'blend'] # the PImage class class PImage(object): """This basically wraps pyglet's AbstractImage with a Processing-like syntax.""" img = None # this is the actual AbstractImage def __init__(self, *args): """Either creates a new image from scratch or wraps an AbstractImage. Arguments are of the form PImage() PImage(width,height) PImage(width,height,format) PImage(img) """ if len(args) == 1 and isinstance(args[0], pyglet.image.AbstractImage): # Wraps an AbstractImage self.img = args[0] elif len(args) in (2, 3): # Creates an ImageData from width, height and type if len(args) == 2: # default w, h = args format = ARGB else: w, h, format = args data = create_string_buffer(w * h * len(format)) self.img = pyglet.image.ImageData(w, h, format, data.raw) else: assert (len(args) == 0) # Do an initial loading of the pixels[] array self.loadPixels() self.updatePixels() def loadPixels(self): """Gets the pixel data as an array of integers.""" n = self.width * self.height self.buf = self.img.get_image_data().get_data('BGRA', -self.width * 4) if npy: self.pixels = numpy.fromstring(self.buf, dtype=ctypes.c_uint) else: self.pixels = ctypes.cast(self.buf, ctypes.POINTER(ctypes.c_uint)) def filter(self, mode, *args): """Applies a filter to the image. The existant filters are: GRAY, INVERT, OPAQUE, THRESHOLD, POSTERIZE, ERODE, DILATE and BLUR. This method requires numpy.""" if not npy: raise ImportError("Numpy is required") if mode == GRAY: # Gray value = (77*(n>>16&0xff) + 151*(n>>8&0xff) + 28*(n&0xff)) >> 8 # Where n is the ARGB color of the pixel lum1 = numpy.multiply( numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff), 77) lum2 = numpy.multiply( numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff), 151) lum3 = numpy.multiply(numpy.bitwise_and(self.pixels, 0xff), 28) lum = numpy.right_shift(numpy.add(numpy.add(lum1, lum2), lum3), 8) self.pixels = numpy.bitwise_and(self.pixels, 0xff000000) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(lum, 16)) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(lum, 8)) self.pixels = numpy.bitwise_or(self.pixels, lum) elif mode == INVERT: # This is the same as applying an exclusive or with the maximum value self.pixels = numpy.bitwise_xor(self.pixels, 0xffffff) elif mode == BLUR: if not args: args = [3] # Makes the image square by adding zeros. # This avoids the convolution (via fourier transform multiplication) # from jumping to another extreme of the image when a border is reached if self.width > self.height: dif = self.width - self.height updif = numpy.zeros(self.width * dif / 2, dtype=numpy.uint32) downdif = numpy.zeros(self.width * (dif - dif / 2), dtype=numpy.uint32) self.pixels = numpy.concatenate((updif, self.pixels, downdif)) size = self.width elif self.width < self.height: dif = self.height - self.width leftdif = numpy.zeros(self.height * dif / 2, dtype=numpy.uint32) rightdif = numpy.zeros(self.height * (dif - dif / 2), dtype=numpy.uint32) self.pixels = self.pixels.reshape(self.height, self.width) self.pixels = numpy.transpose(self.pixels) self.pixels = self.pixels.reshape(self.width * self.height) self.pixels = numpy.concatenate( (leftdif, self.pixels, rightdif)) self.pixels = self.pixels.reshape(self.height, self.height) self.pixels = numpy.transpose(self.pixels) self.pixels = self.pixels.reshape(self.height * self.height) size = self.height else: size = self.height # Creates a gaussian kernel of the image's size _createKernel2d(args[0], size) # Divides the image's R, G and B channels, reshapes them # to square matrixes and applies two dimensional fourier transforms red = numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff) red = numpy.reshape(red, (size, size)) red = numpy.fft.fft2(red) green = numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff) green = numpy.reshape(green, (size, size)) green = numpy.fft.fft2(green) blue = numpy.bitwise_and(self.pixels, 0xff) blue = numpy.reshape(blue, (size, size)) blue = numpy.fft.fft2(blue) # Does a element-wise multiplication of each channel matrix # and the fourier transform of the kernel matrix kernel = numpy.fft.fft2(weights) red = numpy.multiply(red, kernel) green = numpy.multiply(green, kernel) blue = numpy.multiply(blue, kernel) # Reshapes them back to arrays and converts to unsigned integers red = numpy.reshape(numpy.fft.ifft2(red).real, size * size) green = numpy.reshape(numpy.fft.ifft2(green).real, size * size) blue = numpy.reshape(numpy.fft.ifft2(blue).real, size * size) red = red.astype(numpy.uint32) green = green.astype(numpy.uint32) blue = blue.astype(numpy.uint32) self.pixels = numpy.bitwise_or(numpy.left_shift(green, 8), blue) self.pixels = numpy.bitwise_or(numpy.left_shift(red, 16), self.pixels) # Crops out the zeros added if self.width > self.height: self.pixels = self.pixels[ self.width * dif / 2:size * size - self.width * ( dif - dif / 2)] elif self.width < self.height: self.pixels = numpy.reshape(self.pixels, (size, size)) self.pixels = numpy.transpose(self.pixels) self.pixels = numpy.reshape(self.pixels, size * size) self.pixels = self.pixels[ self.height * dif / 2:size * size - self.height * ( dif - dif / 2)] self.pixels = numpy.reshape(self.pixels, (self.width, self.height)) self.pixels = numpy.transpose(self.pixels) self.pixels = numpy.reshape(self.pixels, self.height * self.width) elif mode == OPAQUE: # This is the same as applying an bitwise or with the maximum value self.pixels = numpy.bitwise_or(self.pixels, 0xff000000) elif mode == THRESHOLD: # Maximum = max((n & 0xff0000) >> 16, max((n & 0xff00)>>8, (n & 0xff))) # Broken down to Maximum = max(aux,aux2) # The pixel will be white if its maximum is greater than the threshold # value, and black if not. This was implemented via a boolean matrix # multiplication. if not args: args = [0.5] thresh = args[0] * 255 aux = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff00), 8) aux = numpy.maximum(aux, numpy.bitwise_and(self.pixels, 0xff)) aux2 = numpy.right_shift(numpy.bitwise_and(self.pixels, 0xff0000), 16) boolmatrix = numpy.greater_equal(numpy.maximum(aux, aux2), thresh) self.pixels.fill(0xffffff) self.pixels = numpy.multiply(self.pixels, boolmatrix) elif mode == POSTERIZE: # New channel = ((channel*level)>>8)*255/(level-1) if not args: args = [8] levels1 = args[0] - 1 rlevel = numpy.bitwise_and(numpy.right_shift(self.pixels, 16), 0xff) glevel = numpy.bitwise_and(numpy.right_shift(self.pixels, 8), 0xff) blevel = numpy.bitwise_and(self.pixels, 0xff) rlevel = numpy.right_shift(numpy.multiply(rlevel, args[0]), 8) rlevel = numpy.divide(numpy.multiply(rlevel, 255), levels1) glevel = numpy.right_shift(numpy.multiply(glevel, args[0]), 8) glevel = numpy.divide(numpy.multiply(glevel, 255), levels1) blevel = numpy.right_shift(numpy.multiply(blevel, args[0]), 8) blevel = numpy.divide(numpy.multiply(blevel, 255), levels1) self.pixels = numpy.bitwise_and(self.pixels, 0xff000000) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(rlevel, 16)) self.pixels = numpy.bitwise_or(self.pixels, numpy.left_shift(glevel, 8)) self.pixels = numpy.bitwise_or(self.pixels, blevel) elif mode == ERODE: # Checks the pixels directly above, under and to the left and right # of each pixel of the image. If it has a greater luminosity, then # the center pixel receives its color colorOrig = numpy.array(self.pixels) colOut = numpy.array(self.pixels) colLeft = numpy.roll(colorOrig, 1) colRight = numpy.roll(colorOrig, -1) colUp = numpy.roll(colorOrig, self.width) colDown = numpy.roll(colorOrig, -self.width) currLum1 = numpy.bitwise_and(numpy.right_shift(colorOrig, 16), 0xff) currLum1 = numpy.multiply(currLum1, 77) currLum2 = numpy.bitwise_and(numpy.right_shift(colorOrig, 8), 0xff) currLum2 = numpy.multiply(currLum2, 151) currLum3 = numpy.multiply(numpy.bitwise_and(colorOrig, 0xff), 28) currLum = numpy.add(numpy.add(currLum1, currLum2), currLum3) lumLeft1 = numpy.bitwise_and(numpy.right_shift(colLeft, 16), 0xff) lumLeft1 = numpy.multiply(lumLeft1, 77) lumLeft2 = numpy.bitwise_and(numpy.right_shift(colLeft, 8), 0xff) lumLeft2 = numpy.multiply(lumLeft2, 151) lumLeft3 = numpy.multiply(numpy.bitwise_and(colLeft, 0xff), 28) lumLeft = numpy.add(numpy.add(lumLeft1, lumLeft2), lumLeft3) lumRight1 = numpy.bitwise_and(numpy.right_shift(colRight, 16), 0xff) lumRight1 = numpy.multiply(lumRight1, 77) lumRight2 = numpy.bitwise_and(numpy.right_shift(colRight, 8), 0xff) lumRight2 = numpy.multiply(lumRight2, 151) lumRight3 = numpy.multiply(numpy.bitwise_and(colRight, 0xff), 28) lumRight = numpy.add(numpy.add(lumRight1, lumRight2), lumRight3) lumDown1 = numpy.bitwise_and(numpy.right_shift(colDown, 16), 0xff) lumDown1 = numpy.multiply(lumDown1, 77) lumDown2 = numpy.bitwise_and(numpy.right_shift(colDown, 8), 0xff) lumDown2 = numpy.multiply(lumDown2, 151) lumDown3 = numpy.multiply(numpy.bitwise_and(colDown, 0xff), 28) lumDown = numpy.add(numpy.add(lumDown1, lumDown2), lumDown3) lumUp1 = numpy.bitwise_and(numpy.right_shift(colUp, 16), 0xff) lumUp1 = numpy.multiply(lumUp1, 77) lumUp2 = numpy.bitwise_and(numpy.right_shift(colUp, 8), 0xff) lumUp2 = numpy.multiply(lumUp2, 151) lumUp3 = numpy.multiply(numpy.bitwise_and(colUp, 0xff), 28) lumUp = numpy.add(numpy.add(lumUp1, lumUp2), lumUp3) numpy.putmask(colOut, lumLeft > currLum, colLeft) numpy.putmask(currLum, lumLeft > currLum, lumLeft) numpy.putmask(colOut, lumRight > currLum, colRight) numpy.putmask(currLum, lumRight > currLum, lumRight) numpy.putmask(colOut, lumUp > currLum, colUp) numpy.putmask(currLum, lumUp > currLum, lumUp) numpy.putmask(colOut, lumDown > currLum, colDown) numpy.putmask(currLum, lumDown > currLum, lumDown) self.pixels = colOut elif mode == DILATE: # Checks the pixels directly above, under and to the left and right # of each pixel of the image. If it has a lesser luminosity, then # the center pixel receives its color colorOrig = numpy.array(self.pixels) colOut = numpy.array(self.pixels) colLeft = numpy.roll(colorOrig, 1) colRight = numpy.roll(colorOrig, -1) colUp = numpy.roll(colorOrig, self.width) colDown = numpy.roll(colorOrig, -self.width) currLum1 = numpy.bitwise_and(numpy.right_shift(colorOrig, 16), 0xff) currLum1 = numpy.multiply(currLum1, 77) currLum2 = numpy.bitwise_and(numpy.right_shift(colorOrig, 8), 0xff) currLum2 = numpy.multiply(currLum2, 151) currLum3 = numpy.multiply(numpy.bitwise_and(colorOrig, 0xff), 28) currLum = numpy.add(numpy.add(currLum1, currLum2), currLum3) lumLeft1 = numpy.bitwise_and(numpy.right_shift(colLeft, 16), 0xff) lumLeft1 = numpy.multiply(lumLeft1, 77) lumLeft2 = numpy.bitwise_and(numpy.right_shift(colLeft, 8), 0xff) lumLeft2 = numpy.multiply(lumLeft2, 151) lumLeft3 = numpy.multiply(numpy.bitwise_and(colLeft, 0xff), 28) lumLeft = numpy.add(numpy.add(lumLeft1, lumLeft2), lumLeft3) lumRight1 = numpy.bitwise_and(numpy.right_shift(colRight, 16), 0xff) lumRight1 = numpy.multiply(lumRight1, 77) lumRight2 = numpy.bitwise_and(numpy.right_shift(colRight, 8), 0xff) lumRight2 = numpy.multiply(lumRight2, 151) lumRight3 = numpy.multiply(numpy.bitwise_and(colRight, 0xff), 28) lumRight = numpy.add(numpy.add(lumRight1, lumRight2), lumRight3) lumDown1 = numpy.bitwise_and(numpy.right_shift(colDown, 16), 0xff) lumDown1 = numpy.multiply(lumDown1, 77) lumDown2 = numpy.bitwise_and(numpy.right_shift(colDown, 8), 0xff) lumDown2 = numpy.multiply(lumDown2, 151) lumDown3 = numpy.multiply(numpy.bitwise_and(colDown, 0xff), 28) lumDown = numpy.add(numpy.add(lumDown1, lumDown2), lumDown3) lumUp1 = numpy.bitwise_and(numpy.right_shift(colUp, 16), 0xff) lumUp1 = numpy.multiply(lumUp1, 77) lumUp2 = numpy.bitwise_and(numpy.right_shift(colUp, 8), 0xff) lumUp2 = numpy.multiply(lumUp2, 151) lumUp3 = numpy.multiply(numpy.bitwise_and(colUp, 0xff), 28) lumUp = numpy.add(numpy.add(lumUp1, lumUp2), lumUp3) numpy.putmask(colOut, lumLeft < currLum, colLeft) numpy.putmask(currLum, lumLeft < currLum, lumLeft) numpy.putmask(colOut, lumRight < currLum, colRight) numpy.putmask(currLum, lumRight < currLum, lumRight) numpy.putmask(colOut, lumUp < currLum, colUp) numpy.putmask(currLum, lumUp < currLum, lumUp) numpy.putmask(colOut, lumDown < currLum, colDown) numpy.putmask(currLum, lumDown < currLum, lumDown) self.pixels = colOut self.updatePixels() def mask(self, image): """Uses the image passed as parameter as alpha mask.""" if npy: aux1 = numpy.bitwise_and(self.pixels, 0xffffff) aux2 = numpy.bitwise_and(image.pixels, 0xff000000) self.pixels = numpy.bitwise_or(aux1, aux2) return for i in range(self.width): for j in range(self.height): n = self.get(i, j) m = image.get(i, j) new = ((m & 0xff000000) << 24) | (n & 0xffffff) self.set(i, j, new) def updatePixels(self): """Saves the pixel data.""" if npy: self.buf = self.pixels.tostring() self.img.get_image_data().set_data('BGRA', -self.width * 4, self.buf) def set(self, x, y, color): """Sets the pixel at x,y with the given color.""" self.pixels[y * self.width + x] = color self.updatePixels() def get(self, *args): """Returns a copy, a part or a pixel of this image. Arguments are of the form: get() get(x,y) get(x,y,width,height) """ if len(args) in (0, 4): # the result is an image if len(args) == 0: x, y, width, height = 0, 0, self.width, self.height else: x, y, width, height = args assert (x >= 0 and x < self.width and y >= 0 and y < self.height and width > 0 and height > 0 and x + width <= self.width and y + height <= self.height) if width != self.width or height != self.height: source = self.img.get_region(x, self.height - y - height, width, height) else: source = self.img result = PImage(width, height, self.img.format) # print source._current_pitch # print result.img._current_pitch # buf = source.get_data ('BGRA',result.img._current_pitch) # result.img.set_data ('BGRA', result.img._current_pitch, buf) result.img.get_texture().blit_into(source, 0, 0, 0) return result else: # result is a pixel x, y = args assert (x >= 0 and x < self.width and y >= 0 and y < self.height) return self.pixels[y * self.width + x] def save(self, filename): """Saves this image as a file of the proper format.""" self.img.save(filename) def __getWidth(self): """Getter for the width property.""" return self.img.width width = property(__getWidth) def __getHeight(self): """Getter for the height property.""" return self.img.height height = property(__getHeight) # Image functions def screenFilter(mode, *args): """Applies a filter to the current drawing canvas. This method requires numpy.""" if not npy: raise ImportError("Numpy is required") new = createImage(width, height, 'RGBA') loadPixels() new.pixels = numpy.array(screen.pixels) new.filter(mode, *args) new.updatePixels() image(new, 0, 0) def mix(a, b, f): return a + (((b - a) * f) >> 8); def _mix(a, b, f): # Used for the blend function (mixes colors according to their alpha values) c = numpy.multiply(numpy.subtract(b, a), f) return numpy.add(numpy.right_shift(c, 8), a) def _high(a, b): # Used for the blend function (returns the matrix with the maximum bitwise values) c = numpy.multiply(a.__le__(b), b) d = numpy.multiply(a.__gt__(b), a) return numpy.add(c, d) def _low(a, b): # Used for the blend function (returns the matrix with the minimum bitwise values) c = numpy.multiply(a.__ge__(b), b) d = numpy.multiply(a.__lt__(b), a) return numpy.add(c, d) def _peg(a): # Used for the blend function (returns the matrix with constrained values) b = numpy.multiply(a.__ge__(0), a) c = numpy.multiply(b.__le__(255), b) d = numpy.multiply(b.__gt__(255), 255) return numpy.add(c, d) def _sub(a, b): # Used for the blend function (mimics an unsigned subtraction with signed arrays) aux = a aux1 = numpy.multiply(aux.__ge__(b), b) aux2 = numpy.multiply(b.__gt__(aux), aux) b = numpy.add(aux1, aux2) return numpy.subtract(aux, b) def blend(source, x, y, swidth, sheight, dx, dy, dwidth, dheight, mode): """Blends a region of pixels from one image into another.""" if not npy: raise ImportError("Numpy is required") loadPixels() a = screen.pixels.reshape((height, width)) a = a[dy:dy + dheight, dx:dx + dwidth] a = a.reshape(a.shape[1] * a.shape[0]) b = source.pixels.reshape((source.height, source.width)) b = b[y:y + sheight, x:x + swidth] b = b.reshape(b.shape[1] * b.shape[0]) f = numpy.right_shift(numpy.bitwise_and(b, 0xff000000), 24) a.dtype = "int32" b.dtype = "int32" # BLEND Mode if mode == 0: alpha = numpy.right_shift(numpy.bitwise_and(a, 0xff000000), 24) alpha = numpy.left_shift(_low(numpy.add(alpha, f), 0xff), 24) red = _mix(numpy.bitwise_and(a, 0xff0000), numpy.bitwise_and(b, 0xff0000), f) red = numpy.bitwise_and(red, 0xff0000) green = _mix(numpy.bitwise_and(a, 0xff00), numpy.bitwise_and(b, 0xff00), f) green = numpy.bitwise_and(green, 0xff00) blue = _mix(numpy.bitwise_and(a, 0xff), numpy.bitwise_and(b, 0xff), f) # ADD Mode elif mode == 1: alpha = numpy.right_shift(numpy.bitwise_and(a, 0xff000000), 24) alpha = numpy.left_shift(_low(numpy.add(alpha, f), 0xff), 24) red = numpy.bitwise_and(b, 0xff0000) red = numpy.right_shift(numpy.multiply(red, f), 8) red = numpy.add(red, numpy.bitwise_and(a, 0xff0000)) red = _low(red, 0xff0000) red = numpy.bitwise_and(red, 0xff0000) green = numpy.bitwise_and(b, 0xff00) green = numpy.right_shift(numpy.multiply(green, f), 8) green = numpy.add(green, numpy.bitwise_and(a, 0xff00)) green = _low(green, 0xff00) green = numpy.bitwise_and(green, 0xff00) blue = numpy.bitwise_and(b, 0xff) blue = numpy.right_shift(numpy.multiply(blue, f), 8) blue = numpy.add(blue, numpy.bitwise_and(a, 0xff)) blue = _low(blue, 0xff) # SUBTRACT Mode elif mode == 2: alpha = numpy.right_shift(numpy.bitwise_and(a, 0xff000000), 24) alpha = numpy.left_shift(_low(
numpy.add(alpha, f)
numpy.add
# Copyright 2016 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.conf import settings import blosc from rest_framework.test import APITestCase, APIRequestFactory from rest_framework.test import force_authenticate from rest_framework import status from bossspatialdb.views import Cutout from bosscore.test.setup_db import SetupTestDB from bosscore.error import BossError import numpy as np import zlib import io import time from PIL import Image from unittest.mock import patch from fakeredis import FakeStrictRedis import spdb import bossutils from spdb.spatialdb.rediskvio import RedisKVIO from spdb.spatialdb.state import CacheStateDB from spdb.spatialdb.spatialdb import SpatialDB from spdb.spatialdb.object import AWSObjectStore version = settings.BOSS_VERSION _test_globals = {'cache': None, 'state': None} # DMK - can be removed once proper mocking is completed #class MockBossConfig(bossutils.configuration.BossConfig): # """Basic mock for BossConfig so 'test databases' are used for redis (1) instead of the default where real data # can live (0)""" # def __init__(self): # super().__init__() # self.config["aws"]["cache-db"] = "1" # self.config["aws"]["cache-state-db"] = "1" # # def read(self, filename): # pass # # def __getitem__(self, key): # return self.config[key] # # #class MockSpatialDB(spdb.spatialdb.spatialdb.SpatialDB): # """mock for redis kvio so the actual server isn't used during unit testing, but a static mockredis-py instead""" # # def __init__(self, kv_conf, state_conf, object_store_conf): # SpatialDB.__init__(kv_conf, state_conf, object_store_conf) # if not _test_globals['cache']: # _test_globals['cache'] = RedisKVIO(kv_conf) # _test_globals['state'] = CacheStateDB(state_conf) # # self.kvio = _test_globals['cache'] # self.cache_state = _test_globals['state'] @patch('redis.StrictRedis', FakeStrictRedis) def mock_init_(self, kv_conf, state_conf, object_store_conf): print("init mocker") self.kv_config = kv_conf self.state_conf = state_conf self.object_store_config = object_store_conf # Threshold number of cuboids for using lambda on reads self.read_lambda_threshold = 600 # Currently high since read lambda not implemented # Number of seconds to wait for dirty cubes to get clean self.dirty_read_timeout = 60 if not _test_globals['cache']: kv_conf["cache_db"] = 1 state_conf["cache_state_db"] = 1 print(kv_conf) print(state_conf) _test_globals['cache'] = RedisKVIO(kv_conf) _test_globals['state'] = CacheStateDB(state_conf) self.kvio = _test_globals['cache'] self.cache_state = _test_globals['state'] self.objectio = AWSObjectStore(object_store_conf) class CutoutInterfaceViewUint8TestMixin(object): def test_channel_uint8_wrong_data_type(self): """ Test posting the wrong bitdepth data """ config = bossutils.configuration.BossConfig() test_mat = np.random.randint(1, 2 ** 16 - 1, (16, 128, 128)) test_mat = test_mat.astype(np.uint16) h = test_mat.tobytes() bb = blosc.compress(h, typesize=16) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/', bb, content_type='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range=None) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_channel_uint8_wrong_data_type_numpy(self): """ Test posting the wrong bitdepth data using the blosc-numpy interface""" test_mat = np.random.randint(1, 2 ** 16 - 1, (16, 128, 128)) test_mat = test_mat.astype(np.uint16) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range=None) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_channel_uint8_wrong_dimensions(self): """ Test posting with the wrong xyz dims""" test_mat = np.random.randint(1, 2 ** 16 - 1, (16, 128, 128)) test_mat = test_mat.astype(np.uint8) h = test_mat.tobytes() bb = blosc.compress(h, typesize=8) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/0:100/0:128/0:16/', bb, content_type='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:100', y_range='0:128', z_range='0:16', t_range=None) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_channel_uint8_wrong_dimensions_numpy(self): """ Test posting with the wrong xyz dims using the numpy interface""" test_mat = np.random.randint(1, 2 ** 16 - 1, (16, 128, 128)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/0:100/0:128/0:16/', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel2', resolution='0', x_range='0:100', y_range='0:128', z_range='0:16', t_range=None) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_channel_uint8_get_too_big(self): """ Test getting a cutout that is over 1GB uncompressed""" # Create request factory = APIRequestFactory() # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/0:2048/0:2048/0:131/', accepts='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel2', resolution='0', x_range='0:2048', y_range='0:2048', z_range='0:131', t_range=None) self.assertEqual(response.status_code, status.HTTP_413_REQUEST_ENTITY_TOO_LARGE) def test_channel_uint8_cuboid_aligned_no_offset_no_time_blosc(self): """ Test uint8 data, cuboid aligned, no offset, no time samples""" test_mat = np.random.randint(1, 254, (16, 128, 128)) test_mat = test_mat.astype(np.uint8) h = test_mat.tobytes() bb = blosc.compress(h, typesize=8) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/', bb, content_type='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/', accepts='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress raw_data = blosc.decompress(response.content) data_mat = np.fromstring(raw_data, dtype=np.uint8) data_mat = np.reshape(data_mat, (16, 128, 128), order='C') # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_aligned_no_offset_no_time_blosc_4d(self): """ Test uint8 data, cuboid aligned, no offset, no time samples""" test_mat = np.random.randint(1, 254, (1, 16, 128, 128)) test_mat = test_mat.astype(np.uint8) h = test_mat.tobytes() bb = blosc.compress(h, typesize=8) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/3:4/', bb, content_type='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range="3:4") self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/3:4/', accepts='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range="3:4").render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress raw_data = blosc.decompress(response.content) data_mat = np.fromstring(raw_data, dtype=np.uint8) data_mat = np.reshape(data_mat, (1, 16, 128, 128), order='C') # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_aligned_offset_no_time_blosc(self): """ Test uint8 data, cuboid aligned, offset, no time samples, blosc interface""" test_mat = np.random.randint(1, 254, (16, 128, 128)) test_mat = test_mat.astype(np.uint8) h = test_mat.tobytes() bb = blosc.compress(h, typesize=8) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/128:256/256:384/16:32/', bb, content_type='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='128:256', y_range='256:384', z_range='16:32', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/128:256/256:384/16:32/', accepts='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='128:256', y_range='256:384', z_range='16:32', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress raw_data = blosc.decompress(response.content) data_mat = np.fromstring(raw_data, dtype=np.uint8) data_mat = np.reshape(data_mat, (16, 128, 128), order='C') # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_unaligned_offset_no_time_blosc(self): """ Test uint8 data, not cuboid aligned, offset, no time samples, blosc interface""" test_mat = np.random.randint(1, 254, (17, 300, 500)) test_mat = test_mat.astype(np.uint8) h = test_mat.tobytes() bb = blosc.compress(h, typesize=8) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/', bb, content_type='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/', HTTP_ACCEPT='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress raw_data = blosc.decompress(response.content) data_mat = np.fromstring(raw_data, dtype=np.uint8) data_mat = np.reshape(data_mat, (17, 300, 500), order='C') # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_unaligned_offset_time_blosc(self): """ Test uint8 data, not cuboid aligned, offset, time samples, blosc interface Test Requires >=2GB of memory! """ test_mat = np.random.randint(1, 254, (3, 17, 300, 500)) test_mat = test_mat.astype(np.uint8) h = test_mat.tobytes() bb = blosc.compress(h, typesize=8) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/30:47/0:3', bb, content_type='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='30:47', t_range='0:3') self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/30:47/0:3', HTTP_ACCEPT='application/blosc') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='30:47', t_range='0:3').render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress raw_data = blosc.decompress(response.content) data_mat = np.fromstring(raw_data, dtype=np.uint8) data_mat = np.reshape(data_mat, (3, 17, 300, 500), order='C') # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_aligned_no_offset_no_time_blosc_numpy(self): """ Test uint8 data, cuboid aligned, no offset, no time samples""" test_mat = np.random.randint(1, 254, (16, 128, 128)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/0:128/0:128/0:16/', HTTP_ACCEPT='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='0:128', y_range='0:128', z_range='0:16', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_mat = blosc.unpack_array(response.content) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_aligned_offset_no_time_blosc_numpy(self): """ Test uint8 data, cuboid aligned, offset, no time samples, blosc interface""" test_mat = np.random.randint(1, 254, (16, 128, 128)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/128:256/256:384/16:32/', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='128:256', y_range='256:384', z_range='16:32', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/128:256/256:384/16:32/', HTTP_ACCEPT='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='128:256', y_range='256:384', z_range='16:32', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_mat = blosc.unpack_array(response.content) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_unaligned_offset_no_time_blosc_numpy(self): """ Test uint8 data, not cuboid aligned, offset, no time samples, blosc interface""" test_mat = np.random.randint(1, 254, (17, 300, 500)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/', HTTP_ACCEPT='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_mat = blosc.unpack_array(response.content) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_unaligned_offset_time_blosc_numpy(self): """ Test uint8 data, not cuboid aligned, offset, time samples, blosc interface """ test_mat = np.random.randint(1, 254, (3, 17, 300, 500)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/50:67/0:3', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='50:67', t_range='0:3') self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/50:67/0:3', HTTP_ACCEPT='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='50:67', t_range='0:3').render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_mat = blosc.unpack_array(response.content) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_unaligned_offset_time_offset_blosc_numpy(self): """ Test uint8 data, not cuboid aligned, offset, time samples, blosc interface Test Requires >=2GB of memory! """ test_mat = np.random.randint(1, 254, (3, 17, 300, 500)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/200:203', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range='200:203') self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/200:203', HTTP_ACCEPT='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range='200:203').render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_mat = blosc.unpack_array(response.content) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_cuboid_unaligned_offset_time_offset_overwrite_blosc__numpy(self): """ Test uint8 data, not cuboid aligned, offset, time samples, blosc interface Test Requires >=2GB of memory! """ # Do this a couple times to the same region....should succeed every time for _ in range(0, 2): test_mat = np.random.randint(1, 254, (3, 17, 300, 500)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/40:57/200:203', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='40:57', t_range='200:203') self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/40:57/200:203', HTTP_ACCEPT='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='40:57', t_range='200:203').render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_mat = blosc.unpack_array(response.content) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_notime_npygz_download(self): """ Test uint8 data, using the npygz interface """ test_mat = np.random.randint(1, 254, (17, 300, 500)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make POST data response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37', HTTP_ACCEPT='application/npygz') # log in user force_authenticate(request, user=self.user) # Make request to GET data response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_bytes = zlib.decompress(response.content) # Open data_obj = io.BytesIO(data_bytes) data_mat = np.load(data_obj) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_time_npygz_download(self): """ Test uint8 data, using the npygz interface with time series support """ test_mat = np.random.randint(1, 254, (3, 17, 300, 500)) test_mat = test_mat.astype(np.uint8) bb = blosc.pack_array(test_mat) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/100:103', bb, content_type='application/blosc-python') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range='100:103') self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/100:103', HTTP_ACCEPT='application/npygz') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range='100:103').render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_bytes = zlib.decompress(response.content) # Open data_obj = io.BytesIO(data_bytes) data_mat = np.load(data_obj) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_notime_npygz_upload(self): """ Test uint8 data, using the npygz interface while uploading in that format as well """ test_mat = np.random.randint(1, 254, (17, 300, 500)) test_mat = test_mat.astype(np.uint8) # Save Data to npy npy_file = io.BytesIO() np.save(npy_file, test_mat, allow_pickle=False) # Compress npy npy_gz = zlib.compress(npy_file.getvalue()) # Send file npy_gz_file = io.BytesIO(npy_gz) npy_gz_file.seek(0) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/', npy_gz_file.read(), content_type='application/npygz') # log in user force_authenticate(request, user=self.user) # Make POST data response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37', HTTP_ACCEPT='application/npygz') # log in user force_authenticate(request, user=self.user) # Make request to GET data response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range=None).render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_bytes = zlib.decompress(response.content) # Open data_obj = io.BytesIO(data_bytes) data_mat = np.load(data_obj) # Test for data equality (what you put in is what you got back!) np.testing.assert_array_equal(data_mat, test_mat) def test_channel_uint8_time_npygz_upload(self): """ Test uint8 data, using the npygz interface with time series support while uploading in that format as well """ test_mat = np.random.randint(1, 254, (3, 17, 300, 500)) test_mat = test_mat.astype(np.uint8) # Save Data to npy npy_file = io.BytesIO() np.save(npy_file, test_mat, allow_pickle=False) # Compress npy npy_gz = zlib.compress(npy_file.getvalue()) # Send file npy_gz_file = io.BytesIO(npy_gz) npy_gz_file.seek(0) # Create request factory = APIRequestFactory() request = factory.post('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/150:153', npy_gz_file.read(), content_type='application/npygz') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range='150:153') self.assertEqual(response.status_code, status.HTTP_201_CREATED) # Create Request to get data you posted request = factory.get('/' + version + '/cutout/col1/exp1/channel1/0/100:600/450:750/20:37/150:153', HTTP_ACCEPT='application/npygz') # log in user force_authenticate(request, user=self.user) # Make request response = Cutout.as_view()(request, collection='col1', experiment='exp1', channel='channel1', resolution='0', x_range='100:600', y_range='450:750', z_range='20:37', t_range='150:153').render() self.assertEqual(response.status_code, status.HTTP_200_OK) # Decompress data_bytes = zlib.decompress(response.content) # Open data_obj = io.BytesIO(data_bytes) data_mat = np.load(data_obj) # Test for data equality (what you put in is what you got back!)
np.testing.assert_array_equal(data_mat, test_mat)
numpy.testing.assert_array_equal
from typing import Callable from xarray_multiscale.reducers import mode import dask.array as da from scipy.stats import mode as scipy_mode from typing import Any import numpy as np def modefunc(v): return scipy_mode(v).mode def coarsened_comparator( func: Callable, source_array: Any, coarsened_array: Any ) -> Any: """ Take a reducer function and two arrays; reduce the first array, and check that the result is identical to the second array. """ result =
np.array([True])
numpy.array
""" E-Divisive related tests. """ import numpy as np from miscutils.testing import relative_patch_maker from signal_processing_algorithms.e_divisive import default_implementation from signal_processing_algorithms.e_divisive.calculators import __name__ as patchable patch = relative_patch_maker(patchable) class OldEDivisive(object): """ This is the original O(n^2) E-Divisive implementation as described in the whitepaper. It is here for comparison purposes only and to allow the q values to be generated if further tests are added. NOTE: This is why I have disabled some pylint checks. NOTE: This implementation is purely to provide a 'canonical' implementation for test purposes. It is not efficient and will not be optimized. """ # Implementing change-point detection algorithm from https://arxiv.org/pdf/1306.4933.pdf def qs(self, series: np.ndarray): """ Find Q-Hat values for all candidate change points :param series: the points to process :return: """ length = len(series) qs = np.zeros(length, dtype=np.float) if length < 5: return qs diffs = [[abs(series[i] - series[j]) for i in range(length)] for j in range(length)] for n in range(2, length - 2): m = length - n term1 = sum(diffs[i][j] for i in range(n) for j in range(n, length)) term2 = sum(diffs[i][k] for i in range(n) for k in range(i + 1, n)) term3 = sum(diffs[j][k] for j in range(n, length) for k in range(j + 1, length)) term1_reg = term1 * (2.0 / (m * n)) term2_reg = term2 * (2.0 / (n * (n - 1))) term3_reg = term3 * (2.0 / (m * (m - 1))) newq = (m * n // (m + n)) * (term1_reg - term2_reg - term3_reg) qs[n] = newq return qs class TestAlgorithmContinuity(object): """ Test Algorithm Continuity is correct. """ series = np.array([1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3], dtype=np.float) expected = np.array( [ 0, 0, 1.3777777777777778, 3.4444444444444438, 4.428571428571429, 2.971428571428571, 3.599999999999999, 2.342857142857143, 2.857142857142857, 4.666666666666666, 0, 0, ], dtype=np.float, ) expected_proper_division = np.array( [ 0, 1.03333333, 2.2962963, 3.875, 5.9047619, 4.33333333, 3.6, 3.41666667, 3.80952381, 5.25, 3.11111111, 1.4, ] ) def test_old_algorithm(self): """ Test to double check slow O(n^2) algorithm. Small data set so this is ok. """ algorithm = OldEDivisive() q_values = algorithm.qs(self.series) assert all(np.isclose(self.expected, q_values)) def test_fixed(self): """ Test that the current algorithm generates the same q values as the original. """ algorithm = default_implementation() q_values = algorithm._calculator.calculate_qhat_values( algorithm._calculator.calculate_diffs(self.series) ) assert all(
np.isclose(self.expected, q_values)
numpy.isclose
import sys import argparse import gc import os import random from typing import AnyStr from typing import List import ipdb import krippendorff from collections import defaultdict from pathlib import Path import math import pickle from datetime import datetime from gurobipy import * import numpy as np import torch from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from torch.utils.data import Subset from torch.utils.data import random_split from torch.optim import Adam from tqdm import tqdm from transformers import AdamW from transformers import DistilBertConfig from transformers import DistilBertTokenizer from transformers import DistilBertForSequenceClassification from transformers import get_linear_schedule_with_warmup from datareader import MultiDomainEntityMatchingDataset from datareader import collate_batch_transformer from metrics import MultiDatasetClassificationEvaluator from metrics import ClassificationEvaluator from metrics import acc_f1 from metrics import plot_label_distribution from model import MultiTransformerClassifier from model import VanillaBert from model import * import pandas as pd import copy from sklearn.cluster import KMeans def extract_embs(model, dataloader, device): model.eval() with torch.no_grad(): all_embs = [] for batch in tqdm(dataloader, desc="Evaluation"): batch = tuple(t.to(device) for t in batch) input_ids = batch[0] masks = batch[1] embs = model.return_embedding(input_ids, attention_mask=masks) all_embs.append(embs) all_embs = torch.cat(all_embs) return all_embs def extract_confidences(model, dataloader, device): model.eval() with torch.no_grad(): all_confs = [] for batch in tqdm(dataloader, desc="Evaluation"): batch = tuple(t.to(device) for t in batch) input_ids = batch[0] masks = batch[1] confs = model.return_confidence(input_ids, attention_mask=masks) all_confs.append(confs) all_confs = torch.cat(all_confs) return all_confs def extract_probs_dropout(model,dataloader,device,n_drop): model.train() dropout_confs=[] with torch.no_grad(): for i in range(n_drop): all_embs=[] for batch in tqdm(dataloader, desc="Evaluation"): batch = tuple(t.to(device) for t in batch) input_ids = batch[0] masks = batch[1] confs = model.return_confidence(input_ids, attention_mask=masks) all_embs.append(confs) all_embs=torch.cat(all_embs) dropout_confs.append(all_embs) dropout_confs=torch.stack(dropout_confs,dim=1) dropout_confs=torch.sum(dropout_confs,dim=1) dropout_confs/=n_drop return dropout_confs def least_confidence(model, dataloader_target, train_data, nb_samples, device): confs_target = extract_confidences(model, dataloader_target, device) U = confs_target.max(1)[0] idxs_unlabeled = np.arange(len(train_data)) samples_to_query = idxs_unlabeled[U.sort()[1].cpu()[:nb_samples]] query_data = [train_data[jj] for jj in samples_to_query] return query_data def random_samples(train_data,nb_samples): random.shuffle(train_data) query_data=train_data[:nb_samples] return query_data def kmeans_sampling(model,dataloader_target,train_data,nb_samples,device): idxs_unlabeled = np.arange(len(train_data)) embss_target = extract_embs(model, dataloader_target, device) embedding = embss_target.cpu().numpy() cluster_learner = KMeans(n_clusters=nb_samples) cluster_learner.fit(embedding) cluster_idxs = cluster_learner.predict(embedding) centers = cluster_learner.cluster_centers_[cluster_idxs] dis = (embedding - centers) ** 2 dis = dis.sum(axis=1) q_idxs = np.array([np.arange(embedding.shape[0])[cluster_idxs == i][dis[cluster_idxs == i].argmin()] for i in range(nb_samples)]) samples_to_query=idxs_unlabeled[q_idxs] query_data = [train_data[jj] for jj in samples_to_query] return query_data def entropy_sampling(model,dataloader_target,train_data,nb_samples,device): confs_target = extract_confidences(model, dataloader_target, device) log_probs = torch.log(confs_target) U = (confs_target * log_probs).sum(1) idxs_unlabeled = np.arange(len(train_data)) samples_to_query = idxs_unlabeled[U.sort()[1].cpu()[:nb_samples]] query_data = [train_data[jj] for jj in samples_to_query] return query_data def kcenters_sampling1(model,dataloader_target,train_data,nb_samples,device): NUM_INIT_LB=int(nb_samples/2) #NUM_INIT_LB = nb_samples nb_unlabeled=nb_samples-NUM_INIT_LB idxs_lb = np.zeros(len(train_data), dtype=bool) confs_target = extract_confidences(model, dataloader_target, device) U = confs_target.max(1)[0] idxs_unlabeled = np.arange(len(train_data)) samples_to_query = idxs_unlabeled[U.sort(descending=False)[1].cpu()[:NUM_INIT_LB]] idxs_lb[samples_to_query] = True lb_flag = idxs_lb.copy() embss_target = extract_embs(model, dataloader_target, device) embedding = embss_target.cpu().numpy() from datetime import datetime #print('calculate distance matrix') t_start = datetime.now() dist_mat = np.matmul(embedding, embedding.transpose()) sq = np.array(dist_mat.diagonal()).reshape(len(train_data), 1) dist_mat *= -2 dist_mat += sq dist_mat += sq.transpose() dist_mat = np.sqrt(dist_mat) #print(datetime.now() - t_start) mat = dist_mat[~lb_flag, :][:, lb_flag] for i in range(nb_unlabeled): #if i % 10 == 0: # print('greedy solution {}/{}'.format(i, nb_samples)) mat_min = mat.min(axis=1) q_idx_ = mat_min.argmax() q_idx = np.arange(len(train_data))[~lb_flag][q_idx_] lb_flag[q_idx] = True mat = np.delete(mat, q_idx_, 0) mat = np.append(mat, dist_mat[~lb_flag, q_idx][:, None], axis=1) samples_to_query=np.arange(len(train_data))[(idxs_lb | lb_flag)] query_data = [train_data[jj] for jj in samples_to_query] return query_data def kcenters_sampling(model,dataloader_target,train_data,test_dset_supervised_training,optimizer,args,evaluator_valid,n_epochs,domain,test_dset,nb_samples,device): NUM_INIT_LB=int(nb_samples/2) #NUM_INIT_LB = nb_samples nb_unlabeled=nb_samples-NUM_INIT_LB idxs_lb = np.zeros(len(train_data), dtype=bool) # confs_target = extract_confidences(model, dataloader_target, device) # U = confs_target.max(1)[0] # idxs_unlabeled = np.arange(len(train_data)) # samples_to_query = idxs_unlabeled[U.sort()[1].cpu()[:NUM_INIT_LB]] # idxs_lb[samples_to_query] = True indices=np.arange(len(train_data)) np.random.shuffle(indices) samples_to_query=indices[:NUM_INIT_LB] idxs_lb[samples_to_query] = True query_data = [train_data[jj] for jj in samples_to_query] test_dset_supervised_training.dataset = pd.DataFrame(query_data) test_dset_supervised_training.set_domain_id(0) test_dset.set_domain_id(1) train_sizes = [int(len(test_dset_supervised_training) * args.train_pct)] val_sizes = [len(test_dset_supervised_training) - train_sizes[0]] subsets = [random_split(test_dset_supervised_training, [train_sizes[0], val_sizes[0]])] train_dls = [DataLoader( subset[0], batch_size=batch_size, shuffle=True, collate_fn=collate_batch_transformer ) for subset in subsets] scheduler = get_linear_schedule_with_warmup( optimizer, args.warmup_steps, n_epochs * sum([len(train_dl) for train_dl in train_dls]) ) opt = [optimizer] # Train train( model, train_dls, opt, scheduler, evaluator_valid, n_epochs, device, args.log_interval, model_dir=args.model_dir, gradient_accumulation=args.gradient_accumulation, domain_name=domain ) model.load_state_dict(torch.load(f'{args.model_dir}/files/model_{domain}.pth')) evaluator = ClassificationEvaluator(test_dset, device, use_domain=False) (loss, acc, P, R, F1), plots, (labels, logits), votes = evaluator.evaluate( model, plot_callbacks=[], return_labels_logits=True, return_votes=True ) print('{} samples for {}'.format(NUM_INIT_LB, domain)) print(f"{domain} F1: {F1}") print(f"{domain} Accuracy: {acc}") print() test_dset_supervised_training.dataset = pd.DataFrame(train_data) lb_flag = idxs_lb.copy() embss_target = extract_embs(model, dataloader_target, device) embedding = embss_target.cpu().numpy() from datetime import datetime #print('calculate distance matrix') t_start = datetime.now() dist_mat = np.matmul(embedding, embedding.transpose()) sq = np.array(dist_mat.diagonal()).reshape(len(train_data), 1) dist_mat *= -2 dist_mat += sq dist_mat += sq.transpose() dist_mat = np.sqrt(dist_mat) #print(datetime.now() - t_start) mat = dist_mat[~lb_flag, :][:, lb_flag] for i in range(nb_unlabeled): #if i % 10 == 0: # print('greedy solution {}/{}'.format(i, nb_unlabeled)) mat_min = mat.min(axis=1) q_idx_ = mat_min.argmax() q_idx = np.arange(len(train_data))[~lb_flag][q_idx_] lb_flag[q_idx] = True mat = np.delete(mat, q_idx_, 0) mat = np.append(mat, dist_mat[~lb_flag, q_idx][:, None], axis=1) samples_to_query=np.arange(len(train_data))[(idxs_lb | lb_flag)] query_data = [train_data[jj] for jj in samples_to_query] return model,query_data def solve_fac_loc(xx, yy, subset, n, budget): t_start = datetime.now() model = Model("k-center") x = {} y = {} z = {} print('gen z', datetime.now() - t_start) for i in range(n): # z_i: is a loss z[i] = model.addVar(obj=1, ub=0.0, vtype="B", name="z_{}".format(i)) print('gen x y', datetime.now() - t_start) m = len(xx) for i in range(m): if i % 1000000 == 0: print('gen x y {}/{}'.format(i, m), datetime.now() - t_start) _x = xx[i] _y = yy[i] # y_i = 1 means i is facility, 0 means it is not if _y not in y: if _y in subset: y[_y] = model.addVar(obj=0, ub=1.0, lb=1.0, vtype="B", name="y_{}".format(_y)) else: y[_y] = model.addVar(obj=0, vtype="B", name="y_{}".format(_y)) # if not _x == _y: x[_x, _y] = model.addVar(obj=0, vtype="B", name="x_{},{}".format(_x, _y)) model.update() print('gen sum q', datetime.now() - t_start) coef = [1 for j in range(n)] var = [y[j] for j in range(n)] model.addConstr(LinExpr(coef, var), "=", rhs=budget + len(subset), name="k_center") print('gen <=', datetime.now() - t_start) for i in range(m): if i % 1000000 == 0: print('gen <= {}/{}'.format(i, m), datetime.now() - t_start) _x = xx[i] _y = yy[i] # if not _x == _y: model.addConstr(x[_x, _y], "<=", y[_y], name="Strong_{},{}".format(_x, _y)) print('gen sum 1', datetime.now() - t_start) yyy = {} for v in range(m): if i % 1000000 == 0: print('gen sum 1 {}/{}'.format(i, m), datetime.now() - t_start) _x = xx[v] _y = yy[v] if _x not in yyy: yyy[_x] = [] if _y not in yyy[_x]: yyy[_x].append(_y) for _x in yyy: coef = [] var = [] for _y in yyy[_x]: # if not _x==_y: coef.append(1) var.append(x[_x, _y]) coef.append(1) var.append(z[_x]) model.addConstr(LinExpr(coef, var), "=", 1, name="Assign{}".format(_x)) print('ok', datetime.now() - t_start) model.__data = x, y, z return model def core_set(model,dataloader_target,train_data,test_dset_supervised_training,optimizer,args,evaluator_valid,n_epochs,domain,test_dset,nb_samples,device): NUM_INIT_LB=int(nb_samples/2) #NUM_INIT_LB = nb_samples nb_unlabeled=nb_samples-NUM_INIT_LB idxs_lb = np.zeros(len(train_data), dtype=bool) # confs_target = extract_confidences(model, dataloader_target, device) # U = confs_target.max(1)[0] # idxs_unlabeled = np.arange(len(train_data)) # samples_to_query = idxs_unlabeled[U.sort()[1].cpu()[:NUM_INIT_LB]] # idxs_lb[samples_to_query] = True indices=np.arange(len(train_data)) np.random.shuffle(indices) samples_to_query=indices[:NUM_INIT_LB] idxs_lb[samples_to_query] = True query_data = [train_data[jj] for jj in samples_to_query] test_dset_supervised_training.dataset = pd.DataFrame(query_data) test_dset_supervised_training.set_domain_id(0) test_dset.set_domain_id(1) train_sizes = [int(len(test_dset_supervised_training) * args.train_pct)] val_sizes = [len(test_dset_supervised_training) - train_sizes[0]] subsets = [random_split(test_dset_supervised_training, [train_sizes[0], val_sizes[0]])] train_dls = [DataLoader( subset[0], batch_size=batch_size, shuffle=True, collate_fn=collate_batch_transformer ) for subset in subsets] scheduler = get_linear_schedule_with_warmup( optimizer, args.warmup_steps, n_epochs * sum([len(train_dl) for train_dl in train_dls]) ) opt = [optimizer] # Train train( model, train_dls, opt, scheduler, evaluator_valid, n_epochs, device, args.log_interval, model_dir=args.model_dir, gradient_accumulation=args.gradient_accumulation, domain_name=domain ) model.load_state_dict(torch.load(f'{args.model_dir}/files/model_{domain}.pth')) evaluator = ClassificationEvaluator(test_dset, device, use_domain=False) (loss, acc, P, R, F1), plots, (labels, logits), votes = evaluator.evaluate( model, plot_callbacks=[], return_labels_logits=True, return_votes=True ) print('{} samples for {}'.format(NUM_INIT_LB, domain)) print(f"{domain} F1: {F1}") print(f"{domain} Accuracy: {acc}") print() test_dset_supervised_training.dataset = pd.DataFrame(train_data) lb_flag = idxs_lb.copy() embss_target = extract_embs(model, dataloader_target, device) embedding = embss_target.cpu().numpy() from datetime import datetime #print('calculate distance matrix') t_start = datetime.now() dist_mat = np.matmul(embedding, embedding.transpose()) sq = np.array(dist_mat.diagonal()).reshape(len(train_data), 1) dist_mat *= -2 dist_mat += sq dist_mat += sq.transpose() dist_mat = np.sqrt(dist_mat) #print(datetime.now() - t_start) mat = dist_mat[~lb_flag, :][:, lb_flag] for i in range(nb_unlabeled): if i % 10 == 0: print('greedy solution {}/{}'.format(i, nb_unlabeled)) mat_min = mat.min(axis=1) q_idx_ = mat_min.argmax() q_idx = np.arange(len(train_data))[~lb_flag][q_idx_] lb_flag[q_idx] = True mat = np.delete(mat, q_idx_, 0) mat = np.append(mat, dist_mat[~lb_flag, q_idx][:, None], axis=1) print(datetime.now() - t_start) opt = mat.min(axis=1).max() bound_u = opt bound_l = opt / 2.0 delta = opt xx, yy = np.where(dist_mat <= opt) dd = dist_mat[xx, yy] lb_flag_ = idxs_lb.copy() subset = np.where(lb_flag_ == True)[0].tolist() SEED = 5 pickle.dump((xx.tolist(), yy.tolist(), dd.tolist(), subset, float(opt), nb_unlabeled, len(train_data)), open('mip{}.pkl'.format(SEED), 'wb'), 2) #ipdb.set_trace() r_name = 'mip{}.pkl'.format(SEED) w_name = 'sols{}.pkl'.format(SEED) print('load pickle {}'.format(r_name)) xx, yy, dd, subset, max_dist, budget, n = pickle.load(open(r_name, 'rb')) print(len(subset), budget, n) t_start = datetime.now() print('start') ub = max_dist lb = ub / 2.0 model_coreset = solve_fac_loc(xx, yy, subset, n, budget) # model.setParam( 'OutputFlag', False ) x, y, z = model_coreset.__data tor = 1e-3 sols = None while ub - lb > tor: cur_r = (ub + lb) / 2.0 print("======[State]======", ub, lb, cur_r, ub - lb) # viol = numpy.where(_d>cur_r) viol = [i for i in range(len(dd)) if dd[i] > cur_r] # new_max_d = numpy.min(_d[_d>=cur_r]) new_max_d = min([d for d in dd if d >= cur_r]) # new_min_d = numpy.max(_d[_d<=cur_r]) new_min_d = max([d for d in dd if d <= cur_r]) print("If it succeeds, new max is:", new_max_d, new_min_d) for v in viol: x[xx[v], yy[v]].UB = 0 model_coreset.update() r = model_coreset.optimize() if model_coreset.getAttr(GRB.Attr.Status) == GRB.INFEASIBLE: failed = True print("======[Infeasible]======") elif sum([z[i].X for i in range(len(z))]) > 0: failed = True print("======[Failed]======Failed") else: failed = False if failed: lb = max(cur_r, new_max_d) # failed so put edges back for v in viol: x[xx[v], yy[v]].UB = 1 else: print("======[Solution Founded]======", ub, lb, cur_r) ub = min(cur_r, new_min_d) sols = [v.varName for v in model_coreset.getVars() if v.varName.startswith('y') and v.x > 0] #break print('end', datetime.now() - t_start, ub, lb, max_dist) if sols is not None: sols = [int(v.split('_')[-1]) for v in sols] print('save pickle {}'.format(w_name)) pickle.dump(sols, open(w_name, 'wb'), 2) sols = pickle.load(open('sols{}.pkl'.format(SEED), 'rb')) if sols is None: q_idxs = lb_flag else: lb_flag_[sols] = True q_idxs = lb_flag_ print('sum q_idxs = {}'.format(q_idxs.sum())) samples_to_query = np.arange(len(train_data))[(idxs_lb | q_idxs)] query_data = [train_data[jj] for jj in samples_to_query] print('nb samples={}'.format(len(query_data))) return model,query_data def USDE(model,dataloader_target,train_data,nb_samples,n_drop,device): confs_target = extract_probs_dropout(model, dataloader_target, device, n_drop) log_probs = torch.log(confs_target) U = (confs_target * log_probs).sum(1) idxs_unlabeled = np.arange(len(train_data)) samples_to_query = idxs_unlabeled[U.sort()[1].cpu()[:nb_samples]] query_data = [train_data[jj] for jj in samples_to_query] return query_data def extract_probs_split(model,dataloader,device,n_drop): model.train() dropout_confs=[] with torch.no_grad(): for i in range(n_drop): all_embs=[] for batch in tqdm(dataloader, desc="Evaluation"): batch = tuple(t.to(device) for t in batch) input_ids = batch[0] masks = batch[1] confs = model.return_confidence(input_ids, attention_mask=masks) all_embs.append(confs) all_embs=torch.cat(all_embs) dropout_confs.append(all_embs) dropout_confs=torch.stack(dropout_confs,dim=0) return dropout_confs def BALD(model,dataloader_target,train_data,nb_samples,n_drop,device): confs_target = extract_probs_split(model, dataloader_target, device, n_drop) pb = confs_target.mean(0) entropy1 = (-pb * torch.log(pb)).sum(1) entropy2 = (-confs_target * torch.log(confs_target)).sum(2).mean(0) U = entropy2 - entropy1 idxs_unlabeled = np.arange(len(train_data)) samples_to_query = idxs_unlabeled[U.sort()[1].cpu()[:nb_samples]] query_data = [train_data[jj] for jj in samples_to_query] return query_data def USDE_BALD(model,dataloader_target,train_data,nb_samples,n_drop,device): confs_target = extract_probs_dropout(model, dataloader_target, device, n_drop) log_probs = torch.log(confs_target) U1 = (confs_target * log_probs).sum(1) confs_target = extract_probs_split(model, dataloader_target, device, n_drop) pb = confs_target.mean(0) entropy1 = (-pb * torch.log(pb)).sum(1) entropy2 = (-confs_target * torch.log(confs_target)).sum(2).mean(0) U = entropy2 - entropy1 U=U+U1 idxs_unlabeled = np.arange(len(train_data)) samples_to_query = idxs_unlabeled[U.sort()[1].cpu()[:nb_samples]] query_data = [train_data[jj] for jj in samples_to_query] return query_data def train( model: torch.nn.Module, train_dls: List[DataLoader], optimizer: [torch.optim.Optimizer,torch.optim.Optimizer], scheduler: LambdaLR, validation_evaluator: ClassificationEvaluator, n_epochs: int, device: AnyStr, log_interval: int = 1, patience: int = 10, model_dir: str = "wandb_local", gradient_accumulation: int = 1, domain_name: str = '' ): #best_loss = float('inf') best_F1 = 0.0 epoch_counter = 0 total = sum(len(dl) for dl in train_dls) optG = optimizer[0] sotmax = nn.Softmax(dim=1) # Main loop while epoch_counter < n_epochs: dl_iters = [iter(dl) for dl in train_dls] dl_idx = list(range(len(dl_iters))) finished = [0] * len(dl_iters) i = 0 with tqdm(total=total, desc="Training") as pbar: while sum(finished) < len(dl_iters): random.shuffle(dl_idx) for d in dl_idx: domain_dl = dl_iters[d] batches = [] try: for j in range(gradient_accumulation): batches.append(next(domain_dl)) except StopIteration: finished[d] = 1 if len(batches) == 0: continue optG.zero_grad() for batch in batches: model.train() batch = tuple(t.to(device) for t in batch) input_ids = batch[0] masks = batch[1] labels = batch[2] domains = batch[3] loss, logits, alpha = model.forward_test(input_ids, attention_mask=masks, domains=domains, labels=labels, ret_alpha = True) loss = loss.mean() / gradient_accumulation loss.backward() i += 1 pbar.update(1) optG.step() if scheduler is not None: scheduler.step() gc.collect() (loss, acc, P, R, F1), plots, (labels, logits), votes = validation_evaluator.evaluate( model, plot_callbacks=[], return_labels_logits=True, return_votes=True ) print('valid F1={}'.format(F1)) if F1 > best_F1: best_F1 = F1 torch.save(model.state_dict(), f'{model_dir}/files/model_{domain_name}.pth') gc.collect() epoch_counter += 1 if __name__ == "__main__": # Define arguments parser = argparse.ArgumentParser() parser.add_argument("--dataset_loc", help="Root directory of the dataset", required=False, type=str, default='entity-matching-dataset') parser.add_argument("--train_pct", help="Percentage of data to use for training", type=float, default=0.8) parser.add_argument("--n_gpu", help="The number of GPUs to use", type=int, default=0) parser.add_argument("--log_interval", help="Number of steps to take between logging steps", type=int, default=1) parser.add_argument("--warmup_steps", help="Number of steps to warm up Adam", type=int, default=200) parser.add_argument("--n_epochs", help="Number of epochs", type=int, default=3) parser.add_argument("--pretrained_bert", help="Directory with weights to initialize the shared model with", type=str, default=None) parser.add_argument("--domains", nargs='+', help='A list of domains to use for training', default=['Walmart-Amazon', 'Abt-Buy', 'Beer', 'DBLP-GoogleScholar', 'Amazon-Google', 'cameras_', 'DBLP-ACM', 'Fodors-Zagats', 'iTunes-Amazon', 'shoes_', 'computers_', 'watches_']) parser.add_argument("--seed", type=int, help="Random seed", default=1000) parser.add_argument("--model_dir", help="Where to store the saved model", default="moe_dame", type=str) parser.add_argument("--tags", nargs='+', help='A list of tags for this run', default=[]) parser.add_argument("--batch_size", help="The batch size", type=int, default=16) parser.add_argument("--lr", help="Learning rate", type=float, default=1e-5) parser.add_argument("--weight_decay", help="l2 reg", type=float, default=0.01) parser.add_argument("--n_heads", help="Number of transformer heads", default=6, type=int) parser.add_argument("--n_layers", help="Number of transformer layers", default=6, type=int) parser.add_argument("--d_model", help="Transformer model size", default=768, type=int) parser.add_argument("--ff_dim", help="Intermediate feedforward size", default=2048, type=int) parser.add_argument("--gradient_accumulation", help="Number of gradient accumulation steps", default=1, type=int) parser.add_argument("--model", help="Name of the model to run", default="VanillaBert") parser.add_argument("--supervision_layer", help="The layer at which to use domain adversarial supervision", default=6, type=int) parser.add_argument("--indices_dir", help="If standard splits are being used", type=str, default=None) parser.add_argument("--active_learning", help="active learning strategies", default="random sampling", type=str) args = parser.parse_args() active_learning_strategy = args.active_learning valid_als=['random sampling','least confidence', 'entropy sampling', 'usde', 'bald', 'k-centers', 'k-means', 'core-set'] if active_learning_strategy not in valid_als: print('choose AL strategy from the list {}'.format(valid_als)) exit() # Set all the seeds seed = args.seed random.seed(seed)
np.random.seed(seed)
numpy.random.seed
# Copyright (c) 2018 <NAME> # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Adapted from the original implementation by <NAME>. # Source: https://github.com/brucechou1983/CheXNet-Keras import numpy as np import os import pandas as pd from PIL import Image from configparser import ConfigParser from keras.applications.densenet import DenseNet121 import importlib from keras.layers import Input from utility import get_class_names from keras.layers.core import Dense from keras.models import Model import h5py import sys import argparse import shutil from keras.backend.tensorflow_backend import set_session import tensorflow as tf from tensorflow.python.keras.losses import categorical_crossentropy os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' #---------------------------------------------------------------------------- # Convenience func that normalizes labels. def normalize_labels(lab): labels_sum = np.sum(lab,axis=1).reshape(-1,1) lab_new = np.divide(lab,labels_sum) return lab_new #---------------------------------------------------------------------------- # Mask input by numpy multiplication. def mask_input(x,i,j,BS,C,H,W,ds): mask = np.ones([H,W,C]) mask[i*ds:(i+1)*ds,j*ds:(j+1)*ds,:] = np.zeros([ds,ds,C]) return np.multiply(x,mask) #---------------------------------------------------------------------------- # Upscale cxplain attention map # x = [BS,H,W,C] def upscale2d(x, factor=2): x = np.transpose(x,[0,3,1,2]) #[BS,H,W,C]->[BS,C,H,W] assert isinstance(factor, int) and factor >= 1 if factor == 1: return x s = x.shape x = np.reshape(x, [-1, s[1], s[2], 1, s[3], 1]) x = np.repeat(x,factor,axis=3) x = np.repeat(x,factor,axis=5) x = np.reshape(x,[-1,s[1],s[2] * factor, s[3] * factor]) x = np.transpose(x,[0,2,3,1]) return x #---------------------------------------------------------------------------- # BCE loss in numpy def binary_crossentropy(output,target,epsilon=1e-07): output = np.clip(output, epsilon, 1. - epsilon) bce = target * np.log(output+epsilon) bce += (1 - target) * np.log(1 - output+epsilon) return np.mean(-bce,axis=1) #---------------------------------------------------------------------------- # Computes delta maps as new input for discrimiantor # x = [BS,H,W,C] # labels = [BS,Y] def get_delta_map(x, model, labels, downsample_factor=2, log_transform=False, normalize=False): BS, H, W, C = x.shape[0], x.shape[1], x.shape[2], x.shape[3] H_new = (H//downsample_factor) W_new = (W//downsample_factor) num_masks = H_new*W_new # Tile and replicate x_tiled = np.reshape(x,[1,BS,H,W,C]) x_rep = np.repeat(x_tiled,num_masks,axis=0) #Get masked tensors and compute delta_errors base_loss = binary_crossentropy(output=model.predict(x), target=labels) idx = 0 delta_errors = [] for i in range(0,H_new): for j in range(0,W_new): x_mask = mask_input(x_rep[idx],i,j,BS=BS,C=C,H=H,W=W,ds=downsample_factor) loss = binary_crossentropy(output=model.predict(x_mask), target=labels) delta = np.maximum(loss-base_loss,1e-07) if log_transform: delta = np.log(1.0 + delta) delta_errors.append(delta) idx += 1 delta_errors = np.asarray(delta_errors) #[num_masks,BS,1] delta_errors = np.transpose(delta_errors,[1,0]) #[BS,num_masks] delta_map = np.reshape(delta_errors, [BS,H_new,W_new,1]) #[BS,H_new,W_new,1] delta_map = upscale2d(delta_map,factor=downsample_factor) #[BS,H,W,1] if normalize: delta_map_sum = np.sum(delta_map,axis=(1,2,3)).reshape(-1,1,1,1) delta_map = delta_map / delta_map_sum return delta_map def cxpl(model_dir, results_dir, resolution): # parser config config_file = model_dir+ "/config.ini" print("Config File Path:", config_file,flush=True) assert os.path.isfile(config_file) cp = ConfigParser() cp.read(config_file) # default config image_dimension = cp["TRAIN"].getint("image_dimension") batch_size = cp["TEST"].getint("batch_size") use_best_weights = cp["TEST"].getboolean("use_best_weights") batchsize_cxpl = cp["CXPL"].getint("batchsize_cxpl") print("** DenseNet input resolution:", image_dimension, flush=True) print("** GAN image resolution:", resolution, flush=True) log2_record = int(np.log2(resolution)) record_file_ending = "*"+ np.str(log2_record)+ ".tfrecords" print("** Resolution ", resolution, " corresponds to ", record_file_ending, " TFRecord file.", flush=True) output_dir = os.path.join(results_dir, "classification_results_res_"+np.str(2**log2_record)+"/test") print("Output Directory:", output_dir,flush=True) if not os.path.isdir(output_dir): os.makedirs(output_dir) if use_best_weights: print("** Using BEST weights",flush=True) model_weights_path = os.path.join(results_dir, "classification_results_res_"+np.str(2**log2_record)+"/train/best_weights.h5") else: print("** Using LAST weights",flush=True) model_weights_path = os.path.join(results_dir, "classification_results_res_"+np.str(2**log2_record)+"/train/weights.h5") # get test sample count class_names = get_class_names(output_dir,"test") # Get Model # ------------------------------------ input_shape=(image_dimension, image_dimension, 3) img_input = Input(shape=input_shape) base_model = DenseNet121( include_top = False, weights = None, input_tensor = img_input, input_shape = input_shape, pooling = "avg") x = base_model.output predictions = Dense(len(class_names), activation="sigmoid", name="predictions")(x) model = Model(inputs=img_input, outputs = predictions) print(" ** load model from:", model_weights_path, flush=True) model.load_weights(model_weights_path) # ------------------------------------ # Load Paths & Labels print(" ** load .csv and images.", flush=True) paths=[] labels=[] df_nn = pd.read_csv(output_dir+"/nn_files/nn_path_and_labels.csv") for row in df_nn.iterrows(): labels.append(row[1][1:].astype(np.float32)) paths.append(row[1][0]) y_cx = np.asarray(labels) all_paths = np.asarray(paths) # Load Images imagenet_mean = np.array([0.485, 0.456, 0.406]) imagenet_std = np.array([0.229, 0.224, 0.225]) imgs = [] for path in paths: img = Image.open(output_dir+"/nn_files/"+path) img = np.asarray(img.convert("L")) img = img / 255. img =
np.reshape(img,[img.shape[0],img.shape[1],1])
numpy.reshape
import numpy as np import pandas as pd import pytest from glum._util import _align_df_categories @pytest.fixture() def df(): return pd.DataFrame( { "x1": np.array([0, 1], dtype="int64"), "x2": np.array([0, 1], dtype="bool"), "x3": np.array([0, 1], dtype="float64"), "x4": ["0", "1"], "x5": ["a", "b"], "x6": pd.Categorical(["a", "b"]), "x7": pd.Categorical(["a", "b"], categories=["b", "a"]), } ) def test_align_df_categories_numeric(df): dtypes = {column: np.float64 for column in df} expected = pd.DataFrame( { "x1": np.array([0, 1], dtype="int64"), "x2": np.array([0, 1], dtype="bool"), "x3": np.array([0, 1], dtype="float64"), "x4": ["0", "1"], "x5": ["a", "b"], "x6": pd.Categorical(["a", "b"]), "x7": pd.Categorical(["a", "b"], categories=["b", "a"]), } ) pd.testing.assert_frame_equal(_align_df_categories(df, dtypes), expected) def test_align_df_categories_categorical(df): dtypes = {column: pd.CategoricalDtype(["a", "b"]) for column in df} expected = pd.DataFrame( { "x1": [np.nan, np.nan], "x2": [np.nan, np.nan], "x3": [np.nan, np.nan], "x4": [np.nan, np.nan], "x5": pd.Categorical(["a", "b"]), "x6": pd.Categorical(["a", "b"]), "x7": pd.Categorical(["a", "b"]), }, dtype=pd.CategoricalDtype(["a", "b"]), ) pd.testing.assert_frame_equal(_align_df_categories(df, dtypes), expected) def test_align_df_categories_excess_columns(df): dtypes = {"x1": np.float64} expected = pd.DataFrame( { "x1": np.array([0, 1], dtype="int64"), "x2":
np.array([0, 1], dtype="bool")
numpy.array
""" Author: <NAME> Created in: September 19, 2019 Python version: 3.6 """ from Least_SRMTL import Least_SRMTL import libmr from matplotlib import pyplot, cm from matplotlib.patches import Circle from mpl_toolkits.mplot3d import Axes3D, art3d import numpy as np import numpy.matlib import sklearn.metrics class EVeP(object): """ evolving Extreme Value Machine Ruled-based predictor with EVM at the definition of the antecedent of the rules. 1. Create a new instance and provide the model parameters; 2. Call the predict(x) method to make predictions based on the given input; 3. Call the train(x, y) method to evolve the model based on the new input-output pair. """ # Model initialization def __init__(self, sigma=0.5, delta=50, N=np.Inf, rho=None, columns_ts=None): # Setting EVM algorithm parameters self.sigma = sigma self.tau = 99999 self.delta = delta self.N = N self.rho = rho self.columns_ts = columns_ts if self.rho is not None: self.init_theta = 2 self.srmtl = Least_SRMTL(rho) self.R = None self.mr_x = list() self.mr_y = list() self.x0 = list() self.y0 = list() self.X = list() self.y = list() self.step = list() self.last_update = list() self.theta = list() self.c = 0 # Initialization of a new instance of EV. def add_EV(self, x0, y0, step): self.mr_x.append(libmr.MR()) self.mr_y.append(libmr.MR()) self.x0.append(x0) self.y0.append(y0) self.X.append(x0) self.y.append(y0) self.step.append(step) self.last_update.append(np.max(step)) self.theta.append(np.zeros_like(x0)) self.c = self.c + 1 if self.rho is None: # coefficients of the consequent part self.theta[-1] = np.insert(self.theta[-1], 0, y0, axis=1).T else: self.init_theta = 2 # coefficients of the consequent part self.theta[-1] = np.insert(self.theta[-1], 0, y0, axis=1) # Add the sample(s) (X, y) as covered by the extreme vector. Remove repeated points. def add_sample_to_EV(self, index, X, y, step): self.X[index] = np.concatenate((self.X[index], X)) self.y[index] = np.concatenate((self.y[index], y)) self.step[index] = np.concatenate((self.step[index], step)) if self.X[index].shape[0] > self.N: indexes = np.argsort(-self.step[index].reshape(-1)) self.X[index] = self.X[index][indexes[: self.N], :] self.y[index] = self.y[index][indexes[: self.N]] self.step[index] = self.step[index][indexes[: self.N]] self.x0[index] = np.average(self.X[index], axis=0).reshape(1, -1) self.y0[index] = np.average(self.y[index], axis=0).reshape(1, -1) self.last_update[index] = np.max(self.step[index]) if self.rho is None: self.theta[index] = np.linalg.lstsq(np.insert(self.X[index], 0, 1, axis=1), self.y[index], rcond=None)[0] def delete_from_list(self, list_, indexes): for i in sorted(indexes, reverse=True): del list_[i] return list_ # Calculate the firing degree of the sample to the psi curve def firing_degree(self, index, x=None, y=None): if y is None: return self.mr_x[index].w_score_vector(sklearn.metrics.pairwise.pairwise_distances(self.x0[index], x).reshape(-1)) elif x is None: return self.mr_y[index].w_score_vector(sklearn.metrics.pairwise.pairwise_distances(self.y0[index], y).reshape(-1)) else: return np.minimum(self.mr_x[index].w_score_vector(sklearn.metrics.pairwise.pairwise_distances(self.x0[index], x).reshape(-1)), self.mr_y[index].w_score_vector(sklearn.metrics.pairwise.pairwise_distances(self.y0[index], y).reshape(-1))) # Fit the psi curve of the EVs according to the external samples def fit(self, index, X_ext, y_ext): self.fit_x(index, sklearn.metrics.pairwise.pairwise_distances(self.x0[index], X_ext)[0]) self.fit_y(index, sklearn.metrics.pairwise.pairwise_distances(self.y0[index], y_ext)[0]) # Fit the psi curve to the extreme values with distance D to the center of the EV def fit_x(self, index, D): self.mr_x[index].fit_low(1/2 * D, min(D.shape[0], self.tau)) # Fit the psi curve to the extreme values with distance D to the center of the EV def fit_y(self, index, D): self.mr_y[index].fit_low(1/2 * D, min(D.shape[0], self.tau)) # Get the distance from the origin of the input EV which has the given probability to belong to the curve def get_distance_input(self, percentage, index=None): if index is None: return [self.mr_x[i].inv(percentage) for i in range(self.c)] else: return self.mr_x[index].inv(percentage) # Get the distance from the origin of the output EV which has the given probability to belong to the curve def get_distance_output(self, percentage, index=None): if index is None: return [self.mr_y[i].inv(percentage) for i in range(self.c)] else: return self.mr_y[index].inv(percentage) # Obtain the samples that do not belong to the given EV def get_external_samples(self, index=None): if index is None: X = np.concatenate(self.X) y = np.concatenate(self.y) else: if self.c > 1: X = np.concatenate(self.X[:index] + self.X[index + 1 :]) y = np.concatenate(self.y[:index] + self.y[index + 1 :]) else: X = np.array([]) y = np.array([]) return (X, y) # Merge two EVs of different clusters whenever the origin of one is inside the sigma probability of inclusion of the psi curve of the other def merge(self): self.sort_EVs() index = 0 while index < self.c: if index + 1 < self.c: x0 = np.concatenate(self.x0[index + 1 : ]) y0 = np.concatenate(self.y0[index + 1 : ]) S_index = self.firing_degree(index, x0, y0) index_to_merge = np.where(S_index > self.sigma)[0] + index + 1 if index_to_merge.size > 0: self.init_theta = 2 for i in reversed(range(len(index_to_merge))): self.add_sample_to_EV(index, self.X[index_to_merge[i]], self.y[index_to_merge[i]], self.step[index_to_merge[i]]) self.remove_EV([index_to_merge[i]]) index = index + 1 # Plot the granules that form the antecedent part of the rules def plot(self, name_figure_input, name_figure_output, step): # Input fuzzy granules plot fig = pyplot.figure() ax = fig.add_subplot(111, projection='3d') ax.axes.set_xlim3d(left=-2, right=2) ax.axes.set_ylim3d(bottom=-2, top=2) z_bottom = -0.3 ax.set_zticklabels("") colors = cm.get_cmap('Dark2', self.c) for i in range(self.c): self.plot_EV_input(i, ax, '.', colors(i), z_bottom) legend.append('$\lambda$ = ' + str(round(self.mr_x[new_order[i]].get_params()[0], 1)) + ' $\kappa$ = ' + str(round(self.mr_x[new_order[i]].get_params()[1], 1))) # Plot axis' labels ax.set_xlabel('u(t)', fontsize=15) ax.set_ylabel('y(t)', fontsize=15) ax.set_zlabel('$\mu_x$', fontsize=15) ax.legend(legend, fontsize=10, loc=2) # Save figure fig.savefig(name_figure_input) # Close plot pyplot.close(fig) # Output fuzzy granules plot fig = pyplot.figure() ax = fig.add_subplot(111) ax.axes.set_xlim(left=-2, right=2) for i in range(self.c): self.plot_EV_output(i, ax, '.', colors(i), z_bottom) # Plot axis' labels ax.set_xlabel('y(t + 1)', fontsize=15) ax.set_ylabel('$\mu_y$', fontsize=15) ax.legend(legend, fontsize=10, loc=2) # Save figure fig.savefig(name_figure_output) # Close plot pyplot.close(fig) # Plot the probability of sample inclusion (psi-model) together with the samples associated with the EV for the input fuzzy granules def plot_EV_input(self, index, ax, marker, color, z_bottom): # Plot the input samples in the XY plan ax.scatter(self.X[index][:, 0], self.X[index][:, 1], z_bottom * np.ones((self.X[index].shape[0], 1)), marker=marker, color=color) # Plot the radius for which there is a probability sigma to belong to the EV radius = self.get_distance_input(self.sigma, index) p = Circle((self.x0[index][0, 0], self.x0[index][0, 1]), radius, fill=False, color=color) ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=z_bottom, zdir="z") # Plot the psi curve of the EV r = np.linspace(0, self.get_distance_input(0.05, index), 100) theta = np.linspace(0, 2 * np.pi, 145) radius_matrix, theta_matrix = np.meshgrid(r,theta) X = self.x0[index][0, 0] + radius_matrix * np.cos(theta_matrix) Y = self.x0[index][0, 1] + radius_matrix * np.sin(theta_matrix) points = np.array([np.array([X, Y])[0, :, :].reshape(-1), np.array([X, Y])[1, :, :].reshape(-1)]).T Z = self.firing_degree(index, points) ax.plot_surface(X, Y, Z.reshape((X.shape[0], X.shape[1])), antialiased=False, cmap=cm.coolwarm, alpha=0.1) # Plot the probability of sample inclusion (psi-model) together with the samples associated with the EV for the output fuzzy granules def plot_EV_output(self, index, ax, marker, color, z_bottom): # Plot the output data points in the X axis ax.scatter(self.y[index], np.zeros_like(self.y[index]), marker=marker, color=color) # Plot the psi curve of the EV r = np.linspace(0, self.get_distance_output(0.01, index), 100) points = np.concatenate((np.flip((self.y0[index] - r).T, axis=0), (self.y0[index] + r).T), axis=0) Z = self.firing_degree(index, y=points) #ax.plot(points, Z, antialiased=False, cmap=cm.coolwarm, alpha=0.1) ax.plot(points, Z, color=color) # Predict the output given the input sample x def predict(self, x): num = 0 den = 0 for i in range(self.c): p = self.predict_EV(i, x) num = num + self.firing_degree(i, x, p) * p den = den + self.firing_degree(i, x, p) if den == 0: if self.columns_ts is None: return np.mean(x) return np.mean(x[:, self.columns_ts]) return num / den # Predict the local output of x based on the linear regression of the samples stored at the EV def predict_EV(self, index, x): if self.rho is None: return np.insert(x, 0, 1).reshape(1, -1) @ self.theta[index] return np.insert(x, 0, 1).reshape(1, -1) @ self.theta[index].T # Calculate the degree of relationship of all the rules to the rule of index informed as parameter def relationship_rules(self, index): distance_x = sklearn.metrics.pairwise.pairwise_distances(self.x0[index], np.concatenate(self.x0)).reshape(-1) distance_y = sklearn.metrics.pairwise.pairwise_distances(self.y0[index], np.concatenate(self.y0)).reshape(-1) relationship_x_center = self.mr_x[index].w_score_vector(distance_x) relationship_y_center = self.mr_y[index].w_score_vector(distance_y) relationship_x_radius = self.mr_x[index].w_score_vector(distance_x - self.get_distance_input(self.sigma)) relationship_y_radius = self.mr_y[index].w_score_vector(distance_y - self.get_distance_output(self.sigma)) return np.maximum(np.maximum(relationship_x_center, relationship_x_radius), np.maximum(relationship_y_center, relationship_y_radius)) # Remove the EV whose index was informed by parameter def remove_EV(self, index): self.mr_x = self.delete_from_list(self.mr_x, index) self.mr_y = self.delete_from_list(self.mr_y, index) self.x0 = self.delete_from_list(self.x0, index) self.y0 = self.delete_from_list(self.y0, index) self.X = self.delete_from_list(self.X, index) self.y = self.delete_from_list(self.y, index) self.step = self.delete_from_list(self.step, index) self.last_update = self.delete_from_list(self.last_update, index) self.theta = self.delete_from_list(self.theta, index) self.c = len(self.mr_x) # Remove the EVs that didn't have any update in the last threshold steps def remove_outdated_EVs(self, threshold): indexes_to_remove = list() for index in range(self.c): if self.last_update[index] <= threshold: indexes_to_remove.append(index) if len(indexes_to_remove) > 0: self.remove_EV(indexes_to_remove) if self.rho is not None: self.update_R() self.init_theta = 2 # Sort the EVs according to the last update def sort_EVs(self): new_order = (-np.array(self.last_update)).argsort() self.mr_x = list(np.array(self.mr_x)[new_order]) self.mr_y = list(np.array(self.mr_y)[new_order]) self.x0 = list(np.array(self.x0)[new_order]) self.y0 = list(np.array(self.y0)[new_order]) self.X = list(np.array(self.X)[new_order]) self.y = list(np.array(self.y)[new_order]) self.step = list(np.array(self.step)[new_order]) self.last_update = list(np.array(self.last_update)[new_order]) # Evolves the model (main method) def train(self, x, y, step): best_EV = None best_EV_value = 0 # check if it is possible to insert the sample in an existing model for index in range(self.c): tau = self.firing_degree(index, x, y) if tau > best_EV_value and tau > self.sigma: best_EV = index best_EV_value = tau update = False # Add the sample to an existing EV if best_EV is not None: self.add_sample_to_EV(best_EV, x, y, step) # Create a new EV else: self.add_EV(x, y, step) update = True self.update_EVs() if step != 0 and (step % self.delta) == 0: self.remove_outdated_EVs(step[0, 0] - self.delta) self.merge() update = True if self.rho is not None: if update: self.update_R() self.theta = self.srmtl.train(self.X, self.y, self.init_theta) self.init_theta = 1 # Update the psi curve of the EVs def update_EVs(self): for i in range(self.c): (X_ext, y_ext) = self.get_external_samples(i) if X_ext.shape[0] > 0: self.fit(i, X_ext, y_ext) def update_R(self): S = np.zeros((self.c, self.c)) for i in range(self.c): S[i, :] = self.relationship_rules(i) self.R = None for i in range(self.c): for j in range(i + 1, self.c): if S[i, j] > 0 or S[j, i] > 0: edge =
np.zeros((self.c, 1))
numpy.zeros
from pycode.tinyflow import autodiff as ad import numpy as np from pycode.tinyflow import ndarray from pycode.tinyflow import TrainExecute from pycode.tinyflow import train def test_identity(): x2 = ad.Variable(name="x2") y = x2 grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * np.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val) assert np.array_equal(grad_x2_val, np.ones_like(x2_val)) def test_add_by_const(): x2 = ad.Variable(name="x2") y = 5 + x2 grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * np.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val + 5) assert np.array_equal(grad_x2_val, np.ones_like(x2_val)) def test_mul_by_const(): x2 = ad.Variable(name="x2") y = 5 * x2 grad_x2, = ad.gradients(y, [x2]) executor = ad.Executor([y, grad_x2]) x2_val = 2 * np.ones(3) y_val, grad_x2_val = executor.run(feed_dict={x2: x2_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val * 5) assert np.array_equal(grad_x2_val, np.ones_like(x2_val) * 5) def test_add_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 + x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x2: x2_val, x3: x3_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val + x3_val) assert np.array_equal(grad_x2_val, np.ones_like(x2_val)) assert np.array_equal(grad_x3_val, np.ones_like(x3_val)) def test_mul_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 * x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x2: x2_val, x3: x3_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x2_val * x3_val) assert np.array_equal(grad_x2_val, x3_val) assert np.array_equal(grad_x3_val, x2_val) def test_add_mul_mix_1(): x1 = ad.Variable(name="x1") x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x1 + x2 * x3 * x1 grad_x1, grad_x2, grad_x3 = ad.gradients(y, [x1, x2, x3]) executor = ad.Executor([y, grad_x1, grad_x2, grad_x3]) x1_val = 1 * np.ones(3) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x1_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x1: x1_val, x2: x2_val, x3: x3_val}) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x1_val + x2_val * x3_val) assert np.array_equal(grad_x1_val, np.ones_like(x1_val) + x2_val * x3_val) assert np.array_equal(grad_x2_val, x3_val * x1_val) assert np.array_equal(grad_x3_val, x2_val * x1_val) def test_add_mul_mix_2(): x1 = ad.Variable(name="x1") x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") x4 = ad.Variable(name="x4") y = x1 + x2 * x3 * x4 grad_x1, grad_x2, grad_x3, grad_x4 = ad.gradients(y, [x1, x2, x3, x4]) executor = ad.Executor([y, grad_x1, grad_x2, grad_x3, grad_x4]) x1_val = 1 * np.ones(3) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) x4_val = 4 * np.ones(3) y_val, grad_x1_val, grad_x2_val, grad_x3_val, grad_x4_val = executor.run( feed_dict={x1: x1_val, x2: x2_val, x3: x3_val, x4: x4_val} ) assert isinstance(y, ad.Node) assert np.array_equal(y_val, x1_val + x2_val * x3_val * x4_val) assert np.array_equal(grad_x1_val, np.ones_like(x1_val)) assert np.array_equal(grad_x2_val, x3_val * x4_val) assert np.array_equal(grad_x3_val, x2_val * x4_val) assert np.array_equal(grad_x4_val, x2_val * x3_val) def test_add_mul_mix_3(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") z = x2 * x2 + x2 + x3 + 3 y = z * z + x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x2: x2_val, x3: x3_val}) z_val = x2_val * x2_val + x2_val + x3_val + 3 expected_yval = z_val * z_val + x3_val expected_grad_x2_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) * (2 * x2_val + 1) expected_grad_x3_val = 2 * (x2_val * x2_val + x2_val + x3_val + 3) + 1 assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val) def test_grad_of_grad(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = x2 * x2 + x2 * x3 grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) grad_x2_x2, grad_x2_x3 = ad.gradients(grad_x2, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3, grad_x2_x2, grad_x2_x3]) x2_val = 2 * np.ones(3) x3_val = 3 * np.ones(3) y_val, grad_x2_val, grad_x3_val, grad_x2_x2_val, grad_x2_x3_val = executor.run( feed_dict={x2: x2_val, x3: x3_val} ) expected_yval = x2_val * x2_val + x2_val * x3_val expected_grad_x2_val = 2 * x2_val + x3_val expected_grad_x3_val = x2_val expected_grad_x2_x2_val = 2 * np.ones_like(x2_val) expected_grad_x2_x3_val = 1 * np.ones_like(x2_val) assert isinstance(y, ad.Node) assert np.array_equal(y_val, expected_yval) assert np.array_equal(grad_x2_val, expected_grad_x2_val) assert np.array_equal(grad_x3_val, expected_grad_x3_val) assert np.array_equal(grad_x2_x2_val, expected_grad_x2_x2_val) assert np.array_equal(grad_x2_x3_val, expected_grad_x2_x3_val) def test_matmul_two_vars(): x2 = ad.Variable(name="x2") x3 = ad.Variable(name="x3") y = ad.matmul_op(x2, x3) grad_x2, grad_x3 = ad.gradients(y, [x2, x3]) executor = ad.Executor([y, grad_x2, grad_x3]) x2_val = np.array([[1, 2], [3, 4], [5, 6]]) # 3x2 x3_val = np.array([[7, 8, 9], [10, 11, 12]]) # 2x3 y_val, grad_x2_val, grad_x3_val = executor.run(feed_dict={x2: x2_val, x3: x3_val}) expected_yval = np.matmul(x2_val, x3_val) expected_grad_x2_val = np.matmul(np.ones_like(expected_yval), np.transpose(x3_val)) expected_grad_x3_val = np.matmul(np.transpose(x2_val), np.ones_like(expected_yval)) assert isinstance(y, ad.Node) assert
np.array_equal(y_val, expected_yval)
numpy.array_equal
import math import numpy import pytest from stl.mesh import Mesh from . import utils def test_rotation(): # Create 6 faces of a cube data = numpy.zeros(6, dtype=Mesh.dtype) # Top of the cube data['vectors'][0] = numpy.array([[0, 1, 1], [1, 0, 1], [0, 0, 1]]) data['vectors'][1] = numpy.array([[1, 0, 1], [0, 1, 1], [1, 1, 1]]) # Right face data['vectors'][2] = numpy.array([[1, 0, 0], [1, 0, 1], [1, 1, 0]]) data['vectors'][3] = numpy.array([[1, 1, 1], [1, 0, 1], [1, 1, 0]]) # Left face data['vectors'][4] = numpy.array([[0, 0, 0], [1, 0, 0], [1, 0, 1]]) data['vectors'][5] = numpy.array([[0, 0, 0], [0, 0, 1], [1, 0, 1]]) mesh = Mesh(data, remove_empty_areas=False) # Since the cube faces are from 0 to 1 we can move it to the middle by # substracting .5 data['vectors'] -= .5 # Rotate 90 degrees over the X axis followed by the Y axis followed by the # X axis mesh.rotate([0.5, 0.0, 0.0], math.radians(90)) mesh.rotate([0.0, 0.5, 0.0], math.radians(90)) mesh.rotate([0.5, 0.0, 0.0], math.radians(90)) # Since the cube faces are from 0 to 1 we can move it to the middle by # substracting .5 data['vectors'] += .5 # We use a slightly higher absolute tolerance here, for ppc64le # https://github.com/WoLpH/numpy-stl/issues/78 assert numpy.allclose(mesh.vectors, numpy.array([ [[1, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 1, 0], [1, 0, 0], [1, 1, 0]], [[0, 1, 1], [0, 1, 0], [1, 1, 1]], [[1, 1, 0], [0, 1, 0], [1, 1, 1]], [[0, 0, 1], [0, 1, 1], [0, 1, 0]], [[0, 0, 1], [0, 0, 0], [0, 1, 0]], ]), atol=1e-07) def test_rotation_over_point(): # Create a single face data = numpy.zeros(1, dtype=Mesh.dtype) data['vectors'][0] = numpy.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) mesh = Mesh(data, remove_empty_areas=False) mesh.rotate([1, 0, 0], math.radians(180), point=[1, 2, 3]) utils.array_equals( mesh.vectors, numpy.array([[[1., 4., 6.], [0., 3., 6.], [0., 4., 5.]]])) mesh.rotate([1, 0, 0], math.radians(-180), point=[1, 2, 3]) utils.array_equals( mesh.vectors, numpy.array([[[1, 0, 0], [0, 1, 0], [0, 0, 1]]])) mesh.rotate([1, 0, 0], math.radians(180), point=0.0) utils.array_equals( mesh.vectors, numpy.array([[[1., 0., -0.], [0., -1., -0.], [0., 0., -1.]]])) with pytest.raises(TypeError): mesh.rotate([1, 0, 0], math.radians(180), point='x') def test_double_rotation(): # Create a single face data = numpy.zeros(1, dtype=Mesh.dtype) data['vectors'][0] = numpy.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) mesh = Mesh(data, remove_empty_areas=False) rotation_matrix = mesh.rotation_matrix([1, 0, 0], math.radians(180)) combined_rotation_matrix = numpy.dot(rotation_matrix, rotation_matrix) mesh.rotate_using_matrix(combined_rotation_matrix) utils.array_equals( mesh.vectors, numpy.array([[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]])) def test_no_rotation(): # Create a single face data = numpy.zeros(1, dtype=Mesh.dtype) data['vectors'][0] = numpy.array([[0, 1, 1], [1, 0, 1], [0, 0, 1]]) mesh = Mesh(data, remove_empty_areas=False) # Rotate by 0 degrees mesh.rotate([0.5, 0.0, 0.0], math.radians(0)) assert numpy.allclose(mesh.vectors, numpy.array([ [[0, 1, 1], [1, 0, 1], [0, 0, 1]]])) # Use a zero rotation matrix mesh.rotate([0.0, 0.0, 0.0], math.radians(90)) assert numpy.allclose(mesh.vectors, numpy.array([ [[0, 1, 1], [1, 0, 1], [0, 0, 1]]])) def test_no_translation(): # Create a single face data = numpy.zeros(1, dtype=Mesh.dtype) data['vectors'][0] = numpy.array([[0, 1, 1], [1, 0, 1], [0, 0, 1]]) mesh = Mesh(data, remove_empty_areas=False) assert numpy.allclose(mesh.vectors, numpy.array([ [[0, 1, 1], [1, 0, 1], [0, 0, 1]]])) # Translate mesh with a zero vector mesh.translate([0.0, 0.0, 0.0]) assert numpy.allclose(mesh.vectors, numpy.array([ [[0, 1, 1], [1, 0, 1], [0, 0, 1]]])) def test_translation(): # Create a single face data =
numpy.zeros(1, dtype=Mesh.dtype)
numpy.zeros
""" Core ==== This module offer inclosed kernels' function for the construction of a Generalised Linear Model. The kernels are organized into six categories: 1. Fire Probability 2. Internal Distribution 3. Rate Constant 4. Refractory 5. Response 6. Survivor """ import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.cm as cm import inspect import math import scipy.special as ss import sys __all__=['negative_refractory','iaf_refractory','threshold_refractory','mean_lifetime','delay_response','normal_delay_response', 'gamma_response',\ 'moto_response', 'alpha_response','linear','senoidal','exponential','rate_constant','fire_probability','survivor','interval_dist'] def negative_refractory(s,eta_0,delta,tau): """ .. py::function: This is the Negative Refractory Kernel defined by: .. math:: Kernel(s) = \Biggl \lbrace { 1/\\Delta t, \\text{ if } 0 \leq s \leq \\Delta t \\atop -\\eta_{0}e^{(-s/\\tau)}, s \gt \\Delta t } :param s: The time difference :math:`s` between the actual (`t`) and the last fire time of the :math:`i^{th}` neuron (:math:`t_{i}^{f}`). Which is :math:`s=(t-t_{i}^{f})` :type s: numpy.ndarray :param eta_0: The hyperpolarization parameter :math:`\\eta_{0}`. :type eta_0: int, float or numpy.ndarray :param delta: The delay time constant :math:`\\Delta t` :type delta: int, float or numpy.ndarray :param tau: The membrane time constant :math:`\\tau`. :type tau: int, float or numpy.ndarray """ heavside_1 = np.where((time>=0)&(time<=delta),1,0) heavside_2 = np.where(time>delta,-eta_0,0) value = heavside_2*np.exp(-s/tau) + heavside_1/delta return value def iaf_refractory(s,tau,r,i0): """ .. py::function: This is the Integrate and Fire Refractory Kernel defined by: .. math:: Kernel(s) = RI_{0}\left[1 - e^{-s/\\tau}\\right] :param s: The time difference :math:`s` between the actual (`t`) and the last fire time of the :math:`i^{th}` neuron (:math:`t_{i}^{f}`). Which is :math:`s=(t-t_{i}^{f})` :type s: numpy.ndarray :param tau: The membrane time constant :math:`\\tau`. :type tau: int, float or numpy.ndarray :param r: The input resistance :math:`R` :type r: int, float or numpy.ndarray :param i0: The input constant current. :type i0: int, float or numpy.ndarray """ def threshold_refractory(s, V_l, a, V_r,tau,r,h): """ .. py::function: This is the Threshold Refractory Kernel defined by: .. math:: Kernel(s) = \Biggl \lbrace { A(V_{l}-V_{r})e^{- \\frac { (s-\\tau) } { 2 } + s^{r}}, \\text{ if } 0 \lt s \lt \\tau \\atop - \\frac { 1 } { h } e^{- \\frac { (s-\\tau) } { 2 } + s^{r}}, \\text{ if } s \gt \\tau } :param s: The time difference :math:`s` between the actual (`t`) and the last fire time of the :math:`i^{th}` neuron (:math:`t_{i}^{f}`). Which is :math:`s=(t-t_{i}^{f})` :type s: numpy.ndarray :param V_l: This is the theshold potential :math:`V_{l}` :type V_l: int, float or numpy.ndarray :param a: This is the action potential amplitude :math:`A` :type a: int, float or numpy.ndarray :param V_r: This is the rest potential :math:`V_{r}` :type V_r: int, float or nupy.ndarray :param tau: The membrane time constant :math:`\\tau`. :type tau: int, float or numpy.ndarray :param r: This is the refractory control parameter :type r: int, float or numpy.ndarray :param h: This is the hyperpolarization control parameter :type h: int, float or numpy.narray """ heavside = np.where((s>0)&(s<tau),-a,0) heavside = np.where(s>tau,1/h*(V_l-V_r),heavside) val = -heavside*(V_l-V_r)*np.exp(-(s-tau)/2 + s**r) return val def mean_lifetime(s,tau): """ .. py::function: This is the Mean Lifetime Kernel defined by: .. math:: Kernel(s) = \\theta(s)e^{(-s/\\tau)} Where: .. math:: \\theta(s) = \Biggl \lbrace { 1,\\text{ if }s\geq0 \\atop 0,\\text{ otherwise} } :param s: The time difference :math:`s` between the actual (`t`) and the last fire time of the :math:`i^{th}` neuron (:math:`t_{i}^{f}`). Which is :math:`s=(t-t_{i}^{f})` :type s: numpy.ndarray :param tau: The membrane time constant :math:`\\tau`. :type tau: int, float or numpy.ndarray """ heavside = np.where(s>=0,1,0) return heavside*np.exp(-s/tau) def delay_response(s,delta,tau): """ .. py::function: This is the Delay Response Kernel defined by: .. math:: Kernel(s) = \\theta(s)e^{(-(s-\\Delta t)/\\tau)} Where: .. math:: \\theta(s) = \Biggl \lbrace { 1,\\text{ if }s\geq\\Delta t \\atop 0,\\text{ otherwise} } :param s: The time difference :math:`s` between the actual (`t`) and the last fire time of the :math:`i^{th}` neuron (:math:`t_{i}^{f}`). Which is :math:`s=(t-t_{i}^{f})` :type s: numpy.ndarray :param delta: The transmissision time delay :math:`\\Delta t` :type delta: int, float or numpy.ndarray :param tau: The membrane time constant :math:`\\tau`. :type tau: int, float or numpy.ndarray """ heavside = np.where(s>delta,1,0) #print(heavside) return heavside*np.exp(-(s-delta)/tau) def normal_delay_response(s,delta,tau): """ .. py::function: This is the Normal Delay Response Kernel defined by: .. math:: Kernel(s) = \\theta(s)e^{(-(s-\\Delta t)/\\tau)} Where: .. math:: \\theta(s) = \Biggl \lbrace { 1,\\text{ if }s\geq\\Delta t \\atop N(0,0.1),\\text{ otherwise} } :param s: The time difference :math:`s` between the actual (`t`) and the last fire time of the :math:`i^{th}` neuron (:math:`t_{i}^{f}`). Which is :math:`s=(t-t_{i}^{f})` :type s: numpy.ndarray :param delta: The transmissision time delay :math:`\\Delta t` :type delta: int, float or numpy.ndarray :param tau: The membrane time constant :math:`\\tau`. :type tau: int, float or numpy.ndarray """ heavside = np.where(s>delta,1,np.random.normal(0.5,0.1)) return heavside*
np.exp(-(s-delta)/tau)
numpy.exp
""" Module to correct pulsar and FRB DMs for the MW ISM """ from ne2001 import ne_io, density #ne2001 ism model import pygedm #ymw ism model import numpy as np import pandas as pd from astropy import units as u from astropy.coordinates import SkyCoord, Galactic import logging logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO) ne = density.ElectronDensity() def find_delta_dm(transient_type,transient_data,ism_model,b_val,mc_deg=5,save_df=True): """ Find pulsar/FRB DMs corrected for by the MW ISM DM and remove observations in complex DM regions. Returns array of DMs FRB data is available as a csv in the FRBs/FRB/frb/data/FRBs repo (FRB catalogue [Petroff et al. 2017]) Pulsar data is avaiable as a csv in the FRBs/pulsars/pulsars/data/atnf_cat repo (v1.61 ATNF pulsar catalogue [Manchester et al. 2005]) Arguments: transient_type (str): Accepts 'frb' or 'pulsar'. transient_data (str): Path to data (in .csv format). ism_model (str): Model used to calculated the MW halo DM. Accepts 'ymw16' [Yao et al. 2017] or 'ne2001' [Cordes & Lazio 2003]. b_val (int): Galactic latitude considered (b>b_val, b<-b_val). mc_deg (int): Number of degrees from Magellanic clouds within which transients are removed. save_df (str, optional): Save transient DMs and coords to csv. Outputs: """ # Sort data and get coords if transient_type=='frb': transcat_df = pd.read_csv(transient_data, skiprows=1, usecols= [0,5,6,7], names=['Name','l','b','dm']) transcat_df['dm'] = transcat_df['dm'].str.split('&').str[0].astype(float).values coords = SkyCoord(l=transcat_df['l'], b=transcat_df['b'], unit=(u.degree),frame=Galactic) elif transient_type=='pulsar': transcat_df = pd.read_csv(transient_data, skiprows=2, usecols = [1,2,3,9,10], names=['Name','Pref','dm','RAJD','DECJD']) transcat_df = transcat_df[~transcat_df['dm'].str.contains('*', regex=False)].reset_index(drop=True) transcat_df['dm'] = transcat_df['dm'].astype(float) c_icrs = SkyCoord(ra=transcat_df['RAJD'], dec=transcat_df['DECJD'], unit=(u.degree), frame='icrs') transcat_df['l'] = pd.DataFrame(c_icrs.galactic.l.value) transcat_df['b'] = pd.DataFrame(c_icrs.galactic.b.value) coords = SkyCoord(l=transcat_df['l'], b=transcat_df['b'], unit=(u.degree),frame=Galactic) # Find transients in line of sight of MCs logging.info('Removing transients near Magellanic clouds...') # LMC lmc_distance = 50*u.kpc lmc_coord = SkyCoord('J052334.6-694522',unit=(u.hourangle, u.deg),distance=lmc_distance) close_to_lmc = lmc_coord.separation(coords) < mc_deg*u.deg lmc_trans = list(transcat_df[close_to_lmc]['Name']) # SMC smc_distance = 61*u.kpc smc_coord = SkyCoord('J005238.0-724801',unit=(u.hourangle, u.deg),distance=smc_distance) close_to_smc = smc_coord.separation(coords) < mc_deg*u.deg smc_trans = list(transcat_df[close_to_smc]['Name']) transcat_df = transcat_df[~transcat_df['Name'].isin(lmc_trans)].reset_index(drop=True) transcat_df = transcat_df[~transcat_df['Name'].isin(smc_trans)].reset_index(drop=True) if transient_type=='pulsar': transcat_df = transcat_df[~transcat_df['Pref'].str.contains('mfl+06', regex=False)].reset_index(drop=True) elif transient_type=='frb': pass # Remove transients with low Galactic lattitudes logging.info('Removing transients with low Galactic lattitudes...') transcat_df = pd.concat([transcat_df[transcat_df.b > b_val], transcat_df[transcat_df.b < -b_val]], ignore_index=True) # ISM model logging.info('Correcting transient DMs for ISM...') trans_ism = [] if ism_model=='ymw16': for i in range(len(transcat_df['dm'])): trans_ism_ = pygedm.dist_to_dm(transcat_df['l'].iloc[i], transcat_df['b'].iloc[i], 100000)[0].value trans_ism = np.append(trans_ism,trans_ism_) elif ism_model=='ne2001': for i in range(len(transcat_df['dm'])): trans_ism_ = ne.DM(transcat_df['l'].iloc[i], transcat_df['b'].iloc[i], 100.).value trans_ism = np.append(trans_ism,trans_ism_) transcat_df['trans_ism'] = pd.DataFrame(trans_ism) transcat_df['deltaDM'] = pd.DataFrame(transcat_df['dm']-transcat_df['trans_ism']) if save_df==True: transcat_df.to_csv('transient_data/'+transient_type+'cat_df_'+ism_model+'_'+str(int(b_val))+'.csv') logging.info('Transient data saved to csv.') else: pass return
np.array(transcat_df['deltaDM'])
numpy.array
"""Rangeland Production Model.""" import os import logging import tempfile import shutil from builtins import range import re import math import pickle import numpy import pandas from osgeo import ogr from osgeo import osr from osgeo import gdal import pygeoprocessing from rangeland_production import utils from rangeland_production import validation LOGGER = logging.getLogger('rangeland_production.forage') # we only have these types of soils SOIL_TYPE_LIST = ['clay', 'silt', 'sand'] # temporary directory to store intermediate files PROCESSING_DIR = None # user-supplied crude protein of vegetation CRUDE_PROTEIN = None # state variables and parameters take their names from Century # _SITE_STATE_VARIABLE_FILES contains state variables that are a # property of the site, including: # carbon in each soil compartment # (structural, metabolic, som1, som2, som3) and layer (1=surface, 2=soil) # e.g., som2c_2 = carbon in soil som2; # N and P in each soil layer and compartment (1=N, 2=P) # e.g., som2e_1_1 = N in surface som2, som2e_1_2 = P in surface som2; # water in each soil layer, asmos_<layer> # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _SITE_STATE_VARIABLE_FILES = { 'metabc_1_path': 'metabc_1.tif', 'metabc_2_path': 'metabc_2.tif', 'som1c_1_path': 'som1c_1.tif', 'som1c_2_path': 'som1c_2.tif', 'som2c_1_path': 'som2c_1.tif', 'som2c_2_path': 'som2c_2.tif', 'som3c_path': 'som3c.tif', 'strucc_1_path': 'strucc_1.tif', 'strucc_2_path': 'strucc_2.tif', 'strlig_1_path': 'strlig_1.tif', 'strlig_2_path': 'strlig_2.tif', 'metabe_1_1_path': 'metabe_1_1.tif', 'metabe_2_1_path': 'metabe_2_1.tif', 'som1e_1_1_path': 'som1e_1_1.tif', 'som1e_2_1_path': 'som1e_2_1.tif', 'som2e_1_1_path': 'som2e_1_1.tif', 'som2e_2_1_path': 'som2e_2_1.tif', 'som3e_1_path': 'som3e_1.tif', 'struce_1_1_path': 'struce_1_1.tif', 'struce_2_1_path': 'struce_2_1.tif', 'metabe_1_2_path': 'metabe_1_2.tif', 'metabe_2_2_path': 'metabe_2_2.tif', 'plabil_path': 'plabil.tif', 'secndy_2_path': 'secndy_2.tif', 'parent_2_path': 'parent_2.tif', 'occlud_path': 'occlud.tif', 'som1e_1_2_path': 'som1e_1_2.tif', 'som1e_2_2_path': 'som1e_2_2.tif', 'som2e_1_2_path': 'som2e_1_2.tif', 'som2e_2_2_path': 'som2e_2_2.tif', 'som3e_2_path': 'som3e_2.tif', 'struce_1_2_path': 'struce_1_2.tif', 'struce_2_2_path': 'struce_2_2.tif', 'asmos_1_path': 'asmos_1.tif', 'asmos_2_path': 'asmos_2.tif', 'asmos_3_path': 'asmos_3.tif', 'asmos_4_path': 'asmos_4.tif', 'asmos_5_path': 'asmos_5.tif', 'asmos_6_path': 'asmos_6.tif', 'asmos_7_path': 'asmos_7.tif', 'asmos_8_path': 'asmos_8.tif', 'asmos_9_path': 'asmos_9.tif', 'avh2o_3_path': 'avh2o_3.tif', 'minerl_1_1_path': 'minerl_1_1.tif', 'minerl_2_1_path': 'minerl_2_1.tif', 'minerl_3_1_path': 'minerl_3_1.tif', 'minerl_4_1_path': 'minerl_4_1.tif', 'minerl_5_1_path': 'minerl_5_1.tif', 'minerl_6_1_path': 'minerl_6_1.tif', 'minerl_7_1_path': 'minerl_7_1.tif', 'minerl_8_1_path': 'minerl_8_1.tif', 'minerl_9_1_path': 'minerl_9_1.tif', 'minerl_10_1_path': 'minerl_10_1.tif', 'minerl_1_2_path': 'minerl_1_2.tif', 'minerl_2_2_path': 'minerl_2_2.tif', 'minerl_3_2_path': 'minerl_3_2.tif', 'minerl_4_2_path': 'minerl_4_2.tif', 'minerl_5_2_path': 'minerl_5_2.tif', 'minerl_6_2_path': 'minerl_6_2.tif', 'minerl_7_2_path': 'minerl_7_2.tif', 'minerl_8_2_path': 'minerl_8_2.tif', 'minerl_9_2_path': 'minerl_9_2.tif', 'minerl_10_2_path': 'minerl_10_2.tif', 'snow_path': 'snow.tif', 'snlq_path': 'snlq.tif', } # _PFT_STATE_VARIABLES contains state variables that are a # property of a PFT, including: # carbon, nitrogen, and phosphorous in aboveground biomass # where 1=N, 2=P # e.g. aglivc = C in aboveground live biomass, # aglive_1 = N in aboveground live biomass; # carbon, nitrogen, and phosphorous in aboveground standing dead # biomass, stdedc and stdede; # carbon, nitrogen and phosphorous in belowground live biomass, # aglivc and aglive # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _PFT_STATE_VARIABLES = [ 'aglivc', 'bglivc', 'stdedc', 'aglive_1', 'bglive_1', 'stdede_1', 'aglive_2', 'bglive_2', 'stdede_2', 'avh2o_1', 'crpstg_1', 'crpstg_2', ] # intermediate parameters that do not change between timesteps, # including field capacity and wilting point of each soil layer, # coefficients describing effect of soil texture on decomposition # rates _PERSISTENT_PARAMS_FILES = { 'afiel_1_path': 'afiel_1.tif', 'afiel_2_path': 'afiel_2.tif', 'afiel_3_path': 'afiel_3.tif', 'afiel_4_path': 'afiel_4.tif', 'afiel_5_path': 'afiel_5.tif', 'afiel_6_path': 'afiel_6.tif', 'afiel_7_path': 'afiel_7.tif', 'afiel_8_path': 'afiel_8.tif', 'afiel_9_path': 'afiel_9.tif', 'awilt_1_path': 'awilt_1.tif', 'awilt_2_path': 'awilt_2.tif', 'awilt_3_path': 'awilt_3.tif', 'awilt_4_path': 'awilt_4.tif', 'awilt_5_path': 'awilt_5.tif', 'awilt_6_path': 'awilt_6.tif', 'awilt_7_path': 'awilt_7.tif', 'awilt_8_path': 'awilt_8.tif', 'awilt_9_path': 'awilt_9.tif', 'wc_path': 'wc.tif', 'eftext_path': 'eftext.tif', 'p1co2_2_path': 'p1co2_2.tif', 'fps1s3_path': 'fps1s3.tif', 'orglch_path': 'orglch.tif', 'fps2s3_path': 'fps2s3.tif', 'rnewas_1_1_path': 'rnewas_1_1.tif', 'rnewas_2_1_path': 'rnewas_2_1.tif', 'rnewas_1_2_path': 'rnewas_1_2.tif', 'rnewas_2_2_path': 'rnewas_2_2.tif', 'rnewbs_1_1_path': 'rnewbs_1_1.tif', 'rnewbs_1_2_path': 'rnewbs_1_2.tif', 'rnewbs_2_1_path': 'rnewbs_2_1.tif', 'rnewbs_2_2_path': 'rnewbs_2_2.tif', 'vlossg_path': 'vlossg.tif', } # site-level values that are updated once per year _YEARLY_FILES = { 'annual_precip_path': 'annual_precip.tif', 'baseNdep_path': 'baseNdep.tif', } # pft-level values that are updated once per year _YEARLY_PFT_FILES = ['pltlig_above', 'pltlig_below'] # intermediate values for each plant functional type that are shared # between submodels, but do not need to be saved as output _PFT_INTERMEDIATE_VALUES = [ 'h2ogef_1', 'tgprod_pot_prod', 'cercrp_min_above_1', 'cercrp_min_above_2', 'cercrp_max_above_1', 'cercrp_max_above_2', 'cercrp_min_below_1', 'cercrp_min_below_2', 'cercrp_max_below_1', 'cercrp_max_below_2', 'tgprod', 'rtsh', 'flgrem', 'fdgrem'] # intermediate site-level values that are shared between submodels, # but do not need to be saved as output _SITE_INTERMEDIATE_VALUES = [ 'amov_1', 'amov_2', 'amov_3', 'amov_4', 'amov_5', 'amov_6', 'amov_7', 'amov_8', 'amov_9', 'amov_10', 'snowmelt', 'bgwfunc', 'diet_sufficiency'] # fixed parameters for each grazing animal type are adapted from the GRAZPLAN # model as described by Freer et al. 2012, "The GRAZPLAN animal biology model # for sheep and cattle and the GrazFeed decision support tool" _FREER_PARAM_DICT = { 'b_indicus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.31, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'b_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.36, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'indicus_x_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.335, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'sheep': { 'CN1': 0.0157, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.04, 'CI2': 1.7, 'CI8': 28, 'CI9': 1.4, 'CI12': 0.15, 'CI13': 0.02, 'CI14': 0.002, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00112, 'CR5': 0.6, 'CR6': 0.00112, 'CR7': 0, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.486, 'CL1': 2, 'CL2': 22, 'CL3': 1, 'CL5': 0.94, 'CL6': 4.7, 'CL15': 0.045, 'CM1': 0.09, 'CM2': 0.26, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.02, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CW1': 24, 'CW2': 0.004, 'CW3': 0.7, 'CW5': 0.25, 'CW6': 0.072, 'CW7': 1.35, 'CW8': 0.016, 'CW9': 1, 'CW12': 0.025, 'CP1': 150, 'CP4': 0.33, 'CP5': 1.43, 'CP6': 3.38, 'CP7': 0.91, 'CP8': 4.33, 'CP9': 4.37, 'CP10': 0.965, 'CP15': 0.1, }, } # Target nodata is for general rasters that are positive, and _IC_NODATA are # for rasters that are any range _TARGET_NODATA = -1.0 _IC_NODATA = float(numpy.finfo('float32').min) # SV_NODATA is for state variables _SV_NODATA = -1.0 def execute(args): """InVEST Forage Model. [model description] Parameters: args['workspace_dir'] (string): path to target output workspace. args['results_suffix'] (string): (optional) string to append to any output file names args['starting_month'] (int): what month to start reporting where the range 1..12 is equivalent to Jan..Dec. args['starting_year'] (int): what year to start runs. this value is used to notate outputs in the form [month_int]_[year] args['n_months'] (int): number of months to run model, the model run will start reporting in `args['starting_month']`. args['aoi_path'] (string): path to polygon vector indicating the desired spatial extent of the model. This has the effect of clipping the computational area of the input datasets to be the area intersected by this polygon. args['management_threshold'] (float): biomass in kg/ha required to be left standing at each model step after offtake by grazing animals args['proportion_legume_path'] (string): path to raster containing fraction of pasture that is legume, by weight args['bulk_density_path'] (string): path to bulk density raster. args['ph_path'] (string): path to soil pH raster. args['clay_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is clay args['silt_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is silt args['sand_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is sand args['precip_dir'] (string): path to a directory containing monthly precipitation rasters. The model requires at least 12 months of precipitation and expects to find a precipitation file input for every month of the simulation, so the number of precipitation files should be the maximum of 12 and `n_months`. The file name of each precipitation raster must end with the year, followed by an underscore, followed by the month number. E.g., Precip_2016_1.tif for January of 2016. args['min_temp_dir'] (string): path to a directory containing monthly minimum temperature rasters. The model requires one minimum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each minimum temperature raster must end with the month number. E.g., Min_temperature_1.tif for January. args['max_temp_dir'] (string): path to a directory containing monthly maximum temperature rasters. The model requires one maximum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each maximum temperature raster must end with the month number. E.g., Max_temperature_1.tif for January. args['site_param_table'] (string): path to csv file giving site parameters. This file must contain a column named "site" that contains unique integers. These integer values correspond to site type identifiers which are values in the site parameter spatial index raster. Other required fields for this table are site and "fixed" parameters from the Century model, i.e., the parameters in the Century input files site.100 and fix.100. args['site_param_spatial_index_path'] (string): path to a raster file that indexes site parameters, indicating which set of site parameter values should apply at each pixel in the raster. The raster should be composed of integers that correspond to values in the field "site" in `site_param_table`. args['veg_trait_path'] (string): path to csv file giving vegetation traits for each plant functional type available for grazing. This file must contain a column named "PFT" that contains unique integers. These integer values correspond to PFT identifiers of veg spatial composition rasters. Other required fields for this table are vegetation input parameters from the Century model, for example maximum intrinsic growth rate, optimum temperature for production, minimum C/N ratio, etc. args['veg_spatial_composition_path_pattern'] (string): path to vegetation rasters, one per plant functional type available for grazing, where <PFT> can be replaced with an integer that is indexed in the veg trait csv. Example: if this value is given as `./vegetation/pft_<PFT>.tif` and the directory `./vegetation/` contains these files: "pft_1.tif" "pft_12.tif" "pft_50.tif", then the "PFT" field in the vegetation trait table must contain the values 1, 12, and 50. args['animal_trait_path'] (string): path to csv file giving animal traits for each animal type - number - duration combination. This table must contain a column named "animal_id" that contains unique integers. These integer values correspond to features in the animal management layer. Other required fields in this table are: type (allowable values: b_indicus, b_taurus, indicus_x_taurus, sheep, camelid, hindgut_fermenter) sex (allowable values: entire_m, castrate, breeding_female, NA) age (days) weight (kg) SRW (standard reference weight, kg; the weight of a mature female in median condition) SFW (standard fleece weight, kg; the average weight of fleece of a mature adult; for sheep only) birth_weight (kg) grz_months (a string of integers, separated by ','; months of the simulation when animals are present, relative to `starting_month`. For example, if `n_months` is 3, and animals are present during the entire simulation period, `grz_months` should be "1,2,3") args['animal_grazing_areas_path'] (string): path to animal vector inputs giving the location of grazing animals. Must have a field named "animal_id", containing unique integers that correspond to the values in the "animal_id" column of the animal trait csv, and a field named "num_animal" giving the number of animals grazing inside each polygon feature. args['initial_conditions_dir'] (string): optional input, path to directory containing initial conditions. If this directory is not supplied, a site_initial_table and pft_initial_table must be supplied. If supplied, this directory must contain a series of rasters with initial values for each PFT and for the site. Required rasters for each PFT: initial variables that are a property of PFT in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing e.g., aglivc_<PFT>.tif Required for the site: initial variables that are a property of site in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['site_initial_table'] (string): optional input, path to table containing initial conditions for each site state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each site code and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['pft_initial_table'] (string): optional input, path to table containing initial conditions for each plant functional type state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each plant functional type index and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['save_sv_rasters'] (boolean): optional input, default false. Should rasters containing all state variables be saved for each model time step? args['animal_density'] (string): optional input, density of grazing animals in animals per hectare. args['crude_protein'] (float): optional input, crude protein concentration of forage for the purposes of animal diet selection. Should be a value between 0-1. If included, this value is substituted for N content of forage when calculating digestibility and "ingestibility" of forage, and protein content of the diet, for grazing animals. Returns: None. """ LOGGER.info("model execute: %s", args) starting_month = int(args['starting_month']) starting_year = int(args['starting_year']) n_months = int(args['n_months']) try: delete_sv_folders = not args['save_sv_rasters'] except KeyError: delete_sv_folders = True try: global CRUDE_PROTEIN CRUDE_PROTEIN = args['crude_protein'] except KeyError: pass try: animal_density_path = args['animal_density'] except KeyError: args['animal_density'] = None # this set will build up the integer months that are used so we can index # them with temperature later temperature_month_set = set() # this dict will be used to build the set of input rasters associated with # a reasonable lookup ID so we can have a nice dataset to align for raster # stack operations base_align_raster_path_id_map = {} precip_dir_list = [ os.path.join(args['precip_dir'], f) for f in os.listdir(args['precip_dir'])] for month_index in range(n_months): month_i = (starting_month + month_index - 1) % 12 + 1 temperature_month_set.add(month_i) year = starting_year + (starting_month + month_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No precipitation data found for year %d, month %d" % (year, month_i)) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_{}'.format(month_index)] = file_list[0] # the model requires 12 months of precipitation data to calculate # atmospheric N deposition and potential production from annual precip n_precip_months = int(args['n_months']) if n_precip_months < 12: m_index = int(args['n_months']) while n_precip_months < 12: month_i = (starting_month + m_index - 1) % 12 + 1 year = starting_year + (starting_month + m_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: break if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_%d' % m_index] = file_list[0] n_precip_months = n_precip_months + 1 m_index = m_index + 1 if n_precip_months < 12: raise ValueError("At least 12 months of precipitation data required") # collect monthly temperature data min_temp_dir_list = [ os.path.join(args['min_temp_dir'], f) for f in os.listdir(args['min_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in min_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No minimum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'min_temp_%d' % month_i] = file_list[0] max_temp_dir_list = [ os.path.join(args['max_temp_dir'], f) for f in os.listdir(args['max_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in max_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No maximum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'max_temp_%d' % month_i] = file_list[0] # lookup to provide path to soil percent given soil type for soil_type in SOIL_TYPE_LIST: base_align_raster_path_id_map[soil_type] = ( args['%s_proportion_path' % soil_type]) if not os.path.exists(base_align_raster_path_id_map[soil_type]): raise ValueError( "Couldn't find %s for %s" % ( base_align_raster_path_id_map[soil_type], soil_type)) base_align_raster_path_id_map['bulk_d_path'] = args['bulk_density_path'] base_align_raster_path_id_map['ph_path'] = args['ph_path'] # make sure site initial conditions and parameters exist for each site # identifier base_align_raster_path_id_map['site_index'] = ( args['site_param_spatial_index_path']) n_bands = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['n_bands'] if n_bands > 1: raise ValueError( 'Site spatial index raster must contain only one band') site_datatype = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['datatype'] if site_datatype not in [1, 2, 3, 4, 5]: raise ValueError('Site spatial index raster must be integer type') # get unique values in site param raster site_index_set = set() for offset_map, raster_block in pygeoprocessing.iterblocks( (args['site_param_spatial_index_path'], 1)): site_index_set.update(numpy.unique(raster_block)) site_nodata = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['nodata'][0] if site_nodata in site_index_set: site_index_set.remove(site_nodata) site_param_table = utils.build_lookup_from_csv( args['site_param_table'], 'site') missing_site_index_list = list( site_index_set.difference(site_param_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find parameter values for the following site " + "indices: %s\n\t" + ", ".join(missing_site_index_list)) # make sure plant functional type parameters exist for each pft raster pft_dir = os.path.dirname(args['veg_spatial_composition_path_pattern']) pft_basename = os.path.basename( args['veg_spatial_composition_path_pattern']) files = [ f for f in os.listdir(pft_dir) if os.path.isfile( os.path.join(pft_dir, f))] pft_regex = re.compile(pft_basename.replace('<PFT>', r'(\d+)')) pft_matches = [ m for m in [pft_regex.search(f) for f in files] if m is not None] pft_id_set = set([int(m.group(1)) for m in pft_matches]) for pft_i in pft_id_set: pft_path = args['veg_spatial_composition_path_pattern'].replace( '<PFT>', '%d' % pft_i) base_align_raster_path_id_map['pft_%d' % pft_i] = pft_path veg_trait_table = utils.build_lookup_from_csv( args['veg_trait_path'], 'PFT') missing_pft_trait_list = pft_id_set.difference(veg_trait_table.keys()) if missing_pft_trait_list: raise ValueError( "Couldn't find trait values for the following plant functional " + "types: %s\n\t" + ", ".join(missing_pft_trait_list)) frtcindx_set = set([ pft_i['frtcindx'] for pft_i in veg_trait_table.values()]) if frtcindx_set.difference(set([0, 1])): raise ValueError("frtcindx parameter contains invalid values") base_align_raster_path_id_map['proportion_legume_path'] = args[ 'proportion_legume_path'] # track separate state variable files for each PFT pft_sv_dict = {} for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: pft_sv_dict['{}_{}_path'.format( sv, pft_i)] = '{}_{}.tif'.format(sv, pft_i) # make sure animal traits exist for each feature in animal management # layer anim_id_list = [] driver = ogr.GetDriverByName('ESRI Shapefile') datasource = driver.Open(args['animal_grazing_areas_path'], 0) layer = datasource.GetLayer() for feature in layer: anim_id_list.append(feature.GetField('animal_id')) input_animal_trait_table = utils.build_lookup_from_csv( args['animal_trait_path'], 'animal_id') missing_animal_trait_list = set( anim_id_list).difference(input_animal_trait_table.keys()) if missing_animal_trait_list: raise ValueError( "Couldn't find trait values for the following animal " + "ids: %s\n\t" + ", ".join(missing_animal_trait_list)) # if animal density is supplied, align inputs to match its resolution # otherwise, match resolution of precipitation rasters if args['animal_density']: target_pixel_size = pygeoprocessing.get_raster_info( args['animal_density'])['pixel_size'] base_align_raster_path_id_map['animal_density'] = args[ 'animal_density'] else: target_pixel_size = pygeoprocessing.get_raster_info( base_align_raster_path_id_map['precip_0'])['pixel_size'] LOGGER.info( "pixel size of aligned inputs: %s", target_pixel_size) # temporary directory for intermediate files global PROCESSING_DIR PROCESSING_DIR = os.path.join(args['workspace_dir'], "temporary_files") if not os.path.exists(PROCESSING_DIR): os.makedirs(PROCESSING_DIR) # set up a dictionary that uses the same keys as # 'base_align_raster_path_id_map' to point to the clipped/resampled # rasters to be used in raster calculations for the model. aligned_raster_dir = os.path.join( args['workspace_dir'], 'aligned_inputs') if os.path.exists(aligned_raster_dir): shutil.rmtree(aligned_raster_dir) os.makedirs(aligned_raster_dir) aligned_inputs = dict([(key, os.path.join( aligned_raster_dir, 'aligned_%s' % os.path.basename(path))) for key, path in base_align_raster_path_id_map.items()]) # align all the base inputs to be the minimum known pixel size and to # only extend over their combined intersections source_input_path_list = [ base_align_raster_path_id_map[k] for k in sorted( base_align_raster_path_id_map.keys())] aligned_input_path_list = [ aligned_inputs[k] for k in sorted(aligned_inputs.keys())] pygeoprocessing.align_and_resize_raster_stack( source_input_path_list, aligned_input_path_list, ['near'] * len(source_input_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], vector_mask_options={'mask_vector_path': args['aoi_path']}) _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set) file_suffix = utils.make_suffix_string(args, 'results_suffix') # create animal trait spatial index raster from management polygon aligned_inputs['animal_index'] = os.path.join( aligned_raster_dir, 'animal_spatial_index.tif') pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], aligned_inputs['animal_index'], gdal.GDT_Int32, [_TARGET_NODATA], fill_value_list=[_TARGET_NODATA]) pygeoprocessing.rasterize( args['animal_grazing_areas_path'], aligned_inputs['animal_index'], option_list=["ATTRIBUTE=animal_id"]) # create uniform animal density raster, if not supplied as input if not args['animal_density']: aligned_inputs['animal_density'] = os.path.join( aligned_raster_dir, 'animal_density.tif') _animal_density(aligned_inputs, args['animal_grazing_areas_path']) # Initialization sv_dir = os.path.join(args['workspace_dir'], 'state_variables_m-1') os.makedirs(sv_dir) initial_conditions_dir = None try: initial_conditions_dir = args['initial_conditions_dir'] except KeyError: pass if initial_conditions_dir: # check that a raster for each required state variable is supplied missing_initial_values = [] # set _SV_NODATA from initial rasters state_var_nodata = set([]) # align initial state variables to resampled inputs resample_initial_path_map = {} for sv in _SITE_STATE_VARIABLE_FILES: sv_path = os.path.join( initial_conditions_dir, _SITE_STATE_VARIABLE_FILES[sv]) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'][0]])) resample_initial_path_map[sv] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: sv_key = '{}_{}_path'.format(sv, pft_i) sv_path = os.path.join( initial_conditions_dir, '{}_{}.tif'.format(sv, pft_i)) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'] [0]])) resample_initial_path_map[sv_key] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) if missing_initial_values: raise ValueError( "Couldn't find the following required initial values: " + "\n\t".join(missing_initial_values)) if len(state_var_nodata) > 1: raise ValueError( "Initial state variable rasters contain >1 nodata value") global _SV_NODATA _SV_NODATA = list(state_var_nodata)[0] # align initial values with inputs initial_path_list = ( [aligned_inputs['precip_0']] + [resample_initial_path_map[key] for key in sorted( resample_initial_path_map.keys())]) aligned_initial_path_list = ( [os.path.join(PROCESSING_DIR, 'aligned_input_template.tif')] + [os.path.join( sv_dir, os.path.basename(resample_initial_path_map[key])) for key in sorted(resample_initial_path_map.keys())]) pygeoprocessing.align_and_resize_raster_stack( initial_path_list, aligned_initial_path_list, ['near'] * len(initial_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], raster_align_index=0, vector_mask_options={'mask_vector_path': args['aoi_path']}) sv_reg = dict( [(key, os.path.join(sv_dir, os.path.basename(path))) for key, path in resample_initial_path_map.items()]) else: # create initialization rasters from tables try: site_initial_conditions_table = utils.build_lookup_from_csv( args['site_initial_table'], 'site') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_site_index_list = list( site_index_set.difference(site_initial_conditions_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find initial conditions values for the following " + "site indices: %s\n\t" + ", ".join(missing_site_index_list)) try: pft_initial_conditions_table = utils.build_lookup_from_csv( args['pft_initial_table'], 'PFT') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_pft_index_list = pft_id_set.difference( pft_initial_conditions_table.keys()) if missing_pft_index_list: raise ValueError( "Couldn't find initial condition values for the following " "plant functional types: %s\n\t" + ", ".join( missing_pft_index_list)) sv_reg = initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table) # calculate persistent intermediate parameters that do not change during # the simulation persist_param_dir = os.path.join( args['workspace_dir'], 'intermediate_parameters') utils.make_directories([persist_param_dir]) pp_reg = utils.build_file_registry( [(_PERSISTENT_PARAMS_FILES, persist_param_dir)], file_suffix) # calculate derived animal traits that do not change during the simulation freer_parameter_df = pandas.DataFrame.from_dict( _FREER_PARAM_DICT, orient='index') freer_parameter_df['type'] = freer_parameter_df.index animal_trait_table = calc_derived_animal_traits( input_animal_trait_table, freer_parameter_df) # calculate maximum potential intake of each animal type for animal_id in animal_trait_table.keys(): revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # calculate field capacity and wilting point LOGGER.info("Calculating field capacity and wilting point") _afiel_awilt( aligned_inputs['site_index'], site_param_table, sv_reg['som1c_2_path'], sv_reg['som2c_2_path'], sv_reg['som3c_path'], aligned_inputs['sand'], aligned_inputs['silt'], aligned_inputs['clay'], aligned_inputs['bulk_d_path'], pp_reg) # calculate other persistent parameters LOGGER.info("Calculating persistent parameters") _persistent_params( aligned_inputs['site_index'], site_param_table, aligned_inputs['sand'], aligned_inputs['clay'], pp_reg) # calculate required ratios for decomposition of structural material LOGGER.info("Calculating required ratios for structural decomposition") _structural_ratios( aligned_inputs['site_index'], site_param_table, sv_reg, pp_reg) # make yearly directory for values that are updated every twelve months year_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) year_reg = dict( [(key, os.path.join(year_dir, path)) for key, path in _YEARLY_FILES.items()]) for pft_i in pft_id_set: for file in _YEARLY_PFT_FILES: year_reg['{}_{}'.format(file, pft_i)] = os.path.join( year_dir, '{}_{}.tif'.format(file, pft_i)) # make monthly directory for monthly intermediate parameters that are # shared between submodels, but do not need to be saved as output month_temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) month_reg = {} for pft_i in pft_id_set: for val in _PFT_INTERMEDIATE_VALUES: month_reg['{}_{}'.format( val, pft_i)] = os.path.join( month_temp_dir, '{}_{}.tif'.format(val, pft_i)) for val in _SITE_INTERMEDIATE_VALUES: month_reg[val] = os.path.join(month_temp_dir, '{}.tif'.format(val)) output_dir = os.path.join(args['workspace_dir'], "output") if not os.path.exists(output_dir): os.makedirs(output_dir) # provisional state variable registry contains provisional biomass in # absence of grazing provisional_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) provisional_sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, provisional_sv_dir), (pft_sv_dict, provisional_sv_dir)], file_suffix) intermediate_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) # Main simulation loop # for each step in the simulation for month_index in range(n_months): if (month_index % 12) == 0: # Update yearly quantities _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg) current_month = (starting_month + month_index - 1) % 12 + 1 current_year = starting_year + (starting_month + month_index - 1) // 12 # track state variables from previous step prev_sv_reg = sv_reg for animal_id in animal_trait_table.keys(): if animal_trait_table[animal_id]['sex'] == 'breeding_female': revised_animal_trait_dict = update_breeding_female_status( animal_trait_table[animal_id], month_index) animal_trait_table[animal_id] = revised_animal_trait_dict revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # enforce absence of grazing as zero biomass removed for pft_i in pft_id_set: pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['fdgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # populate provisional_sv_reg with provisional biomass in absence of # grazing _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, provisional_sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, provisional_sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, provisional_sv_reg) intermediate_sv_reg = copy_intermediate_sv( pft_id_set, provisional_sv_reg, intermediate_sv_dir) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, provisional_sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, provisional_sv_reg) # estimate grazing offtake by animals relative to provisional biomass # at an intermediate step, after senescence but before new growth _calc_grazing_offtake( aligned_inputs, args['aoi_path'], args['management_threshold'], intermediate_sv_reg, pft_id_set, aligned_inputs['animal_index'], animal_trait_table, veg_trait_table, current_month, month_reg) # estimate actual biomass production for this step, integrating impacts # of grazing sv_dir = os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index) utils.make_directories([sv_dir]) sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, sv_dir), (pft_sv_dict, sv_dir)], file_suffix) _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, sv_reg) _animal_diet_sufficiency( sv_reg, pft_id_set, aligned_inputs, animal_trait_table, veg_trait_table, current_month, month_reg) _grazing( aligned_inputs, site_param_table, month_reg, animal_trait_table, pft_id_set, sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, sv_reg) _leach(aligned_inputs, site_param_table, month_reg, sv_reg) _write_monthly_outputs( aligned_inputs, provisional_sv_reg, sv_reg, month_reg, pft_id_set, current_year, current_month, output_dir, file_suffix) # summary results summary_output_dir = os.path.join(output_dir, 'summary_results') os.makedirs(summary_output_dir) summary_shp_path = os.path.join( summary_output_dir, 'grazing_areas_results_rpm{}.shp'.format(file_suffix)) create_vector_copy( args['animal_grazing_areas_path'], summary_shp_path) field_pickle_map, field_header_order_list = aggregate_and_pickle_results( output_dir, summary_shp_path) _add_fields_to_shapefile( field_pickle_map, field_header_order_list, summary_shp_path) # clean up shutil.rmtree(persist_param_dir) shutil.rmtree(PROCESSING_DIR) if delete_sv_folders: for month_index in range(-1, n_months): shutil.rmtree( os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index)) def raster_multiplication( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Multiply raster1 by raster2. Multiply raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_multiply_op(raster1, raster2): """Multiply two rasters.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata result[valid_mask] = raster1[valid_mask] * raster2[valid_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_multiply_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_division( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Divide raster1 by raster2. Divide raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_divide_op(raster1, raster2): """Divide raster1 by raster2.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) raster1 = raster1.astype(numpy.float32) raster2 = raster2.astype(numpy.float32) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata error_mask = ((raster1 != 0) & (raster2 == 0.) & valid_mask) zero_mask = ((raster1 == 0.) & (raster2 == 0.) & valid_mask) nonzero_mask = ((raster2 != 0.) & valid_mask) result[error_mask] = target_path_nodata result[zero_mask] = 0. result[nonzero_mask] = raster1[nonzero_mask] / raster2[nonzero_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_divide_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_list_sum( raster_list, input_nodata, target_path, target_nodata, nodata_remove=False): """Calculate the sum per pixel across rasters in a list. Sum the rasters in `raster_list` element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. If nodata is treated as zero, areas where all inputs are nodata will be nodata in the output. Parameters: raster_list (list): list of paths to rasters to sum input_nodata (float or int): nodata value in the input rasters target_path (string): path to location to store the result target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(*raster_list): """Add the rasters in raster_list without removing nodata values.""" invalid_mask = numpy.any( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters def raster_sum_op_nodata_remove(*raster_list): """Add the rasters in raster_list, treating nodata as zero.""" invalid_mask = numpy.all( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_sum( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Add raster 1 and raster2. Add raster1 and raster2, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to one raster operand raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to second raster operand raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the sum target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(raster1, raster2): """Add raster1 and raster2 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] + raster2[valid_mask] return result def raster_sum_op_nodata_remove(raster1, raster2): """Add raster1 and raster2, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 + raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_difference( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Subtract raster2 from raster1. Subtract raster2 from raster1 element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to raster from which to subtract raster2 raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to raster which should be subtracted from raster1 raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the difference target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the difference in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_difference_op(raster1, raster2): """Subtract raster2 from raster1 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] - raster2[valid_mask] return result def raster_difference_op_nodata_remove(raster1, raster2): """Subtract raster2 from raster1, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 - raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op, target_path, gdal.GDT_Float32, target_nodata) def reclassify_nodata(target_path, new_nodata_value): """Reclassify the nodata value of a raster to a new value. Convert all areas of nodata in the target raster to the new nodata value, which must be an integer. Parameters: target_path (string): path to target raster new_nodata_value (integer): new value to set as nodata Side effects: modifies the raster indicated by `target_path` Returns: None """ def reclassify_op(target_raster): reclassified_raster = numpy.copy(target_raster) reclassify_mask = (target_raster == previous_nodata_value) reclassified_raster[reclassify_mask] = new_nodata_value return reclassified_raster fd, temp_path = tempfile.mkstemp(dir=PROCESSING_DIR) shutil.copyfile(target_path, temp_path) previous_nodata_value = pygeoprocessing.get_raster_info( target_path)['nodata'][0] pygeoprocessing.raster_calculator( [(temp_path, 1)], reclassify_op, target_path, gdal.GDT_Float32, new_nodata_value) # clean up os.close(fd) os.remove(temp_path) def weighted_state_variable_sum( sv, sv_reg, aligned_inputs, pft_id_set, weighted_sum_path): """Calculate weighted sum of state variable across plant functional types. To sum a state variable across PFTs within a grid cell, the state variable must be weighted by the fractional cover of each PFT inside the grid cell. First multiply the state variable by its fractional cover, and then add up the weighted products. Parameters: sv (string): state variable to be summed across plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables, including sv, the state variable to be summed aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types weighted_sum_path (string): path to raster that should contain the weighted sum across PFTs Side effects: modifies or creates the raster indicated by `weighted_sum_path` Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in pft_id_set: val = '{}_weighted'.format(sv) temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) weighted_path_list = [] for pft_i in pft_id_set: target_path = temp_val_dict['{}_weighted_{}'.format(sv, pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( sv_reg['{}_{}_path'.format(sv, pft_i)], _SV_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) raster_list_sum( weighted_path_list, _TARGET_NODATA, weighted_sum_path, _TARGET_NODATA, nodata_remove=True) # clean up temporary files shutil.rmtree(temp_dir) def _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set): """Check the sum of fractional cover across plant functional types. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types Raises: ValueError if the pixel-wise sum of fractional cover values across plant functional types exceeds 1 Returns: None """ with tempfile.NamedTemporaryFile( prefix='cover_sum', dir=PROCESSING_DIR) as cover_sum_temp_file: cover_sum_path = cover_sum_temp_file.name with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name # initialize sum to zero pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], cover_sum_path, gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) for pft_i in pft_id_set: shutil.copyfile(cover_sum_path, operand_temp_path) pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_sum( aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, operand_temp_path, _TARGET_NODATA, cover_sum_path, _TARGET_NODATA) # get maximum sum of fractional cover max_cover = 0. for offset_map, raster_block in pygeoprocessing.iterblocks( (cover_sum_path, 1)): valid_mask = (raster_block != _TARGET_NODATA) if raster_block[valid_mask].size > 0: max_cover = max(max_cover, numpy.amax(raster_block[valid_mask])) if max_cover > 1: raise ValueError( "Fractional cover across plant functional types exceeds 1") # clean up os.remove(cover_sum_path) def initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table): """Generate initial state variable registry from initial conditions tables. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including site spatial index raster and fractional cover of each plant functional type sv_dir (string): path to directory where initial state variable rasters should be stored pft_id_set (set): set of integers identifying plant functional types site_initial_conditions_table (dict): map of site spatial index to dictionaries that contain initial values for site-level state variables pft_initial_conditions_table (dict): map of plant functional type index to dictionaries that contain initial values for plant functional type-level state variables Returns: initial_sv_reg, map of key, path pairs giving paths to initial state variable rasters """ def full_masked(pft_cover, fill_val): """Create a constant raster masked by pft fractional cover. Parameters: pft_cover (numpy.ndarray): input, fractional cover of the plant functional type fill_val (float): constant value with which to fill raster in areas where fractional cover > 0 Returns: full_masked, a raster containing `fill_val` in areas where `pft_cover` > 0 """ valid_mask = ( (~numpy.isclose(pft_cover, _SV_NODATA)) & (pft_cover > 0)) full_masked = numpy.empty(pft_cover.shape, dtype=numpy.float32) full_masked[:] = _SV_NODATA full_masked[valid_mask] = fill_val return full_masked initial_sv_reg = {} # site-level state variables # check for missing state variable values required_site_state_var = set( [sv_key[:-5] for sv_key in _SITE_STATE_VARIABLE_FILES.keys()]) for site_code in site_initial_conditions_table.keys(): missing_site_state_var = required_site_state_var.difference( site_initial_conditions_table[site_code].keys()) if missing_site_state_var: raise ValueError( "The following state variables were not found in the site " + "initial conditions table: \n\t" + "\n\t".join( missing_site_state_var)) for sv_key, basename in _SITE_STATE_VARIABLE_FILES.items(): state_var = sv_key[:-5] site_to_val = dict( [(site_code, float(table[state_var])) for ( site_code, table) in site_initial_conditions_table.items()]) target_path = os.path.join(sv_dir, basename) initial_sv_reg[sv_key] = target_path pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _SV_NODATA) # PFT-level state variables for pft_i in pft_id_set: # check for missing values missing_pft_state_var = set(_PFT_STATE_VARIABLES).difference( pft_initial_conditions_table[pft_i].keys()) if missing_pft_state_var: raise ValueError( "The following state variables were not found in the plant " + "functional type initial conditions table: \n\t" + "\n\t".join( missing_pft_state_var)) for state_var in _PFT_STATE_VARIABLES: fill_val = pft_initial_conditions_table[pft_i][state_var] pft_cover_path = aligned_inputs['pft_{}'.format(pft_i)] target_path = os.path.join( sv_dir, '{}_{}.tif'.format(state_var, pft_i)) sv_key = '{}_{}_path'.format(state_var, pft_i) initial_sv_reg[sv_key] = target_path pygeoprocessing.raster_calculator( [(pft_cover_path, 1), (fill_val, 'raw')], full_masked, target_path, gdal.GDT_Float32, _SV_NODATA) return initial_sv_reg def _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path, ompc_path): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): path to active organic soil carbon raster som2c_2_path (string): path to slow organic soil carbon raster som3c_path (string): path to passive organic soil carbon raster bulkd_path (string): path to bulk density of soil raster edepth (string): path to depth of soil raster ompc_path (string): path to result, total soil organic matter Side effects: modifies or creates the raster indicated by `ompc_path` Returns: None """ def ompc_op(som1c_2, som2c_2, som3c, bulkd, edepth): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): state variable, active organic soil carbon som2c_2_path (string): state variable, slow organic soil carbon som3c_path (string): state variable, passive organic soil carbon bulkd_path (string): input, bulk density of soil edepth_path (string): parameter, depth of soil for this calculation Returns: ompc, total soil organic matter weighted by bulk density. """ ompc = numpy.empty(som1c_2.shape, dtype=numpy.float32) ompc[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som2c_2, _SV_NODATA)) & (~numpy.isclose(som3c, _SV_NODATA)) & (~numpy.isclose(bulkd, bulkd_nodata)) & (edepth != _IC_NODATA)) ompc[valid_mask] = ( (som1c_2[valid_mask] + som2c_2[valid_mask] + som3c[valid_mask]) * 1.724 / (10000. * bulkd[valid_mask] * edepth[valid_mask])) return ompc bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path]], ompc_op, ompc_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulkd_path, afiel_path): """Calculate field capacity for one soil layer. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster afiel_path (string): path to result raster, field capacity for this soil layer Side effects: creates the raster indicated by `afiel_path` Returns: None """ def afiel_op(sand, silt, clay, ompc, bulkd): """Calculate field capacity for one soil layer. Field capacity, maximum soil moisture retention capacity, from <NAME> Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: afiel, field capacity for this soil layer """ afiel = numpy.empty(sand.shape, dtype=numpy.float32) afiel[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) afiel[valid_mask] = ( 0.3075 * sand[valid_mask] + 0.5886 * silt[valid_mask] + 0.8039 * clay[valid_mask] + 2.208E-03 * ompc[valid_mask] + -0.1434 * bulkd[valid_mask]) return afiel sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], afiel_op, afiel_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulkd_path, awilt_path): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster awilt_path (string): path to result raster, wilting point for this soil layer Side effects: creates the raster indicated by `awilt_path` Returns: None """ def awilt_op(sand, silt, clay, ompc, bulkd): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: awilt, wilting point for this soil layer """ awilt = numpy.empty(sand.shape, dtype=numpy.float32) awilt[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) awilt[valid_mask] = ( -0.0059 * sand[valid_mask] + 0.1142 * silt[valid_mask] + 0.5766 * clay[valid_mask] + 2.228E-03 * ompc[valid_mask] + 0.02671 * bulkd[valid_mask]) return awilt sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], awilt_op, awilt_path, gdal.GDT_Float32, _TARGET_NODATA) def _afiel_awilt( site_index_path, site_param_table, som1c_2_path, som2c_2_path, som3c_path, sand_path, silt_path, clay_path, bulk_d_path, pp_reg): """Calculate field capacity and wilting point for each soil layer. Computations based on Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Field capacity is calculated for -0.33 bar; wilting point is calculated for water content at -15 bars. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters including 'edepth' field som1c_2_path (string): path to the state variable 'som1c_2', active organic soil carbon som2c_2_path (string): path to the state variable 'som2c_2', slow organic soil carbon som3c_path (string): path to the state variable 'som3c', passive organic soil carbon sand_path (string): path to raster containing proportion sand in soil silt_path (string): path to raster containing proportion silt in soil clay_path (string): path to raster containing proportion clay in soil bulk_d_path (string): path to raster containing bulk density of soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation Modifies the rasters pp_reg['afiel_<layer>'] and pp_reg['awilt_<layer>'] for all soil layers. Returns: None """ def decrement_ompc(ompc_orig_path, ompc_dec_path): """Decrease estimated organic matter to 85% of its value. In each subsequent soil layer, estimated organic matter is decreased by 15%, to 85% of its previous value. Parameters: ompc_orig_path (string): path to estimated soil organic matter raster ompc_dec_path (string): path to result raster, estimated soil organic matter decreased to 85% of its previous value Side effects: modifies or creates the raster indicated by `ompc_dec_path` Returns: None """ def decrement_op(ompc_orig): """Reduce organic matter to 85% of its previous value.""" ompc_dec = numpy.empty(ompc_orig.shape, dtype=numpy.float32) ompc_dec[:] = _TARGET_NODATA valid_mask = (ompc_orig != _TARGET_NODATA) ompc_dec[valid_mask] = ompc_orig[valid_mask] * 0.85 return ompc_dec pygeoprocessing.raster_calculator( [(ompc_orig_path, 1)], decrement_op, ompc_dec_path, gdal.GDT_Float32, _TARGET_NODATA) # temporary intermediate rasters for calculating field capacity and # wilting point temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) edepth_path = os.path.join(temp_dir, 'edepth.tif') ompc_path = os.path.join(temp_dir, 'ompc.tif') site_to_edepth = dict( [(site_code, float(table['edepth'])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_edepth, edepth_path, gdal.GDT_Float32, _IC_NODATA) # estimate total soil organic matter _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulk_d_path, edepth_path, ompc_path) # calculate field capacity and wilting point for each soil layer, # decreasing organic matter content by 85% with each layer for lyr in range(1, 10): afiel_path = pp_reg['afiel_{}_path'.format(lyr)] awilt_path = pp_reg['awilt_{}_path'.format(lyr)] _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, afiel_path) _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, awilt_path) ompc_dec_path = os.path.join(temp_dir, 'ompc{}.tif'.format(lyr)) decrement_ompc(ompc_path, ompc_dec_path) ompc_path = ompc_dec_path # clean up temporary files shutil.rmtree(temp_dir) def _persistent_params( site_index_path, site_param_table, sand_path, clay_path, pp_reg): """Calculate persistent parameters. The calculated values do not change over the course of the simulation. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sand_path (string): path to raster containing proportion sand in soil clay_path (string): path to raster containing proportion clay in soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['wc_path'] pp_reg['eftext_path'] pp_reg['p1co2_2_path'] pp_reg['fps1s3_path'] pp_reg['fps2s3_path'] pp_reg['orglch_path'] pp_reg['vlossg_path'] Returns: None """ sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] # temporary intermediate rasters for persistent parameters calculation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in[ 'peftxa', 'peftxb', 'p1co2a_2', 'p1co2b_2', 'ps1s3_1', 'ps1s3_2', 'ps2s3_1', 'ps2s3_2', 'omlech_1', 'omlech_2', 'vlossg']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_wc(afiel_1, awilt_1): """Calculate water content of soil layer 1.""" return afiel_1 - awilt_1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ pp_reg['afiel_1_path'], pp_reg['awilt_1_path']]], calc_wc, pp_reg['wc_path'], gdal.GDT_Float32, _TARGET_NODATA) def calc_eftext(peftxa, peftxb, sand): """Calculate effect of soil texture on microbial decomposition. Use an empirical regression to estimate the effect of soil sand content on the microbe decomposition rate. Line 359 Prelim.f Parameters: peftxa (numpy.ndarray): parameter, regression intercept peftxb (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: eftext, coefficient that modifies microbe decomposition rate. """ eftext = numpy.empty(sand.shape, dtype=numpy.float32) eftext[:] = _IC_NODATA valid_mask = ( (peftxa != _IC_NODATA) & (peftxb != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) eftext[valid_mask] = ( peftxa[valid_mask] + (peftxb[valid_mask] * sand[valid_mask])) return eftext pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['peftxa'], param_val_dict['peftxb'], sand_path]], calc_eftext, pp_reg['eftext_path'], gdal.GDT_Float32, _IC_NODATA) def calc_p1co2_2(p1co2a_2, p1co2b_2, sand): """Calculate the fraction of carbon lost to CO2 from som1c_2. During decomposition from active organic soil carbon, a fraction of decomposing material is lost to CO2 as the soil respires. Line 366 Prelim.f Parameters: p1co2a_2 (numpy.ndarray): parameter, intercept of regression predicting loss to CO2 from active organic soil carbon p1co2b_2 (numpy.ndarray): parameter, slope of regression predicting loss to CO2 from active organic soil carbon sand (numpy.ndarray): input, proportion sand in soil Returns: p1co2_2, fraction of carbon that flows to CO2 from active organic soil carbon """ p1co2_2 = numpy.empty(sand.shape, dtype=numpy.float32) p1co2_2[:] = _IC_NODATA valid_mask = ( (p1co2a_2 != _IC_NODATA) & (p1co2b_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) p1co2_2[valid_mask] = ( p1co2a_2[valid_mask] + (p1co2b_2[valid_mask] * sand[valid_mask])) return p1co2_2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['p1co2a_2'], param_val_dict['p1co2b_2'], sand_path]], calc_p1co2_2, pp_reg['p1co2_2_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps1s3(ps1s3_1, ps1s3_2, clay): """Calculate effect of clay content on decomposition from som1c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from soil organic matter with fast turnover to soil organic matter with slow turnover. Line 370 Prelim.f Parameters: ps1s3_1 (numpy.ndarray): parameter, regression intercept ps1s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps1s3, coefficient that modifies rate of decomposition from som1c_2 """ fps1s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps1s3[:] = _IC_NODATA valid_mask = ( (ps1s3_1 != _IC_NODATA) & (ps1s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps1s3[valid_mask] = ( ps1s3_1[valid_mask] + (ps1s3_2[valid_mask] * clay[valid_mask])) return fps1s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps1s3_1'], param_val_dict['ps1s3_2'], clay_path]], calc_fps1s3, pp_reg['fps1s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps2s3(ps2s3_1, ps2s3_2, clay): """Calculate effect of clay content on decomposition from som2c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from slow soil organic carbon to soil passive organic carbon. Line 371 Prelim.f Parameters: ps2s3_1 (numpy.ndarray): parameter, regression intercept ps2s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps2s3, coefficient that modifies rate of decomposition from som2c_2 to som3c """ fps2s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps2s3[:] = _IC_NODATA valid_mask = ( (ps2s3_1 != _IC_NODATA) & (ps2s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps2s3[valid_mask] = ( ps2s3_1[valid_mask] + (ps2s3_2[valid_mask] * clay[valid_mask])) return fps2s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps2s3_1'], param_val_dict['ps2s3_2'], clay_path]], calc_fps2s3, pp_reg['fps2s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_orglch(omlech_1, omlech_2, sand): """Calculate the effect of sand content on leaching from soil. Use an empirical regression to estimate the effect of sand content of soil on rate of organic leaching from soil when there is drainage of soil water from soil layer 1 to soil layer 2. Line 110 Predec.f Parameters: omlech_1 (numpy.ndarray): parameter, regression intercept omlech_2 (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: orglch, the fraction of organic compounds leaching from soil with drainage from soil layer 1 to layer 2 """ orglch = numpy.empty(sand.shape, dtype=numpy.float32) orglch[:] = _IC_NODATA valid_mask = ( (omlech_1 != _IC_NODATA) & (omlech_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) orglch[valid_mask] = ( omlech_1[valid_mask] + (omlech_2[valid_mask] * sand[valid_mask])) return orglch pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['omlech_1'], param_val_dict['omlech_2'], sand_path]], calc_orglch, pp_reg['orglch_path'], gdal.GDT_Float32, _IC_NODATA) def calc_vlossg(vlossg_param, clay): """Calculate proportion of gross mineralized N that is volatized. During decomposition, some N is lost to volatilization. This is a function of the gross mineralized N and is calculated according to this multiplier, which varies with soil clay content. Parameters: vlossg (numpy.ndarray): parameter, volatilization loss multiplier clay (numpy.ndarray): input, proportion clay in soil Returns: vlossg, proportion of gross mineralized N that is volatized """ valid_mask = ( (vlossg_param != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) vlossg = numpy.empty(vlossg_param.shape, dtype=numpy.float32) vlossg[:] = _IC_NODATA max_mask = ((clay > 0.3) & valid_mask) min_mask = ((clay < 0.1) & valid_mask) vlossg[valid_mask] = -0.1 * (clay[valid_mask] - 0.3) + 0.01 vlossg[max_mask] = 0.01 vlossg[min_mask] = 0.03 vlossg[valid_mask] = vlossg[valid_mask] * vlossg_param[valid_mask] return vlossg pygeoprocessing.raster_calculator( [(path, 1) for path in [param_val_dict['vlossg'], clay_path]], calc_vlossg, pp_reg['vlossg_path'], gdal.GDT_Float32, _IC_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _aboveground_ratio(anps, tca, pcemic_1, pcemic_2, pcemic_3): """Calculate C/<iel> ratios of decomposing aboveground material. This ratio is used to test whether there is sufficient <iel> (N or P) in aboveground material for the material to decompose. Agdrat.f Parameters: anps (numpy.ndarray): state variable, N or P in the donor material tca (numpy.ndarray): state variable, total C in the donor material pcemic_1 (numpy.ndarray): parameter, maximum C/<iel> of new material pcemic_2 (numpy.ndarray): parameter, minimum C/<iel> of new material pcemic_3 (numpy.ndarray): parameter, minimum <iel> content of decomposing material that gives minimum C/<iel> of new material Returns: agdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(tca, _SV_NODATA)) & (pcemic_1 != _IC_NODATA) & (pcemic_2 != _IC_NODATA) & (pcemic_3 != _IC_NODATA)) cemicb = numpy.empty(anps.shape, dtype=numpy.float32) cemicb[:] = _IC_NODATA cemicb[valid_mask] = ( (pcemic_2[valid_mask] - pcemic_1[valid_mask]) / pcemic_3[valid_mask]) econt = numpy.empty(anps.shape, dtype=numpy.float32) econt[:] = _TARGET_NODATA econt[valid_mask] = 0 decompose_mask = ((tca > 0.) & valid_mask) econt[decompose_mask] = anps[decompose_mask] / (tca[decompose_mask] * 2.5) agdrat = numpy.empty(anps.shape, dtype=numpy.float32) agdrat[:] = _TARGET_NODATA agdrat[valid_mask] = pcemic_2[valid_mask] compute_mask = ((econt <= pcemic_3) & valid_mask) agdrat[compute_mask] = ( pcemic_1[compute_mask] + econt[compute_mask] * cemicb[compute_mask]) return agdrat def _belowground_ratio(aminrl, varat_1_iel, varat_2_iel, varat_3_iel): """Calculate C/<iel> ratios of decomposing belowground material. This ratio is used to test whether there is sufficient <iel> (N or P) in soil metabolic material to decompose. Bgdrat.f Parameters: aminrl (numpy.ndarray): derived, average surface mineral <iel> varat_1_iel (numpy.ndarray): parameter, maximum C/<iel> ratio for newly decomposed material varat_2_iel (numpy.ndarray): parameter, minimum C/<iel> ratio varat_3_iel (numpy.ndarray): parameter, amount of <iel> present when minimum ratio applies Returns: bgdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(aminrl, _SV_NODATA)) & (varat_1_iel != _IC_NODATA) & (varat_2_iel != _IC_NODATA) & (varat_3_iel != _IC_NODATA)) bgdrat = numpy.empty(aminrl.shape, dtype=numpy.float32) bgdrat[:] = _TARGET_NODATA bgdrat[valid_mask] = ( (1. - aminrl[valid_mask] / varat_3_iel[valid_mask]) * (varat_1_iel[valid_mask] - varat_2_iel[valid_mask]) + varat_2_iel[valid_mask]) max_mask = ((aminrl <= 0) & valid_mask) bgdrat[max_mask] = varat_1_iel[max_mask] min_mask = ((aminrl > varat_3_iel) & valid_mask) bgdrat[min_mask] = varat_2_iel[min_mask] return bgdrat def _structural_ratios(site_index_path, site_param_table, sv_reg, pp_reg): """Calculate maximum C/N and C/P ratios for structural material. These ratios limit decomposition of structural material (i.e., material containing lignin). Lines 31-77 Predec.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sv_reg (dict): map of key, path pairs giving paths to state variables for the current month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['rnewas_1_1_path'] pp_reg['rnewas_1_2_path'] pp_reg['rnewas_2_1_path'] pp_reg['rnewas_2_2_path'] pp_reg['rnewbs_1_1_path'] pp_reg['rnewbs_1_2_path'] pp_reg['rnewbs_2_1_path'] pp_reg['rnewbs_2_2_path'] Returns: None """ # temporary parameter rasters for structural ratios calculations temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for iel in [1, 2]: for val in[ 'pcemic1_2', 'pcemic1_1', 'pcemic1_3', 'pcemic2_2', 'pcemic2_1', 'pcemic2_3', 'rad1p_1', 'rad1p_2', 'rad1p_3', 'varat1_1', 'varat22_1']: target_path = os.path.join(temp_dir, '{}_{}.tif'.format(val, iel)) param_val_dict['{}_{}'.format(val, iel)] = target_path site_to_val = dict( [(site_code, float(table['{}_{}'.format(val, iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_rnewas_som2( pcemic2_2, pcemic2_1, pcemic2_3, struce_1, strucc_1, rad1p_1, rad1p_2, rad1p_3, pcemic1_2, rnewas1): """Calculate C/<iel> ratio for decomposition into som2. This ratio is calculated separately for each nutrient (i.e., N, P). When material decomposes into the surface slow organic pool, the C/<iel> ratio of decomposing material must be smaller than or equal to this ratio. A portion of the ratio of material entering som1, the surface active pool, is also added to som2 and calculated here. Parameters: pcemic2_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface slow organic pool pcemic2_1 (numpy.ndarray): parameter, maximum C/<iel> ratio for surface slow organic pool pcemic2_3 (numpy.ndarray): parameter, mimimum <iel> content of decomposing aboveground material, above which the C/<iel> ratio of the surface slow organic pool equals pcemic1_2 struce_1 (numpy.ndarray): state variable, <iel> in surface structural material strucc_1 (numpy.ndarray): state variable, C in surface structural material rad1p_1 (numpy.ndarray): parameter, intercept of regression used to calculate addition of <iel> from surface active pool rad1p_2 (numpy.ndarray): parameter, slope of regression used to calculate addition of <iel> from surface active pool rad1p_3 (numpy.ndarray): parameter, minimum allowable C/<iel> used to calculate addition term for C/<iel> ratio of som2 formed from surface active pool pcemic1_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface active organic pool rnewas1 (numpy.ndarray): derived, C/<iel> ratio for decomposition into som1 Returns: rnewas2, required ratio for decomposition of structural material into som2 for one nutrient """ valid_mask = ( (pcemic2_2 != _IC_NODATA) & (pcemic2_1 != _IC_NODATA) & (pcemic2_3 != _IC_NODATA) & (~numpy.isclose(struce_1, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (rad1p_1 != _IC_NODATA) & (rad1p_2 != _IC_NODATA) & (rad1p_3 != _IC_NODATA) & (pcemic1_2 != _IC_NODATA) & (rnewas1 != _TARGET_NODATA)) rnewas2 = _aboveground_ratio( struce_1, strucc_1, pcemic2_1, pcemic2_2, pcemic2_3) radds1 = numpy.empty(strucc_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1[valid_mask] + rad1p_2[valid_mask] * (rnewas1[valid_mask] - pcemic1_2[valid_mask])) rnewas2[valid_mask] = rnewas1[valid_mask] + radds1[valid_mask] rnewas2[valid_mask] = numpy.maximum( rnewas2[valid_mask], rad1p_3[valid_mask]) return rnewas2 for iel in [1, 2]: # calculate rnewas_iel_1 - aboveground material to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, pp_reg['rnewas_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewas_iel_2 - aboveground material to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['pcemic2_2_{}'.format(iel)], param_val_dict['pcemic2_1_{}'.format(iel)], param_val_dict['pcemic2_3_{}'.format(iel)], sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], pp_reg['rnewas_{}_1_path'.format(iel)]]], calc_rnewas_som2, pp_reg['rnewas_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_1 - belowground material to SOM1 site_to_varat1_1 = dict([ (site_code, float(table['varat1_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat1_1, pp_reg['rnewbs_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_2 - belowground material to SOM2 # rnewbs(iel,2) = varat22(1,iel) site_to_varat22_1 = dict([ (site_code, float(table['varat22_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat22_1, pp_reg['rnewbs_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg): """Calculate quantities that remain static for 12 months. These quantities are annual precipitation, annual atmospheric N deposition, and the fraction of plant residue which is lignin for each pft. Century also calculates non-symbiotic soil N fixation once yearly, but here those were moved to monthly tasks. Century uses precipitation in the future 12 months (prcgrw) to predict root:shoot ratios, but here we instead use the sum of monthly precipitation in 12 months including the current one, if data for 12 future months are not available. Lines 79-82, 164 Eachyr.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including monthly precipitation and site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters month_index (int): current monthly step, relative to 0 so that month_index=0 at first monthly time step pft_id_set (set): set of integers identifying plant functional types year_reg (dict): map of key, path pairs giving paths to the annual precipitation and N deposition rasters Side effects: modifies or creates the rasters indicated by: year_reg['annual_precip_path'] year_reg['baseNdep_path'] year_reg['pltlig_above_<pft>'] for each pft year_reg['pltlig_below_<pft>'] for each pft Returns: None Raises: ValueError if fewer than 12 monthly precipitation rasters can be found """ def calc_base_N_dep(epnfa_1, epnfa_2, prcann): """Calculate base annual atmospheric N deposition. Parameters: epnfa_1 (numpy.ndarray): parameter, intercept of regression predicting atmospheric N deposition from precipitation epnfa_2 (numpy.ndarray): parameter, slope of regression predicting atmospheric N deposition from precipitation prcann (numpy.ndarray): derived, annual precipitation Returns: baseNdep, annual atmospheric N deposition """ baseNdep = numpy.empty(prcann.shape, dtype=numpy.float32) baseNdep[:] = 0. valid_mask = ( (epnfa_1 != _IC_NODATA) & (epnfa_2 != _IC_NODATA) & (prcann != _TARGET_NODATA)) baseNdep[valid_mask] = ( epnfa_1[valid_mask] + (epnfa_2[valid_mask] * numpy.minimum(prcann[valid_mask], 80.))) baseNdep[baseNdep < 0] = 0. return baseNdep def calc_pltlig(fligni_1_lyr, fligni_2_lyr, prcann): """Calculate the fraction of residue that is lignin. Cmplig.f This fraction is used to calculate the fraction of residue (i.e., incoming litter from fall of standing dead or incoming soil from death of roots) that is partitioned to metabolic vs structural pools. It is calculated once per year from annual precipitation and fixed parameters. Parameters: fligni_1_lyr (numpy.ndarray): parameter, intercept for regression predicting lignin content fraction from rainfall fligni_2_lyr (numpy.ndarray): parameter, slope for regression predicting lignin content fraction from rainfall prcann (numpy.ndarray): derived, annual precipitation Returns: pltlig_lyr, fraction of residue that is lignin """ valid_mask = ( (fligni_1_lyr != _IC_NODATA) & (fligni_2_lyr != _IC_NODATA) & (prcann != _TARGET_NODATA)) pltlig = numpy.empty(fligni_1_lyr.shape, dtype=numpy.float32) pltlig[:] = _TARGET_NODATA pltlig[valid_mask] = ( fligni_1_lyr[valid_mask] + fligni_2_lyr[valid_mask] * prcann[valid_mask]) pltlig[valid_mask] = numpy.clip(pltlig[valid_mask], 0.02, 0.5) return pltlig offset = -12 annual_precip_rasters = [] while len(annual_precip_rasters) < 12: offset += 1 if offset == 12: raise ValueError("Insufficient precipitation rasters were found") precip_month = month_index + offset try: annual_precip_rasters.append( aligned_inputs['precip_%d' % precip_month]) except KeyError: continue precip_nodata = set([]) for precip_raster in annual_precip_rasters: precip_nodata.update( set([pygeoprocessing.get_raster_info(precip_raster)['nodata'][0]])) if len(precip_nodata) > 1: raise ValueError("Precipitation rasters include >1 nodata value") precip_nodata = list(precip_nodata)[0] raster_list_sum( annual_precip_rasters, precip_nodata, year_reg['annual_precip_path'], _TARGET_NODATA) # intermediate parameter rasters for this operation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in['epnfa_1', 'epnfa_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['fligni_1_1', 'fligni_2_1', 'fligni_1_2', 'fligni_2_2']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # calculate base N deposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['epnfa_1'], param_val_dict['epnfa_2'], year_reg['annual_precip_path']]], calc_base_N_dep, year_reg['baseNdep_path'], gdal.GDT_Float32, _TARGET_NODATA) for pft_i in pft_id_set: # fraction of surface residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_1_{}'.format(pft_i)], param_val_dict['fligni_2_1_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_above_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # fraction of soil residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_2_{}'.format(pft_i)], param_val_dict['fligni_2_2_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_below_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_latitude(template_raster, latitude_raster_path): """Calculate latitude at the center of each pixel in a template raster.""" pygeoprocessing.new_raster_from_base( template_raster, latitude_raster_path, gdal.GDT_Float32, [_IC_NODATA]) latitude_raster = gdal.OpenEx( latitude_raster_path, gdal.OF_RASTER | gdal.GA_Update) target_band = latitude_raster.GetRasterBand(1) base_raster_info = pygeoprocessing.get_raster_info(template_raster) geotransform = base_raster_info['geotransform'] for offset_map, raster_block in pygeoprocessing.iterblocks( (template_raster, 1)): n_y_block = raster_block.shape[0] n_x_block = raster_block.shape[1] # offset by .5 so we're in the center of the pixel xoff = offset_map['xoff'] + 0.5 yoff = offset_map['yoff'] + 0.5 # calculate the projected x and y coordinate bounds for the block x_range = numpy.linspace( geotransform[0] + geotransform[1] * xoff, geotransform[0] + geotransform[1] * (xoff + n_x_block - 1), n_x_block) y_range = numpy.linspace( geotransform[3] + geotransform[5] * yoff, geotransform[3] + geotransform[5] * (yoff + n_y_block - 1), n_y_block) # we'll use this to avoid generating any nodata points valid_mask = raster_block != base_raster_info['nodata'] # these indexes correspond to projected coordinates # y_vector is what we want, an array of latitude coordinates x_vector, y_vector = numpy.meshgrid(x_range, y_range) target_band.WriteArray( y_vector, xoff=offset_map['xoff'], yoff=offset_map['yoff']) # Making sure the band and dataset is flushed and not in memory target_band.FlushCache() target_band.FlushCache() target_band = None gdal.Dataset.__swig_destroy__(latitude_raster) latitude_raster = None def _calc_daylength(template_raster, month, daylength_path): """Calculate estimated hours of daylength. Daylen.c. Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January daylength_path (string): path to shortwave radiation raster Side effects: modifies or creates the raster indicated by `daylength_path` Returns: None """ def daylength(month): def _daylength(latitude): """Estimate hours of daylength for a given month and latitude.""" # Julian day at beginning of each month jday_list = [ 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 337] jday = jday_list[month - 1] # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) declin = 0.4014 * numpy.sin(6.283185 * (jday - 77.0) / 365) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0] = 0 par1 = numpy.sqrt(temp) par2 = -numpy.tan(rlatitude) * numpy.tan(declin) ahou = numpy.arctan2(par1, par2) hours_of_daylength = (ahou / numpy.pi) * 24 return hours_of_daylength return _daylength # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], daylength(month), daylength_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _shortwave_radiation(template_raster, month, shwave_path): """Calculate shortwave radiation outside the atmosphere. Shortwave radiation outside the atmosphere is calculated according to Penman (1948), "Natural evaporation from open water, bare soil and grass", Proc. Roy. Soc. London. The latitude of each pixel is required to calculate radiation and is calculated as an intermediate step from the input `template_raster`. shwave.f Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January shwave_path (string): path to shortwave radiation raster Side effects: Modifies the raster indicated by `shwave_path` Returns: None """ def shwave(month): def _shwave(latitude): """Calculate shortwave radiation outside the atmosphere. Parameters: latitude (float): latitude of current site in degrees month (int): current month of the year, such that month=1 indicates January Returns: shwave, short wave solar radiation outside the atmosphere """ # Julian date in middle of each month of the year jday_list = [ 16, 46, 75, 106, 136, 167, 197, 228, 259, 289, 320, 350] jday = jday_list[month - 1] transcof = 0.8 # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) # short wave solar radiation on a clear day declin = 0.401426 * numpy.sin(6.283185 * (jday - 77.0) / 365.0) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0.] = 0. par1 = numpy.sqrt(temp) par2 = (-numpy.tan(rlatitude) * numpy.tan(declin)) ahou = numpy.arctan2(par1, par2) ahou[ahou < 0.] = 0. solrad = ( 917.0 * transcof * ( ahou * numpy.sin(rlatitude) * numpy.sin(declin) + numpy.cos(rlatitude) * numpy.cos(declin) * numpy.sin(ahou))) # short wave radiation outside the atmosphere shwave = solrad / transcof return shwave return _shwave # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], shwave(month), shwave_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _reference_evapotranspiration( max_temp_path, min_temp_path, shwave_path, fwloss_4_path, pevap_path): """Calculate reference evapotranspiration. Reference evapotranspiration from the FAO Penman-Monteith equation in "Guidelines for computing crop water requirements", FAO Irrigation and drainage paper 56 (http://www.fao.org/docrep/X0490E/x0490e08.htm), modified by the parameter fwloss(4). Parameters: max_temp_path (string): path to maximum monthly temperature min_temp_path (string): path to minimum monthly temperature shwave_path (string): path to shortwave radiation outside the atmosphere fwloss_4_path (string): path to parameter, scaling factor for reference evapotranspiration pevap_path (string): path to result, reference evapotranspiration raster Side effects: modifies or creates the raster indicated by `pevap_path` Returns: None """ def _calc_pevap(max_temp, min_temp, shwave, fwloss_4): """Calculate reference evapotranspiration. Pevap.f Parameters: max_temp (numpy.ndarray): input, maximum monthly temperature min_temp (numpy.ndarray): input, minimum monthly temperature shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere fwloss_4 (numpy.ndarray): parameter, scaling factor for reference evapotranspiration Returns: pevap, reference evapotranspiration """ const1 = 0.0023 const2 = 17.8 langleys2watts = 54.0 valid_mask = ( (~numpy.isclose(max_temp, maxtmp_nodata)) & (~numpy.isclose(min_temp, mintmp_nodata)) & (shwave != _TARGET_NODATA) & (fwloss_4 != _IC_NODATA)) trange = numpy.empty(fwloss_4.shape, dtype=numpy.float32) trange[:] = _TARGET_NODATA trange[valid_mask] = max_temp[valid_mask] - min_temp[valid_mask] tmean = numpy.empty(fwloss_4.shape, dtype=numpy.float32) tmean[:] = _IC_NODATA tmean[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2.0 # daily reference evapotranspiration daypet = numpy.empty(fwloss_4.shape, dtype=numpy.float32) daypet[:] = _TARGET_NODATA in1 = const1 * (tmean[valid_mask] + const2) in2 = numpy.sqrt(trange[valid_mask]) in3 = (shwave[valid_mask] / langleys2watts) daypet[valid_mask] = ( const1 * (tmean[valid_mask] + const2) * numpy.sqrt(trange[valid_mask]) * (shwave[valid_mask] / langleys2watts)) # monthly reference evapotranspiration, from mm to cm, # bounded to be at least 0.5 monpet = (daypet * 30.) / 10. monpet[monpet <= 0.5] = 0.5 pevap = numpy.empty(fwloss_4.shape, dtype=numpy.float32) pevap[:] = _TARGET_NODATA pevap[valid_mask] = monpet[valid_mask] * fwloss_4[valid_mask] return pevap maxtmp_nodata = pygeoprocessing.get_raster_info( max_temp_path)['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( min_temp_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ max_temp_path, min_temp_path, shwave_path, fwloss_4_path]], _calc_pevap, pevap_path, gdal.GDT_Float32, _TARGET_NODATA) def _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg): """Calculate above- and belowground potential production. Potential production of each plant functional type is calculated as total potential production given incoming solar radiation, limited by temperature, soil moisture, and obstruction by biomass and litter. Further modification of potential production according to limitation by water and nutrient availability is calculated in the root:shoot ratio submodel. Lines 57-148 Potcrp.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['h2ogef_1_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month creates the raster indicated by `month_reg['tgprod_pot_prod_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: if str(current_month) in veg_trait_table[pft_i]['growth_months']: do_PFT.append(pft_i) if not do_PFT: return def calc_ctemp(aglivc, pmxbio, maxtmp, pmxtmp, mintmp, pmntmp): """Calculate soil temperature relative to its effect on growth. Soil temperature is calculated from monthly temperature inputs and modified by total standing live biomass. Lines 69-84 Potcrp.f Parameters: aglivc (numpy.ndarray): derived, sum of aglivc (carbon in aboveground live biomass) across plant functional types pmxbio (numpy.ndarray): parameter, maximum biomass impact on temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature pmxtmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly maximum temperature mintmp (numpy.ndarray): input, average minimum monthly temperature pmntmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly minimum temperature Returns: ctemp, effect of soil temperature on potential production """ bio = numpy.empty(aglivc.shape, dtype=numpy.float32) bio[:] = _IC_NODATA valid_mask = ( (aglivc >= 0.) & (pmxbio != _IC_NODATA) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (pmxtmp != _IC_NODATA) & (~numpy.isclose(mintmp, mintmp_nodata)) & (pmntmp != _IC_NODATA)) bio[valid_mask] = aglivc[valid_mask] * 2.5 bio[bio > pmxbio] = pmxbio[bio > pmxbio] bio[pmxbio < 0] = _IC_NODATA # Maximum temperature tmxs = numpy.empty(aglivc.shape, dtype=numpy.float32) tmxs[:] = _IC_NODATA tmxs[valid_mask] = ( maxtmp[valid_mask] + ( (25.4/(1. + 18. * numpy.exp(-0.20 * maxtmp[valid_mask]))) * (numpy.exp(pmxtmp[valid_mask] * bio[valid_mask]) - 0.13))) # Minimum temperature tmns = numpy.empty(aglivc.shape, dtype=numpy.float32) tmns[:] = _IC_NODATA tmns[valid_mask] = ( mintmp[valid_mask] + (pmntmp[valid_mask] * bio[valid_mask] - 1.78)) # Average temperature ctemp = numpy.empty(aglivc.shape, dtype=numpy.float32) ctemp[:] = _IC_NODATA ctemp[valid_mask] = (tmxs[valid_mask] + tmns[valid_mask])/2. return ctemp def calc_potprd(mintmp, maxtmp, ctemp, ppdf_1, ppdf_2, ppdf_3, ppdf_4): """Calculate the limiting effect of temperature on growth. Estimated soil temperature restricts potential production according to a Poisson Density Function curve described by the plant functional type-specific parameters ppdf_1-4.. Lines 73-84 Potcrp.f Parameters: mintmp (numpy.ndarray): input, average minimum monthly temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature ctemp (numpy.ndarray): derived, soil temperature as calculated from monthly temperature and modified by standing live biomass ppdf_1 (numpy.ndarray): parameter, optimum temperature for growth ppdf_2 (numpy.ndarray): parameter, maximum temperature for growth ppdf_3 (numpy.ndarray): parameter, left curve shape for Poisson Density Function curve describing growth as function of temperature ppdf_4 (numpy.ndarray): parameter, right curve shape for Poisson Density Function curve describing growth as function of temperature Returns: potprd, scaling factor describing potential production limited by temperature """ valid_mask = ( (~numpy.isclose(mintmp, mintmp_nodata)) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (ctemp != _IC_NODATA) & (ppdf_1 != _IC_NODATA) & (ppdf_2 != _IC_NODATA) & (ppdf_3 != _IC_NODATA) & (ppdf_4 != _IC_NODATA)) frac = numpy.empty(ctemp.shape, dtype=numpy.float32) frac[:] = _TARGET_NODATA frac[valid_mask] = ( (ppdf_2[valid_mask] - ctemp[valid_mask]) / (ppdf_2[valid_mask] - ppdf_1[valid_mask])) avg_tmp = numpy.empty(ctemp.shape, dtype=numpy.float32) avg_tmp[valid_mask] = (mintmp[valid_mask] + maxtmp[valid_mask]) / 2. grow_mask = ( (avg_tmp > 0) & (frac > 0) & valid_mask) potprd = numpy.empty(ctemp.shape, dtype=numpy.float32) potprd[:] = _TARGET_NODATA potprd[valid_mask] = 0. potprd[grow_mask] = (numpy.exp( (ppdf_3[grow_mask]/ppdf_4[grow_mask]) * (1. - numpy.power(frac[grow_mask], ppdf_4[grow_mask]))) * numpy.power(frac[grow_mask], ppdf_3[grow_mask])) return potprd def calc_h2ogef_1( pevap, avh2o_1, precip, wc, pprpts_1, pprpts_2, pprpts_3): """Calculate the limiting factor of water availability on growth. Soil moisture restricts potential production according to the ratio of available water to reference evapotranspiration. The shape of the linear relationship of this ratio to potential production is controlled by the site parameters pprpts_1, pprpts_2, and pprpts_3. Lines 57-64 Potcrp.f Parameters: pevap (numpy.ndarray): derived, reference evapotranspiration avh2o_1 (numpy.ndarray): state variable, water available to this plant functional type for growth precip (numpy.ndarray): input, precipitation for the current month wc (numpy.ndarray): derived, water content in soil layer 1 pprpts_1 (numpy.ndarray): parameter, the minimum ratio of available water to reference evapotranspiration that limits production completely pprpts_2 (numpy.ndarray): parameter, influences the slope of the line predicting potential production from available water pprpts_3 (numpy.ndarray): parameter, the ratio of available water to reference evapotranspiration above which production is not restricted Returns: h2ogef_1, scaling factor describing potential production limited by soil moisture """ valid_mask = ( (pevap != _TARGET_NODATA) & (~numpy.isclose(avh2o_1, _SV_NODATA)) & (~numpy.isclose(precip, precip_nodata)) & (wc != _TARGET_NODATA) & (pprpts_1 != _IC_NODATA) & (pprpts_2 != _IC_NODATA) & (pprpts_3 != _IC_NODATA)) h2ogef_prior = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_prior[:] = _TARGET_NODATA h2ogef_prior[valid_mask] = numpy.where( pevap[valid_mask] >= 0.01, (avh2o_1[valid_mask] + precip[valid_mask])/pevap[valid_mask], 0.01) intcpt = ( pprpts_1[valid_mask] + (pprpts_2[valid_mask] * wc[valid_mask])) slope = 1. / (pprpts_3[valid_mask] - intcpt) h2ogef_1 = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_1[:] = _TARGET_NODATA h2ogef_1[valid_mask] = ( 1.0 + slope * (h2ogef_prior[valid_mask] - pprpts_3[valid_mask])) h2ogef_1[valid_mask] = numpy.clip(h2ogef_1[valid_mask], 0.01, 1.) return h2ogef_1 def calc_biof(sum_stdedc, sum_aglivc, strucc_1, pmxbio, biok5): """Calculate the effect of obstruction on growth. Live biomass, standing dead biomass, and litter reduce potential production through obstruction. The shape of the relationship between standing biomass and litter and potential production is controlled by the site parameter pmxbio and the plant functional type parameter biok5. Lines 91-120 Potcrp.f Parameters: sum_stdedc (numpy.ndarray): derived, total carbon in standing dead biomass across plant functional types sum_aglivc (numpy.ndarray): derived, total carbon in aboveground live biomass across plant functional types strucc_1 (numpy.ndarray): derived, carbon in surface litter pmxbio (numpy.ndarray): parameter, maximum biomass impact on potential production biok5 (numpy.ndarray): parameter, level of standing dead biomass and litter Returns: biof, scaling factor describing potential production limited by obstruction """ valid_mask = ( (~numpy.isclose(strucc_1, _SV_NODATA)) & (pmxbio != _IC_NODATA) & (biok5 != _IC_NODATA)) bioc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioc[:] = _IC_NODATA bioc[valid_mask] = numpy.where( ((sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask]) <= 0.), 0.01, (sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask])) bioc[valid_mask] = numpy.where( (bioc[valid_mask] > pmxbio[valid_mask]), pmxbio[valid_mask], bioc[valid_mask]) bioprd = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioprd[:] = _IC_NODATA bioprd[valid_mask] = 1. - ( bioc[valid_mask] / (biok5[valid_mask] + bioc[valid_mask])) temp1 = 1. - bioprd temp2 = temp1 * 0.75 temp3 = temp1 * 0.25 ratlc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) ratlc[:] = _IC_NODATA ratlc[valid_mask] = sum_aglivc[valid_mask] / bioc[valid_mask] biof = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) biof[:] = _TARGET_NODATA biof[valid_mask] = numpy.where( ratlc[valid_mask] <= 1., (bioprd[valid_mask] + (temp2[valid_mask] * ratlc[valid_mask])), numpy.where( ratlc[valid_mask] <= 2., (bioprd[valid_mask] + temp2[valid_mask]) + temp3[valid_mask] * (ratlc[valid_mask] - 1.), 1.)) return biof def calc_tgprod_pot_prod(prdx_1, shwave, potprd, h2ogef_1, biof): """Calculate total potential production. Total above- and belowground potential biomass production is calculated as the total potential production given solar radiation and the intrinsinc growth capacity of the plant functional type, modified by limiting factors of temperature, soil moisture, and obstruction by standing biomass and litter. Line 147 Potcrp.f Parameters: prdx_1 (numpy.ndarray): parameter, the intrinsic capacity of the plant functional type for growth per unit of solar radiation shwave (numpy.ndarray): derived, shortwave solar radiation outside the atmosphere potprd (numpy.ndarray): parameter, scaling factor describing limiting effect of temperature h2ogef_1 (numpy.ndarray): derived, scaling factor describing the limiting effect of soil moisture biof (numpy.ndarray): derived, scaling factor describing the limiting effect of obstruction by standing biomass and litter Returns: tgprod_pot_prod, total above- and belowground potential biomass production (g biomass) """ valid_mask = ( (prdx_1 != _IC_NODATA) & (shwave != _TARGET_NODATA) & (potprd != _TARGET_NODATA) & (h2ogef_1 != _TARGET_NODATA) & (biof != _TARGET_NODATA)) tgprod_pot_prod = numpy.empty(prdx_1.shape, dtype=numpy.float32) tgprod_pot_prod[:] = _TARGET_NODATA tgprod_pot_prod[valid_mask] = ( prdx_1[valid_mask] * shwave[valid_mask] * potprd[valid_mask] * h2ogef_1[valid_mask] * biof[valid_mask]) return tgprod_pot_prod # temporary intermediate rasters for calculating total potential production temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} # site-level temporary calculated values for val in ['sum_aglivc', 'sum_stdedc', 'ctemp', 'shwave', 'pevap']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # PFT-level temporary calculated values for pft_i in pft_id_set: for val in [ 'aglivc_weighted', 'stdedc_weighted', 'potprd', 'biof']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) # temporary parameter rasters for calculating total potential production param_val_dict = {} # site-level parameters for val in [ 'pmxbio', 'pmxtmp', 'pmntmp', 'fwloss_4', 'pprpts_1', 'pprpts_2', 'pprpts_3']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for val in [ 'ppdf_1', 'ppdf_2', 'ppdf_3', 'ppdf_4', 'biok5', 'prdx_1']: for pft_i in do_PFT: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) maxtmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] precip_nodata = pygeoprocessing.get_raster_info( aligned_inputs['precip_{}'.format(month_index)])['nodata'][0] # calculate intermediate quantities that do not differ between PFTs: # sum of aglivc (standing live biomass) and stdedc (standing dead biomass) # across PFTs, weighted by % cover of each PFT for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) # ctemp, soil temperature relative to impacts on growth pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], param_val_dict['pmxbio'], aligned_inputs['max_temp_{}'.format(current_month)], param_val_dict['pmxtmp'], aligned_inputs['min_temp_{}'.format(current_month)], param_val_dict['pmntmp']]], calc_ctemp, temp_val_dict['ctemp'], gdal.GDT_Float32, _IC_NODATA) # shwave, shortwave radiation outside the atmosphere _shortwave_radiation( aligned_inputs['site_index'], current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pevap']) # calculate quantities that differ between PFTs for pft_i in do_PFT: # potprd, the limiting effect of temperature pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['min_temp_{}'.format(current_month)], aligned_inputs['max_temp_{}'.format(current_month)], temp_val_dict['ctemp'], param_val_dict['ppdf_1_{}'.format(pft_i)], param_val_dict['ppdf_2_{}'.format(pft_i)], param_val_dict['ppdf_3_{}'.format(pft_i)], param_val_dict['ppdf_4_{}'.format(pft_i)]]], calc_potprd, temp_val_dict['potprd_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # h2ogef_1, the limiting effect of soil water availability pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pevap'], prev_sv_reg['avh2o_1_{}_path'.format(pft_i)], aligned_inputs['precip_{}'.format(month_index)], pp_reg['wc_path'], param_val_dict['pprpts_1'], param_val_dict['pprpts_2'], param_val_dict['pprpts_3']]], calc_h2ogef_1, month_reg['h2ogef_1_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # biof, the limiting effect of obstruction pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_stdedc'], temp_val_dict['sum_aglivc'], prev_sv_reg['strucc_1_path'], param_val_dict['pmxbio'], param_val_dict['biok5_{}'.format(pft_i)]]], calc_biof, temp_val_dict['biof_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['prdx_1_{}'.format(pft_i)], temp_val_dict['shwave'], temp_val_dict['potprd_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], temp_val_dict['biof_{}'.format(pft_i)]]], calc_tgprod_pot_prod, month_reg['tgprod_pot_prod_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_favail_P(sv_reg, param_val_dict): """Calculate the fraction of P in surface layer available to plants. This must be performed after the sum of mineral N in the surface layer is calculated because the fraction of labile P available to plants is impacted by the amount of mineral N in the surface layer. Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables for the current month, including minerl_1_1, mineral N in the surface layer param_val_dict (dict): map of key, path pairs giving paths to site-level parameters, including favail_4, favail_5, favail_6, and favail_2 Side effects: modifies or creates the raster indicated by `param_val_dict['favail_2']` Returns: None """ def favail_P_op(minerl_1_1, favail_4, favail_5, favail_6): """Calculate the fraction of P in surface layer available to plants. The fraction of labile P available to plants depends on mineral N in the surface layer and site parameters favail_4, favail_5, favail_6. Line 395 Simsom.f Parameters: minerl_1_1 (numpy.ndarray): state variable, mineral N in the surface layer favail_4 (numpy.ndarray): parameter, minimum fraction of P available favail_5 (numpy.ndarray): parameter, maximum fraction of P available favail_6 (numpy.ndarray): parameter, mineral N in surface layer required to attain maximum fraction of P available Returns: favail_P, fraction of mineral P available to plants """ valid_mask = ( (~numpy.isclose(minerl_1_1, _SV_NODATA)) & (favail_4 != _IC_NODATA) & (favail_5 != _IC_NODATA) & (favail_6 != _IC_NODATA)) interim = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) interim[:] = _IC_NODATA interim[valid_mask] = ( favail_4[valid_mask] + minerl_1_1[valid_mask] * (favail_5[valid_mask] - favail_4[valid_mask]) / favail_6[valid_mask]) favail_P = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) favail_P[:] = _IC_NODATA favail_P[valid_mask] = numpy.maximum( favail_4[valid_mask], numpy.minimum( interim[valid_mask], favail_5[valid_mask])) return favail_P pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_1_path'], param_val_dict['favail_4'], param_val_dict['favail_5'], param_val_dict['favail_6']]], favail_P_op, param_val_dict['favail_2'], gdal.GDT_Float32, _IC_NODATA) def _calc_avail_mineral_nutrient(pft_param_dict, sv_reg, iel, target_path): """Calculate one mineral nutrient available to one plant functional type. The mineral nutrient available to a plant functional type is calculated from the mineral nutrient content of soil layers accessible by that plant function type. Parameters: pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month iel (int): integer index for current nutrient (1=N, 2=P) target_path (string): path to raster to contain available mineral nutrient for this plant functional type and nutrient Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ nlay = int(pft_param_dict['nlaypg']) mineral_raster_list = [ sv_reg['minerl_{}_{}_path'.format(lyr, iel)] for lyr in range( 1, nlay + 1)] raster_list_sum( mineral_raster_list, _SV_NODATA, target_path, _TARGET_NODATA, nodata_remove=True) def _calc_available_nutrient( pft_i, iel, pft_param_dict, sv_reg, site_param_table, site_index_path, availm_path, favail_path, tgprod_path, eavail_path): """Calculate nutrient available to a plant functional type. The nutrient available is the sum of mineral nutrient (N or P) in soil layers accessible by the roots of the plant functional type, modified by the fraction of nutrient available to plants and the current root biomass. Parameters: pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month site_index_path (string): path to site spatial index raster availm_path (string): path to raster containing available mineral nutrient for the given plant functional type and nutrient site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters favail_path (string): path to raster containing the appropriate value of the parameter favail. For nitrogen, this parameter is supplied directly as user input, but for phosphorus, it must be calculated from other parameters. tgprod_path (string): path to raster containing total potential production (g biomass) eavail_path (string): path to location to store the result, nutrient available to the plant functional type Side effects: modifies or creates the raster indicated by `eavail_path` Returns: None """ def calc_eavail(rictrl, bglivc, riint, availm, favail, crpstg): """Calculate available nutrient. Parameters: rictrl (numpy.ndarray): parameter, scaling factor used to calculate the impact of root biomass on nutrient availability bglivc (numpy.ndarray): state variable, carbon in belowground live biomass riint (numpy.ndarray): parameter, intercept used to calculate the impact of root biomass on nutrient availability availm (numpy.ndarray): derived, the sum of mineral nutrient in soil layers accessible by this plant functional type favail (numpy.ndarray): parameter, fraction of the nutrient available each month to plants crpstg (numpy.ndarray): state variable, nutrient in retranslocation storage pool for the plant functional type Returns: eavail, the nutrient available to the plant functional type """ valid_mask = ( (rictrl != _IC_NODATA) & (~numpy.isclose(bglivc, _SV_NODATA)) & (riint != _IC_NODATA) & (availm != _TARGET_NODATA) & (favail != _IC_NODATA) & (~numpy.isclose(crpstg, _SV_NODATA))) rimpct = numpy.empty(rictrl.shape, dtype=numpy.float32) rimpct[:] = _TARGET_NODATA rimpct[valid_mask] = numpy.where( ((rictrl[valid_mask] * bglivc[valid_mask] * 2.5) > 33.), 1., 1. - riint[valid_mask] * numpy.exp( -rictrl[valid_mask] * bglivc[valid_mask] * 2.5)) eavail = numpy.empty(rictrl.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = ( (availm[valid_mask] * favail[valid_mask] * rimpct[valid_mask]) + crpstg[valid_mask]) return eavail def add_symbiotic_fixed_N(eavail_prior, snfxmx, tgprod): """Add nitrogen fixed by the plant to nutrient available. Some nitrogen may be fixed by the plant, and this must be added to available mineral nitrogen. Nitrogen fixed by the plant is calculated from total potential production and the maximum rate of N fixation. Parameters: eavail_prior (numpy.ndarray): derived, mineral nitrogen available to the plant functional type, calculated with calc_eavail() snfxmx (numpy.ndarray): parameter, maximum rate of symbiotic nitrogen fixation tgprod (numpy.ndarray): derived, total above- and belowground potential production (g biomass) Returns: eavail, total N available including N fixed by the plant """ valid_mask = ( (eavail_prior != _TARGET_NODATA) & (snfxmx != _IC_NODATA) & (tgprod != _TARGET_NODATA)) maxNfix = numpy.empty(eavail_prior.shape, dtype=numpy.float32) maxNfix[:] = _TARGET_NODATA maxNfix[valid_mask] = snfxmx[valid_mask] * (tgprod[valid_mask] / 2.5) eavail = numpy.empty(eavail_prior.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = eavail_prior[valid_mask] + maxNfix[valid_mask] return eavail # temporary intermediate rasters for calculating available nutrient temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in ['rictrl', 'riint']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['snfxmx_1']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path fill_val = pft_param_dict[val] pygeoprocessing.new_raster_from_base( site_index_path, target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['rictrl'], sv_reg['bglivc_{}_path'.format(pft_i)], param_val_dict['riint'], availm_path, favail_path, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)]]], calc_eavail, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) if iel == 1: eavail_prior_path = os.path.join(temp_dir, 'eavail_prior.tif') shutil.copyfile(eavail_path, eavail_prior_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ eavail_prior_path, param_val_dict['snfxmx_1'], tgprod_path]], add_symbiotic_fixed_N, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_nutrient_demand( biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path, demand_path): """Calculate the demand of one nutrient by a plant functional type. Demand is calculated from total biomass production, the fraction of biomass production allocated to roots, and the minimum carbon/nutrient ratios of above- and belowground live biomass. Lines 88-92 CropDynC.f and line 65, Nutrlm.f Parameters: biomass_production_path (string): path to raster giving total biomass production fraction_allocated_to_roots_path (string): path to raster giving the fraction fo total biomass production allocated to roots cercrp_min_above_path (string): path to raster giving the minimum ratio of carbon to nutrient in aboveground live biomass cercrp_min_below_path (string): path to raster giving the minimum ratio of carbon to nutrient in belowground live biomass Side effects: modifies or creates the raster indicated by `demand_path` Returns: None """ def nutrient_demand_op( biomass_production, root_fraction, cercrp_min_above, cercrp_min_below): """Calculate nutrient demand. Parameters: biomass_production (numpy.ndarray): derived, total biomass production root_fraction (numpy.ndarray): derived, fraction of biomass allocated to roots cercrp_min_above (numpy.ndarray): derived, minimum carbon to nutrient ratio of new aboveground live material cercrp_min_below (numpy.ndarray): derived, minimum carbon to nutrient ratio of new belowground live material Returns: demand_e, nutrient demand """ valid_mask = ( (biomass_production != _TARGET_NODATA) & (root_fraction != _TARGET_NODATA) & (cercrp_min_above != _TARGET_NODATA) & (cercrp_min_above > 0) & (cercrp_min_below > 0) & (cercrp_min_below != _TARGET_NODATA)) demand_above = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_above[:] = _TARGET_NODATA demand_above[valid_mask] = ( ((biomass_production[valid_mask] * (1. - root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_above[valid_mask])) demand_below = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_below[:] = _TARGET_NODATA demand_below[valid_mask] = ( ((biomass_production[valid_mask] * (root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_below[valid_mask])) demand_e = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_e[:] = _TARGET_NODATA demand_e[valid_mask] = ( demand_above[valid_mask] + demand_below[valid_mask]) return demand_e pygeoprocessing.raster_calculator( [(path, 1) for path in [ biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path]], nutrient_demand_op, demand_path, gdal.GDT_Float32, _TARGET_NODATA) def calc_provisional_fracrc( annual_precip, frtcindx, bgppa, bgppb, agppa, agppb, cfrtcw_1, cfrtcw_2, cfrtcn_1, cfrtcn_2): """Calculate provisional fraction of carbon allocated to roots. A temporary provisional fraction of carbon allocated to roots must be calculated prior to calculating plant demand for N and P. The value of this provisional fraction depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 36-47 cropDynC.f Parameters: annual_precip (numpy.ndarray): derived, sum of monthly precipitation over twelve months including the current month frtcindx (numpy.ndarray): parameter, flag indicating whether root:shoot allocation follows the Great Plains equation (frtcindx=0) or as a perennial plant (frtcindx=1) bgppa (numpy.ndarray): parameter, intercept in regression estimating belowground production from annual precipitation if frtcindx=0 bgppb (numpy.ndarray): parameter, slope in regression estimating belowground production from annual precipitation if frtcindx=0 agppa (numpy.ndarray): parameter, intercept in regression estimating aboveground production from annual precipitation if frtcindx=0 agppb (numpy.ndarray): parameter, slope in regression estimating aboveground production from annual precipitation if frtcindx=0 cfrtcw_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum water stress if frtcindx=1 cfrtcw_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots without water stress if frtcindx=1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum nutrient stress if frtcindx=1 cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots under no nutrient stress if frtcindx=1 Returns: fracrc_p, provisional fraction of carbon allocated to roots """ valid_mask = ( (annual_precip != _TARGET_NODATA) & (frtcindx != _IC_NODATA) & (bgppa != _IC_NODATA)) rtsh = numpy.empty(annual_precip.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[valid_mask] = ( (bgppa[valid_mask] + annual_precip[valid_mask] * bgppb[valid_mask]) / (agppa[valid_mask] + annual_precip[valid_mask] * agppb[valid_mask])) fracrc_p = numpy.empty(annual_precip.shape, dtype=numpy.float32) fracrc_p[:] = _TARGET_NODATA fracrc_p[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, (1.0 / (1.0 / rtsh[valid_mask] + 1.0)), ((cfrtcw_1[valid_mask] + cfrtcw_2[valid_mask] + cfrtcn_1[valid_mask] + cfrtcn_2[valid_mask]) / 4.0)) return fracrc_p def calc_ce_ratios( pramn_1_path, pramn_2_path, aglivc_path, biomax_path, pramx_1_path, pramx_2_path, prbmn_1_path, prbmn_2_path, prbmx_1_path, prbmx_2_path, annual_precip_path, pft_i, iel, month_reg): """Calculate minimum and maximum carbon to nutrient ratios. Minimum and maximum C/E ratios are used to calculate demand for a nutrient by a plant functional type. This function calculates the ratios for above- and belowground plant portions, for one plant functional type and one nutrient. Fltce.f Parameters: pramn_1_path (string): path to raster containing the parameter pramn_<iel>_1, the minimum aboveground ratio with zero biomass pramn_2_path (string): path to raster containing the parameter pramn_<iel>_2, the minimum aboveground ratio with biomass greater than or equal to biomax aglivc_path (string): path to raster containing carbon in aboveground live biomass biomax_path (string): path to raster containing the parameter biomax, the biomass above which the ratio equals pramn_2 or pramx_2 pramx_1_path (string): path to raster containing the parameter pramx_<iel>_1, the maximum aboveground ratio with zero biomass pramx_2_path (string): path to raster containing the parameter pramx_<iel>_2, the maximum aboveground ratio with biomass greater than or equal to biomax prbmn_1_path (string): path to raster containing the parameter prbmn_<iel>_1, intercept of regression to predict minimum belowground ratio from annual precipitation prbmn_2_path (string): path to raster containing the parameter prbmn_<iel>_2, slope of regression to predict minimum belowground ratio from annual precipitation prbmx_1_path (string): path to raster containing the parameter prbmx_<iel>_1, intercept of regression to predict maximum belowground ratio from annual precipitation prbmx_2_path (string): path to raster containing the parameter prbmx_<iel>_2, slope of regression to predict maximum belowground ratio from annual precipitation annual_precip_path (string): path to annual precipitation raster pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the rasters indicated by `month_reg['cercrp_min_above_<iel>_<pft_i>']`, `month_reg['cercrp_max_above_<iel>_<pft_i>']`, `month_reg['cercrp_min_below_<iel>_<pft_i>']`, `month_reg['cercrp_max_below_<iel>_<pft_i>']`, Returns: None """ def calc_above_ratio(pra_1, pra_2, aglivc, biomax): """Calculate carbon to nutrient ratio for aboveground material. Parameters: pra_1 (numpy.ndarray): parameter, minimum or maximum ratio with zero biomass pra_2 (numpy.ndarray): parameter, minimum or maximum ratio with biomass greater than or equal to biomax aglivc (numpy.ndarray): state variable, carbon in aboveground live material biomax (numpy:ndarray): parameter, biomass above which the ratio equals pra_2 Returns: cercrp_above, carbon to nutrient ratio for aboveground material """ valid_mask = ( (pra_1 != _IC_NODATA) & (pra_2 != _IC_NODATA) & (~numpy.isclose(aglivc, _SV_NODATA)) & (biomax != _IC_NODATA)) cercrp_above = numpy.empty(pra_1.shape, dtype=numpy.float32) cercrp_above[:] = _TARGET_NODATA cercrp_above[valid_mask] = numpy.minimum( (pra_1[valid_mask] + (pra_2[valid_mask] - pra_1[valid_mask]) * 2.5 * aglivc[valid_mask] / biomax[valid_mask]), pra_2[valid_mask]) return cercrp_above def calc_below_ratio(prb_1, prb_2, annual_precip): """Calculate carbon to nutrient ratio for belowground material. Parameters: prb_1 (numpy.ndarray): parameter, intercept of regression to predict ratio from annual precipitation prb_2 (numpy.ndarray): parameter, slope of regression to predict ratio from annual precipitation annual_precip (numpy.ndarray): derived, precipitation in twelve months including the current month Returns: cercrp_below, carbon to nutrient ratio for belowground material """ valid_mask = ( (prb_1 != _IC_NODATA) & (prb_2 != _IC_NODATA) & (annual_precip != _TARGET_NODATA)) cercrp_below = numpy.empty(prb_1.shape, dtype=numpy.float32) cercrp_below[:] = _TARGET_NODATA cercrp_below[valid_mask] = ( prb_1[valid_mask] + (prb_2[valid_mask] * annual_precip[valid_mask])) return cercrp_below pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramn_1_path, pramn_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramx_1_path, pramx_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_max_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmn_1_path, prbmn_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmx_1_path, prbmx_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_max_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) def calc_revised_fracrc( frtcindx_path, fracrc_p_path, totale_1_path, totale_2_path, demand_1_path, demand_2_path, h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, cfrtcn_1_path, cfrtcn_2_path, fracrc_r_path): """ Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots includes the impacts of water and nutrient limitation. The method of the revised calculation depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 96-104, cropDynC.f, froota.f Parameters: frtcindx_path (string): path to raster containing the parameter frtcindx fracrc_p_path (string): path to raster containing provisional fraction of carbon allocated to roots totale_1_path (string): path to raster containing total available nitrogen totale_2_path (string): path to raster containing total available phosphorus demand_1_path (string): path to raster containing nitrogen demand demand_2_path (string): path to raster containing phosphorus demand h2ogef_1_path (string): path to raster containing the limiting effect of water availability on growth cfrtcw_1_path (string): path to raster containing the parameter cfrtcw_1 cfrtcw_2_path (string): path to raster containing the parameter cfrtcw_2 cfrtcn_1_path (string): path to raster containing the parameter cfrtcn_1 cfrtcn_2_path (string): path to raster containing the parameter cfrtcn_2 fracrc_r_path (string): path to raster that should contain the result, revised fraction of carbon allocated to roots Side effects: creates the raster indicated by `fracrc_r_path` Returns: None """ def calc_a2drat(totale, demand): """Calculate the ratio of available nutrient to nutrient demand. The ratio of nutrient available to demand for the nutrient is restricted to be between 0 and 1. Parameters: totale (numpy.ndarray): derived, nutrient available demand (numpy.ndarray): derived, demand for the nutrient Returns: a2drat, the ratio of available nutrient to demand, restricted to be between 0 and 1 """ valid_mask = ( (totale != _TARGET_NODATA) & (demand != _TARGET_NODATA)) a2drat = numpy.empty(totale.shape, dtype=numpy.float32) a2drat[:] = _TARGET_NODATA demand_mask = ((demand > 0) & valid_mask) a2drat[valid_mask] = 1. a2drat[demand_mask] = numpy.clip( totale[demand_mask] / demand[demand_mask], 0., 1.) return a2drat def calc_perennial_fracrc( h2ogef, cfrtcw_1, cfrtcw_2, a2drat_1, a2drat_2, cfrtcn_1, cfrtcn_2): """Calculate fraction C allocated to roots for a perennial plant. The fraction of carbon allocated to roots is determined by water availability, described by h2ogef, and nutrient availability, described by a2drat_1 for nitrogen and a2drat_2 for phosphorus. Lines 114-125 froota.f Parameters: h2ogef (numpy.ndarray): derived, the limiting factor of water availability on growth cfrtcw_1 (numpy.ndarray): parameter, the maximum fraction of carbon allocated to roots with maximum water stress cfrtcw_2 (numpy.ndarray): parameter, the minimum fraction of carbon allocated to roots with no water stress a2drat_1 (numpy.ndarray): derived, the ratio of available nitrogen to nitrogen demand, restricted to be between 0 and 1 a2drat_2 (numpy.ndarray): derived, the ratio of available phosphorus to phosphorus demand, restricted to be between 0 and 1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots with maximum nutrient stress cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots with no nutrient stress Returns: fracrc_perennial, revised fraction of C allocated to roots for a perennial plant """ valid_mask = ( (h2ogef != _TARGET_NODATA) & (cfrtcw_1 != _IC_NODATA) & (cfrtcw_2 != _IC_NODATA) & (a2drat_1 != _TARGET_NODATA) & (a2drat_2 != _TARGET_NODATA) & (cfrtcn_1 != _IC_NODATA) & (cfrtcn_2 != _IC_NODATA)) h2oeff = numpy.empty(h2ogef.shape, dtype=numpy.float32) h2oeff[:] = _TARGET_NODATA h2oeff[valid_mask] = ( (cfrtcw_2[valid_mask] - cfrtcw_1[valid_mask]) * (h2ogef[valid_mask] - 1.) + cfrtcw_2[valid_mask]) ntreff_1 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_1[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_1[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff_2 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_2[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_2[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff[:] = _TARGET_NODATA ntreff[valid_mask] = numpy.maximum( ntreff_1[valid_mask], ntreff_2[valid_mask]) fracrc_perennial = numpy.empty( h2ogef.shape, dtype=numpy.float32) fracrc_perennial[:] = _TARGET_NODATA fracrc_perennial[valid_mask] = numpy.minimum( numpy.maximum(h2oeff[valid_mask], ntreff[valid_mask]), 0.99) return fracrc_perennial def revised_fracrc_op(frtcindx, fracrc_p, fracrc_perennial): """Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots is calculated according to the parameter frtcindx. If frtcindx=0 (use the "Great Plains equation"), the revised fraction is equal to the provisional fraction. If frtcindx=1 (a perennial plant), the revised fraction is calculated from water and nutrient stress. Parameters: frtcindx (numpy.ndarray): parameter, indicates whether revised fraction of carbon allocated to roots should follow the "Great Plains equation" or the algorithm for a perennial plant fracrc_p (numpy.ndarray): derived, provisional fraction of carbon allocated to roots fracrc_perennial (numpy.ndarray): derived, fraction of carbon allocated to roots for a perennial plant Returns: fracrc_r, revised fraction of carbon allocated to roots """ valid_mask = ( (frtcindx != _IC_NODATA) & (fracrc_p != _TARGET_NODATA) & (fracrc_perennial != _TARGET_NODATA)) fracrc_r = numpy.empty(frtcindx.shape, dtype=numpy.float32) fracrc_r[:] = _TARGET_NODATA fracrc_r[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, fracrc_p[valid_mask], fracrc_perennial[valid_mask]) return fracrc_r # temporary intermediate rasters for calculating revised fracrc temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['a2drat_1', 'a2drat_2', 'fracrc_perennial']: temp_val_dict[val] = os.path.join( temp_dir, '{}.tif'.format(val)) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_1_path, demand_1_path]], calc_a2drat, temp_val_dict['a2drat_1'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_2_path, demand_2_path]], calc_a2drat, temp_val_dict['a2drat_2'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, temp_val_dict['a2drat_1'], temp_val_dict['a2drat_2'], cfrtcn_1_path, cfrtcn_2_path]], calc_perennial_fracrc, temp_val_dict['fracrc_perennial'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ frtcindx_path, fracrc_p_path, temp_val_dict['fracrc_perennial']]], revised_fracrc_op, fracrc_r_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def grazing_effect_on_aboveground_production(tgprod, fracrc, flgrem, grzeff): """Adjust aboveground production with the impact of grazing. Removal of biomass by herbivores directly impacts potential aboveground production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0, 3, or 4, aboveground production is not changed. If grzeff=1 or 6, production decreases linearly with biomass removed; if grzeff=2 or 5, biomass removed has a quadratic impact on production. Grazrst.f Parameters: tgprod (numpy.ndarray): derived, total potential biomass production restricted by water and nutrient availability fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio Returns: agprod, aboveground production impacted by grazing """ valid_mask = ( (tgprod != _TARGET_NODATA) & (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA)) agprod_prior = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod_prior[:] = _TARGET_NODATA agprod_prior[valid_mask] = ( tgprod[valid_mask] * (1. - fracrc[valid_mask])) linear_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( (1. - (2.21*flgrem[valid_mask])) * agprod_prior[valid_mask], 0.02) quadratic_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = ( (1. + 2.6*flgrem[valid_mask] - (5.83*(numpy.power(flgrem[valid_mask], 2)))) * agprod_prior[valid_mask]) quadratic_effect[valid_mask] = numpy.maximum( quadratic_effect[valid_mask], 0.02) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 3, 4])) linear_mask = (valid_mask & numpy.isin(grzeff, [1, 6])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 5])) agprod = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod[:] = _TARGET_NODATA agprod[no_effect_mask] = agprod_prior[no_effect_mask] agprod[linear_mask] = linear_effect[linear_mask] agprod[quadratic_mask] = quadratic_effect[quadratic_mask] return agprod def grazing_effect_on_root_shoot(fracrc, flgrem, grzeff, gremb): """Adjust root:shoot ratio according to the impact of grazing. Removal of biomass by herbivores directly impacts the root:shoot ratio of production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0 or 1, the root:shoot ratio is not changed. If grzeff=2 or 3, biomass removed has a quadratic impact on the root:shoot ratio. If grzeff=4, 5, or 6, biomass removed has a linear effect on the root:shoot ratio. The parameter gremb multiplies the linear impact of grazing when grzeff=4, 5 or 6. Grzrst.f Parameters: fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio grzemb (numpy.ndarray): parameter, grazing effect multiplier Returns: rtsh, root:shoot ratio impacted by grazing """ valid_mask = ( (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA) & (gremb != _IC_NODATA)) rtsh_prior = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh_prior[:] = _TARGET_NODATA rtsh_prior[valid_mask] = ( fracrc[valid_mask] / (1. - fracrc[valid_mask])) quadratic_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = numpy.maximum( rtsh_prior[valid_mask] + 3.05 * flgrem[valid_mask] - 11.78 * numpy.power(flgrem[valid_mask], 2), 0.01) linear_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( 1. - (flgrem[valid_mask] * gremb[valid_mask]), 0.01) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 1])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 3])) linear_mask = (valid_mask & numpy.isin(grzeff, [4, 5, 6])) rtsh = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[no_effect_mask] = rtsh_prior[no_effect_mask] rtsh[quadratic_mask] = quadratic_effect[quadratic_mask] rtsh[linear_mask] = linear_effect[linear_mask] return rtsh def calc_tgprod_final(rtsh, agprod): """Calculate final total potential production. Final total potential production is calculated from aboveground production impacted by grazing and the final root:shoot ratio impacted by grazing. Parameters: rtsh (numpy.ndarray): derived, final root:shoot ratio impacted by grazing agprod (numpy.ndarray): derived, final aboveground potential production impacted by grazing Returns: tgprod, final total potential production """ valid_mask = ( (rtsh != _TARGET_NODATA) & (agprod != _TARGET_NODATA)) tgprod = numpy.empty(rtsh.shape, dtype=numpy.float32) tgprod[:] = _TARGET_NODATA tgprod[valid_mask] = ( agprod[valid_mask] + (rtsh[valid_mask] * agprod[valid_mask])) return tgprod def calc_final_tgprod_rtsh( tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path, gremb_path, tgprod_path, rtsh_path): """Calculate final potential production and root:shoot ratio. Final potential production and root:shoot ratio include the impact of grazing. First calculate final aboveground production including the impact of grazing; then calculate rtsh, the final root:shoot ratio including the impact of grazing; then calculate tgprod, final total potential production, from final aboveground production and final root:shoot ratio. Grazrst.f Parameters: tgprod_pot_prod_path (string): path to raster containing total potential biomass production restricted by water and nutrient availability, prior to effects of grazing fracrc_path (string): path to raster containing the fraction of carbon production allocated to roots according to restriction by water and nutrient availability, prior to effects of grazing flgrem_path (string): path to raster containing the fraction of live aboveground biomass removed by herbivores according to diet selection in the previous step grzeff_path (string): path to raster containing the parameter grzeff, the effect of defolation on production and root:shoot ratio gremb_path (string): path to raster containing the parameter gremb, the grazing effect multiplier tgprod_path (string): path to raster containing final total potential production (g biomass) rtsh_path (string): path to raster containing final root:shoot ratio of potential production Side effects: creates the raster indicated by tgprod_path creates the raster indicated by rtsh_path Returns: None """ # temporary intermediate rasters for grazing effect temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) agprod_path = os.path.join(temp_dir, 'agprod.tif') # grazing effect on aboveground production pygeoprocessing.raster_calculator( [(path, 1) for path in [ tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path]], grazing_effect_on_aboveground_production, agprod_path, gdal.GDT_Float32, _TARGET_NODATA) # grazing effect on final root:shoot ratio pygeoprocessing.raster_calculator( [(path, 1) for path in [ fracrc_path, flgrem_path, grzeff_path, gremb_path]], grazing_effect_on_root_shoot, rtsh_path, gdal.GDT_Float32, _TARGET_NODATA) # final total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [rtsh_path, agprod_path]], calc_tgprod_final, tgprod_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg): """Calculate final potential production and root:shoot ratio. Final potential biomass production and root:shoot ratio is calculated according to nutrient availability and demand for the nutrient, and the impact of defoliation by herbivores. CropDynC.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including the site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters current_month (int): month of the year, such that current_month=1 indicates January pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month year_reg (dict): map of key, path pairs giving paths to rasters that are modified once per year, including annual precipitation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['tgprod_<PFT>']`, total potential production (g biomass) for each plant functional type (PFT) creates the raster indicated by `month_reg['rtsh_<PFT>']` for each plant functional type (PFT) Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: # growth occurs in growth months and when senescence not scheduled do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: do_PFT.append(pft_i) if not do_PFT: return # temporary intermediate rasters for root:shoot submodel temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in do_PFT: for val in ['fracrc_p', 'fracrc', 'availm']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) for iel in [1, 2]: for val in ['eavail', 'demand']: temp_val_dict[ '{}_{}_{}'.format(val, iel, pft_i)] = os.path.join( temp_dir, '{}_{}_{}.tif'.format(val, iel, pft_i)) # temporary parameter rasters for root:shoot submodel param_val_dict = {} # site-level parameters for val in [ 'bgppa', 'bgppb', 'agppa', 'agppb', 'favail_1', 'favail_4', 'favail_5', 'favail_6']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for pft_i in do_PFT: for val in [ 'frtcindx', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'biomax', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'grzeff', 'gremb']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) for val in [ 'pramn_1_1', 'pramn_1_2', 'pramx_1_1', 'pramx_1_2', 'prbmn_1_1', 'prbmn_1_2', 'prbmx_1_1', 'prbmx_1_2', 'pramn_2_1', 'pramn_2_2', 'pramx_2_1', 'pramx_2_2', 'prbmn_2_1', 'prbmn_2_2', 'prbmx_2_1', 'prbmx_2_2']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict[ '{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # the parameter favail_2 must be calculated from current mineral N in # surface layer param_val_dict['favail_2'] = os.path.join(temp_dir, 'favail_2.tif') _calc_favail_P(prev_sv_reg, param_val_dict) for pft_i in do_PFT: # fracrc_p, provisional fraction of C allocated to roots pygeoprocessing.raster_calculator( [(path, 1) for path in [ year_reg['annual_precip_path'], param_val_dict['frtcindx_{}'.format(pft_i)], param_val_dict['bgppa'], param_val_dict['bgppb'], param_val_dict['agppa'], param_val_dict['agppb'], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)]]], calc_provisional_fracrc, temp_val_dict['fracrc_p_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: # persistent ratios used here and in plant growth submodel calc_ce_ratios( param_val_dict['pramn_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramn_{}_2_{}'.format(iel, pft_i)], prev_sv_reg['aglivc_{}_path'.format(pft_i)], param_val_dict['biomax_{}'.format(pft_i)], param_val_dict['pramx_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramx_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_2_{}'.format(iel, pft_i)], year_reg['annual_precip_path'], pft_i, iel, month_reg) # sum of mineral nutrient in accessible soil layers _calc_avail_mineral_nutrient( veg_trait_table[pft_i], prev_sv_reg, iel, temp_val_dict['availm_{}'.format(pft_i)]) # eavail_iel, available nutrient _calc_available_nutrient( pft_i, iel, veg_trait_table[pft_i], prev_sv_reg, site_param_table, aligned_inputs['site_index'], temp_val_dict['availm_{}'.format(pft_i)], param_val_dict['favail_{}'.format(iel)], month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['eavail_{}_{}'.format(iel, pft_i)]) # demand_iel, demand for the nutrient _calc_nutrient_demand( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], temp_val_dict['demand_{}_{}'.format(iel, pft_i)]) # revised fraction of carbon allocated to roots calc_revised_fracrc( param_val_dict['frtcindx_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], temp_val_dict['demand_1_{}'.format(pft_i)], temp_val_dict['demand_2_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)]) # final potential production and root:shoot ratio accounting for # impacts of grazing calc_final_tgprod_rtsh( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], param_val_dict['grzeff_{}'.format(pft_i)], param_val_dict['gremb_{}'.format(pft_i)], month_reg['tgprod_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)]) # clean up temporary files shutil.rmtree(temp_dir) def _snow( site_index_path, site_param_table, precip_path, tave_path, max_temp_path, min_temp_path, prev_snow_path, prev_snlq_path, current_month, snowmelt_path, snow_path, snlq_path, inputs_after_snow_path, pet_rem_path): """Account for precipitation as snow and snowmelt from snowpack. Determine whether precipitation falls as snow. Track the fate of new and existing snowpack including evaporation and melting. Track the the remaining snowpack and liquid in snow and potential evapotranspiration remaining after evaporation of snow. Snowcent.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters precip_path (string): path to raster containing precipitation for the current month tave_path (string): path to raster containing average temperature for the current month max_temp_path (string): path to raster containing maximum temperature for the current month min_temp_path (string): path to raster containing minimum temperature for the current month prev_snow_path (string): path to raster containing current snowpack prev_snlq_path (string): path to raster containing current liquid in snow current_month (int): current month of the year, such that month=0 indicates January snow_path (string): path to raster to contain modified snowpack snlq_path (string): path to raster to contain modified liquid in snow inputs_after_snow_path (string): path to raster containing water inputs to the system after accounting for snow pet_rem_path (string): path to raster containing potential evapotranspiration remaining after any evaporation of snow Side effects: creates the raster indicated by `snowmelt_path` creates the raster indicated by `snow_path` creates the raster indicated by `snlq_path` creates the raster indicated by `inputs_after_snow_path` creates the raster indicated by `pet_rem_path` Returns: None """ def calc_snow_moisture(return_type): """Calculate change in snow, pet, snow liquid, and moisture inputs. Record changes in snowpack, liquid in snow, potential evapotranspiration energy, and liquid draining into soil from snow. Parameters: return_type (string): flag indicating whether modified snowpack, modified liquid in snow, modified potential evapotranspiration, or soil moisture inputs after snow should be returned Returns: the function `_calc_snow_moisture` """ def _calc_snow_moisture( tave, precip, snow, snlq, pet, tmelt_1, tmelt_2, shwave): """Calculate the fate of moisture from snow. Calculate new snowfall or rain on snow. Calculate direct evaporation of snow and consumption of potential evapotranspiration energy. Calculate snowmelt and liquid draining from snow into the soil. Parameters: tave (numpy.ndarray): derived, average temperature precip (numpy.ndarray): input, precipitation for this month snow (numpy.ndarray): derived, existing snowpack prior to new snowfall snlq (numpy.ndarray): derived, existing liquid in snowpack pet (numpy.ndarray): derived, potential evapotranspiration tmelt_1 (numpy.ndarray): parameter, minimum temperature above which snow will melt tmelt_2 (numpy.ndarray): parameter, ratio between degrees above the minimum temperature and cm of snow that will melt shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere Returns: snowmelt if return_type is 'snowmelt' snow_revised if return_type is 'snow' snlq_revised if return_type is 'snlq' pet_revised if return_type is 'pet' inputs_after_snow if return_type is 'inputs_after_snow' """ valid_mask = ( (tave != _IC_NODATA) & (~numpy.isclose(precip, precip_nodata)) & (~numpy.isclose(snow, _SV_NODATA)) & (~numpy.isclose(snlq, _SV_NODATA)) & (pet != _TARGET_NODATA) & (tmelt_1 != _IC_NODATA) & (tmelt_2 != _IC_NODATA) & (shwave != _TARGET_NODATA)) inputs_after_snow = numpy.empty(precip.shape, dtype=numpy.float32) inputs_after_snow[:] = _TARGET_NODATA inputs_after_snow[valid_mask] = precip[valid_mask] snowfall_mask = (valid_mask & (tave <= 0)) snow[snowfall_mask] = (snow[snowfall_mask] + precip[snowfall_mask]) inputs_after_snow[snowfall_mask] = 0. rain_on_snow_mask = ( (valid_mask) & (tave > 0) & (snow > 0)) snlq[rain_on_snow_mask] = ( snlq[rain_on_snow_mask] + precip[rain_on_snow_mask]) inputs_after_snow[rain_on_snow_mask] = 0. snowtot = numpy.zeros(snow.shape, dtype=numpy.float32) snowtot[valid_mask] = numpy.maximum( snow[valid_mask] + snlq[valid_mask], 0) evap_mask = (valid_mask & (snowtot > 0.)) evsnow = numpy.zeros(snow.shape, dtype=numpy.float32) evsnow[evap_mask] = numpy.minimum( snowtot[evap_mask], pet[evap_mask] * 0.87) snow_revised = numpy.empty(snow.shape, dtype=numpy.float32) snow_revised[:] = _TARGET_NODATA snow_revised[valid_mask] = snow[valid_mask] snow_revised[evap_mask] = numpy.maximum( snow[evap_mask] - evsnow[evap_mask] * (snow[evap_mask] / snowtot[evap_mask]), 0.) snlq_revised = numpy.zeros(snow.shape, dtype=numpy.float32) snlq_revised[valid_mask] = snlq[valid_mask] snlq_revised[evap_mask] = numpy.maximum( snlq[evap_mask] - evsnow[evap_mask] * (snlq[evap_mask] / snowtot[evap_mask]), 0.) pet_revised = numpy.empty(snow.shape, dtype=numpy.float32) pet_revised[:] = _TARGET_NODATA pet_revised[valid_mask] = pet[valid_mask] pet_revised[evap_mask] = numpy.maximum( (pet[evap_mask] - evsnow[evap_mask] / 0.87), 0.) melt_mask = (valid_mask & (tave >= tmelt_1)) snowmelt = numpy.zeros(snow.shape, dtype=numpy.float32) snowmelt[melt_mask] = numpy.clip( tmelt_2[melt_mask] * (tave[melt_mask] - tmelt_1[melt_mask]) * shwave[melt_mask], 0., snow_revised[melt_mask]) snow_revised[melt_mask] = ( snow_revised[melt_mask] - snowmelt[melt_mask]) snlq_revised[melt_mask] = ( snlq_revised[melt_mask] + snowmelt[melt_mask]) drain_mask = (melt_mask & (snlq_revised > 0.5 * snow_revised)) inputs_after_snow[drain_mask] = ( snlq_revised[drain_mask] - 0.5 * snow_revised[drain_mask]) snlq_revised[drain_mask] = ( snlq_revised[drain_mask] - inputs_after_snow[drain_mask]) if return_type == 'snowmelt': return snowmelt elif return_type == 'snow': return snow_revised elif return_type == 'snlq': return snlq_revised elif return_type == 'pet': return pet_revised else: return inputs_after_snow return _calc_snow_moisture temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['shwave', 'pet']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in ['tmelt_1', 'tmelt_2', 'fwloss_4']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) max_temp_nodata = pygeoprocessing.get_raster_info( max_temp_path)['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( min_temp_path)['nodata'][0] precip_nodata = pygeoprocessing.get_raster_info( precip_path)['nodata'][0] # solar radiation outside the atmosphere _shortwave_radiation(precip_path, current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( max_temp_path, min_temp_path, temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pet']) # calculate snowmelt pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture('snowmelt'), snowmelt_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in snow pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("snow"), snow_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in liquid in snow pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("snlq"), snlq_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in potential evapotranspiration energy pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("pet"), pet_rem_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate soil moisture inputs draining from snow after snowmelt pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("inputs_after_snow"), inputs_after_snow_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_aboveground_live_biomass(sum_aglivc, sum_tgprod): """Calculate aboveground live biomass for purposes of soil water. Live biomass impacts loss of moisture inputs through canopy interception and evapotranspiration. Because soil moisture is computed after potential production, but before actual growth of plants, some of the predicted growth in biomass (i.e., tgprod) is added here to existing standing live biomass (i.e., aglivc * 2.5; line 80, potprod.f, in Century). Parameters: sum_aglivc (numpy.ndarray): the sum of aglivc across plant functional types (pft), weighted by % cover of the pft sum_tgprod (numpy.ndarray): sum of tgprod, potential production limited by soil water, nutrient availability, and grazing, across pfts weighted by % cover of the pft Returns: aliv, aboveground live biomass for soil water submodel """ valid_mask = ( (sum_aglivc != _TARGET_NODATA) & (sum_tgprod != _TARGET_NODATA)) aliv = numpy.empty(sum_aglivc.shape, dtype=numpy.float32) aliv[:] = _TARGET_NODATA aliv[valid_mask] = ( sum_aglivc[valid_mask] * 2.5 + (0.25 * sum_tgprod[valid_mask])) return aliv def _calc_standing_biomass(aliv, sum_stdedc): """Calculate total aboveground standing biomass for soil water. Total standing biomass impacts loss of moisture inputs by increasing total canopy interception and decreasing bare soil evaporation. It is the sum of live and dead standing biomass across plant functional types, bounded to be <= 800 g/m2. Parameters: aliv (numpy.ndarray): aboveground live biomass, calculated from aglivc and tgprod across plant functional types sum_stdedc (numpy.ndarray): aboveground standing dead C summed across plant functional types Returns: sd, total aboveground standing biomass for soil water. """ valid_mask = ( (aliv != _TARGET_NODATA) & (sum_stdedc != _TARGET_NODATA)) sd = numpy.empty(aliv.shape, dtype=numpy.float32) sd[:] = _TARGET_NODATA sd[valid_mask] = numpy.minimum( aliv[valid_mask] + (sum_stdedc[valid_mask] * 2.5), 800.) return sd def subtract_surface_losses(return_type): """Calculate surface losses to runoff and surface evaporation. Calculate the loss of surface moisture to runoff, canopy interception, and bare soil evaporation. Parameters: return_type (string): flag indicating whether soil moisture inputs after surface losses or total surface evaporation should be returned Returns: the function `_subtract_surface_losses` """ def _subtract_surface_losses( inputs_after_snow, fracro, precro, snow, alit, sd, fwloss_1, fwloss_2, pet_rem): """Subtract moisture losses to runoff, interception, and evaporation. Of the surface water inputs from precipitation and snowmelt, some water is lost to runoff (line 113, H2olos.f). After runoff, some water is lost to canopy interception and bare soil evaporation, if there is no snow cover. Loss to canopy interception and bare soil evaporation is a function of live, standing dead, and surface litter biomass. The total loss of moisture to interception and bare soil evaporation is bounded to be less than or equal to 40% of reference evapotranspiration. Parameters: inputs_after_snow (numpy.ndarray): derived, surface water inputs from precipitation and snowmelt, prior to runoff fracro (numpy.ndarray): parameter, fraction of surface water above precro that is lost to runoff precro (numpy.ndarray): parameter, amount of surface water that must be available for runoff to occur snow (numpy.ndarray): derived, current snowpack alit (numpy.ndarray): derived, biomass in surface litter sd (numpy.ndarray): derived, total standing biomass fwloss_1 (numpy.ndarray): parameter, scaling factor for interception and evaporation of precip by vegetation fwloss_2 (numpy.ndarray): parameter, scaling factor for bare soil evaporation of precip pet_rem (numpy.ndarray): derived, potential evaporation remaining after evaporation of snow Returns: inputs_after_surface, surface water inputs to soil after runoff and surface evaporation are subtracted, if return_type is 'inputs_after_surface' absevap, bare soil evaporation, if return_type is 'absevap' evap_losses, total surface evaporation, if return_type is 'evap_losses' """ valid_mask = ( (inputs_after_snow != _TARGET_NODATA) & (fracro != _IC_NODATA) & (precro != _IC_NODATA) & (snow != _TARGET_NODATA) & (alit != _TARGET_NODATA) & (sd != _TARGET_NODATA) & (fwloss_1 != _IC_NODATA) & (fwloss_2 != _IC_NODATA) & (pet_rem != _TARGET_NODATA)) runoff = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) runoff[:] = _TARGET_NODATA runoff[valid_mask] = numpy.maximum( fracro[valid_mask] * (inputs_after_snow[valid_mask] - precro[valid_mask]), 0.) inputs_after_runoff = numpy.empty( inputs_after_snow.shape, dtype=numpy.float32) inputs_after_runoff[:] = _TARGET_NODATA inputs_after_runoff[valid_mask] = ( inputs_after_snow[valid_mask] - runoff[valid_mask]) evap_mask = (valid_mask & (snow <= 0)) # loss to interception aint = numpy.zeros(inputs_after_snow.shape, dtype=numpy.float32) aint[evap_mask] = ( (0.0003 * alit[evap_mask] + 0.0006 * sd[evap_mask]) * fwloss_1[evap_mask]) # loss to bare soil evaporation absevap = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) absevap[:] = _TARGET_NODATA absevap[valid_mask] = 0. absevap[evap_mask] = ( 0.5 * numpy.exp((-0.002 * alit[evap_mask]) - (0.004 * sd[evap_mask])) * fwloss_2[evap_mask]) # total losses to interception and evaporation evap_losses = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) evap_losses[:] = _TARGET_NODATA evap_losses[valid_mask] = 0. evap_losses[evap_mask] = ( numpy.minimum(((absevap[evap_mask] + aint[evap_mask]) * inputs_after_runoff[evap_mask]), (0.4 * pet_rem[evap_mask]))) # remaining inputs after evaporation inputs_after_surface = numpy.empty( inputs_after_snow.shape, dtype=numpy.float32) inputs_after_surface[:] = _TARGET_NODATA inputs_after_surface[valid_mask] = inputs_after_runoff[valid_mask] inputs_after_surface[evap_mask] = ( inputs_after_runoff[evap_mask] - evap_losses[evap_mask]) if return_type == 'inputs_after_surface': return inputs_after_surface elif return_type == 'absevap': return absevap elif return_type == 'evap_losses': return evap_losses return _subtract_surface_losses def calc_potential_transpiration(return_type): """Calculate potential transpiration and evaporation from soil layer 1. Calculate potential transpiration (trap), potential evaporation from soil layer 1 (pevp), and initial transpiration water loss (tran). Remove the initial transpiration water loss from soil moisture inputs at this step. Parameters: return_type (string): flag indicating whether potential transpiration, potential evaporation from soil layer 1, or modified moisture inputs should be returned Returns: the function `_calc_potential_transpiration` """ def _calc_potential_transpiration( pet_rem, evap_losses, tave, aliv, current_moisture_inputs): """Calculate potential water losses to transpiration. Calculate potential transpiration (trap), the total potential transpiration from all soil layers by plants. Calculate potential evaporation from soil layer 1 (pevp); this amount is calculated prior to transpiration but actually removed after water loss to transpiration from all soil layers has been accounted. Calculate actual transpiration (tran). Remove actual transpiration water losses from moisture inputs before distributing water to soil layers. This is necessary for a monthly time step to give plants in wet climates adequate access to water for transpiration. Parameters: pet_rem (numpy.ndarray): derived, potential evapotranspiration remaining after evaporation of snow evap_losses (numpy.ndarray): derived, total surface evaporation tave (numpy.ndarray): derived, average temperature aliv (numpy.ndarray): aboveground live biomass, calculated from aglivc and tgprod across plant functional types current_moisture_inputs (numpy.ndarray): derived, moisture inputs after surface losses Returns: trap if return_type is 'trap' pevp if return_type is 'pevp' modified_moisture_inputs if return_type is 'modified_moisture_inputs' """ valid_mask = ( (pet_rem != _TARGET_NODATA) & (evap_losses != _TARGET_NODATA) & (tave != _IC_NODATA) & (aliv != _TARGET_NODATA) & (current_moisture_inputs != _TARGET_NODATA)) trap = numpy.empty(pet_rem.shape, dtype=numpy.float32) trap[:] = _TARGET_NODATA trap[valid_mask] = pet_rem[valid_mask] - evap_losses[valid_mask] no_transpiration_mask = (valid_mask & (tave < 2)) trap[no_transpiration_mask] = 0. transpiration_mask = (valid_mask & (tave >= 2)) trap[transpiration_mask] = numpy.maximum( numpy.minimum( trap[transpiration_mask], pet_rem[transpiration_mask] * 0.65 * (1 - numpy.exp(-0.02 * aliv[transpiration_mask]))), 0.) trap[valid_mask] = numpy.maximum(trap[valid_mask], 0.01) pevp = numpy.empty(pet_rem.shape, dtype=numpy.float32) pevp[:] = _TARGET_NODATA pevp[valid_mask] = numpy.maximum( pet_rem[valid_mask] - trap[valid_mask] - evap_losses[valid_mask], 0.) tran = numpy.empty(pet_rem.shape, dtype=numpy.float32) tran[:] = _TARGET_NODATA tran[valid_mask] = numpy.minimum( trap[valid_mask] - 0.01, current_moisture_inputs[valid_mask]) trap[valid_mask] = trap[valid_mask] - tran[valid_mask] modified_moisture_inputs = numpy.empty( pet_rem.shape, dtype=numpy.float32) modified_moisture_inputs[:] = _TARGET_NODATA modified_moisture_inputs[valid_mask] = ( current_moisture_inputs[valid_mask] - tran[valid_mask]) if return_type == 'trap': return trap elif return_type == 'pevp': return pevp elif return_type == 'modified_moisture_inputs': return modified_moisture_inputs return _calc_potential_transpiration def distribute_water_to_soil_layer(return_type): """Distribute moisture inputs to one soil layer prior to transpiration. Soil moisture inputs after runoff, evaporation, and initial transpiration are distributed to soil layers sequentially according to the field capacity of the layer. If moisture inputs exceed the field capacity of the layer, the remainder of moisture inputs move down to the next adjacent soil layer. Returns: the function `_distribute_water` """ def _distribute_water(adep, afiel, asmos, current_moisture_inputs): """Revise soil moisture in this soil layer prior to transpiration. Moisture inputs coming into this soil layer are compared to the field capacity of the layer. If the field capacity is exceeded, the excess moisture moves from this layer to the next adjacent layer. Parameters: adep (numpy.ndarray): parameter, depth of this soil layer in cm afiel (numpy.ndarray): derived, field capacity of this layer asmos (numpy.ndarray): state variable, current soil moisture content of this soil layer current_moisture_inputs (numpy.ndarray): derived, moisture inputs added to this soil layer Returns: asmos_revised, revised soil moisture in this layer, if return_type is 'asmos_revised' amov, moisture flowing from this layer into the next, if return_type is 'amov' """ valid_mask = ( (adep != _IC_NODATA) & (afiel != _TARGET_NODATA) & (~numpy.isclose(asmos, _SV_NODATA)) & (current_moisture_inputs != _TARGET_NODATA)) afl = numpy.empty(adep.shape, dtype=numpy.float32) afl[:] = _TARGET_NODATA afl[valid_mask] = adep[valid_mask] * afiel[valid_mask] asmos_interm = numpy.empty(adep.shape, dtype=numpy.float32) asmos_interm[:] = _TARGET_NODATA asmos_interm[valid_mask] = ( asmos[valid_mask] + current_moisture_inputs[valid_mask]) amov = numpy.empty(adep.shape, dtype=numpy.float32) amov[:] = _TARGET_NODATA exceeded_mask = (valid_mask & (asmos_interm > afl)) amov[exceeded_mask] = asmos_interm[exceeded_mask] asmos_revised = numpy.empty(adep.shape, dtype=numpy.float32) asmos_revised[:] = _TARGET_NODATA asmos_revised[valid_mask] = asmos_interm[valid_mask] asmos_revised[exceeded_mask] = afl[exceeded_mask] notexceeded_mask = (valid_mask & (asmos_interm <= afl)) amov[notexceeded_mask] = 0. if return_type == 'asmos_revised': return asmos_revised elif return_type == 'amov': return amov return _distribute_water def calc_available_water_for_transpiration(asmos, awilt, adep): """Calculate water available for transpiration in one soil layer. The water available for transpiration is the amount of water in the soil layer minus the wilting point of the soil layer. Parameters: asmos (numpy.ndarray): derived, interim moisture in the soil layer awilt (numpy.ndarray): derived, wilting point of the soil layer adep (numpy.ndarray): parameter, depth of the soil layer in cm Returns: avw, available water for transpiration """ valid_mask = ( (asmos != _TARGET_NODATA) & (awilt != _TARGET_NODATA) & (adep != _IC_NODATA)) avw = numpy.empty(asmos.shape, dtype=numpy.float32) avw[:] = _TARGET_NODATA avw[valid_mask] = numpy.maximum( asmos[valid_mask] - awilt[valid_mask] * adep[valid_mask], 0.) return avw def revise_potential_transpiration(trap, tot): """Revise potential transpiration according to water available. Total potential transpiration, trap, is revised to be less than or equal to total water available for transpiration, tot. Total water available for transpiration is the sum of available water per soil layer. Line 241, H2olos.f Parameters: trap (numpy.ndarray): derived, potential transpiration water losses tot (numpy.ndarray): derived, total soil water available for transpiration Returns: trap_revised, revised total potential transpiration """ valid_mask = ( (trap != _TARGET_NODATA) & (tot != _TARGET_NODATA)) trap_revised = numpy.empty(trap.shape, dtype=numpy.float32) trap_revised[:] = _TARGET_NODATA trap_revised[valid_mask] = numpy.minimum(trap[valid_mask], tot[valid_mask]) return trap_revised def remove_transpiration(return_type): """Remove water from a soil layer via transpiration by plants. Transpiration from one soil layer is apportioned from total potential transpiration, trap, according to the available water for transpiration in this soil layer. Lines 218-294, H2olos.f Parameters: return_type (string): flag indicating whether avinj (water in this soil layer available to plants for growth) or asmos (total water in this soil layer) should be returned Returns: the function `_remove_transpiration` """ def _remove_transpiration(asmos, awilt, adep, trap, awwt, tot2): """Remove water from a soil layer via transpiration by plants. Parameters: asmos (numpy.ndarray): derived, interim moisture in this soil layer after additions from current month precipitation awilt (numpy.ndarray): derived, wilting point of this soil layer adep (numpy.ndarray): parameter, depth of this soil layer in cm trap (numpy.ndarray): derived, total potential transpiration across all soil layers accessible by plant roots awwt (numpy.ndarray): derived, water available for transpiration in this soil layer weighted by transpiration depth distribution parameter tot2 (numpy.ndarray): derived, the sum of weighted water available for transpiration across soil layers Returns: avinj, water available to plants for growth in this layer after losses to transpiration, if return type is 'avinj' asmos_revised, total water in this layer after losses to transpiration, if return type is 'asmos' """ valid_mask = ( (asmos != _TARGET_NODATA) & (awilt != _TARGET_NODATA) & (adep != _IC_NODATA) & (trap != _TARGET_NODATA) & (awwt != _TARGET_NODATA) & (tot2 != _TARGET_NODATA)) avinj = numpy.empty(asmos.shape, dtype=numpy.float32) avinj[:] = _TARGET_NODATA avinj[valid_mask] = numpy.maximum( asmos[valid_mask] - awilt[valid_mask] * adep[valid_mask], 0.) transpire_mask = (valid_mask & (tot2 > 0)) transpiration_loss = numpy.zeros(asmos.shape, dtype=numpy.float32) transpiration_loss[transpire_mask] = numpy.minimum( (trap[transpire_mask] * awwt[transpire_mask]) / tot2[transpire_mask], avinj[transpire_mask]) avinj[valid_mask] = avinj[valid_mask] - transpiration_loss[valid_mask] asmos_revised = numpy.empty(asmos.shape, dtype=numpy.float32) asmos_revised[:] = _TARGET_NODATA asmos_revised[valid_mask] = ( asmos[valid_mask] - transpiration_loss[valid_mask]) if return_type == 'avinj': return avinj elif return_type == 'asmos': return asmos_revised return _remove_transpiration def calc_relative_water_content_lyr_1(asmos_1, adep_1, awilt_1, afiel_1): """Calculate the relative water content of soil layer 1. The relative water content of soil layer 1, prior to any evaporation losses from soil layer 1, is used to estimate water available for evaporation from soil layer 1. Line 280, H2olos.f Parameters: asmos_1 (numpy.ndarray): derived, interim moisture in soil layer 1 after losses to transpiration adep_1 (numpy.ndarray): parameter, depth of soil layer 1 in cm awilt_1 (numpy.ndarray): derived, wilting point of soil layer 1 afiel_1 (numpy.ndarray): derived, field capacity of soil layer 1 Returns: rwcf_1, relative water content of soil layer 1 """ valid_mask = ( (asmos_1 != _TARGET_NODATA) & (adep_1 != _IC_NODATA) & (awilt_1 != _TARGET_NODATA) & (afiel_1 != _TARGET_NODATA)) rwcf_1 = numpy.empty(asmos_1.shape, dtype=numpy.float32) rwcf_1[valid_mask] = ( (asmos_1[valid_mask] / adep_1[valid_mask] - awilt_1[valid_mask]) / (afiel_1[valid_mask] - awilt_1[valid_mask])) return rwcf_1 def calc_evaporation_loss(rwcf_1, pevp, absevap, asmos_1, awilt_1, adep_1): """Calculate evaporation from soil layer 1. Some moisture is lost from soil layer 1 (i.e., the top soil layer) to evaporation, separate from surface evaporation and transpiration by plants. This amount is calculated from potential soil evaporation, which was calculated from potential evapotranspiration prior to allocation of water to soil layers. It is restricted to be less than or equal to water available in this soil layer. Parameters: rwcf_1 (numpy.ndarray): derived, relative water content of soil layer 1 pevp (numpy.ndarray): derived, potential evaporation from soil layer 1 absevap (numpy.ndarray): derived, bare soil evaporation asmos_1 (numpy.ndarray): derived, interim moisture in soil layer 1 awilt_1 (numpy.ndarray): derived, wilting point of soil layer 1 adep_1 (numpy.ndarray): parameter, depth of soil layer 1 in cm Returns: evlos, moisture evaporated from soil layer 1 """ valid_mask = ( (rwcf_1 != _TARGET_NODATA) & (pevp != _TARGET_NODATA) & (absevap != _TARGET_NODATA) & (asmos_1 != _TARGET_NODATA) & (awilt_1 != _TARGET_NODATA) & (adep_1 != _IC_NODATA)) evmt = numpy.empty(rwcf_1.shape, dtype=numpy.float32) evmt[:] = _TARGET_NODATA evmt[valid_mask] = numpy.maximum( (rwcf_1[valid_mask] - 0.25) / (1 - 0.25), 0.01) evlos = numpy.empty(rwcf_1.shape, dtype=numpy.float32) evlos[:] = _TARGET_NODATA evlos[valid_mask] = numpy.minimum( evmt[valid_mask] * pevp[valid_mask] * absevap[valid_mask] * 0.1, numpy.maximum( asmos_1[valid_mask] - awilt_1[valid_mask] * adep_1[valid_mask], 0.)) return evlos def _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg): """Allocate precipitation to runoff, transpiration, and soil moisture. Simulate snowfall and account for evaporation and melting of the snow pack. Allocate the flow of precipitation through interception by plants, runoff and infiltration into the soil, percolation through the soil, and transpiration by plants. Update soil moisture in each soil layer. Estimate avh2o_1 for each PFT (water available to the PFT for growth), avh2o_3 (water in first two soil layers), and amov_<lyr> (saturated flow of water between soil layers, used in decomposition and mineral leaching). Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters, including nlaypg, number of soil layers access by plant roots current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=1 indicates month 1 of the simulation prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving persistent parameters including field capacity of each soil layer pft_id_set (set): set of integers identifying plant functional types month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the raster indicated by `sv_reg['snow_path']`, current snowpack creates the raster indicated by `sv_reg['snlq_path']`, current liquid in snow creates the raster indicated by `sv_reg['asmos_<lyr>_path']`, soil moisture content, for each soil layer accessible by roots of any plant functional type creates the rasters indicated by `month_reg['amov_<lyr>']` for each soil layer, saturated flow of water from that soil layer creates the raster indicated by `sv_reg['avh2o_1_<PFT>_path']`, soil moisture available for growth, for each plant functional type (PFT) creates the raster indicated by `sv_reg['avh2o_3_path']`, available water in the top two soil layers Returns: None """ def calc_avg_temp(max_temp, min_temp): """Calculate average temperature from maximum and minimum temp.""" valid_mask = ( (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata))) tave = numpy.empty(max_temp.shape, dtype=numpy.float32) tave[:] = _IC_NODATA tave[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2. return tave def calc_surface_litter_biomass(strucc_1, metabc_1): """Calculate biomass in surface litter.""" valid_mask = ( (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(metabc_1, _SV_NODATA))) alit = numpy.empty(strucc_1.shape, dtype=numpy.float32) alit[:] = _TARGET_NODATA alit[valid_mask] = (strucc_1[valid_mask] + metabc_1[valid_mask]) * 2.5 alit = numpy.minimum(alit, 400) return alit max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] # get max number of soil layers accessible by plants nlaypg_max = int(max(val['nlaypg'] for val in veg_trait_table.values())) # max number of soil layers simulated, beyond those accessible by plants nlayer_max = int(max(val['nlayer'] for val in site_param_table.values())) # temporary intermediate rasters for soil water submodel temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'tave', 'current_moisture_inputs', 'modified_moisture_inputs', 'pet_rem', 'alit', 'sum_aglivc', 'sum_stdedc', 'sum_tgprod', 'aliv', 'sd', 'absevap', 'evap_losses', 'trap', 'trap_revised', 'pevp', 'tot', 'tot2', 'rwcf_1', 'evlos', 'avinj_interim_1']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # temporary intermediate values for each layer accessible by plants for val in ['avw', 'awwt', 'avinj']: for lyr in range(1, nlaypg_max + 1): val_lyr = '{}_{}'.format(val, lyr) temp_val_dict[val_lyr] = os.path.join( temp_dir, '{}.tif'.format(val_lyr)) # temporary intermediate value for each layer total for lyr in range(1, nlayer_max + 1): val_lyr = 'asmos_interim_{}'.format(lyr) temp_val_dict[val_lyr] = os.path.join( temp_dir, '{}.tif'.format(val_lyr)) # PFT-level temporary calculated values for pft_i in pft_id_set: for val in ['tgprod_weighted', 'sum_avinj']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict = {} for val in ['fracro', 'precro', 'fwloss_1', 'fwloss_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for lyr in range(1, nlaypg_max + 1): val_lyr = 'awtl_{}'.format(lyr) target_path = os.path.join(temp_dir, '{}.tif'.format(val_lyr)) param_val_dict[val_lyr] = target_path site_to_val = dict( [(site_code, float(table[val_lyr])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for lyr in range(1, nlayer_max + 1): val_lyr = 'adep_{}'.format(lyr) target_path = os.path.join(temp_dir, '{}.tif'.format(val_lyr)) param_val_dict[val_lyr] = target_path site_to_val = dict( [(site_code, float(table[val_lyr])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # calculate canopy and litter cover that influence moisture inputs # calculate biomass in surface litter pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['strucc_1_path'], prev_sv_reg['metabc_1_path']]], calc_surface_litter_biomass, temp_val_dict['alit'], gdal.GDT_Float32, _TARGET_NODATA) # calculate the sum of aglivc (standing live biomass) and stdedc # (standing dead biomass) across PFTs, weighted by % cover of each PFT for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) # calculate the weighted sum of tgprod, potential production, across PFTs weighted_path_list = [] for pft_i in pft_id_set: do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: target_path = temp_val_dict['tgprod_weighted_{}'.format(pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( month_reg['tgprod_{}'.format(pft_i)], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) if weighted_path_list: raster_list_sum( weighted_path_list, _TARGET_NODATA, temp_val_dict['sum_tgprod'], _TARGET_NODATA, nodata_remove=True) else: # no potential production occurs this month, so tgprod = 0 pygeoprocessing.new_raster_from_base( temp_val_dict['sum_aglivc'], temp_val_dict['sum_tgprod'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0.]) # calculate average temperature pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)]]], calc_avg_temp, temp_val_dict['tave'], gdal.GDT_Float32, _IC_NODATA) # calculate aboveground live biomass pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], temp_val_dict['sum_tgprod']]], _calc_aboveground_live_biomass, temp_val_dict['aliv'], gdal.GDT_Float32, _TARGET_NODATA) # calculate total standing biomass pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aliv'], temp_val_dict['sum_stdedc']]], _calc_standing_biomass, temp_val_dict['sd'], gdal.GDT_Float32, _TARGET_NODATA) # modify standing snow, liquid in snow, return moisture inputs after snow _snow( aligned_inputs['site_index'], site_param_table, aligned_inputs['precip_{}'.format(month_index)], temp_val_dict['tave'], aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], prev_sv_reg['snow_path'], prev_sv_reg['snlq_path'], current_month, month_reg['snowmelt'], sv_reg['snow_path'], sv_reg['snlq_path'], temp_val_dict['modified_moisture_inputs'], temp_val_dict['pet_rem']) # remove runoff and surface evaporation from moisture inputs shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('inputs_after_surface'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # calculate bare soil evaporation pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('absevap'), temp_val_dict['absevap'], gdal.GDT_Float32, _TARGET_NODATA) # calculate total losses to surface evaporation pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('evap_losses'), temp_val_dict['evap_losses'], gdal.GDT_Float32, _TARGET_NODATA) # remove losses due to initial transpiration from water inputs shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('modified_moisture_inputs'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # calculate potential transpiration pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('trap'), temp_val_dict['trap'], gdal.GDT_Float32, _TARGET_NODATA) # calculate potential evaporation from top soil layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('pevp'), temp_val_dict['pevp'], gdal.GDT_Float32, _TARGET_NODATA) # distribute water to each layer for lyr in range(1, nlayer_max + 1): shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) # revise moisture content of this soil layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['adep_{}'.format(lyr)], pp_reg['afiel_{}_path'.format(lyr)], prev_sv_reg['asmos_{}_path'.format(lyr)], temp_val_dict['current_moisture_inputs']]], distribute_water_to_soil_layer('asmos_revised'), temp_val_dict['asmos_interim_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) # calculate soil moisture moving to next layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['adep_{}'.format(lyr)], pp_reg['afiel_{}_path'.format(lyr)], prev_sv_reg['asmos_{}_path'.format(lyr)], temp_val_dict['current_moisture_inputs']]], distribute_water_to_soil_layer('amov'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # amov, water moving to next layer, persists between submodels shutil.copyfile( temp_val_dict['modified_moisture_inputs'], month_reg['amov_{}'.format(lyr)]) # calculate available water for transpiration avw_list = [] for lyr in range(1, nlaypg_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)]]], calc_available_water_for_transpiration, temp_val_dict['avw_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) avw_list.append(temp_val_dict['avw_{}'.format(lyr)]) # total water available for transpiration raster_list_sum( avw_list, _TARGET_NODATA, temp_val_dict['tot'], _TARGET_NODATA) # calculate water available for transpiration weighted by transpiration # depth for that soil layer awwt_list = [] for lyr in range(1, nlaypg_max + 1): raster_multiplication( temp_val_dict['avw_{}'.format(lyr)], _TARGET_NODATA, param_val_dict['awtl_{}'.format(lyr)], _IC_NODATA, temp_val_dict['awwt_{}'.format(lyr)], _TARGET_NODATA) awwt_list.append(temp_val_dict['awwt_{}'.format(lyr)]) # total weighted available water for transpiration raster_list_sum( awwt_list, _TARGET_NODATA, temp_val_dict['tot2'], _TARGET_NODATA) # revise total potential transpiration pygeoprocessing.raster_calculator( [(path, 1) for path in [temp_val_dict['trap'], temp_val_dict['tot']]], revise_potential_transpiration, temp_val_dict['trap_revised'], gdal.GDT_Float32, _TARGET_NODATA) # remove water via transpiration for lyr in range(1, nlaypg_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)], temp_val_dict['trap_revised'], temp_val_dict['awwt_{}'.format(lyr)], temp_val_dict['tot2']]], remove_transpiration('avinj'), temp_val_dict['avinj_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)], temp_val_dict['trap_revised'], temp_val_dict['awwt_{}'.format(lyr)], temp_val_dict['tot2']]], remove_transpiration('asmos'), sv_reg['asmos_{}_path'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) # no transpiration is removed from layers not accessible by plants for lyr in range(nlaypg_max + 1, nlayer_max + 1): shutil.copyfile( temp_val_dict['asmos_interim_{}'.format(lyr)], sv_reg['asmos_{}_path'.format(lyr)]) # relative water content of soil layer 1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['asmos_1_path'], param_val_dict['adep_1'], pp_reg['awilt_1_path'], pp_reg['afiel_1_path']]], calc_relative_water_content_lyr_1, temp_val_dict['rwcf_1'], gdal.GDT_Float32, _TARGET_NODATA) # evaporation from soil layer 1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['rwcf_1'], temp_val_dict['pevp'], temp_val_dict['absevap'], sv_reg['asmos_1_path'], pp_reg['awilt_1_path'], param_val_dict['adep_1']]], calc_evaporation_loss, temp_val_dict['evlos'], gdal.GDT_Float32, _TARGET_NODATA) # remove evaporation from total moisture in soil layer 1 shutil.copyfile(sv_reg['asmos_1_path'], temp_val_dict['asmos_interim_1']) raster_difference( temp_val_dict['asmos_interim_1'], _TARGET_NODATA, temp_val_dict['evlos'], _TARGET_NODATA, sv_reg['asmos_1_path'], _TARGET_NODATA) # remove evaporation from moisture available to plants in soil layer 1 shutil.copyfile(temp_val_dict['avinj_1'], temp_val_dict['avinj_interim_1']) raster_difference( temp_val_dict['avinj_interim_1'], _TARGET_NODATA, temp_val_dict['evlos'], _TARGET_NODATA, temp_val_dict['avinj_1'], _TARGET_NODATA) # calculate avh2o_1, soil water available for growth, for each PFT for pft_i in pft_id_set: pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] soil_layers_accessible = [ temp_val_dict['avinj_{}'.format(lyr)] for lyr in range(1, int(veg_trait_table[pft_i]['nlaypg']) + 1)] raster_list_sum( soil_layers_accessible, _TARGET_NODATA, temp_val_dict['sum_avinj_{}'.format(pft_i)], _TARGET_NODATA, nodata_remove=True) raster_multiplication( temp_val_dict['sum_avinj_{}'.format(pft_i)], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, sv_reg['avh2o_1_{}_path'.format(pft_i)], _SV_NODATA) # calculate avh2o_3, moisture in top two soil layers soil_layers_to_sum = [ temp_val_dict['avinj_{}'.format(lyr)] for lyr in [1, 2]] raster_list_sum( soil_layers_to_sum, _TARGET_NODATA, sv_reg['avh2o_3_path'], _SV_NODATA, nodata_remove=False) # set correct nodata value for all revised asmos rasters for lyr in range(1, nlayer_max + 1): reclassify_nodata(sv_reg['asmos_{}_path'.format(lyr)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_anerb(rprpet, pevap, drain, aneref_1, aneref_2, aneref_3): """Calculate the effect of soil anaerobic conditions on decomposition. The impact of soil anaerobic conditions on decomposition is calculated from soil moisture and reference evapotranspiration. Anerob.f. Parameters: rprpet (numpy.ndarray): derived, ratio of precipitation or snowmelt to reference evapotranspiration pevap (numpy.ndarray): derived, reference evapotranspiration drain (numpy.ndarray): parameter, the fraction of excess water lost by drainage. Indicates whether a soil is sensitive for anaerobiosis (drain = 0) or not (drain = 1) aneref_1 (numpy.ndarray): parameter, value of rprpet below which there is no negative impact of soil anaerobic conditions on decomposition aneref_2 (numpy.ndarray): parameter, value of rprpet above which there is maximum negative impact of soil anaerobic conditions on decomposition aneref_3 (numpy.ndarray): parameter, minimum value of the impact of soil anaerobic conditions on decomposition Returns: anerb, the effect of soil anaerobic conditions on decomposition """ valid_mask = ( (rprpet != _TARGET_NODATA) & (pevap != _TARGET_NODATA) & (drain != _IC_NODATA) & (aneref_1 != _IC_NODATA) & (aneref_2 != _IC_NODATA) & (aneref_3 != _IC_NODATA)) xh2o = numpy.empty(rprpet.shape, dtype=numpy.float32) xh2o[:] = _TARGET_NODATA xh2o[valid_mask] = ( (rprpet[valid_mask] - aneref_1[valid_mask]) * pevap[valid_mask] * (1. - drain[valid_mask])) anerb = numpy.empty(rprpet.shape, dtype=numpy.float32) anerb[:] = _TARGET_NODATA anerb[valid_mask] = 1. high_rprpet_mask = (valid_mask & (rprpet > aneref_1) & (xh2o > 0)) anerb[high_rprpet_mask] = numpy.maximum( 1. + (1. - aneref_3[high_rprpet_mask]) / (aneref_1[high_rprpet_mask] - aneref_2[high_rprpet_mask]) * (aneref_1[high_rprpet_mask] + (xh2o[high_rprpet_mask] / pevap[high_rprpet_mask]) - aneref_1[high_rprpet_mask]), aneref_3[high_rprpet_mask]) return anerb def esched(return_type): """Calculate flow of an element accompanying decomposition of C. Calculate the movement of one element (N or P) as C decomposes from one state variable (the donating stock, or box A) to another state variable (the receiving stock, or box B). Esched.f Parameters: return_type (string): flag indicating whether to return material leaving box A, material arriving in box B, or material flowing into or out of the mineral pool Returns: the function `_esched` """ def _esched(cflow, tca, rcetob, anps, labile): """Calculate the flow of one element (iel) to accompany decomp of C. This is a transcription of Esched.f: "Schedule N, P, or S flow and associated mineralization or immobilization flow for decomposition from Box A to Box B." If there is enough of iel (N or P) in the donating stock to satisfy the required ratio, that material flows from the donating stock to the receiving stock and whatever iel is leftover goes to mineral pool. If there is not enough iel to satisfy the required ratio, iel is drawn from the mineral pool to satisfy the ratio; if there is not enough iel in the mineral pool, the material does not leave the donating stock. Parameters: cflow (numpy.ndarray): derived, total C that is decomposing from box A to box B tca (numpy.ndarray): state variable, C in donating stock, i.e. box A rcetob (numpy.ndarray): derived, required ratio of C/iel in the receiving stock anps (numpy.ndarray): state variable, iel (N or P) in the donating stock labile (numpy.ndarray): state variable, mineral iel (N or P) Returns: material_leaving_a, the amount of material leaving box A, if return_type is 'material_leaving_a' material_arriving_b, the amount of material arriving in box B, if return_type is 'material_arriving_b' mnrflo, flow to or from mineral pool, if return_type is 'mineral_flow' """ valid_mask = ( (cflow != _IC_NODATA) & (~numpy.isclose(tca, _SV_NODATA)) & (tca > 0) & (rcetob != _TARGET_NODATA) & (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(labile, _SV_NODATA))) outofa = numpy.empty(cflow.shape, dtype=numpy.float32) outofa[:] = _IC_NODATA outofa[valid_mask] = ( anps[valid_mask] * (cflow[valid_mask] / tca[valid_mask])) immobil_ratio = numpy.zeros(cflow.shape) nonzero_mask = ((outofa > 0) & valid_mask) immobil_ratio[nonzero_mask] = ( cflow[nonzero_mask] / outofa[nonzero_mask]) immflo = numpy.zeros(cflow.shape) immflo[valid_mask] = ( cflow[valid_mask] / rcetob[valid_mask] - outofa[valid_mask]) labile_supply = numpy.zeros(cflow.shape) labile_supply[valid_mask] = labile[valid_mask] - immflo[valid_mask] atob = numpy.zeros(cflow.shape) atob[valid_mask] = cflow[valid_mask] / rcetob[valid_mask] # immobilization immobilization_mask = ( (immobil_ratio > rcetob) & (labile_supply > 0) & valid_mask) # mineralization mineralization_mask = ( (immobil_ratio <= rcetob) & valid_mask) # no movement no_movt_mask = ( (immobil_ratio > rcetob) & (labile_supply <= 0) & valid_mask) material_leaving_a = numpy.empty(cflow.shape, dtype=numpy.float32) material_leaving_a[:] = _IC_NODATA material_arriving_b = numpy.empty(cflow.shape, dtype=numpy.float32) material_arriving_b[:] = _IC_NODATA mnrflo = numpy.empty(cflow.shape, dtype=numpy.float32) mnrflo[:] = _IC_NODATA material_leaving_a[immobilization_mask] = ( outofa[immobilization_mask]) material_arriving_b[immobilization_mask] = ( outofa[immobilization_mask] + immflo[immobilization_mask]) mnrflo[immobilization_mask] = -immflo[immobilization_mask] material_leaving_a[mineralization_mask] = outofa[mineralization_mask] material_arriving_b[mineralization_mask] = atob[mineralization_mask] mnrflo[mineralization_mask] = ( outofa[mineralization_mask] - atob[mineralization_mask]) material_leaving_a[no_movt_mask] = 0. material_arriving_b[no_movt_mask] = 0. mnrflo[no_movt_mask] = 0. if return_type == 'material_leaving_a': return material_leaving_a elif return_type == 'material_arriving_b': return material_arriving_b elif return_type == 'mineral_flow': return mnrflo return _esched def fsfunc(minerl_1_2, sorpmx, pslsrb): """Calculate the fraction of mineral P that is in solution. The fraction of P in solution is influenced by two soil properties: the maximum sorption potential of the soil and sorption affinity. Parameters: minerl_1_2 (numpy.ndarray): state variable, mineral P in top layer sorpmx (numpy.ndarray): parameter, maximum P sorption potential pslsrb (numpy.ndarray): parameter, slope term which controls the fraction of mineral P that is labile Returns: fsol, fraction of P in solution """ valid_mask = ( (~numpy.isclose(minerl_1_2, _SV_NODATA)) & (minerl_1_2 > 0) & (sorpmx != _IC_NODATA) & (pslsrb != _IC_NODATA)) c_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) c_ar[valid_mask] = ( sorpmx[valid_mask] * (2.0 - pslsrb[valid_mask]) / 2.) b_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) b_ar[valid_mask] = ( sorpmx[valid_mask] - minerl_1_2[valid_mask] + c_ar[valid_mask]) sq_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) sq_ar[valid_mask] = ( b_ar[valid_mask] * b_ar[valid_mask] + 4. * c_ar[valid_mask] * minerl_1_2[valid_mask]) sqrt_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) sqrt_ar[valid_mask] = numpy.sqrt(sq_ar[valid_mask]) labile = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) labile[valid_mask] = (-b_ar[valid_mask] + sqrt_ar[valid_mask]) / 2. fsol = numpy.empty(minerl_1_2.shape, dtype=numpy.float32) fsol[:] = _TARGET_NODATA fsol[valid_mask] = labile[valid_mask] / minerl_1_2[valid_mask] return fsol def calc_surface_som2_ratio( som1c_1, som1e_1_iel, rad1p_1_iel, rad1p_2_iel, rad1p_3_iel, pcemic1_2_iel): """Calculate the required C/iel ratio for material entering surface SOM2. The C/iel ratio of material decomposing from surface SOM1 into surface SOM2 fluctuates with each decomposition time step according to the current C/iel content of SOM1. Parameters: som1c_1 (numpy.ndarray): state variable, C in surface SOM1 som1e_1_iel (numpy.ndarray): state variable, iel in surface SOM1 rad1p_1_iel (numpy.ndarray): parameter, intercept term rad1p_2_iel (numpy.ndarray): parameter, slope term rad1p_3_iel (numpy.ndarray): parameter, minimum allowable C/iel for addition term pcemic1_2_iel (numpy.ndarray): parameter, minimum C/iel ratio Returns: rceto2_surface, required C/iel ratio of material entering surface SOM2 """ valid_mask = ( (~numpy.isclose(som1c_1, _SV_NODATA)) & (~numpy.isclose(som1e_1_iel, _SV_NODATA)) & (som1e_1_iel > 0) & (rad1p_1_iel != _IC_NODATA) & (rad1p_2_iel != _IC_NODATA) & (pcemic1_2_iel != _IC_NODATA) & (rad1p_3_iel != _IC_NODATA)) radds1 = numpy.empty(som1c_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1_iel[valid_mask] + rad1p_2_iel[valid_mask] * ((som1c_1[valid_mask] / som1e_1_iel[valid_mask]) - pcemic1_2_iel[valid_mask])) rceto2_surface = numpy.empty(som1c_1.shape, dtype=numpy.float32) rceto2_surface[:] = _TARGET_NODATA rceto2_surface[valid_mask] = numpy.maximum( (som1c_1[valid_mask] / som1e_1_iel[valid_mask] + radds1[valid_mask]), rad1p_3_iel[valid_mask]) return rceto2_surface def calc_tcflow_strucc_1( aminrl_1, aminrl_2, strucc_1, struce_1_1, struce_1_2, rnewas_1_1, rnewas_2_1, strmax_1, defac, dec1_1, pligst_1, strlig_1, pheff_struc): """Calculate total flow out of surface structural C. The total potential flow of C out of surface structural material is calculated according to its lignin content, the decomposition factor, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P strucc_1 (numpy.ndarray): state variable, surface structural C struce_1_1 (numpy.ndarray): state variable, surface structural N struce_1_2 (numpy.ndarray): state variable, surface structural P rnewas_1_1 (numpy.ndarray): derived, required C/N ratio for aboveground material decomposing to SOM1 rnewas_2_1 (numpy.ndarray): derived, required C/P ratio for aboveground material decomposing to SOM1 strmax_1 (numpy.ndarray): parameter, maximum decomposition amount defac (numpy.ndarray): derived, decomposition factor dec1_1 (numpy.ndarray): parameter, maximum decomposition rate pligst_1 (numpy.ndarray): parameter, effect of lignin content on decomposition rate strlig_1 (numpy.ndarray): state variable, lignin content of decomposing material pheff_struc (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow_strucc_1, total flow of C out of surface structural material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(struce_1_1, _SV_NODATA)) & (~numpy.isclose(struce_1_2, _SV_NODATA)) & (rnewas_1_1 != _TARGET_NODATA) & (rnewas_2_1 != _TARGET_NODATA) & (strmax_1 != _IC_NODATA) & (defac != _TARGET_NODATA) & (dec1_1 != _IC_NODATA) & (pligst_1 != _IC_NODATA) & (~numpy.isclose(strlig_1, _SV_NODATA)) & (pheff_struc != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum(strucc_1[valid_mask], strmax_1[valid_mask]) * defac[valid_mask] * dec1_1[valid_mask] * numpy.exp(-pligst_1[valid_mask] * strlig_1[valid_mask]) * 0.020833 * pheff_struc[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((strucc_1 / struce_1_1) <= rnewas_1_1)) & ((aminrl_2 > 0.0000001) | ((strucc_1 / struce_1_2) <= rnewas_2_1)) & valid_mask) tcflow_strucc_1 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_strucc_1[:] = _IC_NODATA tcflow_strucc_1[valid_mask] = 0. tcflow_strucc_1[decompose_mask] = potential_flow[decompose_mask] return tcflow_strucc_1 def calc_tcflow_strucc_2( aminrl_1, aminrl_2, strucc_2, struce_2_1, struce_2_2, rnewbs_1_1, rnewbs_2_1, strmax_2, defac, dec1_2, pligst_2, strlig_2, pheff_struc, anerb): """Calculate total flow out of soil structural C. The total potential flow of C out of soil structural material is calculated according to its lignin content, the decomposition factor, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average soil mineral N aminrl_2 (numpy.ndarray): derived, average soil mineral P strucc_2 (numpy.ndarray): state variable, soil structural C struce_2_1 (numpy.ndarray): state variable, soil structural N struce_2_2 (numpy.ndarray): state variable, soil structural P rnewbs_1_1 (numpy.ndarray): derived, required C/N ratio for belowground material decomposing to SOM1 rnewbs_2_1 (numpy.ndarray): derived, required C/P ratio for belowground material decomposing to SOM1 strmax_2 (numpy.ndarray): parameter, maximum decomposition amount defac (numpy.ndarray): derived, decomposition factor dec1_2 (numpy.ndarray): parameter, maximum decomposition rate pligst_2 (numpy.ndarray): parameter, effect of lignin content on decomposition rate strlig_2 (numpy.ndarray): state variable, lignin content of decomposing material pheff_struc (numpy.ndarray): derived, effect of soil pH on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate Returns: tcflow_strucc_2, total flow of C out of soil structural material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(strucc_2, _SV_NODATA)) & (~numpy.isclose(struce_2_1, _SV_NODATA)) & (~numpy.isclose(struce_2_2, _SV_NODATA)) & (rnewbs_1_1 != _TARGET_NODATA) & (rnewbs_2_1 != _TARGET_NODATA) & (strmax_2 != _IC_NODATA) & (defac != _TARGET_NODATA) & (dec1_2 != _IC_NODATA) & (pligst_2 != _IC_NODATA) & (~numpy.isclose(strlig_2, _SV_NODATA)) & (pheff_struc != _TARGET_NODATA) & (anerb != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum(strucc_2[valid_mask], strmax_2[valid_mask]) * defac[valid_mask] * dec1_2[valid_mask] * numpy.exp(-pligst_2[valid_mask] * strlig_2[valid_mask]) * 0.020833 * pheff_struc[valid_mask] * anerb[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((strucc_2 / struce_2_1) <= rnewbs_1_1)) & ((aminrl_2 > 0.0000001) | ((strucc_2 / struce_2_2) <= rnewbs_2_1)) & valid_mask) tcflow_strucc_2 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_strucc_2[:] = _IC_NODATA tcflow_strucc_2[valid_mask] = 0. tcflow_strucc_2[decompose_mask] = potential_flow[decompose_mask] return tcflow_strucc_2 def calc_tcflow_surface( aminrl_1, aminrl_2, cstatv, estatv_1, estatv_2, rcetob_1, rcetob_2, defac, dec_param, pheff): """Calculate total flow of C out of a surface pool. The total potential flow of C out of a surface pool is calculated according to the decomposition factor and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P cstatv (numpy.ndarray): state variable, C in decomposing pool estatv_1 (numpy.ndarray): state variable, N in decomposing pool estatv_2 (numpy.ndarray): state variable, P in decomposing pool rcetob_1 (numpy.ndarray): derived, required C/N ratio for material entering the receiving pool rcetob_2 (numpy.ndarray): derived, required C/P ratio for material entering the receiving pool defac (numpy.ndarray): derived, decomposition factor dec_param (numpy.ndarray): parameter, maximum decomposition rate pheff (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow, total flow of C out of the decomposing pool """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(estatv_1, _SV_NODATA)) & (~numpy.isclose(estatv_2, _SV_NODATA)) & (rcetob_1 != _TARGET_NODATA) & (rcetob_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec_param != _IC_NODATA) & (pheff != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum( cstatv[valid_mask] * defac[valid_mask] * dec_param[valid_mask] * 0.020833 * pheff[valid_mask], cstatv[valid_mask])) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((cstatv / estatv_1) <= rcetob_1)) & ((aminrl_2 > 0.0000001) | ((cstatv / estatv_2) <= rcetob_2)) & valid_mask) tcflow = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow[:] = _IC_NODATA tcflow[valid_mask] = 0. tcflow[decompose_mask] = potential_flow[decompose_mask] return tcflow def calc_tcflow_soil( aminrl_1, aminrl_2, cstatv, estatv_1, estatv_2, rcetob_1, rcetob_2, defac, dec_param, pheff, anerb): """Calculate total flow out of soil metabolic C. The total potential flow of C out of soil metabolic material is calculated according to the decomposition factor, soil pH, and soil anaerobic conditions. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average soil mineral N aminrl_2 (numpy.ndarray): derived, average soil mineral P cstatv (numpy.ndarray): state variable, C in decomposing stock estatv_1 (numpy.ndarray): state variable, N in decomposing stock estatv_2 (numpy.ndarray): state variable, P in decomposing stock rcetob_1 (numpy.ndarray): derived, required C/N ratio for material entering receiving stock rceto1_2 (numpy.ndarray): derived, required C/P ratio for material entering receiving stock defac (numpy.ndarray): derived, decomposition factor dec_param (numpy.ndarray): parameter, maximum decomposition rate pheff (numpy.ndarray): derived, effect of soil pH on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate Returns: tcflow_soil, total flow of C out of soil metabolic material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(estatv_1, _SV_NODATA)) & (~numpy.isclose(estatv_2, _SV_NODATA)) & (rcetob_1 != _TARGET_NODATA) & (rcetob_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec_param != _IC_NODATA) & (pheff != _TARGET_NODATA) & (anerb != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum( cstatv[valid_mask] * defac[valid_mask] * dec_param[valid_mask] * 0.020833 * pheff[valid_mask] * anerb[valid_mask], cstatv[valid_mask])) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((cstatv / estatv_1) <= rcetob_1)) & ((aminrl_2 > 0.0000001) | ((cstatv / estatv_2) <= rcetob_2)) & valid_mask) tcflow_soil = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_soil[:] = _IC_NODATA tcflow_soil[valid_mask] = 0. tcflow_soil[decompose_mask] = potential_flow[decompose_mask] return tcflow_soil def calc_tcflow_som1c_2( aminrl_1, aminrl_2, som1c_2, som1e_2_1, som1e_2_2, rceto2_1, rceto2_2, defac, dec3_2, eftext, anerb, pheff_metab): """Calculate total flow out of soil SOM1. The total potential flow of C out of soil SOM1 is calculated according to the effect of soil texture, anaerobic conditions, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P som1c_2 (numpy.ndarray): state variable, C in soil SOM1 som1e_2_1 (numpy.ndarray): state variable, N in soil SOM1 som1e_2_2 (numpy.ndarray): state variable, P in soil SOM1 rceto2_1 (numpy.ndarray): derived, required C/N ratio for material decomposing to soil SOM2 rceto2_2 (numpy.ndarray): derived, required C/P ratio for material decomposing to soil SOM2 defac (numpy.ndarray): derived, decomposition factor dec3_2 (numpy.ndarray): parameter, maximum decomposition rate eftext (numpy.ndarray): derived, effect of soil texture on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate pheff_metab (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow_som1c_2, total flow of C out of soil SOM1 """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_1, _SV_NODATA)) & (~numpy.isclose(som1e_2_2, _SV_NODATA)) & (rceto2_1 != _TARGET_NODATA) & (rceto2_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec3_2 != _IC_NODATA) & (eftext != _TARGET_NODATA) & (anerb != _TARGET_NODATA) & (pheff_metab != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( som1c_2[valid_mask] * defac[valid_mask] * dec3_2[valid_mask] * eftext[valid_mask] * anerb[valid_mask] * 0.020833 * pheff_metab[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((som1c_2 / som1e_2_1) <= rceto2_1)) & ((aminrl_2 > 0.0000001) | ((som1c_2 / som1e_2_2) <= rceto2_2)) & valid_mask) tcflow_som1c_2 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_som1c_2[:] = _IC_NODATA tcflow_som1c_2[valid_mask] = 0. tcflow_som1c_2[decompose_mask] = potential_flow[decompose_mask] return tcflow_som1c_2 def calc_som3_flow(tcflow, fps, animpt, anerb): """Calculate the C that flows from soil SOM1 or SOM2 to SOM3. The fraction of total flow leaving SOM1 or SOM2 that goes to SOM3 is dependent on soil clay content and soil anaerobic conditions. Parameters: tcflow (numpy.ndarray): derived, total C leaving soil SOM1 or SOM2 fps (numpy.ndarray): derived, effect of soil clay content on decomposition to SOM3 animpt (numpy.ndarray): parameter, slope of relationship between anaerobic conditions and decomposition flow to SOM3 anerb (numpy.ndarray): derived, impact of soil anaerobic conditions on decomposition Returns: tosom3, C flowing to SOM3 """ valid_mask = ( (tcflow != _IC_NODATA) & (fps != _IC_NODATA) & (animpt != _IC_NODATA) & (anerb != _TARGET_NODATA)) tosom3 = numpy.empty(tcflow.shape, dtype=numpy.float32) tosom3[:] = _IC_NODATA tosom3[valid_mask] = ( tcflow[valid_mask] * fps[valid_mask] * (1. + animpt[valid_mask] * (1. - anerb[valid_mask]))) return tosom3 def calc_som2_flow(som2c_1, cmix, defac): """Calculate the C that flows from surface SOM2 to soil SOM2. Some C flows from surface SOM2 to soil SOM2 via mixing. This flow is controlled by the parameter cmix. Parameters: som2c_1 (numpy.ndarray): state variable, C in surface SOM2 cmix (numpy.ndarray): parameter, amount of C flowing via mixing defac (numpy.ndarray): derived, decomposition factor Returns: tcflow, C flowing to soil SOM2 via mixing """ valid_mask = ( (~numpy.isclose(som2c_1, _SV_NODATA)) & (cmix != _IC_NODATA) & (defac != _TARGET_NODATA)) tcflow = numpy.empty(som2c_1.shape, dtype=numpy.float32) tcflow[:] = _IC_NODATA tcflow[valid_mask] = ( som2c_1[valid_mask] * cmix[valid_mask] * defac[valid_mask] * 0.020833) return tcflow def calc_respiration_mineral_flow(cflow, frac_co2, estatv, cstatv): """Calculate mineral flow of one element associated with respiration. As material decomposes from one stock to another, some CO2 is lost to microbial respiration and some nutrient (N or P) moves to the mineral pool. Respir.f Parameters: cflow (numpy.ndarray): derived, C decomposing from one stock to another frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 estatv (numpy.ndarray): state variable, iel (N or P) in the decomposing stock cstatv (numpy.ndarray): state variable, C in the decomposing stock Returns: mineral_flow, flow of iel (N or P) accompanying respiration """ valid_mask = ( (cflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (~numpy.isclose(estatv, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA))) co2_loss = numpy.zeros(cflow.shape, dtype=numpy.float32) co2_loss[valid_mask] = cflow[valid_mask] * frac_co2[valid_mask] mineral_flow = numpy.empty(cflow.shape, dtype=numpy.float32) mineral_flow[:] = _IC_NODATA mineral_flow[valid_mask] = 0. flow_mask = ((cstatv > 0) & valid_mask) mineral_flow[flow_mask] = ( co2_loss[flow_mask] * estatv[flow_mask] / cstatv[flow_mask]) return mineral_flow def update_gross_mineralization(gross_mineralization, mineral_flow): """Update gross N mineralization with current mineral flow. Gross mineralization of N during decomposition is used to calculate volatilization loss of N after decomposition. It is updated with N mineral flow if mineral flow is positive. Parameters: gross_mineralization (numpy.ndarray): gross N mineralization during decomposition mineral_flow (numpy.ndarray): N mineral flow Returns: gromin_updated, updated gross mineralization """ valid_mask = ( (gross_mineralization != _TARGET_NODATA) & (mineral_flow != _IC_NODATA)) gromin_updated = numpy.empty( gross_mineralization.shape, dtype=numpy.float32) gromin_updated[:] = _TARGET_NODATA gromin_updated[valid_mask] = gross_mineralization[valid_mask] update_mask = ((mineral_flow > 0) & valid_mask) gromin_updated[update_mask] = ( gross_mineralization[update_mask] + mineral_flow[update_mask]) return gromin_updated def calc_net_cflow(cflow, frac_co2): """Calculate net flow of C after loss to CO2. As material decomposes from one stock to another, some C is lost to CO2 through microbial respiration. Calculate the net flow of C after subtracting losses to CO2. Parameters: cflow (numpy.ndarray): derived, C decomposing from one stock to another frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 Returns: net_cflow, amount of decomposing C that flows after accounting for CO2 losses """ valid_mask = ( (cflow != _IC_NODATA) & (frac_co2 != _IC_NODATA)) co2_loss = numpy.zeros(cflow.shape, dtype=numpy.float32) co2_loss[valid_mask] = cflow[valid_mask] * frac_co2[valid_mask] net_cflow = numpy.empty(cflow.shape, dtype=numpy.float32) net_cflow[:] = _IC_NODATA net_cflow[valid_mask] = cflow[valid_mask] - co2_loss[valid_mask] return net_cflow def calc_net_cflow_tosom2(tcflow, frac_co2, tosom3, cleach): """Calculate net flow of C from soil SOM1 to soil SOM2. The C flowing from soil SOM1 to SOM2 is the remainder of total flow from SOM1, after accounting for losses to CO2 through respiration, decomposition to SOM3, and leaching. Parameters: tcflow (numpy.ndarray): derived, total C decomposing from soil SOM1 frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 tosom3 (numpy.ndarray): derived, C flowing from SOM1 to SOM3 cleach (numpy.ndarray): derived, leached organic C Returns: net_tosom2, amount of C that flows from soil SOM1 to soil SOm2 """ valid_mask = ( (tcflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (tosom3 != _IC_NODATA) & (cleach != _TARGET_NODATA)) net_tosom2 = numpy.empty(tcflow.shape, dtype=numpy.float32) net_tosom2[:] = _IC_NODATA net_tosom2[valid_mask] = ( tcflow[valid_mask] - (tcflow[valid_mask] * frac_co2[valid_mask]) - tosom3[valid_mask] - cleach[valid_mask]) return net_tosom2 def calc_net_cflow_tosom1(tcflow, frac_co2, tosom3): """Calculate net flow of C from soil SOM2 to soil SOM1. The C flowing from soil SOM2 to SOM1 is the remainder of total flow from SOM2, after accounting for losses to CO2 through respiration and decomposition to SOM3. Parameters: tcflow (numpy.ndarray): derived, total C decomposing from soil SOM1 frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 tosom3 (numpy.ndarray): derived, C flowing from SOM1 to SOM3 Returns: net_tosom1, amount of C that flows from soil SOM2 to soil SOM1 """ valid_mask = ( (tcflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (tosom3 != _IC_NODATA)) net_tosom1 = numpy.empty(tcflow.shape, dtype=numpy.float32) net_tosom1[:] = _IC_NODATA net_tosom1[valid_mask] = ( tcflow[valid_mask] - (tcflow[valid_mask] * frac_co2[valid_mask]) - tosom3[valid_mask]) return net_tosom1 def respiration( tcflow_path, frac_co2_path, cstatv_path, estatv_path, delta_estatv_path, delta_minerl_1_iel_path, gromin_1_path=None): """Calculate and apply flow of N or P during respiration. Microbial respiration accompanies decomposition of most stocks. Calculate the flow of one element (N or P) to the mineral pool, which accompanies this respiration. Parameters: tcflow_path (string): path to raster containing flow of C that is accompanied by respiration frac_co2_path (string): path to raster containing fraction of C lost to co2 cstatv_path (string): path to raster containing C state variable of decomposing pool estatv_path (string): path to raster containing iel (N or P) state variable of decomposing pool delta_estatv_path (string): path to raster containing change in the iel state variable of decomposing pool delta_minerl_1_iel_path (string): path to raster containing change in surface mineral iel gromin_1_path (string): path to raster containing gross mineralization of N Side effects: modifies or creates the raster indicated by `delta_estatv_path` modifies or creates the raster indicated by `delta_minerl_1_iel_path` modifies or creates the raster indicated by `gromin_1_path`, if supplied Returns: None """ with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name pygeoprocessing.raster_calculator( [(path, 1) for path in [ tcflow_path, frac_co2_path, estatv_path, cstatv_path]], calc_respiration_mineral_flow, operand_temp_path, gdal.GDT_Float32, _IC_NODATA) # mineral flow is removed from the decomposing iel state variable shutil.copyfile(delta_estatv_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, delta_estatv_path, _IC_NODATA) # mineral flow is added to surface mineral iel shutil.copyfile(delta_minerl_1_iel_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, delta_minerl_1_iel_path, _IC_NODATA) if gromin_1_path: shutil.copyfile(gromin_1_path, d_statv_temp_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ d_statv_temp_path, operand_temp_path]], update_gross_mineralization, gromin_1_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def nutrient_flow( cflow_path, cstatv_donating_path, estatv_donating_path, rcetob_path, minerl_1_path, d_estatv_donating_path, d_estatv_receiving_path, d_minerl_path, gromin_path=None): """Calculate and apply the flow of one nutrient accompanying C. As C decomposes from one compartment to another, nutrients (N and P) also flow from the donating compartment to the receiving compartment. Some N or P may also flow to or from the mineral pool. Calculate and apply the flow of iel (N or P) accompanying the given flow of C. Parameters: cflow_path (string): path to raster containing the flow of C from the donating to the receiving pool cstatv_donating_path (string): path to raster containing the C state variable in the donating pool estatv_donating_path (string): path to raster containing the iel (N or P) in the donating pool rcetob_path (string): path to raster containing required C/iel ratio in the receiving pool minerl_1_path (string): path to raster containing surface mineral iel d_estatv_donating_path (string): path to raster containing change in iel in the donating pool d_estatv_receiving_path (string): path to raster containing change in iel in the receiving pool d_minerl_path (string): path to raster containing change in surface mineral iel gromin_path (string): path to raster containing gross mineralization of N Side effects: modifies or creates the raster indicated by `d_estatv_donating_path` modifies or creates the raster indicated by `d_estatv_receiving_path` modifies or creates the raster indicated by `d_minerl_path` modifies or creates the raster indicated by `gromin_path`, if supplied Returns: None """ with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('material_leaving_a'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_estatv_donating_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_estatv_donating_path, _IC_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('material_arriving_b'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_estatv_receiving_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_estatv_receiving_path, _IC_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('mineral_flow'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_minerl_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_minerl_path, _IC_NODATA) if gromin_path: shutil.copyfile(gromin_path, d_statv_temp_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ d_statv_temp_path, operand_temp_path]], update_gross_mineralization, gromin_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def calc_c_leach(amov_2, tcflow, omlech_3, orglch): """Calculate the amount of C leaching from soil SOM1 to stream flow. Some C leaches from soil SOM1 if the water flow out of soil layer 2 is above a critical level. Parameters: amov_2 (numpy.ndarray): derived, moisture flowing out of soil layer 2 tcflow (numpy.ndarray): derived, total flow of C out of soil SOM1 omlech_3 (numpy.ndarray): parameter, threshold value for amov_2 orglch (numpy.ndarray): derived, effect of sand content on leaching rate Returns: cleach, C leaching from soil SOM1 to stream flow """ valid_mask = ( (amov_2 != _TARGET_NODATA) & (tcflow != _IC_NODATA) & (omlech_3 != _IC_NODATA) & (orglch != _IC_NODATA)) cleach = numpy.empty(amov_2.shape, dtype=numpy.float32) cleach[:] = _TARGET_NODATA cleach[valid_mask] = 0 linten = numpy.zeros(amov_2.shape) linten[valid_mask] = numpy.minimum( (1. - (omlech_3[valid_mask] - amov_2[valid_mask]) / omlech_3[valid_mask]), 1.) leach_mask = ((amov_2 > 0) & valid_mask) cleach[leach_mask] = ( tcflow[leach_mask] * orglch[leach_mask] * linten[leach_mask]) return cleach def remove_leached_iel( som1c_2_path, som1e_2_iel_path, cleach_path, d_som1e_2_iel_path, iel): """Remove N or P leached from soil SOM1. As soil SOM1 decomposes into SOM3, some of N and P is lost from SOM1 through leaching. The amount lost is calculated from the amount of C leaching from the soil and the proportion of iel (N or P) in soil SOM1. Parameters: som1c_2_path (string): path to raster containing C in soil SOM1 som1e_2_iel_path (string): path to raster containing iel in soil SOM1 cleach_path (string): path to raster containing C leaching from SOM1 d_som1e_2_iel_path (string): path to raster giving change in som1e_2_iel iel (int): index indicating N (iel == 1) or P (iel == 2)) Side effects: modifies the raster indicated by `d_som1e_2_iel_path` Returns: None """ def calc_leached_N(som1c_2, som1e_2_1, cleach): """Calculate the N leaching from soil SOM1.""" valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_1, _SV_NODATA)) & (som1c_2 > 0) & (som1e_2_1 > 0) & (cleach != _TARGET_NODATA)) rceof1_1 = numpy.zeros(som1c_2.shape) rceof1_1[valid_mask] = som1c_2[valid_mask] / som1e_2_1[valid_mask] * 2. orgflow = numpy.empty(som1c_2.shape, dtype=numpy.float32) orgflow[:] = _IC_NODATA orgflow[valid_mask] = cleach[valid_mask] / rceof1_1[valid_mask] return orgflow def calc_leached_P(som1c_2, som1e_2_2, cleach): """Calculate the P leaching from soil SOM1.""" valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_2, _SV_NODATA)) & (som1c_2 > 0) & (som1e_2_2 > 0) & (cleach != _TARGET_NODATA)) rceof1_2 = numpy.zeros(som1c_2.shape) rceof1_2[valid_mask] = ( som1c_2[valid_mask] / som1e_2_2[valid_mask] * 35.) orgflow = numpy.empty(som1c_2.shape, dtype=numpy.float32) orgflow[:] = _IC_NODATA orgflow[valid_mask] = cleach[valid_mask] / rceof1_2[valid_mask] return orgflow with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name if iel == 1: pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som1e_2_iel_path, cleach_path]], calc_leached_N, operand_temp_path, gdal.GDT_Float32, _TARGET_NODATA) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som1e_2_iel_path, cleach_path]], calc_leached_P, operand_temp_path, gdal.GDT_Float32, _TARGET_NODATA) # remove leached iel from SOM1 shutil.copyfile(d_som1e_2_iel_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_som1e_2_iel_path, _IC_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def calc_pflow(pstatv, rate_param, defac): """Calculate the flow of mineral P flowing from one pool to another. Mineral P contains multiple pools, including parent material, labile P, sorbed and strongly sorbed P, and occluded P. Calculate the flow from one mineral P pool to another. Parameters: pstatv (numpy.ndarray): state variable, P in donating mineral pool rate_param (numpy.ndarray): parameter, base rate of flow defac (numpy.ndarray): derived, decomposition rate Returns: pflow, mineral P flowing from donating to receiving pool """ valid_mask = ( (~numpy.isclose(pstatv, _SV_NODATA)) & (rate_param != _IC_NODATA) & (defac != _TARGET_NODATA)) pflow = numpy.empty(pstatv.shape, dtype=numpy.float64) pflow[:] = _IC_NODATA pflow[valid_mask] = ( pstatv[valid_mask] * rate_param[valid_mask] * defac[valid_mask] * 0.020833) return pflow def calc_pflow_to_secndy(minerl_lyr_2, pmnsec_2, fsol, defac): """Calculate the flow of mineral to secondary P in one soil layer. P flows from the mineral pool of each soil layer into secondary P (strongly sorbed P) according to the amount in the mineral pool and the amount of P in solution. Parameters: minerl_lyr_2 (numpy.ndarray): state variable, mineral P in soil layer lyr pmnsec_2 (numpy.ndarray): parameter, base flow rate fsol (numpy.ndarray): derived, fraction of P in solution defac (numpy.ndarray): derived, decomposition factor Returns: fmnsec, flow of mineral P to secondary in one soil layer """ valid_mask = ( (~numpy.isclose(minerl_lyr_2, _SV_NODATA)) & (pmnsec_2 != _IC_NODATA) & (fsol != _TARGET_NODATA) & (defac != _TARGET_NODATA)) fmnsec = numpy.empty(minerl_lyr_2.shape, dtype=numpy.float64) fmnsec[:] = _IC_NODATA fmnsec[valid_mask] = ( pmnsec_2[valid_mask] * minerl_lyr_2[valid_mask] * (1. - fsol[valid_mask]) * defac[valid_mask] * 0.020833) return fmnsec def update_aminrl( minerl_1_1_path, minerl_1_2_path, fsol_path, aminrl_1_path, aminrl_2_path): """Update aminrl_1 and aminrl_2, average mineral N and P in surface soil. Aminrl_1, average mineral N, and aminrl_2, average mineral P, represent labile N or P available for decomposition. They are kept as a running average of the minerl_1_1 (for N) or minerl_1_2 (for P) state variable across decomposition time steps. Parameters: minerl_1_1_path (string): path to raster giving current mineral N in soil layer 1 minerl_1_2_path (string): path to raster giving current mineral N in soil layer 2 fsol_path (string): path to raster giving fraction of mineral P in solution aminrl_1_path (string): path to raster containing average mineral N aminrl_2_path (string): path to raster containing average mineral P Side effects: modifies or creates the raster indicated by `aminrl_1_path` modifies or creates the raster indicated by `aminrl_2_path Returns: None """ def update_aminrl_1(aminrl_1_prev, minerl_1_1): """Update average mineral N.""" valid_mask = ( (~numpy.isclose(aminrl_1_prev, _SV_NODATA)) & (~numpy.isclose(minerl_1_1, _SV_NODATA))) aminrl_1 = numpy.empty(aminrl_1_prev.shape, dtype=numpy.float32) aminrl_1[:] = _SV_NODATA aminrl_1[valid_mask] = ( aminrl_1_prev[valid_mask] + minerl_1_1[valid_mask] / 2.) return aminrl_1 def update_aminrl_2(aminrl_2_prev, minerl_1_2, fsol): """Update average mineral P. Average mineral P is calculated from the fraction of mineral P in soil layer 1 that is in solution. Parameters: aminrl_2_prev (numpy.ndarray): derived, previous average surface mineral P minerl_1_2 (numpy.ndarray): state variable, current mineral P in soil layer 1 fsol (numpy.ndarray): derived, fraction of labile P in solution Returns: aminrl_2, updated average mineral P """ valid_mask = ( (~numpy.isclose(aminrl_2_prev, _SV_NODATA)) & (~numpy.isclose(minerl_1_2, _SV_NODATA)) & (fsol != _TARGET_NODATA)) aminrl_2 = numpy.empty(aminrl_2_prev.shape, dtype=numpy.float32) aminrl_2[:] = _SV_NODATA aminrl_2[valid_mask] = ( aminrl_2_prev[valid_mask] + (minerl_1_2[valid_mask] * fsol[valid_mask]) / 2.) return aminrl_2 with tempfile.NamedTemporaryFile( prefix='aminrl_prev', dir=PROCESSING_DIR) as aminrl_prev_file: aminrl_prev_path = aminrl_prev_file.name shutil.copyfile(aminrl_1_path, aminrl_prev_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [aminrl_prev_path, minerl_1_1_path]], update_aminrl_1, aminrl_1_path, gdal.GDT_Float32, _SV_NODATA) shutil.copyfile(aminrl_2_path, aminrl_prev_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ aminrl_prev_path, minerl_1_2_path, fsol_path]], update_aminrl_2, aminrl_2_path, gdal.GDT_Float32, _SV_NODATA) # clean up os.remove(aminrl_prev_path) def sum_biomass( weighted_live_c, weighted_dead_c, strucc_1, metabc_1, elitst): """Calculate total biomass for the purposes of soil shading. Total aboveground biomass for the purposes of soil shading is the sum of live biomass, standing dead biomass, and litter. The impact of litter is modifed by the parameter elitst. Parameters: weighted_live_c (numpy.ndarray): derived, sum of the state variable aglivc across plant functional types weighted_dead_c (numpy.ndarray): derived, sum of the state variable stdedc across plant functional types strucc_1 (numpy.ndarray): state variable, surface structural c metabc_1 (numpy.ndarray): state variable, surface metabolic c elitst (numpy.ndarray): parameter, effect of litter on soil temperature relative to live and standing dead biomass Returns: biomass, total biomass for purposes of soil shading """ valid_mask = ( (weighted_live_c != _TARGET_NODATA) & (weighted_dead_c != _TARGET_NODATA) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(metabc_1, _SV_NODATA)) & (elitst != _IC_NODATA)) biomass = numpy.empty(weighted_live_c.shape, dtype=numpy.float32) biomass[:] = _TARGET_NODATA biomass[valid_mask] = ( (weighted_live_c[valid_mask] + weighted_dead_c[valid_mask]) * 2.5 + (strucc_1[valid_mask] + metabc_1[valid_mask]) * 2.5 * elitst[valid_mask]) return biomass def _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg): """Update soil C, N and P after decomposition. C, N and P move from one surface or soil stock to another depending on the availability of N and P in the decomposing stock. This function covers lines 118-323 in Simsom.f, including decomp.f, litdec.f, somdec.f, and pschem.f. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, and site spatial index current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation pft_id_set (set): set of integers identifying plant functional types site_param_table (dict): map of site spatial indices to dictionaries containing site parameters year_reg (dict): map of key, path pairs giving paths to annual precipitation and annual N deposition rasters month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving persistent parameters including required ratios for decomposition, the effect of soil texture on decomposition rate, and the effect of soil texture on the rate of organic leaching sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates all rasters in sv_reg pertaining to structural, metabolic, som1, som2, and som3 C, N, and P; mineral N and P; and parent, secondary, and occluded mineral P Returns: None """ def calc_N_fixation(precip, annual_precip, baseNdep, epnfs_2): """Calculate monthly atmospheric N fixation. Atmospheric N fixation for the month is calculated from annual N deposition, calculated once per year, according to the ratio of monthly precipitation to annual precipitation. Total N fixed in this month is scheduled to be added to the surface mineral N pool. Lines 193-205, Simsom.f Parameters: precip (numpy.ndarray): input, monthly precipitation annual_precip (numpy.ndarray): derived, annual precipitation baseNdep (numpy.ndarray): derived, annual atmospheric N deposition epnfs_2 (numpy.ndarray): parameter, intercept of regression predicting N deposition from annual precipitation Returns: wdfxm, atmospheric N deposition for the current month """ valid_mask = ( (~numpy.isclose(precip, precip_nodata)) & (annual_precip != _TARGET_NODATA) & (annual_precip > 0) & (baseNdep != _TARGET_NODATA) & (epnfs_2 != _IC_NODATA)) wdfxm = numpy.zeros(precip.shape, dtype=numpy.float32) wdfxm[valid_mask] = ( baseNdep[valid_mask] * (precip[valid_mask] / annual_precip[valid_mask]) + epnfs_2[valid_mask] * numpy.minimum(annual_precip[valid_mask], 100.) * (precip[valid_mask] / annual_precip[valid_mask])) return wdfxm def calc_rprpet(pevap, snowmelt, avh2o_3, precip): """Calculate the ratio of precipitation to ref evapotranspiration. The ratio of precipitation or snowmelt to reference evapotranspiration influences agdefac and bgdefac, the above- and belowground decomposition factors. Parameters: pevap (numpy.ndarray): derived, reference evapotranspiration snowmelt (numpy.ndarray): derived, snowmelt occuring this month avh2o_3 (numpy.ndarray): derived, moisture in top two soil layers precip (numpy.ndarray): input, precipitation for this month Returns: rprpet, the ratio of precipitation or snowmelt to reference evapotranspiration """ valid_mask = ( (pevap != _TARGET_NODATA) & (snowmelt != _TARGET_NODATA) & (avh2o_3 != _TARGET_NODATA) & (~numpy.isclose(precip, precip_nodata))) rprpet = numpy.empty(pevap.shape, dtype=numpy.float32) rprpet[:] = _TARGET_NODATA snowmelt_mask = (valid_mask & (snowmelt > 0) & (pevap > 0)) rprpet[snowmelt_mask] = snowmelt[snowmelt_mask] / pevap[snowmelt_mask] no_melt_mask = (valid_mask & (snowmelt <= 0)) rprpet[no_melt_mask] = ( (avh2o_3[no_melt_mask] + precip[no_melt_mask]) / pevap[no_melt_mask]) return rprpet def calc_bgwfunc(rprpet): """Calculate the impact of belowground water content on decomposition. Bgwfunc reflects the effect of soil moisture on decomposition and is also used to calculate shoot senescence due to water stress. It is calculated from the ratio of soil water in the top two soil layers to reference evapotranspiration. Parameters: rprpet (numpy.ndarray): derived, ratio of precipitation or snowmelt to reference evapotranspiration Returns: bgwfunc, the effect of soil moisture on decomposition """ valid_mask = (rprpet != _TARGET_NODATA) bgwfunc = numpy.empty(rprpet.shape, dtype=numpy.float32) bgwfunc[:] = _TARGET_NODATA bgwfunc[valid_mask] = ( 1. / (1. + 30 * numpy.exp(-8.5 * rprpet[valid_mask]))) bgwfunc[(valid_mask & (rprpet > 9))] = 1 return bgwfunc def calc_stemp( biomass, snow, max_temp, min_temp, daylength, pmntmp, pmxtmp): """Calculate mean soil surface temperature for decomposition. Soil surface temperature is modified from monthly temperature inputs by estimated impacts of shading by aboveground biomass and litter, and estimated daylength. Surftemp.f Parameters: biomass (numpy.ndarray): derived, sum of aboveground biomass and surface litter across plant functional types snow (numpy.ndarray): state variable, current snowpack max_temp (numpy.ndarray): input, maximum temperature this month min_temp (numpy.ndarray): input, minimum temperature this month daylength (numpy.ndarray): derived, estimated hours of daylight pmntmp (numpy.ndarray): parameter, effect of biomass on minimum surface temperature pmxtmp (numpy.ndarray): parameter, effect of biomass on maximum surface temperature Returns: stemp, mean soil surface temperature for decomposition """ valid_mask = ( (biomass != _TARGET_NODATA) & (snow != _SV_NODATA) & (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata)) & (daylength != _TARGET_NODATA) & (pmntmp != _IC_NODATA) & (pmxtmp != _IC_NODATA)) tmxs = numpy.empty(biomass.shape, dtype=numpy.float32) tmxs[valid_mask] = ( max_temp[valid_mask] + (25.4 / (1. + 18. * numpy.exp( -0.2 * max_temp[valid_mask]))) * (numpy.exp(pmxtmp[valid_mask] * biomass[valid_mask]) - 0.13)) tmns = numpy.empty(biomass.shape, dtype=numpy.float32) tmns[valid_mask] = ( min_temp[valid_mask] + pmntmp[valid_mask] * biomass[valid_mask] - 1.78) shortday_mask = ((daylength < 12.) & valid_mask) snow_mask = ((snow > 0) & valid_mask) tmns_mlt = numpy.empty(biomass.shape, dtype=numpy.float32) tmns_mlt[valid_mask] = ( ((12. - daylength[valid_mask]) * 1.2 + 12.) / 24.) tmns_mlt[shortday_mask] = ( ((12 - daylength[shortday_mask]) * 3. + 12.) / 24.) tmns_mlt[valid_mask] = numpy.clip(tmns_mlt[valid_mask], 0.05, 0.95) stemp = numpy.empty(biomass.shape, dtype=numpy.float32) stemp[:] = _TARGET_NODATA stemp[valid_mask] = ( (1 - tmns_mlt[valid_mask]) * tmxs[valid_mask] + tmns_mlt[valid_mask] * tmns[valid_mask]) stemp[snow_mask] = 0. return stemp def calc_defac(bgwfunc, stemp, teff_1, teff_2, teff_3, teff_4): """Calculate decomposition factor. The decomposition factor influences the rate of surface and soil decomposition and reflects the influence of soil temperature and moisture. Lines 151-200, Cycle.f. Parameters: bgwfunc (numpy.ndarray): derived, effect of soil moisture on decomposition stemp (numpy.ndarray): derived, average soil surface temperature teff_1 (numpy.ndarray): parameter, x location of inflection point for calculating the effect of soil temperature on decomposition factor teff_2 (numpy.ndarray): parameter, y location of inflection point for calculating the effect of soil temperature on decomposition factor teff_3 (numpy.ndarray): parameter, step size for calculating the effect of soil temperature on decomposition factor teff_4 (numpy.ndarray): parameter, slope of the line at the inflection point, for calculating the effect of soil temperature on decomposition factor Returns: defac, aboveground and belowground decomposition factor """ valid_mask = ( (bgwfunc != _TARGET_NODATA) & (teff_1 != _IC_NODATA) & (teff_2 != _IC_NODATA) & (teff_3 != _IC_NODATA) & (teff_4 != _IC_NODATA)) tfunc = numpy.empty(bgwfunc.shape, dtype=numpy.float32) tfunc[:] = _TARGET_NODATA tfunc[valid_mask] = numpy.maximum( 0.01, (teff_2[valid_mask] + (teff_3[valid_mask] / numpy.pi) * numpy.arctan(numpy.pi * teff_4[valid_mask] * (stemp[valid_mask] - teff_1[valid_mask]))) / (teff_2[valid_mask] + (teff_3[valid_mask] / numpy.pi) * numpy.arctan(numpy.pi * teff_4[valid_mask] * (30.0 - teff_1[valid_mask])))) defac = numpy.empty(bgwfunc.shape, dtype=numpy.float32) defac[:] = _TARGET_NODATA defac[valid_mask] = numpy.maximum( 0., tfunc[valid_mask] * bgwfunc[valid_mask]) return defac def calc_pheff_struc(pH): """Calculate the effect of soil pH on decomp of structural material. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of structural material differs from the effect on decomposition of metabolic material in the values of two constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_struc, the effect of soil pH on decomposition rate of structural material """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_struc = numpy.empty(pH.shape, dtype=numpy.float32) pheff_struc[valid_mask] = numpy.clip( (0.5 + (1.1 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 4.))), 0, 1) return pheff_struc def calc_pheff_metab(pH): """Calculate the effect of soil pH on decomp of metabolic material. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of structural material differs from the effect on decomposition of metabolic material in the values of two constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_metab, the effect of soil pH on decomposition rate of metabolic material """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_metab = numpy.empty(pH.shape, dtype=numpy.float32) pheff_metab[valid_mask] = numpy.clip( (0.5 + (1.14 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 4.8))), 0, 1) return pheff_metab def calc_pheff_som3(pH): """Calculate the effect of soil pH on decomposition of SOM3. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of SOM3 differs from the effect of pH on decomposition of other pools in the value of constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_som3, the effect of soil pH on decomposition rate of SOM3 """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_metab = numpy.empty(pH.shape, dtype=numpy.float32) pheff_metab[valid_mask] = numpy.clip( (0.5 + (1.1 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 3.))), 0, 1) return pheff_metab precip_nodata = pygeoprocessing.get_raster_info( aligned_inputs['precip_{}'.format(month_index)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] pH_nodata = pygeoprocessing.get_raster_info( aligned_inputs['ph_path'])['nodata'][0] temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'd_statv_temp', 'operand_temp', 'shwave', 'pevap', 'rprpet', 'daylength', 'sum_aglivc', 'sum_stdedc', 'biomass', 'stemp', 'defac', 'anerb', 'gromin_1', 'pheff_struc', 'pheff_metab', 'aminrl_1', 'aminrl_2', 'fsol', 'tcflow', 'tosom2', 'net_tosom2', 'tosom1', 'net_tosom1', 'tosom3', 'cleach', 'pheff_som3', 'pflow']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) for iel in [1, 2]: for val in ['rceto1', 'rceto2', 'rceto3']: temp_val_dict['{}_{}'.format(val, iel)] = os.path.join( temp_dir, '{}.tif'.format('{}_{}'.format(val, iel))) param_val_dict = {} for val in [ 'fwloss_4', 'elitst', 'pmntmp', 'pmxtmp', 'teff_1', 'teff_2', 'teff_3', 'teff_4', 'drain', 'aneref_1', 'aneref_2', 'aneref_3', 'sorpmx', 'pslsrb', 'strmax_1', 'dec1_1', 'pligst_1', 'strmax_2', 'dec1_2', 'pligst_2', 'rsplig', 'ps1co2_1', 'ps1co2_2', 'dec2_1', 'pcemic1_1_1', 'pcemic1_2_1', 'pcemic1_3_1', 'pcemic1_1_2', 'pcemic1_2_2', 'pcemic1_3_2', 'varat1_1_1', 'varat1_2_1', 'varat1_3_1', 'varat1_1_2', 'varat1_2_2', 'varat1_3_2', 'dec2_2', 'pmco2_1', 'pmco2_2', 'rad1p_1_1', 'rad1p_2_1', 'rad1p_3_1', 'rad1p_1_2', 'rad1p_2_2', 'rad1p_3_2', 'dec3_1', 'p1co2a_1', 'varat22_1_1', 'varat22_2_1', 'varat22_3_1', 'varat22_1_2', 'varat22_2_2', 'varat22_3_2', 'dec3_2', 'animpt', 'varat3_1_1', 'varat3_2_1', 'varat3_3_1', 'varat3_1_2', 'varat3_2_2', 'varat3_3_2', 'omlech_3', 'dec5_2', 'p2co2_2', 'dec5_1', 'p2co2_1', 'dec4', 'p3co2', 'cmix', 'pparmn_2', 'psecmn_2', 'nlayer', 'pmnsec_2', 'psecoc1', 'psecoc2', 'epnfs_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # shwave, shortwave radiation outside the atmosphere _shortwave_radiation( aligned_inputs['site_index'], current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pevap']) # rprpet, ratio of precipitation to reference evapotranspiration pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pevap'], month_reg['snowmelt'], sv_reg['avh2o_3_path'], aligned_inputs['precip_{}'.format(month_index)]]], calc_rprpet, temp_val_dict['rprpet'], gdal.GDT_Float32, _TARGET_NODATA) # bgwfunc, effect of soil moisture on decomposition pygeoprocessing.raster_calculator( [(temp_val_dict['rprpet'], 1)], calc_bgwfunc, month_reg['bgwfunc'], gdal.GDT_Float32, _TARGET_NODATA) # estimated daylength _calc_daylength( aligned_inputs['site_index'], current_month, temp_val_dict['daylength']) # total biomass for purposes of soil shading for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], temp_val_dict['sum_stdedc'], prev_sv_reg['strucc_1_path'], prev_sv_reg['metabc_1_path'], param_val_dict['elitst']]], sum_biomass, temp_val_dict['biomass'], gdal.GDT_Float32, _TARGET_NODATA) # stemp, soil surface temperature for the purposes of decomposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['biomass'], sv_reg['snow_path'], aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['daylength'], param_val_dict['pmntmp'], param_val_dict['pmxtmp']]], calc_stemp, temp_val_dict['stemp'], gdal.GDT_Float32, _TARGET_NODATA) # defac, decomposition factor calculated from soil temp and moisture pygeoprocessing.raster_calculator( [(path, 1) for path in [ month_reg['bgwfunc'], temp_val_dict['stemp'], param_val_dict['teff_1'], param_val_dict['teff_2'], param_val_dict['teff_3'], param_val_dict['teff_4']]], calc_defac, temp_val_dict['defac'], gdal.GDT_Float32, _TARGET_NODATA) # anerb, impact of soil anaerobic conditions on decomposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['rprpet'], temp_val_dict['pevap'], param_val_dict['drain'], param_val_dict['aneref_1'], param_val_dict['aneref_2'], param_val_dict['aneref_3']]], calc_anerb, temp_val_dict['anerb'], gdal.GDT_Float32, _TARGET_NODATA) # initialize gromin_1, gross mineralization of N pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['gromin_1'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # pH effect on decomposition for structural material pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_struc, temp_val_dict['pheff_struc'], gdal.GDT_Float32, _TARGET_NODATA) # pH effect on decomposition for metabolic material pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_metab, temp_val_dict['pheff_metab'], gdal.GDT_Float32, _TARGET_NODATA) # initialize aminrl_1 and aminrl_2 shutil.copyfile(prev_sv_reg['minerl_1_1_path'], temp_val_dict['aminrl_1']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['minerl_1_2_path'], param_val_dict['sorpmx'], param_val_dict['pslsrb']]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) raster_multiplication( prev_sv_reg['minerl_1_2_path'], _SV_NODATA, temp_val_dict['fsol'], _TARGET_NODATA, temp_val_dict['aminrl_2'], _SV_NODATA) # initialize current month state variables and delta state variable dict nlayer_max = int(max( val['nlayer'] for val in site_param_table.values())) delta_sv_dict = { 'minerl_1_1': os.path.join(temp_dir, 'minerl_1_1.tif'), 'parent_2': os.path.join(temp_dir, 'parent_2.tif'), 'secndy_2': os.path.join(temp_dir, 'secndy_2.tif'), 'occlud': os.path.join(temp_dir, 'occlud.tif'), } for lyr in range(1, nlayer_max + 1): state_var = 'minerl_{}_2'.format(lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) # initialize mineral N in current sv_reg for lyr in range(1, nlayer_max + 1): state_var = 'minerl_{}_1'.format(lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['strlig']: for lyr in [1, 2]: state_var = '{}_{}'.format(compartment, lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['som3']: state_var = '{}c'.format(compartment) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for iel in [1, 2]: state_var = '{}e_{}'.format(compartment, iel) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['struc', 'metab', 'som1', 'som2']: for lyr in [1, 2]: state_var = '{}c_{}'.format(compartment, lyr) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for iel in [1, 2]: state_var = '{}e_{}_{}'.format(compartment, lyr, iel) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for state_var in ['parent_2', 'secndy_2', 'occlud']: shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for dtm in range(4): # initialize change (delta, d) in state variables for this decomp step for state_var in delta_sv_dict.keys(): pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], delta_sv_dict[state_var], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[0]) if dtm == 0: # schedule flow of N from atmospheric fixation to surface mineral pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['precip_{}'.format(month_index)], year_reg['annual_precip_path'], year_reg['baseNdep_path'], param_val_dict['epnfs_2']]], calc_N_fixation, delta_sv_dict['minerl_1_1'], gdal.GDT_Float32, _IC_NODATA) # decomposition of structural material in surface and soil for lyr in [1, 2]: if lyr == 1: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['strucc_1_path'], sv_reg['struce_1_1_path'], sv_reg['struce_1_2_path'], pp_reg['rnewas_1_1_path'], pp_reg['rnewas_2_1_path'], param_val_dict['strmax_1'], temp_val_dict['defac'], param_val_dict['dec1_1'], param_val_dict['pligst_1'], sv_reg['strlig_1_path'], temp_val_dict['pheff_struc']]], calc_tcflow_strucc_1, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['strucc_2_path'], sv_reg['struce_2_1_path'], sv_reg['struce_2_2_path'], pp_reg['rnewbs_1_1_path'], pp_reg['rnewbs_2_1_path'], param_val_dict['strmax_2'], temp_val_dict['defac'], param_val_dict['dec1_2'], param_val_dict['pligst_2'], sv_reg['strlig_2_path'], temp_val_dict['pheff_struc'], temp_val_dict['anerb']]], calc_tcflow_strucc_2, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['strucc_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['strucc_{}'.format(lyr)], _IC_NODATA) # structural material decomposes first to SOM2 raster_multiplication( temp_val_dict['tcflow'], _IC_NODATA, sv_reg['strlig_{}_path'.format(lyr)], _SV_NODATA, temp_val_dict['tosom2'], _IC_NODATA) # microbial respiration with decomposition to SOM2 respiration( temp_val_dict['tosom2'], param_val_dict['rsplig'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tosom2'], param_val_dict['rsplig'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tosom2'], param_val_dict['rsplig']]], calc_net_cflow, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_{}'.format(lyr)], _IC_NODATA) if lyr == 1: rcetob = 'rnewas' else: rcetob = 'rnewbs' # N and P flows from STRUC to SOM2 nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], pp_reg['{}_1_2_path'.format(rcetob)], sv_reg['minerl_1_1_path'], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['som2e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], pp_reg['{}_2_2_path'.format(rcetob)], sv_reg['minerl_1_2_path'], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['som2e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # structural material decomposes next to SOM1 raster_difference( temp_val_dict['tcflow'], _IC_NODATA, temp_val_dict['tosom2'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA) # microbial respiration with decomposition to SOM1 respiration( temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)]]], calc_net_cflow, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_{}'.format(lyr)], _IC_NODATA) if lyr == 1: rcetob = 'rnewas' else: rcetob = 'rnewbs' # N and P flows from STRUC to SOM1 nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], pp_reg['{}_1_1_path'.format(rcetob)], sv_reg['minerl_1_1_path'], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['som1e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], pp_reg['{}_2_1_path'.format(rcetob)], sv_reg['minerl_1_2_path'], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['som1e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # decomposition of metabolic material in surface and soil to SOM1 for lyr in [1, 2]: if lyr == 1: for iel in [1, 2]: # required ratio for surface metabolic decomposing to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['metabe_1_{}_path'.format(iel)], sv_reg['metabc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, temp_val_dict['rceto1_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['metabc_1_path'], sv_reg['metabe_1_1_path'], sv_reg['metabe_1_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec2_1'], temp_val_dict['pheff_metab']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) else: for iel in [1, 2]: # required ratio for soil metabolic decomposing to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat1_1_{}'.format(iel)], param_val_dict['varat1_2_{}'.format(iel)], param_val_dict['varat1_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto1_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['metabc_2_path'], sv_reg['metabe_2_1_path'], sv_reg['metabe_2_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec2_2'], temp_val_dict['pheff_metab'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['metabc_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['metabc_{}'.format(lyr)], _IC_NODATA) # microbial respiration with decomposition to SOM1 respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_1_path'.format(lyr)], delta_sv_dict['metabe_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_2_path'.format(lyr)], delta_sv_dict['metabe_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)]]], calc_net_cflow, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_{}'.format(lyr)], _IC_NODATA) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_1_path'.format(lyr)], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['metabe_{}_1'.format(lyr)], delta_sv_dict['som1e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_2_path'.format(lyr)], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['metabe_{}_2'.format(lyr)], delta_sv_dict['som1e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # decomposition of surface SOM1 to surface SOM2: line 63 Somdec.f for iel in [1, 2]: pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['som1c_1_path'], sv_reg['som1e_1_{}_path'.format(iel)], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)]]], calc_surface_som2_ratio, temp_val_dict['rceto2_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], sv_reg['som1e_1_2_path'], temp_val_dict['rceto2_1'], temp_val_dict['rceto2_2'], temp_val_dict['defac'], param_val_dict['dec3_1'], temp_val_dict['pheff_struc']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som1c_1'], _IC_NODATA) # microbial respiration with decomposition to SOM2 respiration( temp_val_dict['tcflow'], param_val_dict['p1co2a_1'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], delta_sv_dict['som1e_1_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p1co2a_1'], sv_reg['som1c_1_path'], sv_reg['som1e_1_2_path'], delta_sv_dict['som1e_1_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p1co2a_1']]], calc_net_cflow, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) # N and P flows from som1e_1 to som2e_1, line 123 Somdec.f nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_1_1'], delta_sv_dict['som2e_1_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_1_2'], delta_sv_dict['som2e_1_2'], delta_sv_dict['minerl_1_2']) # soil SOM1 decomposes to soil SOM3 and SOM2, line 137 Somdec.f for iel in [1, 2]: # required ratio for soil SOM1 decomposing to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat22_1_{}'.format(iel)], param_val_dict['varat22_2_{}'.format(iel)], param_val_dict['varat22_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto2_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto2_1'], temp_val_dict['rceto2_2'], temp_val_dict['defac'], param_val_dict['dec3_2'], pp_reg['eftext_path'], temp_val_dict['anerb'], temp_val_dict['pheff_metab']]], calc_tcflow_som1c_2, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) # microbial respiration with decomposition to SOM3, line 179 respiration( temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['fps1s3_path'], param_val_dict['animpt'], temp_val_dict['anerb']]], calc_som3_flow, temp_val_dict['tosom3'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom3'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) for iel in [1, 2]: # required ratio for soil SOM1 decomposing to SOM3, line 198 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat3_1_{}'.format(iel)], param_val_dict['varat3_2_{}'.format(iel)], param_val_dict['varat3_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto3_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], temp_val_dict['rceto3_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto3_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) # organic leaching: line 204 Somdec.f pygeoprocessing.raster_calculator( [(path, 1) for path in [ month_reg['amov_2'], temp_val_dict['tcflow'], param_val_dict['omlech_3'], pp_reg['orglch_path']]], calc_c_leach, temp_val_dict['cleach'], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: remove_leached_iel( sv_reg['som1c_2_path'], sv_reg['som1e_2_{}_path'.format(iel)], temp_val_dict['cleach'], delta_sv_dict['som1e_2_{}'.format(iel)], iel) # rest of flow from soil SOM1 goes to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], temp_val_dict['tosom3'], temp_val_dict['cleach']]], calc_net_cflow_tosom2, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) # N and P flows from soil SOM1 to soil SOM2, line 257 nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # soil SOM2 decomposing to soil SOM1 and SOM3, line 269 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec5_2'], temp_val_dict['pheff_metab'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # soil SOM2 flows first to SOM3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['fps2s3_path'], param_val_dict['animpt'], temp_val_dict['anerb']]], calc_som3_flow, temp_val_dict['tosom3'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom3'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], temp_val_dict['rceto3_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto3_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) # rest of flow from soil SOM2 goes to soil SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p2co2_2'], temp_val_dict['tosom3']]], calc_net_cflow_tosom1, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) # surface SOM2 decomposes to surface SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec5_1'], temp_val_dict['pheff_struc']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['p2co2_1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p2co2_1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p2co2_1']]], calc_net_cflow, temp_val_dict['tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_1'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA, delta_sv_dict['som1c_1'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['som1e_1_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['som1e_1_2'], delta_sv_dict['minerl_1_2']) # SOM3 decomposing to soil SOM1 # pH effect on decomposition of SOM3 pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_som3, temp_val_dict['pheff_som3'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], sv_reg['som3e_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec4'], temp_val_dict['pheff_som3'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['p3co2'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p3co2'], sv_reg['som3c_path'], sv_reg['som3e_2_path'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p3co2']]], calc_net_cflow, temp_val_dict['tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som3e_1'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som3c_path'], sv_reg['som3e_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som3e_2'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) # Surface SOM2 flows to soil SOM2 via mixing pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['som2c_1_path'], param_val_dict['cmix'], temp_val_dict['defac']]], calc_som2_flow, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) # ratios for N and P entering soil som2 via mixing raster_division( sv_reg['som2c_1_path'], _SV_NODATA, sv_reg['som2e_1_1_path'], _IC_NODATA, temp_val_dict['rceto2_1'], _IC_NODATA) raster_division( sv_reg['som2c_1_path'], _SV_NODATA, sv_reg['som2e_1_2_path'], _IC_NODATA, temp_val_dict['rceto2_2'], _IC_NODATA) nutrient_flow( temp_val_dict['tcflow'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tcflow'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # P flow from parent to mineral: Pschem.f pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['parent_2_path'], param_val_dict['pparmn_2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['parent_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['parent_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_1_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_1_2'], _IC_NODATA) # P flow from secondary to mineral pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['secndy_2_path'], param_val_dict['psecmn_2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_1_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_1_2'], _IC_NODATA) # P flow from mineral to secondary for lyr in range(1, nlayer_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_{}_2_path'.format(lyr)], param_val_dict['pmnsec_2'], temp_val_dict['fsol'], temp_val_dict['defac']]], calc_pflow_to_secndy, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_{}_2'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_{}_2'.format(lyr)], _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) # P flow from secondary to occluded pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['secndy_2_path'], param_val_dict['psecoc1'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['occlud'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['occlud'], _IC_NODATA) # P flow from occluded to secondary pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['occlud_path'], param_val_dict['psecoc2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['occlud'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['occlud'], _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) # accumulate flows compartment = 'som3' state_var = '{}c'.format(compartment) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = '{}e_{}'.format(compartment, iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for compartment in ['struc', 'metab', 'som1', 'som2']: for lyr in [1, 2]: state_var = '{}c_{}'.format(compartment, lyr) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = '{}e_{}_{}'.format(compartment, lyr, iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = 'minerl_1_{}'.format(iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for state_var in ['parent_2', 'secndy_2', 'occlud']: shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) # update aminrl: Simsom.f line 301 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_2_path'], param_val_dict['sorpmx'], param_val_dict['pslsrb']]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) update_aminrl( sv_reg['minerl_1_1_path'], sv_reg['minerl_1_2_path'], temp_val_dict['fsol'], temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2']) # volatilization loss of N: line 323 Simsom.f raster_multiplication( temp_val_dict['gromin_1'], _TARGET_NODATA, pp_reg['vlossg_path'], _IC_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA) shutil.copyfile( sv_reg['minerl_1_1_path'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, sv_reg['minerl_1_1_path'], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def partit( cpart_path, epart_1_path, epart_2_path, frlign_path, site_index_path, site_param_table, lyr, sv_reg): """Partition incoming material into structural and metabolic pools. When organic material is added to the soil, for example as dead biomass falls and becomes litter, or when organic material is added from animal waste, it is partitioned into structural (STRUCC_lyr) and metabolic (METABC_lyr) material according to the ratio of lignin to N in the residue. As residue is partitioned, some N and P may be directly absorbed from surface mineral N or P into the residue. Parameters: cpart_path (string): path to raster containing C in incoming material that is to be partitioned epart_1_path (string): path to raster containing N in incoming material epart_2_path (string): path to raster containing P in incoming material frlign_path (string): path to raster containing fraction of incoming material that is lignin site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters lyr (int): layer which is receiving the incoming material (i.e., 1=surface layer, 2=soil layer) sv_reg (dict): map of key, path pairs giving paths to current state variables Side effects: modifies the rasters indicated by the following paths: sv_reg['minerl_1_1_path'] sv_reg['minerl_1_2_path'] sv_reg['metabc_{}_path'.format(lyr)] sv_reg['strucc_{}_path'.format(lyr)] sv_reg['metabe_{}_1_path'.format(lyr)] sv_reg['metabe_{}_2_path'.format(lyr)] sv_reg['struce_{}_1_path'.format(lyr)] sv_reg['struce_{}_2_path'.format(lyr)] sv_reg['strlig_{}_path'.format(lyr)] Returns: None """ def calc_dirabs( cpart, epart_iel, minerl_1_iel, damr_lyr_iel, pabres, damrmn_iel): """Calculate direct absorption of mineral N or P. When organic material is added to the soil, some mineral N or P may be directly absorbed from the surface mineral layer into the incoming material. the amount transferred depends on the N or P in the incoming material and the required C/N or C/P ratio of receiving material. Parameters: cpart (numpy.ndarray): derived, C in incoming material epart_iel (numpy.ndarray): derived, <iel> in incoming material minerl_1_iel (numpy.ndarray): state variable, surface mineral <iel> damr_lyr_iel (numpy.ndarray): parameter, fraction of iel in lyr absorbed by residue pabres (numpy.ndarray): parameter, amount of residue which will give maximum direct absorption of iel damrmn_iel (numpy.ndarray): parameter, minimum C/iel ratio allowed in residue after direct absorption Returns: dirabs_iel, <iel> (N or P) absorbed from the surface mineral pool """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_iel != _TARGET_NODATA) & (~numpy.isclose(minerl_1_iel, _SV_NODATA)) & (damr_lyr_iel != _IC_NODATA) & (pabres != _IC_NODATA) & (damrmn_iel != _IC_NODATA)) dirabs_iel = numpy.empty(cpart.shape, dtype=numpy.float32) dirabs_iel[:] = _TARGET_NODATA dirabs_iel[valid_mask] = 0. minerl_mask = ((minerl_1_iel >= 0) & valid_mask) dirabs_iel[minerl_mask] = ( damr_lyr_iel[minerl_mask] * minerl_1_iel[minerl_mask] * numpy.maximum(cpart[minerl_mask] / pabres[minerl_mask], 1.)) # rcetot: C/E ratio of incoming material rcetot = numpy.empty(cpart.shape, dtype=numpy.float32) rcetot[:] = _IC_NODATA e_sufficient_mask = (((epart_iel + dirabs_iel) > 0) & valid_mask) rcetot[valid_mask] = 0 rcetot[e_sufficient_mask] = ( cpart[e_sufficient_mask] / ( epart_iel[e_sufficient_mask] + dirabs_iel[e_sufficient_mask])) dirabs_mod_mask = ((rcetot < damrmn_iel) & valid_mask) dirabs_iel[dirabs_mod_mask] = numpy.maximum( cpart[dirabs_mod_mask] / damrmn_iel[dirabs_mod_mask] - epart_iel[dirabs_mod_mask], 0.) return dirabs_iel def calc_d_metabc_lyr(cpart, epart_1, dirabs_1, frlign, spl_1, spl_2): """Calculate the change in metabolic C after addition of new material. Parameters: cpart (numpy.ndarray): C in incoming material epart_1 (numpy.ndarray): N in incoming material dirabs_1 (numpy.ndarray): derived, direct aborption of mineral N into incoming material frlign (numpy.ndarray): fraction of incoming material which is lignin spl_1 (numpy.ndarray): parameter, intercept of regression predicting fraction of residue going to metabolic spl_2 (numpy.ndarray): parameter, slope of regression predicting fraction of residue going to metabolic Returns: d_metabc_lyr, change in metabc_lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_1 != _TARGET_NODATA) & (dirabs_1 != _TARGET_NODATA) & (frlign != _TARGET_NODATA) & (spl_1 != _IC_NODATA) & (spl_2 != _IC_NODATA)) movt_mask = ((cpart > 0) & valid_mask) # rlnres: ratio of lignin to N in the incoming material rlnres = numpy.empty(cpart.shape, dtype=numpy.float32) rlnres[:] = _TARGET_NODATA rlnres[valid_mask] = 0. rlnres[movt_mask] = ( frlign[movt_mask] / ( (epart_1[movt_mask] + dirabs_1[movt_mask]) / (cpart[movt_mask] * 2.5))) # frmet: fraction of cpart that goes to metabolic frmet = numpy.empty(cpart.shape, dtype=numpy.float32) frmet[:] = _TARGET_NODATA frmet[valid_mask] = ( spl_1[valid_mask] - spl_2[valid_mask] * rlnres[valid_mask]) lign_exceeded_mask = ((frlign > (1. - frmet)) & valid_mask) frmet[lign_exceeded_mask] = 1. - frlign[lign_exceeded_mask] d_metabc_lyr = numpy.empty(cpart.shape, dtype=numpy.float32) d_metabc_lyr[:] = _TARGET_NODATA d_metabc_lyr[valid_mask] = cpart[valid_mask] * frmet[valid_mask] return d_metabc_lyr def calc_d_strucc_lyr(cpart, d_metabc_lyr): """Calculate change in structural C after addition of new material. Parameters: cpart (numpy.ndarray): derived, C in incoming material d_metabc_lyr (numpy.ndarray) derived, change in metabc_lyr Returns: d_strucc_lyr, change in strucc_lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (d_metabc_lyr != _TARGET_NODATA)) d_strucc_lyr = numpy.empty(cpart.shape, dtype=numpy.float32) d_strucc_lyr[:] = _TARGET_NODATA d_strucc_lyr[valid_mask] = cpart[valid_mask] - d_metabc_lyr[valid_mask] return d_strucc_lyr def calc_d_struce_lyr_iel(d_strucc_lyr, rcestr_iel): """Calculate the change in N or P in structural material in layer lyr. Parameters: d_strucc_lyr (numpy.ndarray): change in strucc_lyr with addition of incoming material rcestr_iel (numpy.ndarray): parameter, C/<iel> ratio for structural material Returns: d_struce_lyr_iel, change in structural N or P in layer lyr """ valid_mask = ( (d_strucc_lyr != _TARGET_NODATA) & (rcestr_iel != _IC_NODATA)) d_struce_lyr_iel = numpy.empty(d_strucc_lyr.shape, dtype=numpy.float32) d_struce_lyr_iel[valid_mask] = ( d_strucc_lyr[valid_mask] / rcestr_iel[valid_mask]) return d_struce_lyr_iel def calc_d_metabe_lyr_iel(cpart, epart_iel, dirabs_iel, d_struce_lyr_iel): """Calculate the change in N or P in metabolic material in layer lyr. Parameters: cpart (numpy.ndarray): C in incoming material epart_iel (numpy.ndarray): <iel> in incoming material dirabs_iel (numpy.ndarray): <iel> absorbed from the surface mineral pool d_struce_lyr_iel (numpy.ndarray): change in structural N or P in layer lyr Returns: d_metabe_lyr_iel, change in metabolic N or P in layer lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_iel != _TARGET_NODATA) & (dirabs_iel != _TARGET_NODATA) & (d_struce_lyr_iel != _TARGET_NODATA)) d_metabe_lyr_iel = numpy.empty(cpart.shape, dtype=numpy.float32) d_metabe_lyr_iel[:] = _TARGET_NODATA d_metabe_lyr_iel[valid_mask] = ( epart_iel[valid_mask] + dirabs_iel[valid_mask] - d_struce_lyr_iel[valid_mask]) return d_metabe_lyr_iel def calc_d_strlig_lyr(frlign, d_strucc_lyr, cpart, strlig_lyr, strucc_lyr): """Calculate change in fraction of lignin in structural material. Parameters: frlign (numpy.ndarray): fraction of incoming material which is lignin d_strucc_lyr (numpy.ndarray): change in strucc_lyr with addition of incoming material cpart (numpy.ndarray): C in incoming material strlig_lyr (numpy.ndarray): state variable, lignin in structural material in receiving layer strucc_lyr (numpy.ndarray): state variable, C in structural material in layer lyr Returns: d_strlig_lyr, change in fraction of lignin in structural material in layer lyr """ valid_mask = ( (frlign != _TARGET_NODATA) & (d_strucc_lyr != _TARGET_NODATA) & (cpart != _TARGET_NODATA) & (~numpy.isclose(strlig_lyr, _SV_NODATA)) & (~numpy.isclose(strucc_lyr, _SV_NODATA))) movt_mask = ((cpart > 0) & valid_mask) fligst = numpy.empty(frlign.shape, dtype=numpy.float32) fligst[:] = _TARGET_NODATA fligst[valid_mask] = 1. fligst[movt_mask] = numpy.minimum( frlign[movt_mask] / ( d_strucc_lyr[movt_mask] / cpart[movt_mask]), 1.) strlig_lyr_mod = numpy.empty(frlign.shape, dtype=numpy.float32) strlig_lyr_mod[:] = _TARGET_NODATA strlig_lyr_mod[valid_mask] = ( ((strlig_lyr[valid_mask] * strucc_lyr[valid_mask]) + (fligst[valid_mask] * d_strucc_lyr[valid_mask])) / (strucc_lyr[valid_mask] + d_strucc_lyr[valid_mask])) d_strlig_lyr = numpy.empty(frlign.shape, dtype=numpy.float32) d_strlig_lyr[:] = _IC_NODATA d_strlig_lyr[valid_mask] = ( strlig_lyr_mod[valid_mask] - strlig_lyr[valid_mask]) return d_strlig_lyr temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'dirabs_1', 'dirabs_2', 'd_metabc_lyr', 'd_strucc_lyr', 'd_struce_lyr_iel', 'd_statv_temp', 'operand_temp']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in [ 'damr_{}_1'.format(lyr), 'damr_{}_2'.format(lyr), 'pabres', 'damrmn_1', 'damrmn_2', 'spl_1', 'spl_2', 'rcestr_1', 'rcestr_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # direct absorption of N and P from surface mineral layer for iel in [1, 2]: if iel == 1: epart_path = epart_1_path else: epart_path = epart_2_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_path, sv_reg['minerl_1_{}_path'.format(iel)], param_val_dict['damr_{}_{}'.format(lyr, iel)], param_val_dict['pabres'], param_val_dict['damrmn_{}'.format(iel)]]], calc_dirabs, temp_val_dict['dirabs_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # remove direct absorption from surface mineral layer shutil.copyfile( sv_reg['minerl_1_{}_path'.format(iel)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['dirabs_{}'.format(iel)], _TARGET_NODATA, sv_reg['minerl_1_{}_path'.format(iel)], _SV_NODATA) # partition C into structural and metabolic pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_1_path, temp_val_dict['dirabs_1'], frlign_path, param_val_dict['spl_1'], param_val_dict['spl_2']]], calc_d_metabc_lyr, temp_val_dict['d_metabc_lyr'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, temp_val_dict['d_metabc_lyr']]], calc_d_strucc_lyr, temp_val_dict['d_strucc_lyr'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['metabc_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_metabc_lyr'], _TARGET_NODATA, sv_reg['metabc_{}_path'.format(lyr)], _SV_NODATA) shutil.copyfile( sv_reg['strucc_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_strucc_lyr'], _TARGET_NODATA, sv_reg['strucc_{}_path'.format(lyr)], _SV_NODATA) # partition N and P into structural and metabolic for iel in [1, 2]: if iel == 1: epart_path = epart_1_path else: epart_path = epart_2_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['d_strucc_lyr'], param_val_dict['rcestr_{}'.format(iel)]]], calc_d_struce_lyr_iel, temp_val_dict['d_struce_lyr_iel'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['struce_{}_{}_path'.format(lyr, iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_struce_lyr_iel'], _TARGET_NODATA, sv_reg['struce_{}_{}_path'.format(lyr, iel)], _SV_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_path, temp_val_dict['dirabs_{}'.format(iel)], temp_val_dict['d_struce_lyr_iel']]], calc_d_metabe_lyr_iel, temp_val_dict['operand_temp'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['metabe_{}_{}_path'.format(lyr, iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, sv_reg['metabe_{}_{}_path'.format(lyr, iel)], _SV_NODATA) # adjust fraction of lignin in receiving structural pool pygeoprocessing.raster_calculator( [(path, 1) for path in [ frlign_path, temp_val_dict['d_strucc_lyr'], cpart_path, sv_reg['strlig_{}_path'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)]]], calc_d_strlig_lyr, temp_val_dict['operand_temp'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( sv_reg['strlig_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _IC_NODATA, sv_reg['strlig_{}_path'.format(lyr)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_fall_standing_dead(stdedc, fallrt): """Calculate delta C with fall of standing dead. Material falls from standing dead biomass into surface litter according to a constant monthly fall rate. Parameters: stdedc (numpy.ndarray): state variable, C in standing dead material fallrt (numpy.ndarray): parameter, fraction of standing dead material that falls each month Returns: delta_c_standing_dead, change in C in standing dead """ valid_mask = ( (~numpy.isclose(stdedc, _SV_NODATA)) & (fallrt != _IC_NODATA)) delta_c_standing_dead = numpy.empty(stdedc.shape, dtype=numpy.float32) delta_c_standing_dead[:] = _TARGET_NODATA delta_c_standing_dead[valid_mask] = stdedc[valid_mask] * fallrt[valid_mask] return delta_c_standing_dead def calc_root_death( average_temperature, rtdtmp, rdr, avh2o_1, deck5, bglivc): """Calculate delta C with death of roots. Material flows from roots into soil organic matter pools due to root death. Root death rate is limited by average temperature and influenced by available soil moisture. Change in C is calculated by multiplying the root death rate by bglivc, C in live roots. Parameters: average_temperature (numpy.ndarray): derived, average temperature for the current month rtdtmp (numpy.ndarray): parameter, temperature below which root death does not occur rdr (numpy.ndarray): parameter, maximum root death rate at very dry soil conditions avh2o_1 (numpy.ndarray): state variable, water available to the current plant functional type for growth deck5 (numpy.ndarray): parameter, level of available soil water at which root death rate is half maximum bglivc (numpy.ndarray): state variable, C in belowground live roots Returns: delta_c_root_death, change in C during root death """ valid_mask = ( (average_temperature != _IC_NODATA) & (rdr != _IC_NODATA) & (~numpy.isclose(avh2o_1, _SV_NODATA)) & (deck5 != _IC_NODATA) & (~numpy.isclose(bglivc, _SV_NODATA))) root_death_rate = numpy.empty(bglivc.shape, dtype=numpy.float32) root_death_rate[:] = _TARGET_NODATA root_death_rate[valid_mask] = 0. temp_sufficient_mask = ((average_temperature >= rtdtmp) & valid_mask) root_death_rate[temp_sufficient_mask] = numpy.minimum( rdr[temp_sufficient_mask] * (1.0 - avh2o_1[temp_sufficient_mask] / ( deck5[temp_sufficient_mask] + avh2o_1[temp_sufficient_mask])), 0.95) delta_c_root_death = numpy.empty(bglivc.shape, dtype=numpy.float32) delta_c_root_death[:] = _TARGET_NODATA delta_c_root_death[valid_mask] = ( root_death_rate[valid_mask] * bglivc[valid_mask]) return delta_c_root_death def calc_delta_iel(c_state_variable, iel_state_variable, delta_c): """Calculate the change in N or P accompanying change in C. As C flows out of standing dead biomass or roots, the amount of iel (N or P) flowing out of the same pool is calculated from the change in C according to the ratio of C to iel in the pool. Parameters: c_state_variable (numpy.ndarray): state variable, C in the pool that is losing material iel_state_variable (numpy.ndarray): state variable, N or P in the pool that is losing material delta_c (numpy.ndarray): derived, change in C. Change in N or P is proportional to this amount. Returns: delta_iel, change in N or P accompanying the change in C """ valid_mask = ( (~numpy.isclose(c_state_variable, _SV_NODATA)) & (~numpy.isclose(iel_state_variable, _SV_NODATA)) & (c_state_variable > 0) & (delta_c != _TARGET_NODATA)) delta_iel = numpy.empty(c_state_variable.shape, dtype=numpy.float32) delta_iel[:] = _TARGET_NODATA delta_iel[valid_mask] = ( (iel_state_variable[valid_mask] / c_state_variable[valid_mask]) * delta_c[valid_mask]) return delta_iel def _death_and_partition( state_variable, aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg): """Track movement of C, N and P from a pft-level state variable into soil. Calculate C, N and P leaving the specified state variable and entering surface or soil organic matter pools. Subtract the change in C, N and P from the state variable tracked for each pft, sum up the amounts across pfts, and distribute the sum of the material flowing from the state variable to surface or soil structural and metabolic pools. Parameters: state_variable (string): string identifying the state variable that is flowing into organic matter. Must be one of "stded" (for fall of standing dead) or "bgliv" (for death of roots). If the state variable is stded, material flowing from stded enters surface structural and metabolic pools. If the state variable is bgliv, material flowing from bgliv enters soil structural and metabolic pools. aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters current_month (int): month of the year, such that current_month=1 indicates January pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the rasters indicated by sv_reg['<state_variable>c_<pft>_path'] for each pft sv_reg['<state_variable>e_1_<pft>_path'] for each pft sv_reg['<state_variable>e_2_<pft>_path'] for each pft modifies the rasters indicated by sv_reg['minerl_1_1_path'] sv_reg['minerl_1_2_path'] sv_reg['metabc_<lyr>_path'] sv_reg['strucc_<lyr>_path'] sv_reg['metabe_<lyr>_1_path'] sv_reg['metabe_<lyr>_2_path'] sv_reg['struce_<lyr>_1_path'] sv_reg['struce_<lyr>_2_path'] sv_reg['strlig_<lyr>_path'] where lyr=1 if `state_variable` == 'stded' lyr=2 if `state_variable` == 'bgliv' Returns: None """ def calc_avg_temp(max_temp, min_temp): """Calculate average temperature from maximum and minimum temp.""" valid_mask = ( (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata))) tave = numpy.empty(max_temp.shape, dtype=numpy.float32) tave[:] = _IC_NODATA tave[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2. return tave temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'tave', 'delta_c', 'delta_iel', 'delta_sv_weighted', 'operand_temp', 'sum_weighted_delta_C', 'sum_weighted_delta_N', 'sum_weighted_delta_P', 'weighted_lignin', 'sum_lignin', 'fraction_lignin']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} # site-level parameters val = 'deck5' target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # pft-level parameters for val in['fallrt', 'rtdtmp', 'rdr']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path # sum of material across pfts to be partitioned to organic matter pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_C'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_N'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_P'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_lignin'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)]]], calc_avg_temp, temp_val_dict['tave'], gdal.GDT_Float32, _IC_NODATA) for pft_i in pft_id_set: pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] # calculate change in C leaving the given state variable if state_variable == 'stded': fill_val = veg_trait_table[pft_i]['fallrt'] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], param_val_dict['fallrt'], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['stdedc_{}_path'.format(pft_i)], param_val_dict['fallrt']]], calc_fall_standing_dead, temp_val_dict['delta_c'], gdal.GDT_Float32, _TARGET_NODATA) else: for val in ['rtdtmp', 'rdr']: fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], param_val_dict[val], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tave'], param_val_dict['rtdtmp'], param_val_dict['rdr'], sv_reg['avh2o_1_{}_path'.format(pft_i)], param_val_dict['deck5'], prev_sv_reg['bglivc_{}_path'.format(pft_i)]]], calc_root_death, temp_val_dict['delta_c'], gdal.GDT_Float32, _TARGET_NODATA) # subtract delta_c from the pft-level state variable raster_difference( prev_sv_reg['{}c_{}_path'.format(state_variable, pft_i)], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA, sv_reg['{}c_{}_path'.format(state_variable, pft_i)], _SV_NODATA) # calculate delta C weighted by % cover of this pft raster_multiplication( temp_val_dict['delta_c'], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, temp_val_dict['delta_sv_weighted'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['sum_weighted_delta_C'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_C'], _TARGET_NODATA) # calculate weighted fraction of flowing C which is lignin if state_variable == 'stded': frlign_path = year_reg['pltlig_above_{}'.format(pft_i)] else: frlign_path = year_reg['pltlig_below_{}'.format(pft_i)] raster_multiplication( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, frlign_path, _TARGET_NODATA, temp_val_dict['weighted_lignin'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['sum_lignin'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['weighted_lignin'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_lignin'], _TARGET_NODATA) for iel in [1, 2]: # calculate N or P flowing out of the pft-level state variable pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['{}c_{}_path'.format(state_variable, pft_i)], prev_sv_reg['{}e_{}_{}_path'.format( state_variable, iel, pft_i)], temp_val_dict['delta_c']]], calc_delta_iel, temp_val_dict['delta_iel'], gdal.GDT_Float32, _TARGET_NODATA) # subtract delta_iel from the pft-level state variable raster_difference( prev_sv_reg['{}e_{}_{}_path'.format( state_variable, iel, pft_i)], _SV_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA, sv_reg['{}e_{}_{}_path'.format(state_variable, iel, pft_i)], _SV_NODATA) # calculate delta iel weighted by % cover of this pft raster_multiplication( temp_val_dict['delta_iel'], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, temp_val_dict['delta_sv_weighted'], _TARGET_NODATA) if iel == 1: shutil.copyfile( temp_val_dict['sum_weighted_delta_N'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_N'], _TARGET_NODATA) else: shutil.copyfile( temp_val_dict['sum_weighted_delta_P'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_P'], _TARGET_NODATA) # partition sum of C, N and P into structural and metabolic pools if state_variable == 'stded': lyr = 1 else: lyr = 2 raster_division( temp_val_dict['sum_lignin'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_C'], _TARGET_NODATA, temp_val_dict['fraction_lignin'], _TARGET_NODATA) partit( temp_val_dict['sum_weighted_delta_C'], temp_val_dict['sum_weighted_delta_N'], temp_val_dict['sum_weighted_delta_P'], temp_val_dict['fraction_lignin'], aligned_inputs['site_index'], site_param_table, lyr, sv_reg) # clean up temporary files shutil.rmtree(temp_dir) def calc_senescence_water_shading( aglivc, bgwfunc, fsdeth_1, fsdeth_3, fsdeth_4): """Calculate shoot death due to water stress and shading. In months where senescence is not scheduled to occur, some shoot death may still occur due to water stress and shading. Parameters: aglivc (numpy.ndarray): state variable, carbon in aboveground live biomass bgwfunc (numpy.ndarray): derived, effect of soil moisture on decomposition and shoot senescence fsdeth_1 (numpy.ndarray): parameter, maximum shoot death rate at very dry soil conditions fsdeth_3 (numpy.ndarray): parameter, additional fraction of shoots which die when aglivc is greater than fsdeth_4 fsdeth_4 (numpy.ndarray): parameter, threshold value for aglivc above which shading increases senescence Returns: fdeth, fraction of aboveground live biomass that is converted to standing dead """ valid_mask = ( (~numpy.isclose(aglivc, _SV_NODATA)) & (bgwfunc != _TARGET_NODATA) & (fsdeth_1 != _IC_NODATA) & (fsdeth_3 != _IC_NODATA) & (fsdeth_4 != _IC_NODATA)) fdeth = numpy.empty(aglivc.shape, dtype=numpy.float32) fdeth[:] = _TARGET_NODATA fdeth[valid_mask] = fsdeth_1[valid_mask] * (1. - bgwfunc[valid_mask]) shading_mask = ((aglivc > fsdeth_4) & valid_mask) fdeth[shading_mask] = fdeth[shading_mask] + fsdeth_3[shading_mask] fdeth[valid_mask] = numpy.minimum(fdeth[valid_mask], 1.) return fdeth def _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg): """Senescence of live material to standing dead. Live aboveground biomass is converted to standing dead according to senescence, which is specified for each pft to occur in one or more months of the year. In other months, some senescence may occur because of water stress or shading. During senescence, C, N and P move from agliv to stded state variables. Parameters: pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels current_month (int): month of the year, such that current_month=1 indicates January sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the rasters indicated by sv_reg['aglivc_<pft>_path'] for each pft sv_reg['aglive_1_<pft>_path'] for each pft sv_reg['aglive_2_<pft>_path'] for each pft sv_reg['crpstg_1_<pft>_path'] for each pft sv_reg['crpstg_2_<pft>_path'] for each pft modifies the rasters indicated by sv_reg['stdedc_<pft>_path'] for each pft sv_reg['stdede_1_<pft>_path'] for each pft sv_reg['stdede_2_<pft>_path'] for each pft Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'operand_temp', 'fdeth', 'delta_c', 'delta_iel', 'vol_loss', 'to_storage', 'to_stdede']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in[ 'fsdeth_1', 'fsdeth_2', 'fsdeth_3', 'fsdeth_4', 'vlossp', 'crprtf_1', 'crprtf_2']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( prev_sv_reg['aglivc_{}_path'.format(pft_i)], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) for pft_i in pft_id_set: if current_month == veg_trait_table[pft_i]['senescence_month']: temp_val_dict['fdeth'] = param_val_dict[ 'fsdeth_2_{}'.format(pft_i)] else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['aglivc_{}_path'.format(pft_i)], month_reg['bgwfunc'], param_val_dict['fsdeth_1_{}'.format(pft_i)], param_val_dict['fsdeth_3_{}'.format(pft_i)], param_val_dict['fsdeth_4_{}'.format(pft_i)]]], calc_senescence_water_shading, temp_val_dict['fdeth'], gdal.GDT_Float32, _TARGET_NODATA) # change in C flowing from aboveground live biomass to standing dead raster_multiplication( temp_val_dict['fdeth'], _TARGET_NODATA, prev_sv_reg['aglivc_{}_path'.format(pft_i)], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA) raster_difference( prev_sv_reg['aglivc_{}_path'.format(pft_i)], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA, sv_reg['aglivc_{}_path'.format(pft_i)], _SV_NODATA) shutil.copyfile( sv_reg['stdedc_{}_path'.format(pft_i)], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['operand_temp'], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA, sv_reg['stdedc_{}_path'.format(pft_i)], _SV_NODATA) for iel in [1, 2]: # change in N or P flowing from aboveground live biomass to dead raster_multiplication( temp_val_dict['fdeth'], _TARGET_NODATA, prev_sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA) raster_difference( prev_sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA, sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) if iel == 1: # volatilization loss of N raster_multiplication( temp_val_dict['delta_iel'], _TARGET_NODATA, param_val_dict['vlossp_{}'.format(pft_i)], _IC_NODATA, temp_val_dict['vol_loss'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['delta_iel'], temp_val_dict['operand_temp']) raster_difference( temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['vol_loss'], _TARGET_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA) # a fraction of N and P goes to crop storage raster_multiplication( temp_val_dict['delta_iel'], _TARGET_NODATA, param_val_dict['crprtf_{}_{}'.format(iel, pft_i)], _IC_NODATA, temp_val_dict['to_storage'], _TARGET_NODATA) raster_sum( prev_sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)], _SV_NODATA, temp_val_dict['to_storage'], _TARGET_NODATA, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # the rest goes to standing dead biomass raster_difference( temp_val_dict['delta_iel'], _TARGET_NODATA, temp_val_dict['to_storage'], _TARGET_NODATA, temp_val_dict['to_stdede'], _TARGET_NODATA) shutil.copyfile( sv_reg['stdede_{}_{}_path'.format(iel, pft_i)], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['operand_temp'], _SV_NODATA, temp_val_dict['to_stdede'], _TARGET_NODATA, sv_reg['stdede_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def convert_biomass_to_C(biomass_path, c_path): """Convert from grams of biomass to grams of carbon. The root:shoot submodel calculates potential growth in units of grams of biomass, but the growth submodel calculates actual growth from that potential growth in units of grams of carbon. Convert biomass to carbon using a conversion factor of 2.5. Parameters: biomass_path (string): path to raster containing grams of biomass c_path (string): path to raster that should contain the equivalent grams of carbon Side effects: modifies or creates the raster indicated by `c_path` Returns: None """ def convert_op(biomass): """Convert grams of biomass to grams of carbon.""" valid_mask = (biomass != _TARGET_NODATA) carbon = numpy.empty(biomass.shape, dtype=numpy.float32) carbon[:] = _TARGET_NODATA carbon[valid_mask] = biomass[valid_mask] / 2.5 return carbon pygeoprocessing.raster_calculator( [(biomass_path, 1)], convert_op, c_path, gdal.GDT_Float32, _TARGET_NODATA) def restrict_potential_growth(potenc, availm_1, availm_2, snfxmx_1): """Restrict potential growth according to mineral nutrients. Limit potential growth by the availability of mineral N and P. Growth only occurs if there is some availability of both mineral elements. Line 63 Restrp.f Parameters: potenc (numpy.ndarray): potential C production (g C) availm_1 (numpy.ndarray): derived, total mineral N available to this pft availm_2 (numpy.ndarray): derived, total mineral P available to this pft snfxmx_1 (numpy.ndarray): parameter, maximum symbiotic N fixation rate Returns: potenc_lim_minerl, potential C production limited by availability of mineral nutrients """ valid_mask = ( (potenc != _TARGET_NODATA) & (availm_1 != _TARGET_NODATA) & (availm_2 != _TARGET_NODATA) & (snfxmx_1 != _IC_NODATA)) potenc_lim_minerl = numpy.empty(potenc.shape, dtype=numpy.float32) potenc_lim_minerl[:] = _TARGET_NODATA potenc_lim_minerl[valid_mask] = 0 growth_mask = ( ((availm_1 > 0) | (snfxmx_1 > 0)) & (availm_2 > 0) & valid_mask) potenc_lim_minerl[growth_mask] = potenc[growth_mask] return potenc_lim_minerl def c_uptake_aboveground(cprodl, rtsh): """Calculate uptake of C from atmosphere to aboveground live biomass. Given total C predicted to flow into new growth and the root:shoot ratio of new growth, calculate the flow of C from the atmosphere into aboveground live biomass. Lines 137-146 Growth.f Parameters: cprodl (numpy.ndarray): derived, c production limited by nutrient availability rtsh (numpy.ndarray): derived, root/shoot ratio of new production Returns: delta_aglivc, change in C in aboveground live biomass """ valid_mask = ( (cprodl != _TARGET_NODATA) & (rtsh != _TARGET_NODATA)) delta_aglivc = numpy.empty(cprodl.shape, dtype=numpy.float32) delta_aglivc[:] = _TARGET_NODATA delta_aglivc[valid_mask] = ( cprodl[valid_mask] * (1. - rtsh[valid_mask] / (rtsh[valid_mask] + 1.))) return delta_aglivc def c_uptake_belowground(bglivc, cprodl, rtsh): """Do uptake of C from atmosphere to belowground live biomass. Given total C predicted to flow into new growth and the root:shoot ratio of new growth, perform the flow of C from the atmosphere into belowground live biomass. Lines 148-156 Growth.f Parameters: bglivc (numpy.ndarray): state variable, existing C in belowground live biomass cprodl (numpy.ndarray): derived, c production limited by nutrient availability rtsh (numpy.ndarray): derived, root/shoot ratio of new production Returns: modified_bglivc, modified C in belowground live biomass """ valid_mask = ( (~numpy.isclose(bglivc, _SV_NODATA)) & (cprodl != _TARGET_NODATA) & (rtsh != _TARGET_NODATA)) c_prod_belowground = numpy.empty(bglivc.shape, dtype=numpy.float32) c_prod_belowground[:] = _TARGET_NODATA c_prod_belowground[valid_mask] = ( cprodl[valid_mask] * (rtsh[valid_mask] / (rtsh[valid_mask] + 1.))) modified_bglivc = numpy.empty(bglivc.shape, dtype=numpy.float32) modified_bglivc[:] = _SV_NODATA modified_bglivc[valid_mask] = ( bglivc[valid_mask] + c_prod_belowground[valid_mask]) return modified_bglivc def calc_uptake_source(return_type): """Calculate uptake of nutrient from available sources.""" def _uptake( eavail_iel, eup_above_iel, eup_below_iel, plantNfix, storage_iel, iel): """Calculate N or P taken up from one source. Given the N or P predicted to flow into new above- and belowground production, calculate how much of that nutrient will be taken from the crop storage pool and how much will be taken from soil. For N, some of the necessary uptake maybe also come from symbiotic N fixation. Parameters: eavail_iel (numpy.ndarray): derived, total iel available to this plant functional type eup_above_iel (numpy.ndarray): derived, iel in new aboveground production eup_below_iel (numpy.ndarray): derived, iel in new belowground production plantNfix (numpy.ndarray): derived, symbiotic N fixed by this plant functional type storage_iel (numpy.ndarray): state variable, iel in crop storage pool iel (integer): index identifying N or P Returns: uptake_storage, uptake from crop storage pool, if return_type is 'uptake_storage' uptake_soil, uptake from mineral content of soil layers accessible by the plant function type, if return_type is 'uptake_soil' uptake_Nfix, uptake from symbiotically fixed nitrogen, if return_type is 'uptake_Nfix' """ valid_mask = ( (eup_above_iel != _TARGET_NODATA) & (eup_below_iel != _TARGET_NODATA) & (plantNfix != _TARGET_NODATA) & (~numpy.isclose(storage_iel, _SV_NODATA))) eprodl_iel = numpy.empty(eup_above_iel.shape, dtype=numpy.float32) eprodl_iel[:] = _TARGET_NODATA eprodl_iel[valid_mask] = ( eup_above_iel[valid_mask] + eup_below_iel[valid_mask]) uptake_storage = numpy.empty(eup_above_iel.shape, dtype=numpy.float32) uptake_storage[:] = _TARGET_NODATA uptake_soil = numpy.empty(eup_above_iel.shape, dtype=numpy.float32) uptake_soil[:] = _TARGET_NODATA uptake_Nfix = numpy.empty(eup_above_iel.shape, dtype=numpy.float32) uptake_Nfix[:] = _TARGET_NODATA storage_sufficient_mask = ((eprodl_iel <= storage_iel) & valid_mask) uptake_storage[valid_mask] = 0. uptake_storage[storage_sufficient_mask] = ( eprodl_iel[storage_sufficient_mask]) uptake_soil[storage_sufficient_mask] = 0. uptake_Nfix[storage_sufficient_mask] = 0. insuff_mask = ((eprodl_iel > storage_iel) & valid_mask) uptake_storage[insuff_mask] = storage_iel[insuff_mask] if iel == 1: uptake_soil[insuff_mask] = numpy.minimum( (eprodl_iel[insuff_mask] - storage_iel[insuff_mask] - plantNfix[insuff_mask]), (eavail_iel[insuff_mask] - storage_iel[insuff_mask] - plantNfix[insuff_mask])) uptake_Nfix[insuff_mask] = plantNfix[insuff_mask] else: uptake_soil[insuff_mask] = ( eprodl_iel[insuff_mask] - storage_iel[insuff_mask]) if return_type == 'uptake_storage': return uptake_storage elif return_type == 'uptake_soil': return uptake_soil elif return_type == 'uptake_Nfix': return uptake_Nfix return _uptake def calc_aboveground_uptake(total_uptake, eup_above_iel, eup_below_iel): """Calculate uptake of nutrient apportioned to aboveground biomass. Given the total amount of iel (N or P) taken up from one source, the amount of uptake that is apportioned to aboveground biomass is calculated from the proportion of demand from above- and belowground growth. Parameters: total_uptake (numpy.ndarray): derived, uptake of iel from one source eup_above_iel (numpy.ndarray): derived, iel in new aboveground growth eup_below_iel (numpy.ndarray): derived, iel in new belowground growth Returns: uptake_above, uptake from one source that is apportioned to aboveground biomass """ valid_mask = ( (total_uptake != _TARGET_NODATA) & (eup_above_iel != _TARGET_NODATA) & (eup_below_iel != _TARGET_NODATA)) nonzero_mask = ((eup_above_iel + eup_below_iel > 0) & valid_mask) uptake_above = numpy.empty(total_uptake.shape, dtype=numpy.float32) uptake_above[valid_mask] = 0. uptake_above[nonzero_mask] = ( total_uptake[nonzero_mask] * ( eup_above_iel[nonzero_mask] / (eup_above_iel[nonzero_mask] + eup_below_iel[nonzero_mask]))) return uptake_above def calc_belowground_uptake(total_uptake, eup_above_iel, eup_below_iel): """Calculate uptake of nutrient apportioned to _belowground biomass. Given the total amount of iel (N or P) taken up from one source, the amount of uptake that is apportioned to belowground biomass is calculated from the proportion of demand from above- and belowground growth. Parameters: total_uptake (numpy.ndarray): derived, uptake of iel from one source eup_above_iel (numpy.ndarray): derived, iel in new aboveground growth eup_below_iel (numpy.ndarray): derived, iel in new belowground growth Returns: uptake_below, uptake from one source that is apportioned to belowground biomass """ valid_mask = ( (total_uptake != _TARGET_NODATA) & (eup_above_iel != _TARGET_NODATA) & (eup_below_iel != _TARGET_NODATA)) nonzero_mask = ((eup_above_iel + eup_below_iel > 0) & valid_mask) uptake_below = numpy.empty(total_uptake.shape, dtype=numpy.float32) uptake_below[valid_mask] = 0. uptake_below[nonzero_mask] = ( total_uptake[nonzero_mask] * ( eup_below_iel[nonzero_mask] / (eup_above_iel[nonzero_mask] + eup_below_iel[nonzero_mask]))) return uptake_below def calc_minerl_uptake_lyr(uptake_soil, minerl_lyr_iel, fsol, availm): """Calculate uptake of mineral iel from one soil layer. Uptake of mineral iel (N or P) from each soil layer into new growth is done according to the proportion of total mineral iel contributed by that layer. Parameters: uptake_soil (numpy.ndarray): derived, total uptake of N or P from soil minerl_lyr_iel (numpy.ndarray): state variable, mineral iel in this soil layer fsol (numpy.ndarray): derived, fraction of iel in solution availm (numpy.ndarray): derived, sum of mineral iel across soil layers accessible by this plant functional type Returns: minerl_uptake_lyr, uptake of iel from this soil layer """ valid_mask = ( (uptake_soil != _TARGET_NODATA) & (~numpy.isclose(minerl_lyr_iel, _SV_NODATA)) & (fsol != _TARGET_NODATA) & (availm != _TARGET_NODATA) & (availm > 0)) minerl_uptake_lyr = numpy.empty(uptake_soil.shape, dtype=numpy.float32) minerl_uptake_lyr[valid_mask] = ( uptake_soil[valid_mask] * minerl_lyr_iel[valid_mask] * fsol[valid_mask] / availm[valid_mask]) return minerl_uptake_lyr def nutrient_uptake( iel, nlay, fract_cover_path, eup_above_iel_path, eup_below_iel_path, plantNfix_path, availm_path, eavail_path, pft_i, pslsrb_path, sorpmx_path, sv_reg, delta_aglive_iel_path): """Calculate uptake of N or P from soil and crop storage to new growth. Calculate flows of iel from crop storage pool, soil mineral pools, and symbiotic N fixation into new above- and belowground biomass. Perform the flow into belowground live, and track the change in aboveground live but store the change in delta_aglivc_dict and do not perform the flow. N and P taken up from the soil by one plant functional type are weighted by the fractional cover of that functional type. Lines 124-156, Restrp.f, lines 186-226, Growth.f Parameters: iel (int): index identifying N (iel=1) or P (iel=2) nlay (int): number of soil layers accessible by this plant functional type fract_cover_path (string): path to raster containing fractional cover of this plant functional type eup_above_iel_path (string): path to raster containing iel in new aboveground production eup_below_iel_path (string): path to raster containing iel in new belowground production plantNfix_path (string): path to raster giving symbiotic N fixed by this plant functional type availm_path (string): path to raster giving the sum of mineral iel across soil layers accessible by this plant functional type eavail_path (string): path to raster giving total iel available to this plant functional type pft_i (int): index identifying the current pft pslsrb_path (string): path to raster giving pslsrb paramter, slope term controlling fraction of mineral P that is labile sorpmx_path (string): path to raster giving sorpmx paramter, maximum P sorption potential sv_reg (dict): map of key, path pairs giving paths to state variables for the current month delta_aglive_iel_path (string): path to change in iel in aboveground live state variable for the current pft Side effects: modifies the rasters indicated by sv_reg['bglive_<iel>_<pft>_path'], iel in belowground live biomass, for the given iel and current pft sv_reg['crpstg_<iel>_<pft>_path'], iel in crop storage, for the given iel and current pft sv_reg['minerl_<layer>_<iel>_path'], iel in the soil mineral pool, for each soil layer accessible by the current pft ([1:nlay]) delta_aglive_iel_path, change in aboveground live iel for the given iel and current pft Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'uptake_storage', 'uptake_soil', 'uptake_Nfix', 'statv_temp', 'uptake_above', 'uptake_below', 'fsol', 'minerl_uptake_lyr', 'uptake_weighted']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # calculate uptake from crop storage pft_nodata = pygeoprocessing.get_raster_info( fract_cover_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ eavail_path, eup_above_iel_path, eup_below_iel_path, plantNfix_path, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)]]] + [(iel, 'raw')], calc_uptake_source('uptake_storage'), temp_val_dict['uptake_storage'], gdal.GDT_Float32, _TARGET_NODATA) # calculate uptake from soil pygeoprocessing.raster_calculator( [(path, 1) for path in [ eavail_path, eup_above_iel_path, eup_below_iel_path, plantNfix_path, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)]]] + [(iel, 'raw')], calc_uptake_source('uptake_soil'), temp_val_dict['uptake_soil'], gdal.GDT_Float32, _TARGET_NODATA) if iel == 1: # calculate uptake from symbiotically fixed N pygeoprocessing.raster_calculator( [(path, 1) for path in [ eavail_path, eup_above_iel_path, eup_below_iel_path, plantNfix_path, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)]]] + [(iel, 'raw')], calc_uptake_source('uptake_Nfix'), temp_val_dict['uptake_Nfix'], gdal.GDT_Float32, _TARGET_NODATA) # calculate uptake from crop storage into aboveground and belowground live shutil.copyfile( sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)], temp_val_dict['statv_temp']) raster_difference( temp_val_dict['statv_temp'], _SV_NODATA, temp_val_dict['uptake_storage'], _TARGET_NODATA, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['uptake_storage'], eup_above_iel_path, eup_below_iel_path]], calc_aboveground_uptake, delta_aglive_iel_path, gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['uptake_storage'], eup_above_iel_path, eup_below_iel_path]], calc_belowground_uptake, temp_val_dict['uptake_below'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['bglive_{}_{}_path'.format(iel, pft_i)], temp_val_dict['statv_temp']) raster_sum( temp_val_dict['statv_temp'], _SV_NODATA, temp_val_dict['uptake_below'], _TARGET_NODATA, sv_reg['bglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # uptake from each soil layer in proportion to its contribution to availm for lyr in range(1, nlay + 1): if iel == 2: pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_2_path'], sorpmx_path, pslsrb_path]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) else: pygeoprocessing.new_raster_from_base( sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], temp_val_dict['fsol'], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[1.]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['uptake_soil'], sv_reg['minerl_{}_{}_path'.format(lyr, iel)], temp_val_dict['fsol'], availm_path]], calc_minerl_uptake_lyr, temp_val_dict['minerl_uptake_lyr'], gdal.GDT_Float32, _TARGET_NODATA) # uptake removed from soil is weighted by pft % cover raster_multiplication( fract_cover_path, pft_nodata, temp_val_dict['minerl_uptake_lyr'], _TARGET_NODATA, temp_val_dict['uptake_weighted'], _TARGET_NODATA) shutil.copyfile( sv_reg['minerl_{}_{}_path'.format(lyr, iel)], temp_val_dict['statv_temp']) raster_difference( temp_val_dict['statv_temp'], _SV_NODATA, temp_val_dict['uptake_weighted'], _TARGET_NODATA, sv_reg['minerl_{}_{}_path'.format(lyr, iel)], _SV_NODATA) # uptake from minerl iel in lyr into above and belowground live pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['minerl_uptake_lyr'], eup_above_iel_path, eup_below_iel_path]], calc_aboveground_uptake, temp_val_dict['uptake_above'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile(delta_aglive_iel_path, temp_val_dict['statv_temp']) raster_sum( temp_val_dict['statv_temp'], _SV_NODATA, temp_val_dict['uptake_above'], _TARGET_NODATA, delta_aglive_iel_path, _SV_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['minerl_uptake_lyr'], eup_above_iel_path, eup_below_iel_path]], calc_belowground_uptake, temp_val_dict['uptake_below'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['bglive_{}_{}_path'.format(iel, pft_i)], temp_val_dict['statv_temp']) raster_sum( temp_val_dict['statv_temp'], _SV_NODATA, temp_val_dict['uptake_below'], _TARGET_NODATA, sv_reg['bglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # uptake from N fixation into above and belowground live if iel == 1: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['uptake_Nfix'], eup_above_iel_path, eup_below_iel_path]], calc_aboveground_uptake, temp_val_dict['uptake_above'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile(delta_aglive_iel_path, temp_val_dict['statv_temp']) raster_sum( temp_val_dict['statv_temp'], _SV_NODATA, temp_val_dict['uptake_above'], _TARGET_NODATA, delta_aglive_iel_path, _SV_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['uptake_Nfix'], eup_above_iel_path, eup_below_iel_path]], calc_belowground_uptake, temp_val_dict['uptake_below'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['bglive_{}_{}_path'.format(iel, pft_i)], temp_val_dict['statv_temp']) raster_sum( temp_val_dict['statv_temp'], _SV_NODATA, temp_val_dict['uptake_below'], _TARGET_NODATA, sv_reg['bglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_nutrient_limitation(return_type): """Calculate C, N, and P in new production given nutrient availability.""" def _nutrlm( potenc, rtsh, eavail_1, eavail_2, snfxmx_1, cercrp_max_above_1, cercrp_max_below_1, cercrp_max_above_2, cercrp_max_below_2, cercrp_min_above_1, cercrp_min_below_1, cercrp_min_above_2, cercrp_min_below_2): """Calculate new production limited by N and P. Growth of new biomass is limited by the availability of N and P. Compare nutrient availability to the demand for each nutrient, which differs between above- and belowground production. Nutrlm.f Parameters: potenc (numpy.ndarray): derived, potential production of C calculated by root:shoot ratio submodel rtsh (numpy.ndarray): derived, root/shoot ratio of new production eavail_1 (numpy.ndarray): derived, available N (includes predicted symbiotic N fixation) eavail_2 (numpy.ndarray): derived, available P snfxmx_1 (numpy.ndarray): parameter, maximum symbiotic N fixation rate cercrp_max_above_1 (numpy.ndarray): max C/N ratio of new aboveground growth cercrp_max_below_1 (numpy.ndarray): max C/N ratio of new belowground growth cercrp_max_above_2 (numpy.ndarray): max C/P ratio of new aboveground growth cercrp_max_below_2 (numpy.ndarray): max C/P ratio of new belowground growth cercrp_min_above_1 (numpy.ndarray): min C/N ratio of new aboveground growth cercrp_min_below_1 (numpy.ndarray): min C/N ratio of new belowground growth cercrp_min_above_2 (numpy.ndarray): min C/P ratio of new aboveground growth cercrp_min_below_2 (numpy.ndarray): min C/P ratio of new belowground growth Returns: cprodl, total C production limited by nutrient availability, if return_type is 'cprodl' eup_above_1, N in new aboveground production, if return_type is 'eup_above_1' eup_below_1, N in new belowground production, if return_type is 'eup_below_1' eup_above_2, P in new aboveground production, if return_type is 'eup_above_2' eup_below_2, P in new belowground production, if return_type is 'eup_below_2' plantNfix, N fixation that actually occurs, if return_type is 'plantNfix' """ valid_mask = ( (potenc != _TARGET_NODATA) & (rtsh != _TARGET_NODATA) & (eavail_1 != _TARGET_NODATA) & (eavail_2 != _TARGET_NODATA) & (snfxmx_1 != _IC_NODATA) & (cercrp_max_above_1 != _TARGET_NODATA) & (cercrp_max_below_1 != _TARGET_NODATA) & (cercrp_max_above_2 != _TARGET_NODATA) & (cercrp_max_below_2 != _TARGET_NODATA) & (cercrp_min_above_1 != _TARGET_NODATA) & (cercrp_min_below_1 != _TARGET_NODATA) & (cercrp_min_above_2 != _TARGET_NODATA) & (cercrp_min_below_2 != _TARGET_NODATA)) cfrac_below = numpy.empty(potenc.shape, dtype=numpy.float32) cfrac_below[valid_mask] = ( rtsh[valid_mask] / (rtsh[valid_mask] + 1.)) cfrac_above = numpy.empty(potenc.shape, dtype=numpy.float32) cfrac_above[valid_mask] = 1. - cfrac_below[valid_mask] # maxec is average e/c ratio across aboveground and belowground # maxeci is indexed to aboveground only or belowground only maxeci_above_1 = numpy.empty(potenc.shape, dtype=numpy.float32) mineci_above_1 = numpy.empty(potenc.shape, dtype=numpy.float32) maxeci_below_1 = numpy.empty(potenc.shape, dtype=numpy.float32) mineci_below_1 = numpy.empty(potenc.shape, dtype=numpy.float32) maxeci_above_2 = numpy.empty(potenc.shape, dtype=numpy.float32) mineci_above_2 = numpy.empty(potenc.shape, dtype=numpy.float32) maxeci_below_2 = numpy.empty(potenc.shape, dtype=numpy.float32) mineci_below_2 = numpy.empty(potenc.shape, dtype=numpy.float32) maxeci_above_1[valid_mask] = 1. / cercrp_min_above_1[valid_mask] mineci_above_1[valid_mask] = 1. / cercrp_max_above_1[valid_mask] maxeci_below_1[valid_mask] = 1. / cercrp_min_below_1[valid_mask] mineci_below_1[valid_mask] = 1. / cercrp_max_below_1[valid_mask] maxeci_above_2[valid_mask] = 1. / cercrp_min_above_2[valid_mask] mineci_above_2[valid_mask] = 1. / cercrp_max_above_2[valid_mask] maxeci_below_2[valid_mask] = 1. / cercrp_min_below_2[valid_mask] mineci_below_2[valid_mask] = 1. / cercrp_max_below_2[valid_mask] maxec_1 = numpy.empty(potenc.shape, dtype=numpy.float32) maxec_1[valid_mask] = ( cfrac_below[valid_mask] * maxeci_below_1[valid_mask] + cfrac_above[valid_mask] * maxeci_above_1[valid_mask]) maxec_2 = numpy.empty(potenc.shape, dtype=numpy.float32) maxec_2[valid_mask] = ( cfrac_below[valid_mask] * maxeci_below_2[valid_mask] + cfrac_above[valid_mask] * maxeci_above_2[valid_mask]) # N/C ratio in new production according to demand and supply demand_1 = numpy.zeros(potenc.shape, dtype=numpy.float32) demand_1[valid_mask] = potenc[valid_mask] * maxec_1[valid_mask] ecfor_above_1 = numpy.empty(potenc.shape, dtype=numpy.float32) ecfor_below_1 = numpy.empty(potenc.shape, dtype=numpy.float32) nonzero_mask = ((demand_1 > 0) & valid_mask) ecfor_above_1[valid_mask] = 0. ecfor_below_1[valid_mask] = 0. ecfor_above_1[nonzero_mask] = ( mineci_above_1[nonzero_mask] + (maxeci_above_1[nonzero_mask] - mineci_above_1[nonzero_mask]) * eavail_1[nonzero_mask] / demand_1[nonzero_mask]) ecfor_below_1[nonzero_mask] = ( mineci_below_1[nonzero_mask] + (maxeci_below_1[nonzero_mask] - mineci_below_1[nonzero_mask]) * eavail_1[nonzero_mask] / demand_1[nonzero_mask]) sufficient_mask = ((eavail_1 > demand_1) & valid_mask) ecfor_above_1[sufficient_mask] = maxeci_above_1[sufficient_mask] ecfor_below_1[sufficient_mask] = maxeci_below_1[sufficient_mask] # caculate C production limited by N supply c_constrained_1 = numpy.zeros(potenc.shape, dtype=numpy.float32) c_constrained_1[nonzero_mask] = ( eavail_1[nonzero_mask] / ( cfrac_below[nonzero_mask] * ecfor_below_1[nonzero_mask] + cfrac_above[nonzero_mask] * ecfor_above_1[nonzero_mask])) # P/C ratio in new production according to demand and supply demand_2 = numpy.zeros(potenc.shape, dtype=numpy.float32) demand_2[valid_mask] = potenc[valid_mask] * maxec_2[valid_mask] ecfor_above_2 = numpy.empty(potenc.shape, dtype=numpy.float32) ecfor_below_2 = numpy.empty(potenc.shape, dtype=numpy.float32) nonzero_mask = ((demand_2 > 0) & valid_mask) ecfor_above_2[valid_mask] = 0. ecfor_below_2[valid_mask] = 0. ecfor_above_2[nonzero_mask] = ( mineci_above_2[nonzero_mask] + (maxeci_above_2[nonzero_mask] - mineci_above_2[nonzero_mask]) * eavail_2[nonzero_mask] / demand_2[nonzero_mask]) ecfor_below_2[nonzero_mask] = ( mineci_below_2[nonzero_mask] + (maxeci_below_2[nonzero_mask] - mineci_below_2[nonzero_mask]) * eavail_2[nonzero_mask] / demand_2[nonzero_mask]) sufficient_mask = ((eavail_2 > demand_2) & valid_mask) ecfor_above_2[sufficient_mask] = maxeci_above_2[sufficient_mask] ecfor_below_2[sufficient_mask] = maxeci_below_2[sufficient_mask] # caculate C production limited by P supply c_constrained_2 = numpy.zeros(potenc.shape, dtype=numpy.float32) c_constrained_2[nonzero_mask] = ( eavail_2[nonzero_mask] / ( cfrac_below[nonzero_mask] * ecfor_below_2[nonzero_mask] + cfrac_above[nonzero_mask] * ecfor_above_2[nonzero_mask])) # C production limited by both N and P cprodl = numpy.empty(potenc.shape, dtype=numpy.float32) cprodl[:] = _TARGET_NODATA cprodl[valid_mask] = numpy.minimum( c_constrained_1[valid_mask], c_constrained_2[valid_mask]) cprodl[valid_mask] = numpy.minimum( cprodl[valid_mask], potenc[valid_mask]) # N uptake into new production, given limited C production eup_above_1 = numpy.empty(potenc.shape, dtype=numpy.float32) eup_below_1 = numpy.empty(potenc.shape, dtype=numpy.float32) eup_above_1[:] = _TARGET_NODATA eup_below_1[:] = _TARGET_NODATA eup_above_1[valid_mask] = ( cprodl[valid_mask] * cfrac_above[valid_mask] * ecfor_above_1[valid_mask]) eup_below_1[valid_mask] = ( cprodl[valid_mask] * cfrac_below[valid_mask] * ecfor_below_1[valid_mask]) # P uptake into new production, given limited C production eup_above_2 = numpy.empty(potenc.shape, dtype=numpy.float32) eup_below_2 = numpy.empty(potenc.shape, dtype=numpy.float32) eup_above_2[:] = _TARGET_NODATA eup_below_2[:] = _TARGET_NODATA eup_above_2[valid_mask] = ( cprodl[valid_mask] * cfrac_above[valid_mask] * ecfor_above_2[valid_mask]) eup_below_2[valid_mask] = ( cprodl[valid_mask] * cfrac_below[valid_mask] * ecfor_below_2[valid_mask]) # Calculate N fixation that occurs to subsidize needed N supply maxNfix = numpy.empty(potenc.shape, dtype=numpy.float32) maxNfix[:] = _TARGET_NODATA maxNfix[valid_mask] = snfxmx_1[valid_mask] * potenc[valid_mask] eprodl_1 = numpy.empty(potenc.shape, dtype=numpy.float32) eprodl_1[:] = _TARGET_NODATA eprodl_1[valid_mask] = ( eup_above_1[valid_mask] + eup_below_1[valid_mask]) Nfix_mask = ( (eprodl_1 - (eavail_1 + maxNfix) > 0.05) & valid_mask) eprodl_1[Nfix_mask] = eavail_1[Nfix_mask] + maxNfix[Nfix_mask] plantNfix = numpy.empty(potenc.shape, dtype=numpy.float32) plantNfix[:] = _TARGET_NODATA plantNfix[valid_mask] = numpy.maximum( eprodl_1[valid_mask] - eavail_1[valid_mask], 0.) if return_type == 'cprodl': return cprodl elif return_type == 'eup_above_1': return eup_above_1 elif return_type == 'eup_below_1': return eup_below_1 elif return_type == 'eup_above_2': return eup_above_2 elif return_type == 'eup_below_2': return eup_below_2 elif return_type == 'plantNfix': return plantNfix return _nutrlm def _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, sv_reg): """Growth of new aboveground and belowground biomass. Calculate new growth of aboveground and belowground live biomass. New growth is added to belowground live biomass, but is not added to aboveground live biomass because grazing offtake must be calculated relative to biomass before new growth is applied. C is taken up from the atmosphere, while N and P are taken up from the crop storage pool, soil mineral N and P content, and symbiotic N fixation. N and P taken up from the soil are weighted by the fractional cover of the plant functional type. Parameters: pft_id_set (set): set of integers identifying plant functional types aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels current_month (int): month of the year, such that current_month=1 indicates January sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: modifies the rasters indicated by sv_reg['bglivc_<pft>_path'] for each pft sv_reg['bglive_1_<pft>_path'] for each pft sv_reg['bglive_2_<pft>_path'] for each pft sv_reg['crpstg_1_<pft>_path'] for each pft sv_reg['crpstg_2_<pft>_path'] for each pft sv_reg['minerl_{layer}_1_path'] for each soil layer sv_reg['minerl_{layer}_2_path'] for each soil layer Returns: dictionary of key, path pairs indicating paths to rasters containing change in aboveground live state variables, with the following keys: - 'delta_aglivc_<pft>': change in aboveground live C for each pft - 'delta_aglive_1_<pft>': change in aboveground live N for each pft - 'delta_aglive_2_<pft>': change in aboveground live P for each pft """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['statv_temp']: target_path = os.path.join( temp_dir, '{}.tif'.format(val)) temp_val_dict['{}'.format(val)] = target_path for val in [ 'availm_1', 'availm_2', 'eavail_1', 'eavail_2', 'potenc', 'potenc_lim_minerl', 'cprodl', 'eup_above_1', 'eup_below_1', 'eup_above_2', 'eup_below_2', 'plantNfix']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) temp_val_dict['{}_{}'.format(val, pft_i)] = target_path # track change in aboveground live state variables for each pft delta_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) delta_agliv_dict = {} for val in ['delta_aglivc', 'delta_aglive_1', 'delta_aglive_2']: for pft_i in pft_id_set: target_path = os.path.join( delta_sv_dir, '{}_{}.tif'.format(val, pft_i)) delta_agliv_dict['{}_{}'.format(val, pft_i)] = target_path param_val_dict = {} # site-level parameters for val in [ 'favail_1', 'favail_4', 'favail_5', 'favail_6', 'pslsrb', 'sorpmx']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) param_val_dict['favail_2'] = os.path.join(temp_dir, 'favail_2.tif') _calc_favail_P(sv_reg, param_val_dict) # pft-level parameters for pft_i in pft_id_set: for val in ['snfxmx_1']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( sv_reg['aglivc_{}_path'.format(pft_i)], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) for pft_i in pft_id_set: if current_month != veg_trait_table[pft_i]['senescence_month']: # calculate available nutrients for all pfts prior to # performing uptake for iel in [1, 2]: _calc_avail_mineral_nutrient( veg_trait_table[pft_i], sv_reg, iel, temp_val_dict['availm_{}_{}'.format(iel, pft_i)]) for pft_i in pft_id_set: # growth occurs in growth months and when senescence not scheduled do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: # calculate available nutrients for iel in [1, 2]: # eavail_iel, available nutrient _calc_available_nutrient( pft_i, iel, veg_trait_table[pft_i], sv_reg, site_param_table, aligned_inputs['site_index'], temp_val_dict['availm_{}_{}'.format(iel, pft_i)], param_val_dict['favail_{}'.format(iel)], month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['eavail_{}_{}'.format(iel, pft_i)]) # convert from grams of biomass to grams of carbon convert_biomass_to_C( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['potenc_{}'.format(pft_i)]) # restrict potential growth by availability of N and P pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['potenc_{}'.format(pft_i)], temp_val_dict['availm_1_{}'.format(pft_i)], temp_val_dict['availm_2_{}'.format(pft_i)], param_val_dict['snfxmx_1_{}'.format(pft_i)]]], restrict_potential_growth, temp_val_dict['potenc_lim_minerl_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['potenc_lim_minerl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], param_val_dict['snfxmx_1_{}'.format(pft_i)], month_reg['cercrp_max_above_1_{}'.format(pft_i)], month_reg['cercrp_max_below_1_{}'.format(pft_i)], month_reg['cercrp_max_above_2_{}'.format(pft_i)], month_reg['cercrp_max_below_2_{}'.format(pft_i)], month_reg['cercrp_min_above_1_{}'.format(pft_i)], month_reg['cercrp_min_below_1_{}'.format(pft_i)], month_reg['cercrp_min_above_2_{}'.format(pft_i)], month_reg['cercrp_min_below_2_{}'.format(pft_i)]]], calc_nutrient_limitation('cprodl'), temp_val_dict['cprodl_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['potenc_lim_minerl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], param_val_dict['snfxmx_1_{}'.format(pft_i)], month_reg['cercrp_max_above_1_{}'.format(pft_i)], month_reg['cercrp_max_below_1_{}'.format(pft_i)], month_reg['cercrp_max_above_2_{}'.format(pft_i)], month_reg['cercrp_max_below_2_{}'.format(pft_i)], month_reg['cercrp_min_above_1_{}'.format(pft_i)], month_reg['cercrp_min_below_1_{}'.format(pft_i)], month_reg['cercrp_min_above_2_{}'.format(pft_i)], month_reg['cercrp_min_below_2_{}'.format(pft_i)]]], calc_nutrient_limitation('eup_above_1'), temp_val_dict['eup_above_1_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['potenc_lim_minerl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], param_val_dict['snfxmx_1_{}'.format(pft_i)], month_reg['cercrp_max_above_1_{}'.format(pft_i)], month_reg['cercrp_max_below_1_{}'.format(pft_i)], month_reg['cercrp_max_above_2_{}'.format(pft_i)], month_reg['cercrp_max_below_2_{}'.format(pft_i)], month_reg['cercrp_min_above_1_{}'.format(pft_i)], month_reg['cercrp_min_below_1_{}'.format(pft_i)], month_reg['cercrp_min_above_2_{}'.format(pft_i)], month_reg['cercrp_min_below_2_{}'.format(pft_i)]]], calc_nutrient_limitation('eup_below_1'), temp_val_dict['eup_below_1_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['potenc_lim_minerl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], param_val_dict['snfxmx_1_{}'.format(pft_i)], month_reg['cercrp_max_above_1_{}'.format(pft_i)], month_reg['cercrp_max_below_1_{}'.format(pft_i)], month_reg['cercrp_max_above_2_{}'.format(pft_i)], month_reg['cercrp_max_below_2_{}'.format(pft_i)], month_reg['cercrp_min_above_1_{}'.format(pft_i)], month_reg['cercrp_min_below_1_{}'.format(pft_i)], month_reg['cercrp_min_above_2_{}'.format(pft_i)], month_reg['cercrp_min_below_2_{}'.format(pft_i)]]], calc_nutrient_limitation('eup_above_2'), temp_val_dict['eup_above_2_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['potenc_lim_minerl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], param_val_dict['snfxmx_1_{}'.format(pft_i)], month_reg['cercrp_max_above_1_{}'.format(pft_i)], month_reg['cercrp_max_below_1_{}'.format(pft_i)], month_reg['cercrp_max_above_2_{}'.format(pft_i)], month_reg['cercrp_max_below_2_{}'.format(pft_i)], month_reg['cercrp_min_above_1_{}'.format(pft_i)], month_reg['cercrp_min_below_1_{}'.format(pft_i)], month_reg['cercrp_min_above_2_{}'.format(pft_i)], month_reg['cercrp_min_below_2_{}'.format(pft_i)]]], calc_nutrient_limitation('eup_below_2'), temp_val_dict['eup_below_2_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['potenc_lim_minerl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], param_val_dict['snfxmx_1_{}'.format(pft_i)], month_reg['cercrp_max_above_1_{}'.format(pft_i)], month_reg['cercrp_max_below_1_{}'.format(pft_i)], month_reg['cercrp_max_above_2_{}'.format(pft_i)], month_reg['cercrp_max_below_2_{}'.format(pft_i)], month_reg['cercrp_min_above_1_{}'.format(pft_i)], month_reg['cercrp_min_below_1_{}'.format(pft_i)], month_reg['cercrp_min_above_2_{}'.format(pft_i)], month_reg['cercrp_min_below_2_{}'.format(pft_i)]]], calc_nutrient_limitation('plantNfix'), temp_val_dict['plantNfix_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # calculate uptake of C into new aboveground production pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['cprodl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)]]], c_uptake_aboveground, delta_agliv_dict['delta_aglivc_{}'.format(pft_i)], gdal.GDT_Float32, _SV_NODATA) # do uptake of C into new belowground production shutil.copyfile( sv_reg['bglivc_{}_path'.format(pft_i)], temp_val_dict['statv_temp']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['statv_temp'], temp_val_dict['cprodl_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)]]], c_uptake_belowground, sv_reg['bglivc_{}_path'.format(pft_i)], gdal.GDT_Float32, _SV_NODATA) # calculate uptake of N and P into new aboveground production, # do uptake of N and P into new belowground production for iel in [1, 2]: nutrient_uptake( iel, int(veg_trait_table[pft_i]['nlaypg']), aligned_inputs['pft_{}'.format(pft_i)], temp_val_dict['eup_above_{}_{}'.format(iel, pft_i)], temp_val_dict['eup_below_{}_{}'.format(iel, pft_i)], temp_val_dict['plantNfix_{}'.format(pft_i)], temp_val_dict['availm_{}_{}'.format(iel, pft_i)], temp_val_dict['eavail_{}_{}'.format(iel, pft_i)], pft_i, param_val_dict['pslsrb'], param_val_dict['sorpmx'], sv_reg, delta_agliv_dict['delta_aglive_{}_{}'.format(iel, pft_i)]) else: # no growth scheduled this month for val in ['delta_aglivc', 'delta_aglive_1', 'delta_aglive_2']: pygeoprocessing.new_raster_from_base( sv_reg['aglivc_{}_path'.format(pft_i)], delta_agliv_dict['{}_{}'.format(val, pft_i)], gdal.GDT_Float32, [_SV_NODATA], fill_value_list=[0]) # clean up temporary files shutil.rmtree(temp_dir) return delta_agliv_dict def _apply_new_growth(delta_agliv_dict, pft_id_set, sv_reg): """Update aboveground live biomass with new growth. Use the delta state variable quantities in `delta_agliv_dict` to update state variables in `sv_reg` with new growth. Parameters: delta_agliv_dict (dict): map of key, path pairs indicating paths to change in aboveground live state variables for the current month pft_id_set (set): set of integers identifying plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: modifies the rasters indicated by sv_reg['aglivc_<pft>_path'] for each pft sv_reg['aglive_1_<pft>_path'] for each pft sv_reg['aglive_2_<pft>_path'] for each pft Returns: None """ with tempfile.NamedTemporaryFile( prefix='statv_temp', dir=PROCESSING_DIR) as statv_temp_file: statv_temp_path = statv_temp_file.name for pft_i in pft_id_set: for sv in ['aglivc', 'aglive_1', 'aglive_2']: shutil.copyfile( sv_reg['{}_{}_path'.format(sv, pft_i)], statv_temp_path) raster_sum( delta_agliv_dict['delta_{}_{}'.format(sv, pft_i)], _SV_NODATA, statv_temp_path, _SV_NODATA, sv_reg['{}_{}_path'.format(sv, pft_i)], _SV_NODATA) # clean up pathlist = list(delta_agliv_dict) delta_agliv_dir = os.path.dirname(delta_agliv_dict[pathlist[0]]) shutil.rmtree(delta_agliv_dir) os.remove(statv_temp_path) def calc_amount_leached(minlch, amov_lyr, frlech, minerl_lyr_iel): """Calculate amount of mineral nutrient leaching from one soil layer. The amount of mineral N or P leaching from a soil layer into the adjacent soil layer below depends on the potential fraction of mineral leaching, the amount of saturated water flow between the two layers, and the mineral nutrient content of the above layer. Parameters: minlch (numpy.ndarray): parameter, critical water flow for leaching of minerals (cm of H2O leached below 30 cm soil depth) amov_lyr (numpy.ndarray): derived, saturated water flow from the current layer frlech (numpy.ndarray): derived, potential fraction of mineral leaching minerl_lyr_iel (numpy.ndarray): state variable, mineral N or P in the current layer Returns: amount_leached, mineral N or P leaching from the current soil layer to the next adjacent soil layer """ valid_mask = ( (minlch != _IC_NODATA) & (amov_lyr != _TARGET_NODATA) & (frlech != _TARGET_NODATA) & (~numpy.isclose(minerl_lyr_iel, _SV_NODATA))) linten = numpy.clip( 1. - (minlch[valid_mask] - amov_lyr[valid_mask]) / minlch[valid_mask], 0., 1.) amount_leached = numpy.empty(minlch.shape, dtype=numpy.float32) amount_leached[:] = _TARGET_NODATA amount_leached[valid_mask] = ( frlech[valid_mask] * minerl_lyr_iel[valid_mask] * linten) return amount_leached def _leach(aligned_inputs, site_param_table, month_reg, sv_reg): """Simulate the movement of N and P through soil layers by leaching. Mineral nutrients are carried downward through soil layers if there is saturated flow of water flowing between layers. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fraction of sand and site spatial index site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels, including saturated flow of water between soil layers sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: modifies the raster indicated by sv_reg['minerl_<lyr>_1'], mineral N in the soil layer, for each soil layer modofies the raster indicated by sv_reg['minerl_<lyr>_2'], mineral P in the soil layer, for each soil layer Returns: None """ def calc_frlech_N(fleach_1, fleach_2, sand, fleach_3): """Calculate the potential fraction of N leaching. Mineral N and P leach from each soil layer to the adjacent layer if there is saturated water flow between the two layers and if there is mineral nutrient in the donating layer to flow. With higher soil sand content, the potential fraction of nutrient that leaches is higher. Parameters: fleach_1 (numpy.ndarray): parameter, intercept giving the fraction of N or P that leaches to the next layer if there is saturated water flow fleach_2 (numpy.ndarray): parameter, slope value giving the fraction of N or P that leaches to the next layer if there is saturated water flow sand (numpy.ndarray): input, fraction of soil that is sand fleach_3 (numpy.ndarray): parameter, leaching fraction multiplier specific to N. Returns: frlech_N, the potential fraction of mineral N leaching """ valid_mask = ( (fleach_1 != _IC_NODATA) & (fleach_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata)) & (fleach_3 != _IC_NODATA)) frlech_N = numpy.empty(fleach_1.shape, dtype=numpy.float32) frlech_N[:] = _TARGET_NODATA frlech_N[valid_mask] = ( (fleach_1[valid_mask] + fleach_2[valid_mask] * sand[valid_mask]) * fleach_3[valid_mask]) return frlech_N def calc_frlech_P(fleach_1, fleach_2, sand, fleach_4, fsol): """Calculate the potential fraction of P leaching. Mineral N and P leach from each soil layer to the adjacent layer if there is saturated water flow between the two layers and if there is mineral nutrient in the donating layer to flow. With higher soil sand content, the potential fraction of nutrient that leaches is higher. Parameters: fleach_1 (numpy.ndarray): parameter, intercept giving the fraction of N or P that leaches to the next layer if there is saturated water flow fleach_2 (numpy.ndarray): parameter, slope value giving the fraction of N or P that leaches to the next layer if there is saturated water flow sand (numpy.ndarray): input, fraction of soil that is sand fleach_4 (numpy.ndarray): parameter, leaching fraction multiplier specific to P. fsol (numpy.ndarray): derived, fraction of P in solution Returns: frlech_P, the potential fraction of mineral P leaching """ valid_mask = ( (fleach_1 != _IC_NODATA) & (fleach_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata)) & (fleach_4 != _IC_NODATA) & (fsol != _TARGET_NODATA)) frlech_P = numpy.empty(fleach_1.shape, dtype=numpy.float32) frlech_P[:] = _TARGET_NODATA frlech_P[valid_mask] = ( (fleach_1[valid_mask] + fleach_2[valid_mask] * sand[valid_mask]) * fleach_4[valid_mask] * fsol[valid_mask]) return frlech_P nlayer_max = int(max(val['nlayer'] for val in site_param_table.values())) temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'fsol', 'frlech_1', 'frlech_2', 'amount_leached', 'd_statv_temp']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in [ 'sorpmx', 'pslsrb', 'minlch', 'fleach_1', 'fleach_2', 'fleach_3', 'fleach_4']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) sand_nodata = pygeoprocessing.get_raster_info( aligned_inputs['sand'])['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fleach_1'], param_val_dict['fleach_2'], aligned_inputs['sand'], param_val_dict['fleach_3']]], calc_frlech_N, temp_val_dict['frlech_1'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_2_path'], param_val_dict['sorpmx'], param_val_dict['pslsrb']]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fleach_1'], param_val_dict['fleach_2'], aligned_inputs['sand'], param_val_dict['fleach_4'], temp_val_dict['fsol']]], calc_frlech_P, temp_val_dict['frlech_2'], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: for lyr in range(1, nlayer_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['minlch'], month_reg['amov_{}'.format(lyr)], temp_val_dict['frlech_{}'.format(iel)], sv_reg['minerl_{}_{}_path'.format(lyr, iel)]]], calc_amount_leached, temp_val_dict['amount_leached'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['minerl_{}_{}_path'.format(lyr, iel)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['amount_leached'], _TARGET_NODATA, sv_reg['minerl_{}_{}_path'.format(lyr, iel)], _SV_NODATA) if lyr != nlayer_max: shutil.copyfile( sv_reg['minerl_{}_{}_path'.format(lyr + 1, iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['amount_leached'], _TARGET_NODATA, sv_reg['minerl_{}_{}_path'.format(lyr + 1, iel)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_c_removed(c_state_variable, percent_removed): """Calculate C consumed by grazing. Parameters: c_state_variable (numpy.ndarray): state variable, C in state variable consumed by grazing percent_removed (numpy.ndarray): derived, percent of state variable consumed by grazing Returns: c_consumed, C in the given state variable consumed by grazing """ valid_mask = (~numpy.isclose(c_state_variable, _SV_NODATA)) consumed_mask = ((percent_removed != _TARGET_NODATA) & valid_mask) c_consumed = numpy.empty(c_state_variable.shape, dtype=numpy.float32) c_consumed[:] = _TARGET_NODATA c_consumed[valid_mask] = 0. c_consumed[consumed_mask] = ( c_state_variable[consumed_mask] * percent_removed[consumed_mask]) return c_consumed def calc_iel_removed(c_consumed, iel_state_variable, c_state_variable): """Calculate N or P consumed by grazing. N or P in a state variable consumed by grazing is calculated according to its proportional content relative to carbon in the material consumed, and the amount of carbon consumed. Parameters: c_consumed (numpy.ndarray): derived, C in the given state variable consumed by grazing iel_state_variable (numpy.ndarray): state variable, iel (N or P) in state variable consumed by grazing c_state_variable (numpy.ndarray): state variable, C in state variable consumed by grazing Returns: iel_consumed, N or P in the given state variable consumed by grazing """ valid_mask = ( (c_consumed != _TARGET_NODATA) & (~numpy.isclose(iel_state_variable, _SV_NODATA)) & (~numpy.isclose(c_state_variable, _SV_NODATA)) & (c_state_variable > 0)) iel_consumed = numpy.empty(c_consumed.shape, dtype=numpy.float32) iel_consumed[:] = _TARGET_NODATA iel_consumed[valid_mask] = ( c_consumed[valid_mask] * ( iel_state_variable[valid_mask] / c_state_variable[valid_mask])) return iel_consumed def _grazing( aligned_inputs, site_param_table, month_reg, animal_trait_table, pft_id_set, sv_reg): """Perform offtake of biomass and return of nutrients by herbivores. Biomass consumed by herbivores is removed from aboveground live biomass and standing dead biomass. The return of C, N and P in feces are partitioned into surface structural and metabolic material, while N and P in urine are returned to the surface mineral pool. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fraction of clay site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels, including flgrem_<pft>, the fraction of live biomass of one pft removed by grazing, and fdgrem_<pft>, the fraction of standing dead biomass of one pft removed by grazing animal_trait_table (dict): dictionary containing animal parameters pft_id_set (set): set of integers identifying plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: modifies the rasters indicated by sv_reg['aglivc_<pft>_path'] for each pft sv_reg['aglive_1_<pft>_path'] for each pft sv_reg['aglive_2_<pft>_path'] for each pft sv_reg['stdedc_<pft>_path'] for each pft sv_reg['stdede_1_<pft>_path'] for each pft sv_reg['stdede_2_<pft>_path'] for each pft sv_reg['minerl_1_1_path'] sv_reg['minerl_1_2_path'] sv_reg['metabc_1_path'] sv_reg['strucc_1_path'] sv_reg['metabe_1_1_path'] sv_reg['metabe_1_2_path'] sv_reg['struce_1_1_path'] sv_reg['struce_1_2_path'] sv_reg['strlig_1_path'] Returns: None """ def calc_gret_1(clay): """Calculate the fraction of consumed N returned in feces and urine. The fraction of N consumed by animals that is returned in feces and urine is linearly related soil clay content, bounded to be between 0.7 and 0.85. Parameters: clay (numpy.ndarray): input, soil clay fraction Returns: gret_1, fraction of consumed N that is returned in feces and urine """ valid_mask = (~numpy.isclose(clay, clay_nodata)) gret_1 = numpy.empty(clay.shape, dtype=numpy.float32) gret_1[:] = _IC_NODATA gret_1[valid_mask] = numpy.clip( ((0.85 - 0.7) / 0.3 * (clay[valid_mask] - 0.3) + 0.85), 0.7, 0.85) return gret_1 def calc_weighted_c_returned(shremc, sdremc, gfcret, pft_cover): """Calculate carbon returned in feces from grazing of one pft. The fraction of carbon removed by herbivores that is returned in their feces is given by the parameter gfcret. Because carbon returned in feces is partitioned into soil structural and metabolic pools, carbon returned from grazing of one plant functional type (pft) must be weighted by the fractional cover of the pft. Parameters: shremc (numpy.ndarray): derived, C in aboveground live biomass removed by grazing sdremc (numpy.ndarray): derived, C in standing dead biomass removed by grazing gfcret (numpy.ndarray): parameter, fraction of consumed C that is returned in feces pft_cover (numpy.ndarray): input, fractional cover of this plant functional type Returns: weighted_c_returned, carbon returned from grazing of this plant functional type """ valid_mask = ( (shremc != _TARGET_NODATA) & (sdremc != _TARGET_NODATA) & (gfcret != _IC_NODATA) & (~numpy.isclose(pft_cover, pft_nodata))) weighted_c_returned = numpy.empty(shremc.shape, dtype=numpy.float32) weighted_c_returned[:] = _TARGET_NODATA weighted_c_returned[valid_mask] = ( (gfcret[valid_mask] * (shremc[valid_mask] + sdremc[valid_mask]) * pft_cover[valid_mask])) return weighted_c_returned def calc_weighted_iel_returned_feces( shreme, sdreme, gret, fecf, pft_cover): """Calculate N or P returned in feces from grazing of one pft. The fraction of N or P removed by herbivores that is returned in their feces is calculated from the parameters gret_<iel> and fecf_<iel>. Nutrients returned in feces from grazing of one functional type (pft) are partitioned into soil structural and metabolic pools, so they must be weighted by the fractional cover of the pft. Parameters: shreme (numpy.ndarray): derived, iel in aboveground live biomass removed by grazing sdreme (numpy.ndarray): derived, iel in standing dead biomass removed by grazing gret (numpy.ndarray): parameter, fraction of consumed iel that is returned fecf (numpy.ndarray): parameter, fraction of consumed iel that is returned in feces pft_cover (numpy.ndarray): input, fractional cover of this plant functional type Returns: weighted_iel_returned_feces, N or P returned in feces """ valid_mask = ( (shreme != _TARGET_NODATA) & (sdreme != _TARGET_NODATA) & (gret != _IC_NODATA) & (fecf != _IC_NODATA) & (~numpy.isclose(pft_cover, pft_nodata))) weighted_iel_returned_feces = numpy.empty( shreme.shape, dtype=numpy.float32) weighted_iel_returned_feces[:] = _TARGET_NODATA weighted_iel_returned_feces[valid_mask] = ( fecf[valid_mask] * gret[valid_mask] * (shreme[valid_mask] + sdreme[valid_mask]) * pft_cover[valid_mask]) return weighted_iel_returned_feces def calc_weighted_iel_returned_urine( shreme, sdreme, gret, fecf, pft_cover): """Calculate N or P returned in urine from grazing of one pft. While N and P returned by herbivores in feces is partitioned into soil structural and metabolic pools, N and P returned in urine flows directly to the surface mineral pool. The amount of N and P returned in urine is determined according to the complement of the parameter fecf, the fraction of N and P returned in feces. Parameters: shreme (numpy.ndarray): derived, iel in aboveground live biomass removed by grazing sdreme (numpy.ndarray): derived, iel in standing dead biomass removed by grazing gret (numpy.ndarray): parameter, fraction of consumed iel that is returned fecf (numpy.ndarray): parameter, fraction of consumed iel that is returned in feces pft_cover (numpy.ndarray): input, fractional cover of this plant functional type Returns: weighted_iel_returned_urine, N or P returned in urine """ valid_mask = (~numpy.isclose(pft_cover, pft_nodata)) consumed_mask = ( (shreme != _TARGET_NODATA) & (sdreme != _TARGET_NODATA) & (gret != _IC_NODATA) & (fecf != _IC_NODATA) & valid_mask) weighted_iel_returned_urine = numpy.empty( shreme.shape, dtype=numpy.float32) weighted_iel_returned_urine[:] = _TARGET_NODATA weighted_iel_returned_urine[valid_mask] = 0. weighted_iel_returned_urine[consumed_mask] = ( (1. - fecf[consumed_mask]) * gret[consumed_mask] * (shreme[consumed_mask] + sdreme[consumed_mask]) * pft_cover[consumed_mask]) return weighted_iel_returned_urine temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'd_statv_temp', 'shremc', 'sdremc', 'shreme', 'sdreme', 'weighted_iel_urine', 'sum_weighted_C_returned', 'sum_weighted_N_returned', 'sum_weighted_P_returned']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) for val in [ 'weighted_C_feces', 'weighted_iel_feces_1', 'weighted_iel_feces_2']: for pft_i in pft_id_set: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict = {} param_val_dict['gret_1'] = os.path.join(temp_dir, 'gret_1.tif') for val in ['gfcret', 'gret_2', 'fecf_1', 'fecf_2', 'feclig']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path animal_to_val = dict( [(animal_code, float(table[val])) for (animal_code, table) in animal_trait_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['animal_index'], 1), animal_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) clay_nodata = pygeoprocessing.get_raster_info( aligned_inputs['clay'])['nodata'][0] pygeoprocessing.raster_calculator( [(aligned_inputs['clay'], 1)], calc_gret_1, param_val_dict['gret_1'], gdal.GDT_Float32, _IC_NODATA) weighted_C_returned_list = [] weighted_N_returned_list = [] weighted_P_returned_list = [] for pft_i in pft_id_set: # calculate C consumed pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['aglivc_{}_path'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)]]], calc_c_removed, temp_val_dict['shremc'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['stdedc_{}_path'.format(pft_i)], month_reg['fdgrem_{}'.format(pft_i)]]], calc_c_removed, temp_val_dict['sdremc'], gdal.GDT_Float32, _TARGET_NODATA) # calculate C returned in feces pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['shremc'], temp_val_dict['sdremc'], param_val_dict['gfcret'], aligned_inputs['pft_{}'.format(pft_i)]]], calc_weighted_c_returned, temp_val_dict['weighted_C_feces_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) weighted_C_returned_list.append( temp_val_dict['weighted_C_feces_{}'.format(pft_i)]) # calculate N and P consumed for iel in [1, 2]: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['shremc'], sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], sv_reg['aglivc_{}_path'.format(pft_i)]]], calc_iel_removed, temp_val_dict['shreme'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sdremc'], sv_reg['stdede_{}_{}_path'.format(iel, pft_i)], sv_reg['stdedc_{}_path'.format(pft_i)]]], calc_iel_removed, temp_val_dict['sdreme'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['shreme'], _TARGET_NODATA, sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) shutil.copyfile( sv_reg['stdede_{}_{}_path'.format(iel, pft_i)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['sdreme'], _TARGET_NODATA, sv_reg['stdede_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # calculate N or P returned in feces pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['shreme'], temp_val_dict['sdreme'], param_val_dict['gret_{}'.format(iel)], param_val_dict['fecf_{}'.format(iel)], aligned_inputs['pft_{}'.format(pft_i)]]], calc_weighted_iel_returned_feces, temp_val_dict['weighted_iel_feces_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) if iel == 1: weighted_N_returned_list.append( temp_val_dict['weighted_iel_feces_{}_{}'.format( iel, pft_i)]) else: weighted_P_returned_list.append( temp_val_dict['weighted_iel_feces_{}_{}'.format( iel, pft_i)]) # calculate N or P returned in urine pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['shreme'], temp_val_dict['sdreme'], param_val_dict['gret_{}'.format(iel)], param_val_dict['fecf_{}'.format(iel)], aligned_inputs['pft_{}'.format(pft_i)]]], calc_weighted_iel_returned_urine, temp_val_dict['weighted_iel_urine'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['minerl_1_{}_path'.format(iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['weighted_iel_urine'], _TARGET_NODATA, sv_reg['minerl_1_{}_path'.format(iel)], _SV_NODATA) # remove consumed biomass from C state variables shutil.copyfile( sv_reg['aglivc_{}_path'.format(pft_i)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['shremc'], _TARGET_NODATA, sv_reg['aglivc_{}_path'.format(pft_i)], _SV_NODATA) shutil.copyfile( sv_reg['stdedc_{}_path'.format(pft_i)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['sdremc'], _TARGET_NODATA, sv_reg['stdedc_{}_path'.format(pft_i)], _SV_NODATA) raster_list_sum( weighted_C_returned_list, _TARGET_NODATA, temp_val_dict['sum_weighted_C_returned'], _TARGET_NODATA, nodata_remove=True) raster_list_sum( weighted_N_returned_list, _TARGET_NODATA, temp_val_dict['sum_weighted_N_returned'], _TARGET_NODATA, nodata_remove=True) raster_list_sum( weighted_P_returned_list, _TARGET_NODATA, temp_val_dict['sum_weighted_P_returned'], _TARGET_NODATA, nodata_remove=True) partit( temp_val_dict['sum_weighted_C_returned'], temp_val_dict['sum_weighted_N_returned'], temp_val_dict['sum_weighted_P_returned'], param_val_dict['feclig'], aligned_inputs['site_index'], site_param_table, 1, sv_reg) # clean up temporary files shutil.rmtree(temp_dir) def calc_derived_animal_traits(input_animal_trait_table, freer_parameter_df): """Calculate non-spatial derived animal traits. Populate the animal trait table with parameters from Freer et al (2012), and use these parameters along with input traits to calculate derived animal traits. Add these traits to the existing dictionary of animal traits supplied by the user as input. Parameters: input_animal_trait_table (dict): dictionary of key, dictionary pairs where keys indicate animal types and nested dictionaries contain input parameters that characterize each animal type freer_parameter_df (data frame): data frame of parameter values from Freer et al. 2012, the GRAZPLAN animal biology model. The data frame must contain a column 'type', specifying the animal type or breed, that can be matched to the field 'type' in the input animal trait table Returns: animal_trait_table, a dictionary of key, dictionary pairs where keys indicate unique ids for animal types and nested dictionaries contain animal traits, including inputs, Freer parameters, and the following derived animal traits: - SRW_modified, standard reference weight modified by animal sex - W_total, total body weight (equal to input weight for all animal types except breeding females) - BC, relative body condition - Z, relative size - ZF, size factor reflecting mouth size of young animals - sex_int, integer indicating animal sex: 1: entire male 2: castrate male 3: breeding female 4: non-breeding female, default - type_int, integer indicating animal type or breed: 1: Bos indicus, default 2: Bos taurus 3: Bos indicus * taurus cross 4: sheep or goat 5: camelid 6: hindgut fermenter """ input_df = pandas.DataFrame.from_dict( input_animal_trait_table, orient='index') animal_df = pandas.merge( input_df, freer_parameter_df, how='left', on='type') animal_df.replace('', numpy.nan, inplace=True) animal_df.fillna(_IC_NODATA, inplace=True) animal_df['W_total'] = animal_df['weight'] animal_df['SRW_modified'] = numpy.select( [animal_df['sex'] == 'entire_m', animal_df['sex'] == 'castrate', animal_df['sex'] == 'NA'], [animal_df['srw'] * 1.4, animal_df['srw'] * 1.2, (animal_df['srw'] + animal_df['srw'] * 1.4 / 2)], default=animal_df['srw']) Nmax = ( animal_df['SRW_modified'] - ( animal_df['SRW_modified'] - animal_df['birth_weight']) * numpy.exp( (-animal_df['CN1'] * animal_df['age']) / (animal_df['SRW_modified'] ** animal_df['CN2']))) N = animal_df['CN3'] * Nmax + (1. - animal_df['CN3']) * animal_df['weight'] animal_df['Z'] = N / animal_df['SRW_modified'] # relative size animal_df['ZF'] = numpy.where( animal_df['Z'] < animal_df['CR7'], 1. + (animal_df['CR7'] - animal_df['Z']), 1.) animal_df['BC'] = animal_df['weight'] / N # relative condition animal_df['sex_int'] = 4 animal_df.loc[animal_df.sex == 'entire_m', 'sex_int'] = 1 animal_df.loc[animal_df.sex == 'castrate', 'sex_int'] = 2 animal_df.loc[animal_df.sex == 'breeding_female', 'sex_int'] = 3 animal_df['type_int'] = 1 animal_df.loc[animal_df.type == 'b_taurus', 'type_int'] = 2 animal_df.loc[animal_df.type == 'indicus_x_taurus', 'type_int'] = 3 animal_df.loc[animal_df.type == 'sheep', 'type_int'] = 4 animal_df.loc[animal_df.type == 'camelid', 'type_int'] = 5 animal_df.loc[animal_df.type == 'hindgut_fermenter', 'type_int'] = 6 animal_df['reproductive_status_int'] = 0 animal_df['A_foet'] = 0 animal_df['A_y'] = 0 animal_df.set_index(['animal_id'], inplace=True) animal_trait_table = animal_df.to_dict(orient='index') return animal_trait_table def update_breeding_female_status(inner_animal_trait_dict, month_index): """Update derived traits of a single animal type that is breeding females. Because breeding females undergo cycles of conception, pregnancy, and lactation, some derived traits must be updated at each model time step. These traits do not vary spatially. Parameters: inner_animal_trait_dict (dict): dictionary of key, value pairs representing input and derived traits for this animal type. month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation Returns: updated_trait_table, a dictionary of key, value pairs where values indicate input and derived traits for this animal type, including the following updated animal traits: - reproductive_status_int, integer indicating animal reproductive status: 0: not pregnant or lactating (default) 1: pregnant 2: lactating - W_total, total weight including weight of conceptus if pregnant - A_foet, age of the foetus if pregnant - A_y, age of the suckling young if lactating """ updated_trait_table = inner_animal_trait_dict.copy() months_of_pregnancy = 9 cycle_month_index = ( (month_index - updated_trait_table['conception_step']) % updated_trait_table['calving_interval']) if cycle_month_index < months_of_pregnancy: # animal is pregnant updated_trait_table['reproductive_status_int'] = 1 updated_trait_table['A_foet'] = cycle_month_index * 30 + 1 RA = updated_trait_table['A_foet'] / updated_trait_table['CP1'] BW = ( (1 - updated_trait_table['CP4'] + updated_trait_table['CP4'] * updated_trait_table['Z']) * updated_trait_table['CP15'] * updated_trait_table['SRW_modified']) W_c_1 = updated_trait_table['CP5'] * BW W_c_2 = math.exp( updated_trait_table['CP6'] * (1 - math.exp(updated_trait_table['CP7'] * (1 - RA)))) W_c = W_c_1 * W_c_2 # equation 62, weight of conceptus updated_trait_table['W_total'] = ( updated_trait_table['weight'] + W_c) elif (cycle_month_index < (months_of_pregnancy + updated_trait_table['lactation_duration'])): # animal is lactating updated_trait_table['reproductive_status_int'] = 2 updated_trait_table['W_total'] = updated_trait_table['weight'] updated_trait_table['A_y'] = ( (cycle_month_index - months_of_pregnancy) * 30 + 1) else: # animal is not pregnant or lactating updated_trait_table['reproductive_status_int'] = 0 updated_trait_table['W_total'] = updated_trait_table['weight'] updated_trait_table['A_foet'] = 0 updated_trait_table['A_y'] = 0 return updated_trait_table def calc_max_intake(inner_animal_trait_dict): """Calculate maximum daily forage intake for a single animal type. An animal's maximum intake is the maximum potential daily intake of dry matter (kg) and depends on the size, condition, and reproductive stage of the animal. This trait is "non-spatial", i.e. it does not vary according to the context of the animal but is dictated solely by inherent animal traits. Parameters: inner_animal_trait_dict (dict): dictionary of key, value pairs representing input and derived traits for this animal type. Returns: updated_trait_table, a dictionary of key, value pairs where values indicate input and derived traits for this animal type, including the following updated animal trait: - max_intake, maximum daily forage intake in kg dry matter """ updated_trait_table = inner_animal_trait_dict.copy() if updated_trait_table['BC'] > 1.: CF = ( updated_trait_table['BC'] * (updated_trait_table['CI20'] - updated_trait_table['BC']) / (updated_trait_table['CI20'] - 1.)) else: CF = 1. YF = 1. # eq 4 gives a different value for unweaned animals TF = 1. # ignore effect of temperature on intake LF = 1. # assume any lactating animals are suckling young (eq 8) if updated_trait_table['reproductive_status_int'] == 2: BCpart = updated_trait_table['BC'] # body condition at parturition Mi = updated_trait_table['A_y'] / updated_trait_table['CI8'] LA = ( 1. - updated_trait_table['CI15'] + updated_trait_table['CI15'] * BCpart) LF = ( 1. + updated_trait_table['CI19'] * Mi ** updated_trait_table['CI9'] * math.exp( updated_trait_table['CI9'] * (1 - Mi)) * LA) updated_trait_table['max_intake'] = ( updated_trait_table['CI1'] * updated_trait_table['SRW_modified'] * updated_trait_table['Z'] * ( updated_trait_table['CI2'] - updated_trait_table['Z']) * CF * YF * TF * LF) # eq 2 return updated_trait_table def calc_pasture_height(sv_reg, aligned_inputs, pft_id_set, processing_dir): """Calculate estimated height in cm for each forage feed type. Follow GRAZPLAN by calculating estimated height of each forage feed type from its biomass, assuming that 1 tonne of dry matter per ha has a height of 3 cm. C state variables tracked by the model are first converted from gC per square m to kg biomass per ha, then the height of each feed type is estimated following equation 134 from Freer et al. (2012). Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables, including C in aboveground live and standing dead biomass aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each pft pft_id_set (set): set of integers identifying plant functional types processing_dir (string): path to temporary processing directory where rasters of pasture height should be stored Returns: pasture_height_dict, a dictionary of key, path pairs giving estimated height in cm of each feed type """ def calc_weighted_biomass_kgha(cstatv, pft_cover): """Calculate biomass in kg/ha weighted by fractional cover of the pft. Convert a state variable representing grams of carbon per square meter into kg of biomass per ha, accounting for fractional cover of the plant functional type. Biomass in kg/ha is calculated from the state variable representing grams of carbon per square meter, entailing two conversion steps: first multiply by 2.5 to get biomass, then multiply by 10 to get kg/ha from g/m2. Parameters: cstatv (numpy.ndarray): state variable, C state variable belonging to the plant functional type pft_cover (numpy.ndarray): input, fractional cover of the plant functional type Returns: biomass_kgha, absolute biomass of this state variable and this plant functional type in kg per ha """ valid_mask = ( (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(pft_cover, pft_nodata))) biomass_kgha = numpy.empty(cstatv.shape, dtype=numpy.float32) biomass_kgha[:] = _TARGET_NODATA biomass_kgha[valid_mask] = ( cstatv[valid_mask] * 2.5 * 10 * pft_cover[valid_mask]) return biomass_kgha def calc_scale_term(*biomass_array_list): """Calculate the scaling term to estimate pasture height from biomass. The height of each feed type is estimated from its biomass by multiplying its biomass by a scale term, which is the square of the sum of biomass across feed types divided by the sum of squares of biomass across feed types, multiplied by 3e-3. Treat nodata values in each biomass array as zero. Equation 134, Freer et al. (2012). Parameters: biomass_array_list (list): list of numpy.ndarrays containing biomass in kg per ha Returns: scale_term, the scaling term to estimate pasture height from biomass """ square_list = [] for r in biomass_array_list: numpy.place(r, numpy.isclose(r, _TARGET_NODATA), [0]) square_list.append(r ** 2) numerator = (numpy.sum(biomass_array_list, axis=0)) ** 2 denominator = numpy.sum(square_list, axis=0) nonzero_mask = (denominator > 0) scale_term = numpy.empty(denominator.shape, dtype=numpy.float32) scale_term[:] = _TARGET_NODATA scale_term[nonzero_mask] = ( (numerator[nonzero_mask] / denominator[nonzero_mask]) * 0.003) return scale_term temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} temp_val_dict['scale_term'] = os.path.join(temp_dir, 'scale_term.tif') biomass_raster_list = [] for pft_i in pft_id_set: for val in ['agliv_kgha', 'stded_kgha']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] # calculate weighted aboveground live biomass in kg/ha pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['aglivc_{}_path'.format(pft_i)], aligned_inputs['pft_{}'.format(pft_i)]]], calc_weighted_biomass_kgha, temp_val_dict['agliv_kgha_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # calculate weighted standing dead biomass in kg/ha pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['stdedc_{}_path'.format(pft_i)], aligned_inputs['pft_{}'.format(pft_i)]]], calc_weighted_biomass_kgha, temp_val_dict['stded_kgha_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) biomass_raster_list.append( temp_val_dict['agliv_kgha_{}'.format(pft_i)]) biomass_raster_list.append( temp_val_dict['stded_kgha_{}'.format(pft_i)]) pygeoprocessing.raster_calculator( [(path, 1) for path in biomass_raster_list], calc_scale_term, temp_val_dict['scale_term'], gdal.GDT_Float32, _TARGET_NODATA) pasture_height_dict = {} for pft_i in pft_id_set: pasture_height_dict['agliv_{}'.format(pft_i)] = os.path.join( processing_dir, 'agliv_height_{}.tif'.format(pft_i)) raster_multiplication( temp_val_dict['agliv_kgha_{}'.format(pft_i)], _TARGET_NODATA, temp_val_dict['scale_term'], _TARGET_NODATA, pasture_height_dict['agliv_{}'.format(pft_i)], _TARGET_NODATA) pasture_height_dict['stded_{}'.format(pft_i)] = os.path.join( processing_dir, 'stded_height_{}.tif'.format(pft_i)) raster_multiplication( temp_val_dict['stded_kgha_{}'.format(pft_i)], _TARGET_NODATA, temp_val_dict['scale_term'], _TARGET_NODATA, pasture_height_dict['stded_{}'.format(pft_i)], _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) return pasture_height_dict def calc_fraction_biomass( sv_reg, aligned_inputs, pft_id_set, processing_dir, total_weighted_C_path): """Calculate the fraction of total biomass represented by each feed type. The fraction of total biomass represented by live and standing dead biomass of each plant functional type must be calculated while accounting for the fractional cover of the pft. This quantity is the member variable "rel_availability" in the beta rangeland production model. Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables, including C in aboveground live and standing dead biomass aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each pft pft_id_set (set): set of integers identifying plant functional types processing_dir (string): path to temporary processing directory where rasters of pasture height should be stored total_weighted_C_path (string): path to raster giving total carbon in aboveground live and standing dead biomass across plant functional types Returns: frac_biomass_dict, a dictionary of key, path pairs giving fraction of total biomass represented by each feed type """ def weighted_fraction(cstatv, pft_cover, total_weighted_C): """Calculate fraction of total C accounting for cover of the pft. Parameters: cstatv (numpy.ndarray): state variable, C state variable belonging to the plant functional type pft_cover (numpy.ndarray): input, fractional cover of the plant functional type total_weighted_C (numpy.ndarray): derived, total carbon in aboveground live and standing dead biomass across plant functional types Returns: weighted_fraction, fraction of total biomass represented by this feed type """ valid_mask = ( (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(pft_cover, pft_nodata)) & (total_weighted_C != _TARGET_NODATA) & (total_weighted_C > 0)) weighted_fraction = numpy.empty(cstatv.shape, dtype=numpy.float32) weighted_fraction[:] = _TARGET_NODATA weighted_fraction[valid_mask] = ( cstatv[valid_mask] * pft_cover[valid_mask] / total_weighted_C[valid_mask]) return weighted_fraction # calculate the fraction of total biomass for aglivc and stdedc of each pft frac_biomass_dict = {} for pft_i in pft_id_set: pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] target_path = os.path.join( processing_dir, 'agliv_frac_bio_{}'.format(pft_i)) frac_biomass_dict['agliv_{}'.format(pft_i)] = target_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['aglivc_{}_path'.format(pft_i)], aligned_inputs['pft_{}'.format(pft_i)], total_weighted_C_path]], weighted_fraction, target_path, gdal.GDT_Float32, _TARGET_NODATA) target_path = os.path.join( processing_dir, 'stded_frac_bio_{}'.format(pft_i)) frac_biomass_dict['stded_{}'.format(pft_i)] = target_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['stdedc_{}_path'.format(pft_i)], aligned_inputs['pft_{}'.format(pft_i)], total_weighted_C_path]], weighted_fraction, target_path, gdal.GDT_Float32, _TARGET_NODATA) return frac_biomass_dict def order_by_digestibility(sv_reg, pft_id_set, aoi_path): """Calculate the order of feed types according to their digestibility. During diet selection, animals select among feed types in descending order by feed type digestibility. Because digestibility is linearly related to crude protein content, the order of feed types may be estimated from their nitrogen to carbon ratios. Order feed types by digestibility according to the mean nitrogen to carbon ratio of each feed type across the study area aoi. Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month, including C and N in aboveground live and standing dead pft_id_set (set): set of integers identifying plant functional types aoi_path (string): path to vector layer giving the spatial extent of the model Returns: ordered_feed_types, a list of strings where each string designates a feed type by a combination of pft_i and fraction (aboveground live or standing dead), in descending order of digestibility """ def calc_nc_ratio(cstatv_path, nstatv_path, aoi_path): """Calculate the mean nitrogen to carbon ratio of a biomass fraction. Calculate the mean nitrogen to carbon ratio of a biomass fraction falling inside the study area aoi. The ratio is calculated from the state variables representing carbon and nitrogen content of that biomass fraction. If the area of interest vector dataset contains more than one polygon feature, the average ratio is calculated across features. Parameters: cstatv_path (string): path to raster containing carbon in the biomass fraction nstatv_path (string): path to raster containing nitrogen in the biomass fraction aoi_path (string): path to vector layer defining the study area of interest Returns: nc_ratio, the ratio of mean nitrogen to mean carbon for this state variable inside the model area of interest """ carbon_zonal_stat_df = pandas.DataFrame.from_dict( pygeoprocessing.zonal_statistics((cstatv_path, 1), aoi_path), orient='index') if carbon_zonal_stat_df['count'].sum() == 0: return 0 else: mean_carbon = ( carbon_zonal_stat_df['sum'].sum() / carbon_zonal_stat_df['count'].sum()) nitrogen_zonal_stat_df = pandas.DataFrame.from_dict( pygeoprocessing.zonal_statistics((nstatv_path, 1), aoi_path), orient='index') if nitrogen_zonal_stat_df['count'].sum() == 0: mean_nitrogen = 0 else: mean_nitrogen = ( nitrogen_zonal_stat_df['sum'].sum() / nitrogen_zonal_stat_df['count'].sum()) return (mean_nitrogen / mean_carbon) nc_ratio_dict = {} for pft_i in pft_id_set: for statv in ['agliv', 'stded']: cstatv_path = sv_reg['{}c_{}_path'.format(statv, pft_i)] nstatv_path = sv_reg['{}e_1_{}_path'.format(statv, pft_i)] nc_ratio = calc_nc_ratio(cstatv_path, nstatv_path, aoi_path) nc_ratio_dict['{}_{}'.format(statv, pft_i)] = nc_ratio # order the dictionary by descending N/C ratio keys, get list from values sorted_list = sorted( [(ratio, feed_type) for (feed_type, ratio) in nc_ratio_dict.items()], reverse=True) ordered_feed_types = [feed_type for (ratio, feed_type) in sorted_list] return ordered_feed_types def calc_digestibility( cstatv, nstatv, digestibility_slope, digestibility_intercept): """Calculate the dry matter digestibility of this feed type. Dry matter digestibility, expressed as a fraction between 0 and 1, is calculated via linear regression from crude protein content of the feed type, with regression coefficients that are specific to the plant functional type. Parameters: cstatv (numpy.ndarray): state variable, carbon in the feed type nstatv (numpy.ndarray): state variable, nitrogen in the feed type digestibility_slope (numpy.ndarray): parameter, slope of relationship predicting dry matter digestibility from crude protein concentration digestibility_intercept (numpy.ndarray): parameter, intercept of relationship predicting dry matter digestibility from crude protein concentration Returns: digestibility, dry matter digestibility of the feed type """ valid_mask = ( (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(nstatv, _SV_NODATA)) & (digestibility_slope != _IC_NODATA) & (digestibility_intercept != _IC_NODATA)) digestibility = numpy.zeros(cstatv.shape, dtype=numpy.float32) if CRUDE_PROTEIN: digestibility[valid_mask] = ( CRUDE_PROTEIN * digestibility_slope[valid_mask] + digestibility_intercept[valid_mask]) else: digestibility[valid_mask] = ( ((nstatv[valid_mask] * 6.25) / (cstatv[valid_mask] * 2.5)) * digestibility_slope[valid_mask] + digestibility_intercept[valid_mask]) return digestibility def calc_relative_availability(avail_biomass, sum_previous_classes): """Calculate relative availability of one forage feed type. The relative availability of a feed type is calculated from predicted rate of eating and time spent eating this forage type, and from the unsatisfied capacity that is left unmet by relative availability of other feed types of greater digestibility. Equation 14, Freer et al. (2012). Parameters: avail_biomass (numpy.ndarray): derived, estimated rate of eating and time spent eating this feed type sum_previous_classes (numpy.ndarray): derived, the sum of relative availability of other feed types with higher digestibility than the current feed type Returns: relative_availability, relative availability of this feed type """ valid_mask = ( (avail_biomass != _TARGET_NODATA) & (sum_previous_classes != _TARGET_NODATA)) relative_availability = numpy.empty( avail_biomass.shape, dtype=numpy.float32) relative_availability[:] = _TARGET_NODATA relative_availability[valid_mask] = ( numpy.maximum(0., 1. - sum_previous_classes[valid_mask]) * avail_biomass[valid_mask]) return relative_availability def calc_digestibility_intake( diet_path_dict, feed_type_list, diet_digestibility_path): """Calculate the dry matter digestibility of forage in the diet. The dry matter digestibility of the diet selected by grazing animals is calculated from the digestibility of each feed type and the intake of that feed type. Parameters: diet_path_dict (dict): map of key, path pairs where keys are strings composed of 'intake' or 'digestibility' and a feed type from `feed_type_list`, and paths indicate rasters describing intake or digestibility of a feed type. feed_type_list (list): a list of strings, each indicating one feed type diet_digestibility_path (string): path to location where the result, dry matter digestibility of forage in the diet, should be stored Side effects: modifies or creates the raster indicated by `diet_digestibility_path` to indicate the overall dry matter digestibility of forage in the diet Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['intake_sum', 'digestibility_sum']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) intake_path_list = [ diet_path_dict['daily_intake_{}'.format(feed_type)] for feed_type in sorted(feed_type_list)] digestibility_path_list = [ diet_path_dict['digestibility_{}'.format(feed_type)] for feed_type in sorted(feed_type_list)] # sum intake across feed types raster_list_sum( intake_path_list, _TARGET_NODATA, temp_val_dict['intake_sum'], _TARGET_NODATA) # sum digestibility of feed types weighted by intake weighted_digestibility_path_list = [] for feed_type_index in range(len(intake_path_list)): target_path = os.path.join( temp_dir, 'weighted_digestibility_{}.tif'.format(feed_type_index)) raster_multiplication( intake_path_list[feed_type_index], _TARGET_NODATA, digestibility_path_list[feed_type_index], _TARGET_NODATA, target_path, _TARGET_NODATA) weighted_digestibility_path_list.append(target_path) raster_list_sum( weighted_digestibility_path_list, _TARGET_NODATA, temp_val_dict['digestibility_sum'], _TARGET_NODATA) # average digestibility across feed types raster_division( temp_val_dict['digestibility_sum'], _TARGET_NODATA, temp_val_dict['intake_sum'], _TARGET_NODATA, diet_digestibility_path, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_crude_protein_intake( sv_reg, diet_path_dict, feed_type_list, crude_protein_intake_path): """Calculate the intake of crude protein from forage in the diet. The total intake of crude protein in the selected diet is calculated from the crude protein content of each feed type and the intake of that feed type. Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables, including carbon and nitrogen in each feed type diet_path_dict (dict): map of key, path pairs where keys are strings composed of 'intake' and a feed type from `feed_type_list`, and paths indicate rasters describing intake of a feed type. feed_type_list (list): a list of strings, each indicating one feed type crude_protein_intake_path (string): path to location where the result, crude protein intake in the diet, should be stored Side effects: modifies or creates the raster indicated by `crude_protein_intake_path` to indicate the crude protein intake in the diet Returns: none """ def calc_weighted_crude_protein(cstatv, nstatv, intake): """Calculate intake of crude protein from one feed type. The intake of crude protein from one feed type is calculated from an adjusted ratio of nitrogen to carbon in the feed type, and the intake of that feed type. Parameters: cstatv (numpy.ndarray): state variable, carbon in the feed type nstatv (numpy.ndarray): state variable, nitrogen in the feed type intake (numpy.ndarray): derived, intake of this feed type in the diet Returns: weighted_cp, intake of crude protein from one feed type """ valid_mask = ( (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(nstatv, _SV_NODATA)) & (intake != _TARGET_NODATA)) weighted_cp = numpy.empty(cstatv.shape, dtype=numpy.float32) weighted_cp[:] = _TARGET_NODATA if CRUDE_PROTEIN: weighted_cp[valid_mask] = (CRUDE_PROTEIN * intake[valid_mask]) else: weighted_cp[valid_mask] = ( ((nstatv[valid_mask] * 6.25) / (cstatv[valid_mask] * 2.5)) * intake[valid_mask]) return weighted_cp temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) weighted_crude_protein_path_list = [] for feed_type in feed_type_list: statv = feed_type.split('_')[0] pft_i = feed_type.split('_')[1] target_path = os.path.join( temp_dir, 'weighted_cp_{}.tif'.format(feed_type)) pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['{}c_{}_path'.format(statv, pft_i)], sv_reg['{}e_1_{}_path'.format(statv, pft_i)], diet_path_dict['daily_intake_{}'.format(feed_type)]]], calc_weighted_crude_protein, target_path, gdal.GDT_Float32, _TARGET_NODATA) weighted_crude_protein_path_list.append(target_path) raster_list_sum( weighted_crude_protein_path_list, _TARGET_NODATA, crude_protein_intake_path, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_energy_intake(total_intake, total_digestibility): """Calculate the total intake of metabolizable energy. The intake of metabolizable energy in the selected diet is estimated from the dry matter digestibility of the diet, expressed as a fraction between 0 and 1. Equation 31 in Freer et al. (2012). Parameters: total_intake (numpy.ndarray): derived, intake of forage in the diet in kg per ha per day total_digestibility (numpy.ndarray): derived, dry matter digestibility of forage in the selected diet Returns: energy_intake, total intake of metabolizable energy from the diet """ valid_mask = ( (total_intake != _TARGET_NODATA) & (total_digestibility != _TARGET_NODATA)) energy_intake = numpy.empty(total_intake.shape, dtype=numpy.float32) energy_intake[:] = _TARGET_NODATA energy_intake[valid_mask] = ( (17. * total_digestibility[valid_mask] - 2.) * total_intake[valid_mask]) return energy_intake def calc_energy_maintenance( age, sex, weight, energy_intake, total_intake, total_digestibility, CK1, CK2, CM1, CM2, CM3, CM4, CM6, CM7, CM16): """Calculate energy requirements of maintenance. Energy requirements of maintenance include basal metabolic energy requirements according to the animal's size, and energy requirements of walking and grazing. Equations 41-44, Freer et al. (2012). Parameters: age (numpy.ndarray): input, animal age in days sex (numpy.ndarray): derived, integer indication of animal sex: 1: entire male 2: castrate male 3: breeding female 4: non-breeding female weight (numpy.ndarray): derived, animal weight in kg including weight of the fetus for pregnant females energy_intake (numpy.ndarray): derived, total intake of metabolizable energy from the diet total_intake (numpy.ndarray): derived, intake of forage in the diet total_digestibility (numpy.ndarray): derived, dry matter digestibility of forage in the diet CK1 (numpy.ndarray): parameter, basal efficiency of energy use for maintenance CK2 (numpy.ndarray): parameter, impact of energy density of diet on efficiency of energy use for maintenance CM1 (numpy.ndarray): parameter, basal rate of energy use for maintenance CM2 (numpy.ndarray): parameter, weight scalar for basal metabolic rate CM3 (numpy.ndarray): parameter, effect of age on basal metabolic rate CM4 (numpy.ndarray): parameter, minimum effect of age on basal metabolic rate CM6 (numpy.ndarray): parameter, multiplier for energetic cost of chewing CM7 (numpy.ndarray): parameter, effect of digestibility on energetic cost of chewing CM16 (numpy.ndarray): parameter, basal energy cost of walking Returns: energy_maintenance, energy requirements of maintenance """ valid_mask = ( (age != _TARGET_NODATA) & (sex != _TARGET_NODATA) & (weight != _TARGET_NODATA) & (energy_intake != _TARGET_NODATA) & (total_intake != _TARGET_NODATA) & (total_digestibility != _TARGET_NODATA) & (CK1 != _IC_NODATA) & (CK2 != _IC_NODATA) & (CM1 != _IC_NODATA) & (CM2 != _IC_NODATA) & (CM3 != _IC_NODATA) & (CM4 != _IC_NODATA) & (CM6 != _IC_NODATA) & (CM7 != _IC_NODATA) & (CM16 != _IC_NODATA)) nonzero_mask = ( (total_intake > 0) & valid_mask) km = numpy.empty(age.shape, dtype=numpy.float32) km[nonzero_mask] = ( CK1[nonzero_mask] + CK2[nonzero_mask] * ( energy_intake[nonzero_mask] / total_intake[nonzero_mask])) Egraze = numpy.empty(age.shape, dtype=numpy.float32) Egraze[nonzero_mask] = ( CM6[nonzero_mask] * weight[nonzero_mask] * total_intake[nonzero_mask] * (CM7[nonzero_mask] - total_digestibility[nonzero_mask]) + (CM16[nonzero_mask] * 4. * weight[nonzero_mask])) Emetab = numpy.empty(age.shape, dtype=numpy.float32) Emetab[nonzero_mask] = ( CM2[nonzero_mask] * weight[nonzero_mask] ** 0.75 * numpy.maximum( numpy.exp(-CM3[nonzero_mask] * age[nonzero_mask]), CM4[nonzero_mask])) energy_maintenance_female = numpy.empty(age.shape, dtype=numpy.float32) energy_maintenance_female[:] = _TARGET_NODATA energy_maintenance_female[valid_mask] = 0 energy_maintenance_female[nonzero_mask] = ( (Emetab[nonzero_mask] + Egraze[nonzero_mask]) / km[nonzero_mask] + CM1[nonzero_mask] * energy_intake[nonzero_mask]) energy_maintenance = energy_maintenance_female male_mask = ( (sex < 3) & (valid_mask)) energy_maintenance[male_mask] = energy_maintenance_female[male_mask] * 1.15 return energy_maintenance def calc_degr_protein_intake(crude_protein_intake, total_digestibility): """Calculate rumen degradable protein intake from the diet. Rumen degradable protein intake from the diet is calculated from total crude protein intake. If the diet is low in dry matter digestibility, the degradable protein in the diet is less than the intake of crude protein. Parameters: crude_protein_intake (numpy.ndarray): derived, intake of crude protein from forage total_digestibility (numpy.ndarray): derived, dry matter digestibility of forage in the diet Returns: degr_protein_intake, rumen degradable protein intake from the diet """ valid_mask = ( (crude_protein_intake != _TARGET_NODATA) & (total_digestibility != _TARGET_NODATA)) degr_protein_intake = numpy.empty( crude_protein_intake.shape, dtype=numpy.float32) degr_protein_intake[:] = _TARGET_NODATA degr_protein_intake[valid_mask] = ( crude_protein_intake[valid_mask] * numpy.minimum( 0.84 * total_digestibility[valid_mask] + 0.33, 1.)) return degr_protein_intake def calc_protein_req( energy_intake_path, energy_maintenance_path, CRD4_path, CRD5_path, CRD6_path, CRD7_path, current_month, protein_req_path): """Calculate rumen degradable protein required. The requirement for rumen degradable protein depends on the ratio of energy intake to maintenance energy requirements, and estimated seasonal impacts on microbial protein synthesis. Parameters: energy_intake_path (string): path to raster containing total energy intake from the diet energy_maintenance_path (string): path to raster containing energy requirements of maintenance CRD4_path (string): path to raster containing the parameter CRD4 CRD5_path (string): path to raster containing the parameter CRD5 CRD6_path (string): path to raster containing the parameter CRD6 CRD7_path (string): path to raster containing the parameter CRD7 current_month (int): month of the year, such that current_month=1 indicates January protein_req_path (string): path to raster that should contain the result, rumen degradable protein required Side effects: modifies or creates the raster indicated by `protein_req_path` Returns: None """ def protein_req_op(current_month): def _protein_req_op( latitude, energy_intake, energy_maintenance, CRD4, CRD5, CRD6, CRD7): """Calculate rumen degradable protein required. Parameters: latitude (numpy.ndarray): derived, site latitude in degrees energy_intake (numpy.ndarray): derived, total intake of metabolizable energy from the diet energy_maintenance (numpy.ndarray): derived, energy requirements of maintenance CRD4 (numpy.ndarray): parameter, basal rumen degradable protein requirement CRD5 (numpy.ndarray): parameter, multiplier for total impact of energy intake and seasonal effects on rumen degradable protein requirement CRD6 (numpy.ndarray): parameter, multiplier for impact of energy intake on rumen degradable protein requirement CRD7 (numpy.ndarray): parameter, multiplier for seasonal impact on rumen degradable protein requirement Returns: protein_req, rumen degradable protein required """ valid_mask = ( (energy_maintenance != _TARGET_NODATA) & (energy_intake != _TARGET_NODATA) & (CRD4 != _IC_NODATA) & (CRD5 != _IC_NODATA) & (CRD6 != _IC_NODATA) & (CRD7 != _IC_NODATA)) nonzero_mask = ( (energy_maintenance > 0) & valid_mask) # estimated day of the year in the middle of current current_month day_of_year = 15.2 + 30.4 * (current_month - 1) radiation_factor = numpy.empty(latitude.shape, dtype=numpy.float32) radiation_factor[valid_mask] = ( 1. + CRD7[valid_mask] * (latitude[valid_mask] / 40.) * numpy.sin((2. * numpy.pi * day_of_year) / 365.)) protein_req = numpy.empty(latitude.shape, dtype=numpy.float32) protein_req[:] = _TARGET_NODATA protein_req[valid_mask] = 0 protein_req[nonzero_mask] = ( (CRD4[nonzero_mask] + CRD5[nonzero_mask] * (1. - numpy.exp( -CRD6[nonzero_mask] * ( energy_intake[nonzero_mask] / energy_maintenance[nonzero_mask])))) * (radiation_factor[nonzero_mask] * energy_intake[nonzero_mask])) return protein_req return _protein_req_op # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(energy_intake_path, latitude_raster_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ latitude_raster_path, energy_intake_path, energy_maintenance_path, CRD4_path, CRD5_path, CRD6_path, CRD7_path]], protein_req_op(current_month), protein_req_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def revise_max_intake( max_intake, total_digestibility, energy_intake, energy_maintenance, degr_protein_intake, protein_req, animal_type, CRD1, CRD2): """Calculate revised maximum intake from protein content of the diet. When animals are unable to obtain enough protein from the diet to maintain microbial activity in the rumen, the passage rate of feed slows and the animal is able to eat less forage overall. Here that dynamic is reflected by reducing maximum potential intake if protein content of the initially selected diet is low. Parameters: max_intake (numpy.ndarray): derived, initial maximum potential daily intake of forage total_digestibility (numpy.ndarray): derived, average dry matter digestibility of forage in the diet energy_intake (numpy.ndarray): derived, total metabolizable energy intake from the diet energy_maintenance (numpy.ndarray): derived, energy requirements of maintenance degr_protein_intake (numpy.ndarray): derived, total rumen degradable protein intake from the diet protein_req (numpy.ndarray): derived, rumen degradable protein required to maintain microbial activity animal_type (numpy.ndarray): parameter, integer indication of animal type or breed: 1: Bos indicus, default 2: Bos taurus 3: Bos indicus * taurus cross 4: sheep or goat 5: camelid 6: hindgut fermenter CRD1 (numpy.ndarray): parameter, intercept of regression predicting degradability of protein from digestibility of the diet CRD2 (numpy.ndarray): parameter, slope of relationship predicting degradability of protein from digestibility of the diet Returns: max_intake_revised, revised maximum potential daily intake of forage """ valid_mask = ( (max_intake != _TARGET_NODATA) & (total_digestibility != _TARGET_NODATA) & (energy_intake != _TARGET_NODATA) & (energy_maintenance != _TARGET_NODATA) & (degr_protein_intake != _TARGET_NODATA) & (protein_req != _TARGET_NODATA) & (animal_type != _IC_NODATA) & (CRD1 != _IC_NODATA) & (CRD2 != _IC_NODATA)) corrected_protein_intake = degr_protein_intake.copy() feeding_level =
numpy.zeros(max_intake.shape, dtype=numpy.float32)
numpy.zeros
import re import textwrap import numpy as np import pytest from numpy.testing import (assert_almost_equal, assert_array_almost_equal, assert_equal) from skimage.transform._geometric import (_affine_matrix_from_vector, _center_and_normalize_points, _euler_rotation_matrix, GeometricTransform) from skimage.transform import (estimate_transform, matrix_transform, EuclideanTransform, SimilarityTransform, AffineTransform, FundamentalMatrixTransform, EssentialMatrixTransform, ProjectiveTransform, PolynomialTransform, PiecewiseAffineTransform) SRC = np.array([ [-12.3705, -10.5075], [-10.7865, 15.4305], [8.6985, 10.8675], [11.4975, -9.5715], [7.8435, 7.4835], [-5.3325, 6.5025], [6.7905, -6.3765], [-6.1695, -0.8235], ]) DST = np.array([ [0, 0], [0, 5800], [4900, 5800], [4900, 0], [4479, 4580], [1176, 3660], [3754, 790], [1024, 1931], ]) def test_estimate_transform(): for tform in ('euclidean', 'similarity', 'affine', 'projective', 'polynomial'): estimate_transform(tform, SRC[:2, :], DST[:2, :]) with pytest.raises(ValueError): estimate_transform('foobar', SRC[:2, :], DST[:2, :]) def test_matrix_transform(): tform = AffineTransform(scale=(0.1, 0.5), rotation=2) assert_equal(tform(SRC), matrix_transform(SRC, tform.params)) def test_euclidean_estimation(): # exact solution tform = estimate_transform('euclidean', SRC[:2, :], SRC[:2, :] + 10) assert_almost_equal(tform(SRC[:2, :]), SRC[:2, :] + 10) assert_almost_equal(tform.params[0, 0], tform.params[1, 1]) assert_almost_equal(tform.params[0, 1], - tform.params[1, 0]) # over-determined tform2 = estimate_transform('euclidean', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1]) assert_almost_equal(tform2.params[0, 1], - tform2.params[1, 0]) # via estimate method tform3 = EuclideanTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_euclidean_init(): # init with implicit parameters rotation = 1 translation = (1, 1) tform = EuclideanTransform(rotation=rotation, translation=translation) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # init with transformation matrix tform2 = EuclideanTransform(tform.params) assert_almost_equal(tform2.rotation, rotation) assert_almost_equal(tform2.translation, translation) # test special case for scale if rotation=0 rotation = 0 translation = (1, 1) tform = EuclideanTransform(rotation=rotation, translation=translation) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # test special case for scale if rotation=90deg rotation = np.pi / 2 translation = (1, 1) tform = EuclideanTransform(rotation=rotation, translation=translation) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) def test_similarity_estimation(): # exact solution tform = estimate_transform('similarity', SRC[:2, :], DST[:2, :]) assert_almost_equal(tform(SRC[:2, :]), DST[:2, :]) assert_almost_equal(tform.params[0, 0], tform.params[1, 1]) assert_almost_equal(tform.params[0, 1], - tform.params[1, 0]) # over-determined tform2 = estimate_transform('similarity', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) assert_almost_equal(tform2.params[0, 0], tform2.params[1, 1]) assert_almost_equal(tform2.params[0, 1], - tform2.params[1, 0]) # via estimate method tform3 = SimilarityTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_similarity_init(): # init with implicit parameters scale = 0.1 rotation = 1 translation = (1, 1) tform = SimilarityTransform(scale=scale, rotation=rotation, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # init with transformation matrix tform2 = SimilarityTransform(tform.params) assert_almost_equal(tform2.scale, scale) assert_almost_equal(tform2.rotation, rotation) assert_almost_equal(tform2.translation, translation) # test special case for scale if rotation=0 scale = 0.1 rotation = 0 translation = (1, 1) tform = SimilarityTransform(scale=scale, rotation=rotation, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # test special case for scale if rotation=90deg scale = 0.1 rotation = np.pi / 2 translation = (1, 1) tform = SimilarityTransform(scale=scale, rotation=rotation, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) # test special case for scale where the rotation isn't exactly 90deg, # but very close scale = 1.0 rotation = np.pi / 2 translation = (0, 0) params = np.array([[0, -1, 1.33226763e-15], [1, 2.22044605e-16, -1.33226763e-15], [0, 0, 1]]) tform = SimilarityTransform(params) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.translation, translation) def test_affine_estimation(): # exact solution tform = estimate_transform('affine', SRC[:3, :], DST[:3, :]) assert_almost_equal(tform(SRC[:3, :]), DST[:3, :]) # over-determined tform2 = estimate_transform('affine', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) # via estimate method tform3 = AffineTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_affine_init(): # init with implicit parameters scale = (0.1, 0.13) rotation = 1 shear = 0.1 translation = (1, 1) tform = AffineTransform(scale=scale, rotation=rotation, shear=shear, translation=translation) assert_almost_equal(tform.scale, scale) assert_almost_equal(tform.rotation, rotation) assert_almost_equal(tform.shear, shear) assert_almost_equal(tform.translation, translation) # init with transformation matrix tform2 = AffineTransform(tform.params) assert_almost_equal(tform2.scale, scale) assert_almost_equal(tform2.rotation, rotation) assert_almost_equal(tform2.shear, shear) assert_almost_equal(tform2.translation, translation) # scalar vs. tuple scale arguments assert_almost_equal(AffineTransform(scale=0.5).scale, AffineTransform(scale=(0.5, 0.5)).scale) def test_piecewise_affine(): tform = PiecewiseAffineTransform() tform.estimate(SRC, DST) # make sure each single affine transform is exactly estimated assert_almost_equal(tform(SRC), DST) assert_almost_equal(tform.inverse(DST), SRC) def test_fundamental_matrix_estimation(): src = np.array([1.839035, 1.924743, 0.543582, 0.375221, 0.473240, 0.142522, 0.964910, 0.598376, 0.102388, 0.140092, 15.994343, 9.622164, 0.285901, 0.430055, 0.091150, 0.254594]).reshape(-1, 2) dst = np.array([1.002114, 1.129644, 1.521742, 1.846002, 1.084332, 0.275134, 0.293328, 0.588992, 0.839509, 0.087290, 1.779735, 1.116857, 0.878616, 0.602447, 0.642616, 1.028681]).reshape(-1, 2) tform = estimate_transform('fundamental', src, dst) # Reference values obtained using COLMAP SfM library. tform_ref = np.array([[-0.217859, 0.419282, -0.0343075], [-0.0717941, 0.0451643, 0.0216073], [0.248062, -0.429478, 0.0221019]]) assert_almost_equal(tform.params, tform_ref, 6) def test_fundamental_matrix_residuals(): essential_matrix_tform = EssentialMatrixTransform( rotation=np.eye(3), translation=np.array([1, 0, 0])) tform = FundamentalMatrixTransform() tform.params = essential_matrix_tform.params src = np.array([[0, 0], [0, 0], [0, 0]]) dst = np.array([[2, 0], [2, 1], [2, 2]]) assert_almost_equal(tform.residuals(src, dst)**2, [0, 0.5, 2]) def test_fundamental_matrix_forward(): essential_matrix_tform = EssentialMatrixTransform( rotation=np.eye(3), translation=np.array([1, 0, 0])) tform = FundamentalMatrixTransform() tform.params = essential_matrix_tform.params src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform(src), [[0, -1, 0], [0, -1, 1], [0, -1, 1]]) def test_fundamental_matrix_inverse(): essential_matrix_tform = EssentialMatrixTransform( rotation=np.eye(3), translation=np.array([1, 0, 0])) tform = FundamentalMatrixTransform() tform.params = essential_matrix_tform.params src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform.inverse(src), [[0, 1, 0], [0, 1, -1], [0, 1, -1]]) def test_essential_matrix_init(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([0, 0, 1])) assert_equal(tform.params, np.array([0, -1, 0, 1, 0, 0, 0, 0, 0]).reshape(3, 3)) def test_essential_matrix_estimation(): src = np.array([1.839035, 1.924743, 0.543582, 0.375221, 0.473240, 0.142522, 0.964910, 0.598376, 0.102388, 0.140092, 15.994343, 9.622164, 0.285901, 0.430055, 0.091150, 0.254594]).reshape(-1, 2) dst = np.array([1.002114, 1.129644, 1.521742, 1.846002, 1.084332, 0.275134, 0.293328, 0.588992, 0.839509, 0.087290, 1.779735, 1.116857, 0.878616, 0.602447, 0.642616, 1.028681]).reshape(-1, 2) tform = estimate_transform('essential', src, dst) # Reference values obtained using COLMAP SfM library. tform_ref = np.array([[-0.0811666, 0.255449, -0.0478999], [-0.192392, -0.0531675, 0.119547], [0.177784, -0.22008, -0.015203]]) assert_almost_equal(tform.params, tform_ref, 6) def test_essential_matrix_forward(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([1, 0, 0])) src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform(src), [[0, -1, 0], [0, -1, 1], [0, -1, 1]]) def test_essential_matrix_inverse(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([1, 0, 0])) src = np.array([[0, 0], [0, 1], [1, 1]]) assert_almost_equal(tform.inverse(src), [[0, 1, 0], [0, 1, -1], [0, 1, -1]]) def test_essential_matrix_residuals(): tform = EssentialMatrixTransform(rotation=np.eye(3), translation=np.array([1, 0, 0])) src = np.array([[0, 0], [0, 0], [0, 0]]) dst = np.array([[2, 0], [2, 1], [2, 2]]) assert_almost_equal(tform.residuals(src, dst)**2, [0, 0.5, 2]) def test_projective_estimation(): # exact solution tform = estimate_transform('projective', SRC[:4, :], DST[:4, :]) assert_almost_equal(tform(SRC[:4, :]), DST[:4, :]) # over-determined tform2 = estimate_transform('projective', SRC, DST) assert_almost_equal(tform2.inverse(tform2(SRC)), SRC) # via estimate method tform3 = ProjectiveTransform() tform3.estimate(SRC, DST) assert_almost_equal(tform3.params, tform2.params) def test_projective_weighted_estimation(): # Exact solution with same points, and unity weights tform = estimate_transform('projective', SRC[:4, :], DST[:4, :]) tform_w = estimate_transform('projective', SRC[:4, :], DST[:4, :], np.ones(4)) assert_almost_equal(tform.params, tform_w.params) # Over-determined solution with same points, and unity weights tform = estimate_transform('projective', SRC, DST) tform_w = estimate_transform('projective', SRC, DST, np.ones(SRC.shape[0])) assert_almost_equal(tform.params, tform_w.params) # Repeating a point, but setting its weight small, should give nearly # the same result. point_weights = np.ones(SRC.shape[0] + 1) point_weights[0] = 1.0e-15 tform1 = estimate_transform('projective', SRC, DST) tform2 = estimate_transform('projective', SRC[np.arange(-1, SRC.shape[0]), :], DST[np.arange(-1, SRC.shape[0]), :], point_weights) assert_almost_equal(tform1.params, tform2.params, decimal=3) def test_projective_init(): tform = estimate_transform('projective', SRC, DST) # init with transformation matrix tform2 = ProjectiveTransform(tform.params) assert_almost_equal(tform2.params, tform.params) def test_polynomial_estimation(): # over-determined tform = estimate_transform('polynomial', SRC, DST, order=10) assert_almost_equal(tform(SRC), DST, 6) # via estimate method tform2 = PolynomialTransform() tform2.estimate(SRC, DST, order=10) assert_almost_equal(tform2.params, tform.params) def test_polynomial_weighted_estimation(): # Over-determined solution with same points, and unity weights tform = estimate_transform('polynomial', SRC, DST, order=10) tform_w = estimate_transform('polynomial', SRC, DST, order=10, weights=np.ones(SRC.shape[0])) assert_almost_equal(tform.params, tform_w.params) # Repeating a point, but setting its weight small, should give nearly # the same result. point_weights = np.ones(SRC.shape[0] + 1) point_weights[0] = 1.0e-15 tform1 = estimate_transform('polynomial', SRC, DST, order=10) tform2 = estimate_transform('polynomial', SRC[np.arange(-1, SRC.shape[0]), :], DST[np.arange(-1, SRC.shape[0]), :], order=10, weights=point_weights) assert_almost_equal(tform1.params, tform2.params, decimal=4) def test_polynomial_init(): tform = estimate_transform('polynomial', SRC, DST, order=10) # init with transformation parameters tform2 = PolynomialTransform(tform.params) assert_almost_equal(tform2.params, tform.params) def test_polynomial_default_order(): tform = estimate_transform('polynomial', SRC, DST) tform2 = estimate_transform('polynomial', SRC, DST, order=2) assert_almost_equal(tform2.params, tform.params) def test_polynomial_inverse(): with pytest.raises(Exception): PolynomialTransform().inverse(0) def test_union(): tform1 = SimilarityTransform(scale=0.1, rotation=0.3) tform2 = SimilarityTransform(scale=0.1, rotation=0.9) tform3 = SimilarityTransform(scale=0.1 ** 2, rotation=0.3 + 0.9) tform = tform1 + tform2 assert_almost_equal(tform.params, tform3.params) tform1 = AffineTransform(scale=(0.1, 0.1), rotation=0.3) tform2 = SimilarityTransform(scale=0.1, rotation=0.9) tform3 = SimilarityTransform(scale=0.1 ** 2, rotation=0.3 + 0.9) tform = tform1 + tform2 assert_almost_equal(tform.params, tform3.params) assert tform.__class__ == ProjectiveTransform tform = AffineTransform(scale=(0.1, 0.1), rotation=0.3) assert_almost_equal((tform + tform.inverse).params, np.eye(3)) tform1 = SimilarityTransform(scale=0.1, rotation=0.3) tform2 = SimilarityTransform(scale=0.1, rotation=0.9) tform3 = SimilarityTransform(scale=0.1 * 1/0.1, rotation=0.3 - 0.9) tform = tform1 + tform2.inverse assert_almost_equal(tform.params, tform3.params) def test_union_differing_types(): tform1 = SimilarityTransform() tform2 = PolynomialTransform() with pytest.raises(TypeError): tform1.__add__(tform2) def test_geometric_tform(): tform = GeometricTransform() with pytest.raises(NotImplementedError): tform(0) with pytest.raises(NotImplementedError): tform.inverse(0) with pytest.raises(NotImplementedError): tform.__add__(0) # See gh-3926 for discussion details for i in range(20): # Generate random Homography H = np.random.rand(3, 3) * 100 H[2, H[2] == 0] += np.finfo(float).eps H /= H[2, 2] # Craft some src coords src = np.array([ [(H[2, 1] + 1) / -H[2, 0], 1], [1, (H[2, 0] + 1) / -H[2, 1]], [1, 1], ]) # Prior to gh-3926, under the above circumstances, # destination coordinates could be returned with nan/inf values. tform = ProjectiveTransform(H) # Construct the transform dst = tform(src) # Obtain the dst coords # Ensure dst coords are finite numeric values assert(np.isfinite(dst).all()) def test_invalid_input(): with pytest.raises(ValueError): ProjectiveTransform(np.zeros((2, 3))) with pytest.raises(ValueError): AffineTransform(np.zeros((2, 3))) with pytest.raises(ValueError): SimilarityTransform(np.zeros((2, 3))) with pytest.raises(ValueError): EuclideanTransform(
np.zeros((2, 3))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 22 23:38:35 2017 para UNLP calibracion con incerteza: 1- calibracion intrinseca chessboard con ocv 2- tomo como condicion inicial y optimizo una funcion error custom 3- saco el hessiano en el optimo 4- sacar asi la covarianza de los parametros optimizados teste0: 1- con imagenes no usadas para calibrar calcula la probabilidad de los parámetros optimos dado los datos de test @author: sebalander """ # %% #import glob import numpy as np #import scipy.linalg as ln import scipy.stats as sts import matplotlib.pyplot as plt #from importlib import reload from copy import deepcopy as dc #import numdifftools as ndf #from calibration import calibrator as cl import corner import time import sys sys.path.append("/home/sebalander/Code/sebaPhD") #from dev import multipolyfit as mpf from dev import bayesLib as bl #from multiprocess import Process, Queue, Value # https://github.com/uqfoundation/multiprocess/tree/master/py3.6/examples # %% LOAD DATA # input plotCorners = False # cam puede ser ['vca', 'vcaWide', 'ptz'] son los datos que se tienen camera = 'vcaWide' # puede ser ['rational', 'fisheye', 'poly'] modelos = ['poly', 'rational', 'fisheye'] model = modelos[2] imagesFolder = "./resources/intrinsicCalib/" + camera + "/" cornersFile = imagesFolder + camera + "Corners.npy" patternFile = imagesFolder + camera + "ChessPattern.npy" imgShapeFile = imagesFolder + camera + "Shape.npy" # model data files distCoeffsFile = imagesFolder + camera + model + "DistCoeffs.npy" linearCoeffsFile = imagesFolder + camera + model + "LinearCoeffs.npy" tVecsFile = imagesFolder + camera + model + "Tvecs.npy" rVecsFile = imagesFolder + camera + model + "Rvecs.npy" imageSelection = np.arange(33) # selecciono con que imagenes trabajar # load data imagePoints = np.load(cornersFile)[imageSelection] n = len(imagePoints) # cantidad de imagenes chessboardModel = np.load(patternFile) imgSize = tuple(
np.load(imgShapeFile)
numpy.load
import numpy as np from pydiva import pydiva2d import os import unittest print("Running tests on Diva data") print(" ") class TestDivaData(unittest.TestCase): @classmethod def setUp(cls): # Create lists and arrays cls.xlist = [1., 2., 10] cls.ylist = [2., -1., 0.] cls.datalist = [0., 10, 0] cls.weightlist = [1., .2, 1.] cls.xarray = np.array((6., 4., 2.1)) cls.yarray = np.array((1., 10., -1)) cls.yarray2 = np.array((1., 10., -1, 3.)) cls.datarray = np.array((7., 8., 9.)) cls.weightarray = np.array((1., 1., 1.)) cls.nogeojsonfile = "./nodata/data.js" cls.outputfile = "./datawrite/data.dat" cls.geojsonfile = "./datawrite/data.js" def test_init_data(self): data0 = pydiva2d.Diva2DData() self.assertIsNone(data0.x) self.assertIsNone(data0.y) self.assertIsNone(data0.field) self.assertIsNone(data0.weight) data1 = pydiva2d.Diva2DData(self.xlist, self.ylist, self.datalist) np.testing.assert_array_equal(data1.x, self.xlist) np.testing.assert_array_equal(data1.y, self.ylist) np.testing.assert_array_equal(data1.field, self.datalist) np.testing.assert_array_equal(data1.weight, np.ones_like(data1.field)) # Mix lists and arrays data2 = pydiva2d.Diva2DData(self.xarray, self.yarray, self.datalist, self.weightlist) np.testing.assert_array_equal(data2.x, self.xarray) np.testing.assert_array_equal(data2.y, self.yarray)
np.testing.assert_array_equal(data2.field, self.datalist)
numpy.testing.assert_array_equal
# -*- coding: utf-8 -*- """ Created on Tue May 25 23:51:59 2021 @author: Raktim """ seed = 42 import tensorflow as tf import os import random import numpy as np from data_class import Data from tqdm import tqdm from skimage.io import imread, imshow from skimage.transform import resize import matplotlib.pyplot as plt from skimage.color import rgb2gray from skimage import img_as_float from skimage.transform import resize from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping from keras import backend as K #from models_new import * #from sq_ex_block import * #from models import * IMG_WIDTH = 256 IMG_HEIGHT = 256 IMG_CHANNELS = 3 TRAIN_PATH = 'C:/Users/rakti/Desktop/Test_Qupath/tiles/train/' TEST_PATH = 'C:/Users/rakti/Desktop/Test_Qupath/tiles/test_all/' data_obj= Data() # You can provide your desired image size # You can upscale or downscale X_train, Y_train = data_obj.load_segmentation_data(TRAIN_PATH, 'tif', IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS) X_test, Y_test = data_obj.load_segmentation_data(TEST_PATH, 'tif', IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS) # Visualize image with corresponding mask #data_obj.visualize(X_train,Y_train) #Std Data Augmentation from sklearn.model_selection import train_test_split X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.25, random_state = seed) from keras.preprocessing.image import ImageDataGenerator img_data_gen_args = dict(rotation_range=90, width_shift_range=0.3, height_shift_range=0.3, shear_range=0.5, zoom_range=0.3, horizontal_flip=True, vertical_flip=True, fill_mode='reflect') mask_data_gen_args = dict(rotation_range=90, width_shift_range=0.3, height_shift_range=0.3, shear_range=0.5, zoom_range=0.3, horizontal_flip=True, vertical_flip=True, fill_mode='reflect', preprocessing_function = lambda x: np.where(x>0, 1, 0).astype(x.dtype)) #Binarize the output again. image_data_generator = ImageDataGenerator(**img_data_gen_args) image_data_generator.fit(X_train, augment=True, seed=seed) mask_data_generator = ImageDataGenerator(**mask_data_gen_args) mask_data_generator.fit(Y_train, augment=True, seed=seed) train_image = image_data_generator.flow(X_train, seed=seed) val_image = image_data_generator.flow(X_val, seed=seed) train_mask = mask_data_generator.flow(Y_train, seed=seed) val_mask = mask_data_generator.flow(Y_val, seed=seed) #i=0 #for batch in tqdm(image_data_generator.flow(X_train, batch_size=X_train.shape[0], # save_to_dir='C:/Users/rakti/Desktop/U-Net/augmented/image', save_format='tif', seed=seed)): # i += 1 # if i >= 3: # break # otherwise the generator would loop indefinitely # #j=0 #for batch in tqdm(mask_data_generator.flow(Y_train, batch_size=Y_train.shape[0], # save_to_dir='C:/Users/rakti/Desktop/U-Net/augmented/mask', save_format='tif', seed=seed)): # j += 1 # if j >=3: # break # otherwise the generator would loop indefinitely def my_image_mask_generator(image_generator, mask_generator): train_generator = zip(image_generator, mask_generator) for (img, mask) in train_generator: yield (img, mask) train_generator = my_image_mask_generator(train_image, train_mask) validation_generator = my_image_mask_generator(val_image, val_mask) x = train_image.next() y = train_mask.next() for i in range(0,1): image = x[i] mask = y[i] plt.subplot(1,2,1) plt.imshow(image[:,:]) plt.subplot(1,2,2) plt.imshow(mask[:,:,0], cmap='gray') plt.show() from sklearn.model_selection import train_test_split import segmentation_models as sm from segmentation_models.losses import bce_jaccard_loss, bce_dice_loss, binary_crossentropy from segmentation_models.metrics import iou_score, f1_score, recall, precision from segmentation_models.utils import set_trainable from segmentation_models import metrics, losses from keras.models import load_model from skimage import img_as_float, img_as_int BACKBONE = 'seresnet50' preprocess_input = sm.get_preprocessing(BACKBONE) model_checkpoint = ModelCheckpoint('unet_v1_camelyon16.h5', monitor='loss', verbose=1, save_best_only=True) #X_train = preprocess_input(X_train) #X_train = preprocess_input(train_img) #x_val = preprocess_input(_val) # define model model = sm.Unet(BACKBONE, encoder_weights='imagenet', input_shape=(IMG_WIDTH, IMG_HEIGHT, IMG_CHANNELS), classes=1, encoder_freeze=True) #model = sm.PSPNet(BACKBONE, encoder_weights='imagenet', input_shape=(240, 240, 3)) model.compile(optimizer='adam', loss=bce_dice_loss, metrics=[metrics.iou_score]) print(model.summary()) batch_size = 50 steps_per_epoch = 3*(len(X_train))//batch_size history = model.fit_generator(train_generator, validation_data=validation_generator, epochs=100, validation_steps=steps_per_epoch, steps_per_epoch=steps_per_epoch, callbacks=[model_checkpoint]) #history = model.fit(train_generator, validation_steps=20, validation_data=validation_datagen, epochs=50, steps_per_epoch=100) #steps_per_epoch=2000 // batch_size #validation_steps=800 // batch_size #model.load_weights('unet_seresnet50_camelyon16.h5') objects={'binary_crossentropy_plus_dice_loss': bce_dice_loss, 'iou_score':iou_score} model=load_model('unet_seresnet50_camelyon16.h5', custom_objects=objects) #model.compile(optimizer='adam', loss=bce_dice_loss, metrics=[iou_score]) model.summary() #Evaluate the model # evaluate model _, acc = model.evaluate(X_test, Y_test) print("Accuracy of Jacard Model is = ", (acc * 100.0), "%") #IOU y_pred=model.predict(X_test) y_pred_thresholded = y_pred > 0.5 intersection = np.logical_and(Y_test, y_pred_thresholded) union = np.logical_or(Y_test, y_pred_thresholded) iou_score = np.sum(intersection) /
np.sum(union)
numpy.sum
import torch import numpy as np from torch import nn from .base import PDE from .cuboid_mesh import CuboidMesh def gauss_pt_eval(tensor, N, nsd=2, stride=1): if nsd == 1: conv_gp = nn.functional.conv1d elif nsd == 2: conv_gp = nn.functional.conv2d elif nsd == 3: conv_gp = nn.functional.conv3d result_list = [] for i in range(len(N)): result_list.append(conv_gp(tensor, N[i], stride=stride)) return torch.cat(result_list, 1) class DiffNetFEM(PDE): """docstring for DiffNetFEM""" def __init__(self, network, dataset, **kwargs): super(DiffNetFEM, self).__init__(network, dataset, **kwargs) self.ngp_1d = kwargs.get('ngp_1d', 2) self.fem_basis_deg = kwargs.get('fem_basis_deg', 1) # Gauss quadrature setup if self.fem_basis_deg == 1: ngp_1d = 2 elif self.fem_basis_deg == 2: ngp_1d = 3 elif self.fem_basis_deg == 3: ngp_1d = 3 if ngp_1d > self.ngp_1d: self.ngp_1d = ngp_1d self.ngp_total = ngp_total = self.ngp_1d**self.nsd self.gpx_1d, self.gpw_1d = self.gauss_guadrature_scheme(self.ngp_1d) self.nelemX = nelemX = int((self.domain_sizeX - 1)/self.fem_basis_deg) self.nelemY = nelemY = int((self.domain_sizeY - 1)/self.fem_basis_deg) if self.nsd == 3: self.nelemZ = nelemZ = int((self.domain_sizeZ - 1)/self.fem_basis_deg) self.nelem = nelem = int((self.domain_size - 1)/self.fem_basis_deg) # for backward compatibility (uses the X dir value) self.hx = self.domain_lengthX / self.nelemX self.hy = self.domain_lengthY / self.nelemY if self.nsd == 3: self.hz = self.domain_lengthZ / self.nelemZ self.h = self.domain_length / self.nelem # for backward compatibility (uses the X dir value) # Basis functions setup if self.fem_basis_deg == 1: self.nbf_1d = nbf_1d = 2 self.nbf_total = nbf_total = self.nbf_1d**self.nsd self.bf_1d = lambda x: np.array([0.5*(1.-x), 0.5*(1.+x)]) self.bf_1d_der = lambda x:
np.array([0.5*(0.-1.), 0.5*(0.+1.)])
numpy.array
__all__ = [ "B_components", "geodetic_to_geocentric", "geodetic_to_geocentric_IGRF13", "decdeg2dms", "Norm_Schimdt", "Norm_Stacey", "grid_geomagnetic", "construct_xarray", "plot_geomagetism", ] # Ellipsoid parameters: semi major axis in metres, reciprocal flattening. GRS80 = (6_378_137, 298.257222100882711) WGS84 = (6_378_137, 298.257223563) # Ellipsoid parameters: semi major axis in metres, semi minor axis in metres. GRS80_ = (6378.137, 6356.752314140355847852106) WGS84_ = (6378.137, 6356.752314245179497563967) # mean radius of the earth in metres must be chosen in accorance with the radius used in determining # the SH coefficients EARTH_RADIUS = 6_371_200 def B_components( phi_, theta_, altitude, Date, referential="geodetic", file="IGRF13.COF", ELLIPSOID=WGS84, SV=False, ): """B_components computes the geomagnetic magnetic field components. We use the Peddie's notation <NAME>. (1982). "International Geomagnetic Reference Field : the third generation." J. Geomag. Geolectr 34: 309-326. Arguments phi_ (float): longitude in deg (0° - 360°) or West East longitude (-180° - +180°) theta_(float): Colatitude in deg (0° - 180°) altitude (float): Elevation in m, Date : Date used to compute the magnetic field 1900<= Date< 2025 . Date is a dictionary Date["mode"]="ymd" if Date is expressed as yyyy/mm/dd otherwise Date is in decimal value Date["year"]= year if Date["mode"]="ymd" oterwise Date["year"]=decimal value year Date["month"] Date["day"], Date["hour"] Date["minute"] Date["second"] ex: Date = {"mode":"ymd","year":2020,"month":16,"day":16,"hour":0,"minute":0,"second":0} Date = {"dec":"ymd","year":2020.5} referential : referential = geotetic if the colatitude is expressed in geotetic referential : referential = geocentric if the colatitude is expressed in geotetic referential file (string) : name of the file containing the Gauss coefficients h and g file = "IGRF13.COF" or "WMM_2015.COF" or "WMM_2020.COF" (default "WMM_2020.COF") ELLIPSOID (tuple): WGS84 or WGS84 (default WGS84) SV (bool): if True computation of the field secular variation Returns result (dict):{'D': Declination in deg, 'F': Total field intensity in nT, 'H': Horizontal field intensity in nT, 'I': Inclination in deg, 'X': North component in nT in the geocentric coordinate, 'Y': East component in nT in both geocentric and geotetic coordinate, 'Z': Down component in nT in the geocentric coordinate, 'Fd': Total field intensity secular variation in nT/year if SV==True None elsewhere, 'Hd': Horizontal field intensity secular variation in nT/year if SV==True None if SV==True None elsewhere, 'Yd': East component secular variation in nT/year in both geocentric and geotetic coordinate if SV==True None elsewhere, 'Zd': Down component secular variatin in nT/year in the geocentric coordinate if SV==True None elsewhere, 'Id': Inclination secular variationin deg/year, 'Dd': Declination secular variationin deg/year """ # Standard Library dependencies import os as os # 3rd party import import numpy as np from scipy.special import lpmn # Internal import from .read_geo_data import read_gauss_coeff EPS = 1.0e-5 # if colatitude <EOS rad or colatitude > pi-EPS we call field_computation_pole ADD_YEARS = 5 # extrapolation possible over ADD_YEARS additional years def assign_hg(Date): """Time interpollation/extrapollation of the coefficients h and g : - for years[0]<= Year <years[-1] we use an interpollation scheme - for years[-1]<=year<=years[-1]+ 5 we use an extrapolationllation scheme with a secular variation (SV) nT/year """ if Date["mode"] == "ymd": del Date["mode"] Year = decimal_year(**Date) else: Year = Date["year"] if (Year < years[0]) or (Year > years[-1] + ADD_YEARS): raise Exception( f"Year={Year} out of range. Must be >={years[0]} and <= {years[0]+5}" ) idx = (np.where(years <= Year))[0][-1] year = int(years[idx]) dt = Year - year dic_h0 = dic_dic_h[str(year)] dic_g0 = dic_dic_g[str(year)] N = dic_N[str(year)] dic_h = {} dic_g = {} if ( (Year >= years[0]) & (Year < years[-1]) & (years[0] != years[-1]) ): # use interpollation Dt = years[idx + 1] - years[idx] dic_h1 = dic_dic_h[str(int(years[idx + 1]))] dic_g1 = dic_dic_g[str(int(years[idx + 1]))] for x in dic_h0.keys(): dic_h[x] = dic_h0[x] + dt * (dic_h1[x] - dic_h0[x]) / Dt dic_g[x] = dic_g0[x] + dt * (dic_g1[x] - dic_g0[x]) / Dt elif (Year >= years[-1]) & ( Year < years[-1] + ADD_YEARS ): # use extrapolation through secular variation (SV) for x in dic_h0.keys(): dic_h[x] = dic_h0[x] + dic_dic_SV_h[str(int(years[-1]))][x] * dt dic_g[x] = dic_g0[x] + dic_dic_SV_g[str(int(years[-1]))][x] * dt return dic_h, dic_g, N, year # Assign dic_dic_g,dic_dic_h,dic_dic_SV_g,dic_dic_SV_h,dic_N,years # Avoid the reaffectation of these coefficients after the first call of B_components B_components.flag = getattr(B_components, "flag", True) if B_components.flag: # First call ( dic_dic_h, dic_dic_g, dic_dic_SV_h, dic_dic_SV_g, dic_N, years, ) = read_gauss_coeff(file=file) B_components.dic_dic_g = getattr(B_components, "dic_dic_g", dic_dic_g) B_components.dic_dic_h = getattr(B_components, "dic_dic_h", dic_dic_h) B_components.dic_dic_SV_h = getattr(B_components, "dic_dic_SV_h", dic_dic_SV_h) B_components.dic_dic_SV_g = getattr(B_components, "dic_dic_SV_g", dic_dic_SV_g) B_components.dic_N = getattr(B_components, "dic_N", dic_N) B_components.years = getattr(B_components, "years", years) B_components.flag = False else: dic_dic_g = B_components.dic_dic_g dic_dic_h = B_components.dic_dic_h dic_dic_SV_h = B_components.dic_dic_SV_h dic_dic_SV_g = B_components.dic_dic_SV_g dic_N = B_components.dic_N years = B_components.years dic_h, dic_g, N, year = assign_hg( Date ) # performs interpolation of the coefficients h and g # Compute the transformation matrix from geodetic to geocentric frames if referential == "geodetic": r_geocentric, co_latitude_geocentric, delta = geodetic_to_geocentric( ELLIPSOID, theta_, altitude ) theta = co_latitude_geocentric mat_rot = np.array( [ [np.cos(delta), 0, np.sin(delta)], [0, 1, 0], [-np.sin(delta), 0, np.cos(delta)], ] ) else: r_geocentric = EARTH_RADIUS + altitude theta = theta_ * np.pi / 180 mat_rot = np.identity(3) r_a = EARTH_RADIUS / r_geocentric if phi_ >= 0: phi = phi_ * np.pi / 180 else: phi = (360 + phi_) * np.pi / 180 # synthesis of Xc, Yc and Zc in geocentric coordinates if theta > EPS and theta < np.pi - EPS: # Legendre polynomes computation Norm = Norm_Schimdt(N, N) M, Mp = lpmn(N, N, np.cos(theta)) M = M * Norm Mp = Mp * Norm * (-1) * np.sin(theta) # dPn,m(cos(theta))/d theta X, Y, Z = field_computation(r_a, M, Mp, phi, theta, dic_g, dic_h, N, mat_rot) else: X, Y, Z = field_computation_pole(r_a, phi, theta, dic_g, dic_h, N, mat_rot, EPS) F = np.linalg.norm([X, Y, Z]) H = np.linalg.norm([X, Y]) D = np.arctan2(Y, X) * 180 / np.pi # declination I = np.arctan2(Z, H) * 180 / np.pi # inclination # secular variation computation Xd, Yd, Zd, Hd, Fd = [None] * 5 if SV: if theta > EPS and theta < np.pi - EPS: # Legendre polynomes computation Norm = Norm_Schimdt(N, N) M, Mp = lpmn(N, N, np.cos(theta)) M = M * Norm Mp = Mp * Norm * (-1) * np.sin(theta) # dPn,m(cos(theta))/d theta Xd, Yd, Zd = field_computation( r_a, M, Mp, phi, theta, dic_dic_SV_g[str(year)], dic_dic_SV_h[str(year)], N, mat_rot, ) else: Xd, Yd, Zd = field_computation_pole( r_a, phi, theta, dic_dic_SV_g[str(year)], dic_dic_SV_h[str(year)], N, mat_rot, EPS, ) Hd = (X * Xd + Y * Yd) / H Fd = (X * Xd + Y * Yd + Z * Zd) / F Id = 180 * (H * Zd - Z * Hd) / (F * F * np.pi) Dd = 180 * (X * Yd - Y * Xd) / (H * H * np.pi) result = dict( zip( [ "X", "Y", "Z", "F", "H", "I", "D", "Xd", "Yd", "Zd", "Hd", "Fd", "Id", "Dd", ], [X, Y, Z, F, H, I, D, Xd, Yd, Zd, Hd, Fd, Id, Dd], ) ) return result def field_computation_pole(r_a, phi, theta, dic_g, dic_h, N, mat_rot, EPS): """ compute the geomagnetic field in the geotetic coordinates near the north and south pole. Arguments: r_a (float): geocentric radial ccordinale/radius of the Earth phi (float); longitude (rad) theta: dic_g (dict): g Gauss coefficients dic_h (dict): h Gauss coefficients N (int): order of the spherical harmonic decomposition Returns: X (float): North component in nT in the geocentric coordinate, Y (float): East component in nT in both geocentric and geotetic coordinate, Z (float): Down component in nT in the geocentric coordinate, """ # 3rd party import import numpy as np Zc = 0 Sh = 0 Sg = 0 coef = r_a * r_a if theta < EPS: for n in range(1, N + 1): coef *= r_a Zc -= (n + 1) * (r_a) ** (n + 2) * dic_g[(0, n)] Sh += np.sqrt(n * (n + 1) / 2) * (r_a) ** (n + 2) * dic_h[(1, n)] Sg += np.sqrt(n * (n + 1) / 2) * (r_a) ** (n + 2) * dic_g[(1, n)] Xc = Sg * np.cos(phi) + Sh * np.sin(phi) Yc = Sg * np.sin(phi) - Sh * np.cos(phi) elif theta > np.pi - EPS: for n in range(1, N + 1): coef *= -r_a Zc -= coef * (n + 1) * dic_g[(0, n)] Sh += coef * np.sqrt(n * (n + 1) / 2) * dic_h[(1, n)] Sg += coef * np.sqrt(n * (n + 1) / 2) * dic_g[(1, n)] Xc = Sg * np.cos(phi) + Sh * np.sin(phi) Yc = -Sg * np.sin(phi) + Sh * np.cos(phi) [X, Y, Z] = np.matmul(mat_rot, [Xc, Yc, Zc]) return X, Y, Z def field_computation(r_a, M, Mp, phi, theta, dic_g, dic_h, N, mat_rot): """ compute the geomagnetic field in the geotetic coordinates Arguments: r_a (float): geocentric radial ccordinale/radius of the Earth M (np array): matrix of the Legendre polynomes values Mp (np array): matrix of the derivative of the Legendre polynomes vs the colatitude phi (float); longitude (rad) theta: dic_g (dict): g Gauss coefficients dic_h (dict): h Gauss coefficients N (int): order of the spherical harmonic decomposition Returns: X (float): North component in nT in the geocentric coordinate, Y (float): East component in nT in both geocentric and geotetic coordinate, Z (float): Down component in nT in the geocentric coordinate, """ # 3rd party import import numpy as np # synthesis of Xc, Yc and Zc in geocentric coordinates Xc = 0.0 Yc = 0.0 Zc = 0.0 coef = r_a * r_a for n in range(1, N + 1): coef *= r_a Xc += ( sum( [ Mp[m, n] * ( dic_g[(m, n)] * np.cos(m * phi) + dic_h[(m, n)] * np.sin(m * phi) ) for m in range(0, n + 1) ] ) * coef ) Yc += ( sum( [ m * M[m, n] * ( dic_g[(m, n)] * np.sin(m * phi) - dic_h[(m, n)] * np.cos(m * phi) ) for m in range(0, n + 1) ] ) * coef ) Zc -= ( sum( [ M[m, n] * ( dic_g[(m, n)] * np.cos(m * phi) + dic_h[(m, n)] * np.sin(m * phi) ) for m in range(0, n + 1) ] ) * coef * (n + 1) ) Yc = Yc / np.sin(theta) # conversion to the coordinate system specified by variable referential [X, Y, Z] = np.matmul(mat_rot, [Xc, Yc, Zc]) return X, Y, Z def geodetic_to_geocentric(ellipsoid, co_latitude, height): """Return geocentric (Cartesian) radius and colatitude corresponding to the geodetic coordinates given by colatitude (in degrees ) and height (in metre) above ellipsoid. see http://clynchg3c.com/Technote/geodesy/coordcvt.pdf credit : https://codereview.stackexchange.com/questions/195933/convert-geodetic-coordinates-to-geocentric-cartesian with minor modifications. Arguments: ellipsoid (tuple): ellipsoid parameters (semi-major axis, reciprocal flattening) co_latitude (float): geotetic colatitude (in degrees) 0°<=co_latitude<=180° height (float): height (in metre) above ellipsoid Returns r_geocentric (float): geocentric radius (m) co_latitude_geocentric (float): geocentric colatitude (radians) delta (float): angle between geocentric and geodetic referentials (radians) """ # 3rd Party dependencies from math import radians import numpy as np lat = radians(90 - co_latitude) # geodetic latitude sin_lat = np.sin(lat) a, rf = ellipsoid # semi-major axis, reciprocal flattening e2 = 1 - (1 - 1 / rf) ** 2 # eccentricity squared r_n = a / np.sqrt(1 - e2 * sin_lat ** 2) # prime vertical curvature radius r = (r_n + height) * np.cos(lat) # perpendicular distance from z axis z = (r_n * (1 - e2) + height) * sin_lat r_geocentric = np.sqrt(r ** 2 + z ** 2) co_latitude_geocentric = np.pi / 2 - np.arctan( (1 - e2 * r_n / (r_n + height)) * np.tan(lat) ) # geocentric colatitude delta = co_latitude_geocentric - radians( co_latitude ) # angle between geocentric and geodetic referentials return r_geocentric, co_latitude_geocentric, delta def geodetic_to_geocentric_IGRF13(ellipsoid, co_latitude, height): """conversion from geodetic to geocentric coordinates. Translated from FORTRAN program IGRF13 ellipsoid = GRS80 or WGS84 according to the choice of world geodetic system [1] Peddie, <NAME>. International Geomagnetic Reference Field : the third generation J. Geomag. Geolectr 34 p. 309-326 Arguments ellipsoid (tuple): (a=semi major axis in metres, b=semi major axis in metres) colatitude : geodetic colatitude in degree (0<= colatitude <=180) height : elevation in meters above the geoid Returns r : geocentric radius ct: cos(geocentric colatitude ) st: sin(geocentric colatitude ) cd: cos(delta ) delta is the angle between geocentric and geodetic colatitude (radians) sd: sin(delta )""" # 3rd Party dependencies from math import radians import numpy as np theta = radians(co_latitude) st = np.sin(theta) ct = np.cos(theta) a, b = ellipsoid # a,b semi major and semi minor axis a2 = a * a b2 = b * b one = a2 * st * st two = b2 * ct * ct three = one + two rho = np.sqrt(three) # a*a/r_n with r_n the prime vertical curvature radius r = np.sqrt( height * (height + 2.0 * rho) + (a2 * one + b2 * two) / three ) # geocentric radius [1](6) cd = (height + rho) / r # cos(delta ) sd = (a2 - b2) / rho * ct * st / r # sin(delta ) one = ct ct = ct * cd - st * sd # cos(geocentric colatitude ) st = st * cd + one * sd # sin(geocentric colatitude ) return r, ct, st, cd, sd def Norm_Schimdt(m, n): """Norm_Schimdt buids the normalization matrix which coefficients can be found in Winch D. E. et al. Geomagnetism and Schmidt quasi-normalization Geophys. J. Int. 160 p. 487-454 2005""" # 3rd party dependencies import math import numpy as np sgn = lambda m: 1 if m % 2 == 0 else -1 norm = ( lambda m, n: sgn(m) * np.sqrt((2 - (m == 0)) * math.factorial(n - m) / math.factorial(n + m)) if m > 0 else 1 ) norm_schimdt = [] for m_ in range(m + 1): norm_schimdt.append( [norm(m_, n_) if (n_ - np.abs(m_) >= 0) else 0 for n_ in range(n + 1)] ) return np.array(norm_schimdt) def Norm_Stacey(m, n): """Norm_Stacey buids the normalization matrix which coefficients can be found in Stracey F. D. et al. Physics of the earth Cambridge appendix C""" # 3rd party dependencies import math import numpy as np sgn = lambda m: 1 if m % 2 == 0 else -1 norm = ( lambda m, n: sgn(m) * np.sqrt( (2 - (m == 0)) * (2 * m + 1) * math.factorial(n - m) / math.factorial(n + m) ) if m > 0 else 1 ) norm_stacey = [] for m_ in range(m + 1): norm_stacey.append( [norm(m_, n_) if (n_ - np.abs(m_) >= 0) else 0 for n_ in range(n + 1)] ) return np.array(norm_stacey) def decimal_year(year, month, day, hour, minute, second): """decimal_year converts a date (year,month,day,hour,minute,second) into a decimal date. credit : Kimvais https://stackoverflow.com/questions/6451655/how-to-convert-python-datetime-dates-to-decimal-float-years""" # Standard Library dependencies from datetime import datetime d = datetime(year, month, day, hour, minute, second) year_ = (float(d.strftime("%j")) - 1) / 366 + float(d.strftime("%Y")) return year_ def decdeg2dms(dd): """ Tansform decimal degrees into degrees minutes seconds Argument: dd (float): decimal angle Returns: degrees, minutes, seconds""" negative = dd < 0 dd = abs(dd) minutes, seconds = divmod(dd * 3600, 60) degrees, minutes = divmod(minutes, 60) if negative: if degrees > 0: degrees = -degrees elif minutes > 0: minutes = -minutes else: seconds = -seconds return degrees, minutes, seconds def construct_xarray(intensities, angles, intensities_sv, angles_sv, longitudes, colatitudes): """ construct the xarray of a hyperspectrum Arguments: intensities (np array): geomagnetic field components intensity (nT) angles (np array): geomagnetic field inclination and declination intensities_sv (np array): secular variation of geomagnetic field components intensity (nT/year) angles_sv (np array): secular variation of the geomagnetic field inclination and declination (°/year) longitudes (np array): longitude (°) colatitudes (np array): colatitude (°) Returns: dintensities (xarray): hyperspectrum containing the geomagnetic field components intensity dangles (xarray): hyperspectrum containing the geomagnetic field declination and inclination dintensities_sv (xarray): hyperspectrum containing the geomagnetic field components intensity secular variation dangles_sv (xarray): hyperspectrum containing the geomagnetic field declination and inclination secular variation """ # 3rd party dependencies import xarray as xr import numpy as np y = 90 - colatitudes dintensities = xr.DataArray( intensities, dims=["typ", "lat", "long"], name="Field intensity", attrs={"units": "nT",}, coords={ "typ": xr.DataArray(["X", "Y", "Z", "H", "F",], name="typ", dims=["typ"]), "lat": xr.DataArray(y, name="lat", dims=["lat"], attrs={"units": "°"}), "long": xr.DataArray( longitudes, name="long", dims=["long"], attrs={"units": "°"} ), }, ) dangles = xr.DataArray( angles, dims=["typ", "lat", "long"], name="Angle", attrs={"units": "°",}, coords={ "typ": xr.DataArray(["D", "I",], name="typ", dims=["typ"]), "lat": xr.DataArray(y, name="lat", dims=["lat"], attrs={"units": "°"}), "long": xr.DataArray( longitudes, name="long", dims=["long"], attrs={"units": "°"} ), }, ) dintensities_sv = xr.DataArray( intensities_sv, dims=["typ", "lat", "long"], name="Field intensity secular variation", attrs={"units": "nT/year",}, coords={ "typ": xr.DataArray(["Xd", "Yd", "Zd", "Hd", "Fd",], name="typ", dims=["typ"]), "lat": xr.DataArray(y, name="lat", dims=["lat"], attrs={"units": "°"}), "long": xr.DataArray( longitudes, name="long", dims=["long"], attrs={"units": "°"} ), }, ) dangles_sv = xr.DataArray( angles_sv, dims=["typ", "lat", "long"], name="Angle secular variation", attrs={"units": "°/year",}, coords={ "typ": xr.DataArray(["Dd", "Id",], name="typ", dims=["typ"]), "lat": xr.DataArray(y, name="lat", dims=["lat"], attrs={"units": "°"}), "long": xr.DataArray( longitudes, name="long", dims=["long"], attrs={"units": "°"} ), }, ) return dintensities, dangles, dintensities_sv, dangles_sv def grid_geomagnetic(colatitudes, longitudes, height=0, Date={"mode":"dec","year":2020.0}): """computes the geomagnetic field characteristics on a mesh of colatitudes, latitudes Arguments: colatitudes (nparray): list of colatitudes latitudes (nparray): list of latitudes height (float): height (meters) Returns: da (xarray): containing the values of the geomagnetic field components, declination and inclination """ # 3rd party dependencies import numpy as np from tqdm import trange X,Y,Z,H,F,D,I = [],[],[],[],[],[],[] Xd,Yd,Zd,Hd,Fd,Dd,Id = [],[],[],[],[],[],[] for index in trange(len(colatitudes), desc="colatitude"): colatitude = colatitudes[index] for longitude in longitudes: result = B_components( longitude, colatitude, height, Date, referential="geodetic", file="WMM_2020.COF", SV=True, ) X.append(result["X"]) Y.append(result["Y"]) Z.append(result["Z"]) H.append(result["H"]) F.append(result["F"]) D.append(result["D"]) I.append(result["I"]) Xd.append(result["Xd"]) Yd.append(result["Yd"]) Zd.append(result["Zd"]) Hd.append(result["Hd"]) Fd.append(result["Fd"]) Dd.append(result["Dd"]) Id.append(result["Id"]) intensities = [ np.array(X).reshape((len(colatitudes), len(longitudes))),
np.array(Y)
numpy.array
from numpy import loadtxt, degrees, arcsin, arctan2, sort, unique, ones, zeros_like, array from mpl_toolkits.basemap import Basemap import reverse_geocoder as rg import randomcolor def domino(lol): # Takes a list (length n) of lists (length 2) # and returns a list of indices order, # such that lol[order[i]] and lol[order[i+1]] # have at least one element in common. # If that is not possible, multiple # domino chains will be created. # This works in a greedy way. n = len(lol) order = [0] # Greedy link = lol[0][-1] links = [lol[0][0],lol[0][1]] while len(order)<n: for i in [j for j in range(n) if not j in order]: if link in lol[i]: # They connect order.append(i) # Save the id of the "stone" link = lol[i][0] if not(lol[i][0]==link) else lol[i][1] # The new link is the other element links.append(link) break return order,links[:-1] def getpatches(color,quadrature): xyz,neighbours,triangles = quadrature["xyz"], quadrature["neighbours"], quadrature["triangles"] nq = len(color) patches = [] for center in range(nq): lol = [] # list of lists for i in neighbours[center,:]: if i>-1: lol.append(list(sort(triangles[i,triangles[i,:] != center]))) order,links = domino(lol) neighx = [xyz[j,0] for j in links] neighy = [xyz[j,1] for j in links] neighz = [xyz[j,2] for j in links] # Get the actual hexagon that surrounds a center point x = [] y = [] z = [] for i in range(len(order)): x.append((xyz[center,0]+neighx[i]) / 2) x.append((xyz[center,0]+neighx[i]+neighx[(i+1)%len(order)])/3) y.append((xyz[center,1]+neighy[i]) / 2) y.append((xyz[center,1]+neighy[i]+neighy[(i+1)%len(order)])/3) z.append((xyz[center,2]+neighz[i]) / 2) z.append((xyz[center,2]+neighz[i]+neighz[(i+1)%len(order)])/3) verts = [list(zip(x,y,z))] patches.append(verts[0]) return patches def getquadrature(nq): quadrature = {} quadrature["nq"] = nq quadrature["xyz"] = loadtxt(f"quadrature/{nq}/points.txt") quadrature["weights"] = loadtxt(f"quadrature/{nq}/weights.txt") quadrature["neighbours"] = loadtxt(f"quadrature/{nq}/neighbours.txt",dtype=int)-1 # julia starts at 1 quadrature["triangles"] = loadtxt(f"quadrature/{nq}/triangles.txt",dtype=int)-1 # julia starts at 1 # Also convert to latitute, longitude quadrature["lat"] = degrees(arcsin(quadrature["xyz"][:,2]/1)) quadrature["lon"] = degrees(arctan2(quadrature["xyz"][:,1], quadrature["xyz"][:,0])) # Compute connectivity between nodes connection = -100*ones((quadrature["nq"],6),dtype=int) for qp in range(quadrature["nq"]): attachedtriangles = quadrature["neighbours"][qp] attachedtriangles = attachedtriangles[attachedtriangles>-1] # drop lol = [] for at in attachedtriangles: tmp = quadrature["triangles"][at] tmp = tmp[tmp != qp ] lol.append(list(tmp)) _,x = domino(lol) connection[qp,:len(x)] = x quadrature["connection"] = connection return quadrature def get_land(quadrature): bm = Basemap() island = [] for i,(ypt, xpt) in enumerate(zip(quadrature["lat"],quadrature["lon"])): land = (bm.is_land(xpt,ypt)) island.append(land) return array(island) def color_land(quadrature): island = get_land(quadrature) colors = ["tab:green" if land else "tab:blue" for land in island] return colors def color_country(quadrature): # uses reverse_geocoder results = rg.search([(la,lo) for la,lo in zip(quadrature["lat"],quadrature["lon"])]) # default mode = 2 countries = [] for i in range(len(results)): c = results[i]["cc"] countries.append(c) nunique = len(unique(countries)) raco = randomcolor.RandomColor() randomcolors = raco.generate(luminosity="dark", count=nunique) # options: https://github.com/kevinwuhoo/randomcolor-py colordict = dict(zip(unique(countries),randomcolors)) colorland = color_land(quadrature) # so we can color the ocean also in "tab:blue" colorcountries = [colordict[country] if colorland[i]!="tab:blue" else "tab:blue" for i,country in enumerate(countries) ] return colorcountries def applyupdate(quadrature,rule,states): nextstate =
zeros_like(states)
numpy.zeros_like
# -*- coding: utf-8 -*- import time from datetime import datetime import warnings from textwrap import dedent, fill import numpy as np import pandas as pd from numpy.linalg import norm, inv from scipy.linalg import solve as spsolve, LinAlgError from scipy.integrate import trapz from scipy import stats from lifelines.fitters import BaseFitter, Printer from lifelines.plotting import set_kwargs_drawstyle from lifelines.statistics import chisq_test, proportional_hazard_test, TimeTransformers, StatisticalResult from lifelines.utils.lowess import lowess from lifelines.utils.concordance import _concordance_summary_statistics, _concordance_ratio from lifelines.utils import ( _get_index, _to_list, _to_tuple, _to_1d_array, inv_normal_cdf, normalize, qth_survival_times, coalesce, check_for_numeric_dtypes_or_raise, check_low_var, check_complete_separation, check_nans_or_infs, StatError, ConvergenceWarning, StatisticalWarning, StepSizer, ConvergenceError, string_justify, interpolate_at_times_and_return_pandas, CensoringType, interpolate_at_times, format_p_value, ) __all__ = ["CoxPHFitter"] class BatchVsSingle: @staticmethod def decide(batch_mode, n_unique, n_total, n_vars): frac_dups = n_unique / n_total if batch_mode or ( # https://github.com/CamDavidsonPilon/lifelines/issues/591 for original issue. # new values from from perf/batch_vs_single script. (batch_mode is None) and ( ( 6.876218e-01 + -1.796993e-06 * n_total + -1.204271e-11 * n_total ** 2 + 1.912500e00 * frac_dups + -8.121036e-01 * frac_dups ** 2 + 4.916605e-06 * n_total * frac_dups + -5.888875e-03 * n_vars + 5.473434e-09 * n_vars * n_total ) < 1 ) ): return "batch" return "single" class CoxPHFitter(BaseFitter): r""" This class implements fitting Cox's proportional hazard model: .. math:: h(t|x) = h_0(t) \exp((x - \overline{x})' \beta) Parameters ---------- alpha: float, optional (default=0.05) the level in the confidence intervals. tie_method: string, optional specify how the fitter should deal with ties. Currently only 'Efron' is available. penalizer: float, optional (default=0.0) Attach an L2 penalizer to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates. For example, this shrinks the absolute value of :math:`\beta_i`. The penalty is :math:`\frac{1}{2} \text{penalizer} ||\beta||^2`. strata: list, optional specify a list of columns to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the `strata` expression in R. See http://courses.washington.edu/b515/l17.pdf. Examples -------- >>> from lifelines.datasets import load_rossi >>> from lifelines import CoxPHFitter >>> rossi = load_rossi() >>> cph = CoxPHFitter() >>> cph.fit(rossi, 'week', 'arrest') >>> cph.print_summary() Attributes ---------- params_ : Series The estimated coefficients. Changed in version 0.22.0: use to be ``.hazards_`` hazard_ratios_ : Series The exp(coefficients) confidence_intervals_ : DataFrame The lower and upper confidence intervals for the hazard coefficients durations: Series The durations provided event_observed: Series The event_observed variable provided weights: Series The event_observed variable provided variance_matrix_ : numpy array The variance matrix of the coefficients strata: list the strata provided standard_errors_: Series the standard errors of the estimates score_: float the concordance index of the model. baseline_hazard_: DataFrame baseline_cumulative_hazard_: DataFrame baseline_survival_: DataFrame """ _KNOWN_MODEL = True def __init__(self, alpha=0.05, tie_method="Efron", penalizer=0.0, strata=None): super(CoxPHFitter, self).__init__(alpha=alpha) if penalizer < 0: raise ValueError("penalizer parameter must be >= 0.") if tie_method != "Efron": raise NotImplementedError("Only Efron is available at the moment.") self.alpha = alpha self.tie_method = tie_method self.penalizer = penalizer self.strata = strata @CensoringType.right_censoring def fit( self, df, duration_col=None, event_col=None, show_progress=False, initial_point=None, strata=None, step_size=None, weights_col=None, cluster_col=None, robust=False, batch_mode=None, ): """ Fit the Cox proportional hazard model to a dataset. Parameters ---------- df: DataFrame a Pandas DataFrame with necessary columns `duration_col` and `event_col` (see below), covariates columns, and special columns (weights, strata). `duration_col` refers to the lifetimes of the subjects. `event_col` refers to whether the 'death' events was observed: 1 if observed, 0 else (censored). duration_col: string the name of the column in DataFrame that contains the subjects' lifetimes. event_col: string, optional the name of thecolumn in DataFrame that contains the subjects' death observation. If left as None, assume all individuals are uncensored. weights_col: string, optional an optional column in the DataFrame, df, that denotes the weight per subject. This column is expelled and not used as a covariate, but as a weight in the final regression. Default weight is 1. This can be used for case-weights. For example, a weight of 2 means there were two subjects with identical observations. This can be used for sampling weights. In that case, use `robust=True` to get more accurate standard errors. show_progress: boolean, optional (default=False) since the fitter is iterative, show convergence diagnostics. Useful if convergence is failing. initial_point: (d,) numpy array, optional initialize the starting point of the iterative algorithm. Default is the zero vector. strata: list or string, optional specify a column or list of columns n to use in stratification. This is useful if a categorical covariate does not obey the proportional hazard assumption. This is used similar to the `strata` expression in R. See http://courses.washington.edu/b515/l17.pdf. step_size: float, optional set an initial step size for the fitting algorithm. Setting to 1.0 may improve performance, but could also hurt convergence. robust: boolean, optional (default=False) Compute the robust errors using the Huber sandwich estimator, aka Wei-Lin estimate. This does not handle ties, so if there are high number of ties, results may significantly differ. See "The Robust Inference for the Cox Proportional Hazards Model", Journal of the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 1074- 1078 cluster_col: string, optional specifies what column has unique identifiers for clustering covariances. Using this forces the sandwich estimator (robust variance estimator) to be used. batch_mode: bool, optional enabling batch_mode can be faster for datasets with a large number of ties. If left as None, lifelines will choose the best option. Returns ------- self: CoxPHFitter self with additional new properties: ``print_summary``, ``hazards_``, ``confidence_intervals_``, ``baseline_survival_``, etc. Note ---- Tied survival times are handled using Efron's tie-method. Examples -------- >>> from lifelines import CoxPHFitter >>> >>> df = pd.DataFrame({ >>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0], >>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], >>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> }) >>> >>> cph = CoxPHFitter() >>> cph.fit(df, 'T', 'E') >>> cph.print_summary() >>> cph.predict_median(df) >>> from lifelines import CoxPHFitter >>> >>> df = pd.DataFrame({ >>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0], >>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], >>> 'weights': [1.1, 0.5, 2.0, 1.6, 1.2, 4.3, 1.4, 4.5, 3.0, 3.2, 0.4, 6.2], >>> 'month': [10, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> }) >>> >>> cph = CoxPHFitter() >>> cph.fit(df, 'T', 'E', strata=['month', 'age'], robust=True, weights_col='weights') >>> cph.print_summary() >>> cph.predict_median(df) """ if duration_col is None: raise TypeError("duration_col cannot be None.") self._time_fit_was_called = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") + " UTC" self.duration_col = duration_col self.event_col = event_col self.robust = robust self.cluster_col = cluster_col self.weights_col = weights_col self._n_examples = df.shape[0] self._batch_mode = batch_mode self.strata = coalesce(strata, self.strata) X, T, E, weights, original_index, self._clusters = self._preprocess_dataframe(df) self.durations = T.copy() self.event_observed = E.copy() self.weights = weights.copy() if self.strata is not None: self.durations.index = original_index self.event_observed.index = original_index self.weights.index = original_index self._norm_mean = X.mean(0) self._norm_std = X.std(0) X_norm = normalize(X, self._norm_mean, self._norm_std) params_ = self._fit_model( X_norm, T, E, weights=weights, initial_point=initial_point, show_progress=show_progress, step_size=step_size ) self.params_ = pd.Series(params_, index=X.columns, name="coef") / self._norm_std self.hazard_ratios_ = pd.Series(np.exp(self.params_), index=X.columns, name="exp(coef)") self.variance_matrix_ = -inv(self._hessian_) / np.outer(self._norm_std, self._norm_std) self.standard_errors_ = self._compute_standard_errors(X_norm, T, E, weights) self.confidence_intervals_ = self._compute_confidence_intervals() self._predicted_partial_hazards_ = ( self.predict_partial_hazard(X) .rename(columns={0: "P"}) .assign(T=self.durations.values, E=self.event_observed.values, W=self.weights.values) .set_index(X.index) ) self.baseline_hazard_ = self._compute_baseline_hazards() self.baseline_cumulative_hazard_ = self._compute_baseline_cumulative_hazard() self.baseline_survival_ = self._compute_baseline_survival() if hasattr(self, "_concordance_score_"): # we have already fit the model. del self._concordance_score_ return self def _preprocess_dataframe(self, df): # this should be a pure function df = df.copy() if self.strata is not None: df = df.sort_values(by=_to_list(self.strata) + [self.duration_col]) original_index = df.index.copy() df = df.set_index(self.strata) else: df = df.sort_values(by=self.duration_col) original_index = df.index.copy() # Extract time and event T = df.pop(self.duration_col) E = ( df.pop(self.event_col) if (self.event_col is not None) else pd.Series(np.ones(self._n_examples), index=df.index, name="E") ) W = ( df.pop(self.weights_col) if (self.weights_col is not None) else pd.Series(np.ones((self._n_examples,)), index=df.index, name="weights") ) _clusters = df.pop(self.cluster_col).values if self.cluster_col else None X = df.astype(float) T = T.astype(float) # we check nans here because converting to bools maps NaNs to True.. check_nans_or_infs(E) E = E.astype(bool) self._check_values(X, T, E, W) return X, T, E, W, original_index, _clusters def _check_values(self, X, T, E, W): check_for_numeric_dtypes_or_raise(X) check_nans_or_infs(T) check_nans_or_infs(X) check_low_var(X) check_complete_separation(X, E, T, self.event_col) # check to make sure their weights are okay if self.weights_col: if (W.astype(int) != W).any() and not self.robust: warnings.warn( """It appears your weights are not integers, possibly propensity or sampling scores then? It's important to know that the naive variance estimates of the coefficients are biased. Instead a) set `robust=True` in the call to `fit`, or b) use Monte Carlo to estimate the variances. See paper "Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis" """, StatisticalWarning, ) if (W <= 0).any(): raise ValueError("values in weight column %s must be positive." % self.weights_col) def _fit_model( self, X, T, E, weights=None, initial_point=None, step_size=None, precision=1e-07, show_progress=True, max_steps=50, ): # pylint: disable=too-many-statements,too-many-branches """ Newton Rhaphson algorithm for fitting CPH model. Note ---- The data is assumed to be sorted on T! Parameters ---------- X: (n,d) Pandas DataFrame of observations. T: (n) Pandas Series representing observed durations. E: (n) Pandas Series representing death events. weights: (n) an iterable representing weights per observation. initial_point: (d,) numpy array of initial starting point for NR algorithm. Default 0. step_size: float, optional > 0.001 to determine a starting step size in NR algorithm. precision: float, optional the convergence halts if the norm of delta between successive positions is less than epsilon. show_progress: boolean, optional since the fitter is iterative, show convergence diagnostics. max_steps: int, optional the maximum number of iterations of the Newton-Rhaphson algorithm. Returns ------- beta: (1,d) numpy array. """ self.path = [] assert precision <= 1.0, "precision must be less than or equal to 1." _, d = X.shape # make sure betas are correct size. if initial_point is not None: assert initial_point.shape == (d,) beta = initial_point else: beta = np.zeros((d,)) step_sizer = StepSizer(step_size) step_size = step_sizer.next() # Method of choice is just efron right now if self.tie_method == "Efron": decision = BatchVsSingle.decide(self._batch_mode, T.nunique(), X.shape[0], X.shape[1]) get_gradients = getattr(self, "_get_efron_values_%s" % decision) self._batch_mode = decision == "batch" else: raise NotImplementedError("Only Efron is available.") i = 0 converging = True ll, previous_ll = 0, 0 start = time.time() while converging: self.path.append(beta.copy()) i += 1 if self.strata is None: h, g, ll = get_gradients(X.values, T.values, E.values, weights.values, beta) else: g = np.zeros_like(beta) h = np.zeros((beta.shape[0], beta.shape[0])) ll = 0 for _h, _g, _ll in self._partition_by_strata_and_apply(X, T, E, weights, get_gradients, beta): g += _g h += _h ll += _ll if i == 1 and np.all(beta == 0): # this is a neat optimization, the null partial likelihood # is the same as the full partial but evaluated at zero. # if the user supplied a non-trivial initial point, we need to delay this. self._ll_null_ = ll if self.penalizer > 0: # add the gradient and hessian of the l2 term g -= self.penalizer * beta h.flat[:: d + 1] -= self.penalizer # reusing a piece to make g * inv(h) * g.T faster later try: inv_h_dot_g_T = spsolve(-h, g, assume_a="pos", check_finite=False) except ValueError as e: if "infs or NaNs" in str(e): raise ConvergenceError( """Hessian or gradient contains nan or inf value(s). Convergence halted. Please see the following tips in the lifelines documentation: https://lifelines.readthedocs.io/en/latest/Examples.html#problems-with-convergence-in-the-cox-proportional-hazard-model """, e, ) else: # something else? raise e except LinAlgError as e: raise ConvergenceError( """Convergence halted due to matrix inversion problems. Suspicion is high collinearity. Please see the following tips in the lifelines documentation: https://lifelines.readthedocs.io/en/latest/Examples.html#problems-with-convergence-in-the-cox-proportional-hazard-model """, e, ) delta = inv_h_dot_g_T if np.any(np.isnan(delta)): raise ConvergenceError( """delta contains nan value(s). Convergence halted. Please see the following tips in the lifelines documentation: https://lifelines.readthedocs.io/en/latest/Examples.html#problems-with-convergence-in-the-cox-proportional-hazard-model """ ) # Save these as pending result hessian, gradient = h, g norm_delta = norm(delta) # reusing an above piece to make g * inv(h) * g.T faster. newton_decrement = g.dot(inv_h_dot_g_T) / 2 if show_progress: print( "\rIteration %d: norm_delta = %.5f, step_size = %.4f, ll = %.5f, newton_decrement = %.5f, seconds_since_start = %.1f" % (i, norm_delta, step_size, ll, newton_decrement, time.time() - start), end="", ) # convergence criteria if norm_delta < precision: converging, completed = False, True elif previous_ll != 0 and abs(ll - previous_ll) / (-previous_ll) < 1e-09: # this is what R uses by default converging, completed = False, True elif newton_decrement < precision: converging, completed = False, True elif i >= max_steps: # 50 iterations steps with N-R is a lot. # Expected convergence is ~10 steps converging, completed = False, False elif step_size <= 0.00001: converging, completed = False, False elif abs(ll) < 0.0001 and norm_delta > 1.0: warnings.warn( "The log-likelihood is getting suspiciously close to 0 and the delta is still large. There may be complete separation in the dataset. This may result in incorrect inference of coefficients. \ See https://stats.stackexchange.com/q/11109/11867 for more.\n", ConvergenceWarning, ) converging, completed = False, False beta += step_size * delta previous_ll = ll step_size = step_sizer.update(norm_delta).next() self._hessian_ = hessian self._score_ = gradient self.log_likelihood_ = ll if show_progress and completed: print("Convergence completed after %d iterations." % (i)) elif show_progress and not completed: print("Convergence failed. See any warning messages.") # report to the user problems that we detect. if completed and norm_delta > 0.1: warnings.warn( "Newton-Rhaphson convergence completed but norm(delta) is still high, %.3f. This may imply non-unique solutions to the maximum likelihood. Perhaps there is collinearity or complete separation in the dataset?\n" % norm_delta, ConvergenceWarning, ) elif not completed: warnings.warn( "Newton-Rhaphson failed to converge sufficiently in %d steps.\n" % max_steps, ConvergenceWarning ) return beta def _get_efron_values_single(self, X, T, E, weights, beta): """ Calculates the first and second order vector differentials, with respect to beta. Note that X, T, E are assumed to be sorted on T! A good explanation for Efron. Consider three of five subjects who fail at the time. As it is not known a priori that who is the first to fail, so one-third of (φ1 + φ2 + φ3) is adjusted from sum_j^{5} φj after one fails. Similarly two-third of (φ1 + φ2 + φ3) is adjusted after first two individuals fail, etc. From https://cran.r-project.org/web/packages/survival/survival.pdf: "Setting all weights to 2 for instance will give the same coefficient estimate but halve the variance. When the Efron approximation for ties (default) is employed replication of the data will not give exactly the same coefficients as the weights option, and in this case the weighted fit is arguably the correct one." Parameters ---------- X: array (n,d) numpy array of observations. T: array (n) numpy array representing observed durations. E: array (n) numpy array representing death events. weights: array (n) an array representing weights per observation. beta: array (1, d) numpy array of coefficients. Returns ------- hessian: (d, d) numpy array, gradient: (1, d) numpy array log_likelihood: float """ n, d = X.shape hessian = np.zeros((d, d)) gradient = np.zeros((d,)) log_lik = 0 # Init risk and tie sums to zero x_death_sum = np.zeros((d,)) risk_phi, tie_phi = 0, 0 risk_phi_x, tie_phi_x = np.zeros((d,)), np.zeros((d,)) risk_phi_x_x, tie_phi_x_x = np.zeros((d, d)), np.zeros((d, d)) # Init number of ties and weights weight_count = 0.0 tied_death_counts = 0 scores = weights * np.exp(np.dot(X, beta)) phi_x_is = scores[:, None] * X phi_x_x_i = np.empty((d, d)) # Iterate backwards to utilize recursive relationship for i in range(n - 1, -1, -1): # Doing it like this to preserve shape ti = T[i] ei = E[i] xi = X[i] w = weights[i] # Calculate phi values phi_i = scores[i] phi_x_i = phi_x_is[i] # https://stackoverflow.com/a/51481295/1895939 phi_x_x_i = np.multiply.outer(xi, phi_x_i) # Calculate sums of Risk set risk_phi = risk_phi + phi_i risk_phi_x = risk_phi_x + phi_x_i risk_phi_x_x = risk_phi_x_x + phi_x_x_i # Calculate sums of Ties, if this is an event if ei: x_death_sum = x_death_sum + w * xi tie_phi = tie_phi + phi_i tie_phi_x = tie_phi_x + phi_x_i tie_phi_x_x = tie_phi_x_x + phi_x_x_i # Keep track of count tied_death_counts += 1 weight_count += w if i > 0 and T[i - 1] == ti: # There are more ties/members of the risk set continue elif tied_death_counts == 0: # Only censored with current time, move on continue # There was atleast one event and no more ties remain. Time to sum. # This code is near identical to the _batch algorithm below. In fact, see _batch for comments. weighted_average = weight_count / tied_death_counts if tied_death_counts > 1: increasing_proportion = np.arange(tied_death_counts) / tied_death_counts denom = 1.0 / (risk_phi - increasing_proportion * tie_phi) numer = risk_phi_x - np.outer(increasing_proportion, tie_phi_x) a1 = np.einsum("ab,i->ab", risk_phi_x_x, denom) - np.einsum( "ab,i->ab", tie_phi_x_x, increasing_proportion * denom ) else: denom = 1.0 / np.array([risk_phi]) numer = risk_phi_x a1 = risk_phi_x_x * denom summand = numer * denom[:, None] a2 = summand.T.dot(summand) gradient = gradient + x_death_sum - weighted_average * summand.sum(0) log_lik = log_lik + np.dot(x_death_sum, beta) + weighted_average * np.log(denom).sum() hessian = hessian + weighted_average * (a2 - a1) # reset tie values tied_death_counts = 0 weight_count = 0.0 x_death_sum = np.zeros((d,)) tie_phi = 0 tie_phi_x = np.zeros((d,)) tie_phi_x_x = np.zeros((d, d)) return hessian, gradient, log_lik @staticmethod def _trivial_log_likelihood_batch(T, E, weights): # used for log-likelihood test n = T.shape[0] log_lik = 0 _, counts = np.unique(-T, return_counts=True) risk_phi = 0 pos = n for count_of_removals in counts: slice_ = slice(pos - count_of_removals, pos) weights_at_t = weights[slice_] phi_i = weights_at_t # Calculate sums of Risk set risk_phi = risk_phi + phi_i.sum() # Calculate the sums of Tie set deaths = E[slice_] tied_death_counts = deaths.astype(int).sum() if tied_death_counts == 0: # no deaths, can continue pos -= count_of_removals continue weights_deaths = weights_at_t[deaths] weight_count = weights_deaths.sum() if tied_death_counts > 1: tie_phi = phi_i[deaths].sum() factor = np.log(risk_phi - np.arange(tied_death_counts) * tie_phi / tied_death_counts).sum() else: factor = np.log(risk_phi) log_lik = log_lik - weight_count / tied_death_counts * factor pos -= count_of_removals return log_lik @staticmethod def _trivial_log_likelihood_single(T, E, weights): # assumes sorted on T! log_lik = 0 n = T.shape[0] # Init risk and tie sums to zero risk_phi, tie_phi = 0, 0 # Init number of ties and weights weight_count = 0.0 tied_death_counts = 0 # Iterate backwards to utilize recursive relationship for i in range(n - 1, -1, -1): # Doing it like this to preserve shape ti = T[i] ei = E[i] # Calculate phi values phi_i = weights[i] w = weights[i] # Calculate sums of Risk set risk_phi = risk_phi + phi_i # Calculate sums of Ties, if this is an event if ei: tie_phi = tie_phi + phi_i # Keep track of count tied_death_counts += 1 weight_count += w if i > 0 and T[i - 1] == ti: # There are more ties/members of the risk set continue elif tied_death_counts == 0: # Only censored with current time, move on continue if tied_death_counts > 1: factor = np.log(risk_phi - np.arange(tied_death_counts) * tie_phi / tied_death_counts).sum() else: factor = np.log(risk_phi) log_lik = log_lik - weight_count / tied_death_counts * factor # reset tie values tied_death_counts = 0 weight_count = 0.0 tie_phi = 0 return log_lik def _get_efron_values_batch(self, X, T, E, weights, beta): # pylint: disable=too-many-locals """ Assumes sorted on ascending on T Calculates the first and second order vector differentials, with respect to beta. A good explanation for how Efron handles ties. Consider three of five subjects who fail at the time. As it is not known a priori that who is the first to fail, so one-third of (φ1 + φ2 + φ3) is adjusted from sum_j^{5} φj after one fails. Similarly two-third of (φ1 + φ2 + φ3) is adjusted after first two individuals fail, etc. Returns ------- hessian: (d, d) numpy array, gradient: (1, d) numpy array log_likelihood: float """ n, d = X.shape hessian = np.zeros((d, d)) gradient = np.zeros((d,)) log_lik = 0 # weights = weights[:, None] # Init risk and tie sums to zero risk_phi, tie_phi = 0, 0 risk_phi_x, tie_phi_x = np.zeros((d,)), np.zeros((d,)) risk_phi_x_x, tie_phi_x_x = np.zeros((d, d)), np.zeros((d, d)) # counts are sorted by -T _, counts = np.unique(-T, return_counts=True) scores = weights * np.exp(np.dot(X, beta)) pos = n ZERO_TO_N = np.arange(counts.max()) for count_of_removals in counts: slice_ = slice(pos - count_of_removals, pos) X_at_t = X[slice_] weights_at_t = weights[slice_] deaths = E[slice_] phi_i = scores[slice_, None] phi_x_i = phi_i * X_at_t phi_x_x_i = np.dot(X_at_t.T, phi_x_i) # Calculate sums of Risk set risk_phi = risk_phi + phi_i.sum() risk_phi_x = risk_phi_x + (phi_x_i).sum(0) risk_phi_x_x = risk_phi_x_x + phi_x_x_i # Calculate the sums of Tie set tied_death_counts = deaths.sum() if tied_death_counts == 0: # no deaths, can continue pos -= count_of_removals continue """ I think there is another optimization that can be made if we sort on T and E. Using some accounting, we can skip all the [death] indexing below. """ xi_deaths = X_at_t[deaths] weights_deaths = weights_at_t[deaths] x_death_sum = np.einsum("a,ab->b", weights_deaths, xi_deaths) weight_count = weights_deaths.sum() weighted_average = weight_count / tied_death_counts if tied_death_counts > 1: # a lot of this is now in Einstein notation for performance, but see original "expanded" code here # https://github.com/CamDavidsonPilon/lifelines/blob/e7056e7817272eb5dff5983556954f56c33301b1/lifelines/fitters/coxph_fitter.py#L755-L789 # it's faster if we can skip computing these when we don't need to. phi_x_i_deaths = phi_x_i[deaths] tie_phi = phi_i[deaths].sum() tie_phi_x = (phi_x_i_deaths).sum(0) tie_phi_x_x = np.dot(xi_deaths.T, phi_x_i_deaths) increasing_proportion = ZERO_TO_N[:tied_death_counts] / tied_death_counts denom = 1.0 / (risk_phi - increasing_proportion * tie_phi) numer = risk_phi_x - np.outer(increasing_proportion, tie_phi_x) # computes outer products and sums them together. # Naive approach is to # 1) broadcast tie_phi_x_x and increasing_proportion into a (tied_death_counts, d, d) matrix # 2) broadcast risk_phi_x_x and denom into a (tied_death_counts, d, d) matrix # 3) subtract them, and then sum to (d, d) # Alternatively, we can sum earlier without having to explicitly create (_, d, d) matrices. This is used here. # a1 =
np.einsum("ab,i->ab", risk_phi_x_x, denom)
numpy.einsum
""" Test DOE Driver and Generators. """ import unittest import os import os.path import glob import csv import numpy as np import openmdao.api as om from openmdao.test_suite.components.paraboloid import Paraboloid from openmdao.test_suite.components.paraboloid_distributed import DistParab from openmdao.test_suite.groups.parallel_groups import FanInGrouped from openmdao.utils.assert_utils import assert_near_equal from openmdao.utils.general_utils import run_driver, printoptions from openmdao.utils.testing_utils import use_tempdirs from openmdao.utils.mpi import MPI try: from openmdao.vectors.petsc_vector import PETScVector except ImportError: PETScVector = None class ParaboloidArray(om.ExplicitComponent): """ Evaluates the equation f(x,y) = (x-3)^2 + x*y + (y+4)^2 - 3. Where x and y are xy[0] and xy[1] respectively. """ def setup(self): self.add_input('xy', val=np.array([0., 0.])) self.add_output('f_xy', val=0.0) def compute(self, inputs, outputs): """ f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """ x = inputs['xy'][0] y = inputs['xy'][1] outputs['f_xy'] = (x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0 class ParaboloidDiscrete(om.ExplicitComponent): def setup(self): self.add_discrete_input('x', val=10, tags='xx') self.add_discrete_input('y', val=0, tags='yy') self.add_discrete_output('f_xy', val=0, tags='ff') def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): x = discrete_inputs['x'] y = discrete_inputs['y'] f_xy = (x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0 discrete_outputs['f_xy'] = int(f_xy) class ParaboloidDiscreteArray(om.ExplicitComponent): def setup(self): self.add_discrete_input('x', val=np.ones((2, )), tags='xx') self.add_discrete_input('y', val=np.ones((2, )), tags='yy') self.add_discrete_output('f_xy', val=np.ones((2, )), tags='ff') def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): x = discrete_inputs['x'] y = discrete_inputs['y'] f_xy = (x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0 discrete_outputs['f_xy'] = f_xy.astype(np.int) class TestErrors(unittest.TestCase): def test_generator_check(self): prob = om.Problem() with self.assertRaises(TypeError) as err: prob.driver = om.DOEDriver(om.FullFactorialGenerator) self.assertEqual(str(err.exception), "DOEDriver requires an instance of DOEGenerator, " "but a class object was found: FullFactorialGenerator") with self.assertRaises(TypeError) as err: prob.driver = om.DOEDriver(om.Problem()) self.assertEqual(str(err.exception), "DOEDriver requires an instance of DOEGenerator, " "but an instance of Problem was found.") def test_lhc_criterion(self): with self.assertRaises(ValueError) as err: om.LatinHypercubeGenerator(criterion='foo') self.assertEqual(str(err.exception), "Invalid criterion 'foo' specified for LatinHypercubeGenerator. " "Must be one of ['center', 'c', 'maximin', 'm', 'centermaximin', " "'cm', 'correlation', 'corr', None].") @use_tempdirs class TestDOEDriver(unittest.TestCase): def setUp(self): self.expected_fullfact3 = [ {'x': np.array([0.]), 'y': np.array([0.]), 'f_xy': np.array([22.00])}, {'x': np.array([.5]), 'y': np.array([0.]), 'f_xy': np.array([19.25])}, {'x': np.array([1.]), 'y': np.array([0.]), 'f_xy': np.array([17.00])}, {'x': np.array([0.]), 'y': np.array([.5]), 'f_xy': np.array([26.25])}, {'x': np.array([.5]), 'y': np.array([.5]), 'f_xy': np.array([23.75])}, {'x': np.array([1.]), 'y': np.array([.5]), 'f_xy': np.array([21.75])}, {'x': np.array([0.]), 'y': np.array([1.]), 'f_xy': np.array([31.00])}, {'x': np.array([.5]), 'y': np.array([1.]), 'f_xy': np.array([28.75])}, {'x': np.array([1.]), 'y': np.array([1.]), 'f_xy': np.array([27.00])}, ] def test_no_generator(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.), promotes=['*']) model.add_subsystem('p2', om.IndepVarComp('y', 0.), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_design_var('x', lower=-10, upper=10) model.add_design_var('y', lower=-10, upper=10) model.add_objective('f_xy') prob.driver = om.DOEDriver() prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 0) def test_list(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.setup() # create a list of DOE cases case_gen = om.FullFactorialGenerator(levels=3) cases = list(case_gen(model.get_design_vars(recurse=True))) # create DOEDriver using provided list of cases prob.driver = om.DOEDriver(cases) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.run_driver() prob.cleanup() expected = self.expected_fullfact3 cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 9) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) def test_list_errors(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.setup() # data does not contain a list cases = {'desvar': 1.0} with self.assertRaises(RuntimeError) as err: prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) self.assertEqual(str(err.exception), "Invalid DOE case data, " "expected a list but got a dict.") # data contains a list of non-list cases = [{'desvar': 1.0}] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "expecting a list of name/value pairs:\n{'desvar': 1.0}") # data contains a list of list, but one has the wrong length cases = [ [['p1.x', 0.], ['p2.y', 0.]], [['p1.x', 1.], ['p2.y', 1., 'foo']] ] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "expecting a list of name/value pairs:\n" "[['p1.x', 1.0], ['p2.y', 1.0, 'foo']]") # data contains a list of list, but one case has an invalid design var cases = [ [['p1.x', 0.], ['p2.y', 0.]], [['p1.x', 1.], ['p2.z', 1.]] ] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "'p2.z' is not a valid design variable:\n" "[['p1.x', 1.0], ['p2.z', 1.0]]") # data contains a list of list, but one case has multiple invalid design vars cases = [ [['p1.x', 0.], ['p2.y', 0.]], [['p1.y', 1.], ['p2.z', 1.]] ] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "['p1.y', 'p2.z'] are not valid design variables:\n" "[['p1.y', 1.0], ['p2.z', 1.0]]") def test_csv(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.set_input_defaults('x', 0.0) model.set_input_defaults('y', 0.0) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.setup() # create a list of DOE cases case_gen = om.FullFactorialGenerator(levels=3) cases = list(case_gen(model.get_design_vars(recurse=True))) # generate CSV file with cases header = [var for (var, val) in cases[0]] with open('cases.csv', 'w') as f: writer = csv.writer(f) writer.writerow(header) for case in cases: writer.writerow([val for _, val in case]) # create DOEDriver using generated CSV file prob.driver = om.DOEDriver(om.CSVGenerator('cases.csv')) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.run_driver() prob.cleanup() expected = self.expected_fullfact3 cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 9) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) def test_csv_array(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', [0., 1.])) model.add_subsystem('p2', om.IndepVarComp('y', [0., 1.])) model.add_subsystem('comp1', Paraboloid()) model.add_subsystem('comp2', Paraboloid()) model.connect('p1.x', 'comp1.x', src_indices=[0]) model.connect('p2.y', 'comp1.y', src_indices=[0]) model.connect('p1.x', 'comp2.x', src_indices=[1]) model.connect('p2.y', 'comp2.y', src_indices=[1]) model.add_design_var('p1.x', lower=0.0, upper=1.0) model.add_design_var('p2.y', lower=0.0, upper=1.0) prob.setup() # create a list of DOE cases case_gen = om.FullFactorialGenerator(levels=2) cases = list(case_gen(model.get_design_vars(recurse=True))) # generate CSV file with cases header = [var for var, _ in cases[0]] with open('cases.csv', 'w') as f: writer = csv.writer(f) writer.writerow(header) for case in cases: writer.writerow([val for _, val in case]) # create DOEDriver using generated CSV file prob.driver = om.DOEDriver(om.CSVGenerator('cases.csv')) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.run_driver() prob.cleanup() expected = [ {'p1.x': np.array([0., 0.]), 'p2.y': np.array([0., 0.])}, {'p1.x': np.array([1., 0.]), 'p2.y': np.array([0., 0.])}, {'p1.x': np.array([0., 1.]), 'p2.y': np.array([0., 0.])}, {'p1.x': np.array([1., 1.]), 'p2.y': np.array([0., 0.])}, {'p1.x': np.array([0., 0.]), 'p2.y': np.array([1., 0.])}, {'p1.x': np.array([1., 0.]), 'p2.y': np.array([1., 0.])}, {'p1.x': np.array([0., 1.]), 'p2.y': np.array([1., 0.])}, {'p1.x': np.array([1., 1.]), 'p2.y': np.array([1., 0.])}, {'p1.x': np.array([0., 0.]), 'p2.y': np.array([0., 1.])}, {'p1.x': np.array([1., 0.]), 'p2.y': np.array([0., 1.])}, {'p1.x': np.array([0., 1.]), 'p2.y': np.array([0., 1.])}, {'p1.x': np.array([1., 1.]), 'p2.y': np.array([0., 1.])}, {'p1.x': np.array([0., 0.]), 'p2.y': np.array([1., 1.])}, {'p1.x': np.array([1., 0.]), 'p2.y': np.array([1., 1.])}, {'p1.x': np.array([0., 1.]), 'p2.y': np.array([1., 1.])}, {'p1.x': np.array([1., 1.]), 'p2.y': np.array([1., 1.])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 16) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs self.assertEqual(outputs['p1.x'][0], expected_case['p1.x'][0]) self.assertEqual(outputs['p2.y'][0], expected_case['p2.y'][0]) self.assertEqual(outputs['p1.x'][1], expected_case['p1.x'][1]) self.assertEqual(outputs['p2.y'][1], expected_case['p2.y'][1]) def test_csv_errors(self): # test invalid file name with self.assertRaises(RuntimeError) as err: om.CSVGenerator(1.23) self.assertEqual(str(err.exception), "'1.23' is not a valid file name.") # test file not found with self.assertRaises(RuntimeError) as err: om.CSVGenerator('nocases.csv') self.assertEqual(str(err.exception), "File not found: nocases.csv") # create problem and a list of DOE cases prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.setup() case_gen = om.FullFactorialGenerator(levels=2) cases = list(case_gen(model.get_design_vars(recurse=True))) # test CSV file with an invalid design var header = [var for var, _ in cases[0]] header[-1] = 'foobar' with open('cases.csv', 'w') as f: writer = csv.writer(f) writer.writerow(header) for case in cases: writer.writerow([val for _, val in case]) prob.driver = om.DOEDriver(om.CSVGenerator('cases.csv')) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case file, " "'foobar' is not a valid design variable.") # test CSV file with invalid design vars header = [var + '_bad' for var, _ in cases[0]] with open('cases.csv', 'w') as f: writer = csv.writer(f) writer.writerow(header) for case in cases: writer.writerow([val for _, val in case]) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case file, " "%s are not valid design variables." % str(header)) # test CSV file with invalid values header = [var for var, _ in cases[0]] with open('cases.csv', 'w') as f: writer = csv.writer(f) writer.writerow(header) for case in cases: writer.writerow([np.ones((2, 2)) * val for _, val in case]) from distutils.version import LooseVersion if LooseVersion(np.__version__) >= LooseVersion("1.14"): opts = {'legacy': '1.13'} else: opts = {} with printoptions(**opts): # have to use regex to handle differences in numpy print formats for shape msg = f"Error assigning p1.x = \[ 0. 0. 0. 0.\]: could not broadcast " \ f"input array from shape \(4.*\) into shape \(1.*\)" with self.assertRaisesRegex(ValueError, msg): prob.run_driver() def test_uniform(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.set_input_defaults('x', 0.0) model.set_input_defaults('y', 0.0) model.add_design_var('x', lower=-10, upper=10) model.add_design_var('y', lower=-10, upper=10) model.add_objective('f_xy') prob.driver = om.DOEDriver(om.UniformGenerator(num_samples=5, seed=0)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() # all values should be between -10 and 10, check expected values for seed = 0 expected = [ {'x': np.array([0.97627008]), 'y': np.array([4.30378733])}, {'x': np.array([2.05526752]), 'y': np.array([0.89766366])}, {'x': np.array([-1.52690401]), 'y': np.array([2.91788226])}, {'x': np.array([-1.24825577]), 'y': np.array([7.83546002])}, {'x': np.array([9.27325521]), 'y': np.array([-2.33116962])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 5) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y'): assert_near_equal(outputs[name], expected_case[name], 1e-4) def test_full_factorial(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.set_input_defaults('x', 0.0) model.set_input_defaults('y', 0.0) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.driver = om.DOEDriver(generator=om.FullFactorialGenerator(levels=3)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() expected = self.expected_fullfact3 cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 9) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) def test_full_factorial_factoring(self): class Digits2Num(om.ExplicitComponent): """ Makes from two vectors with 2 elements a 4 digit number. For singe digit integers always gives a unique output number. """ def setup(self): self.add_input('x', val=np.array([0., 0.])) self.add_input('y', val=np.array([0., 0.])) self.add_output('f', val=0.0) def compute(self, inputs, outputs): x = inputs['x'] y = inputs['y'] outputs['f'] = x[0] * 1000 + x[1] * 100 + y[0] * 10 + y[1] prob = om.Problem() model = prob.model model.set_input_defaults('x', np.array([0.0, 0.0])) model.set_input_defaults('y', np.array([0.0, 0.0])) model.add_subsystem('comp', Digits2Num(), promotes=['*']) model.add_design_var('x', lower=0.0, upper=np.array([1.0, 2.0])) model.add_design_var('y', lower=0.0, upper=np.array([3.0, 4.0])) model.add_objective('f') prob.driver = om.DOEDriver(generator=om.FullFactorialGenerator(levels=2)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) objs = [int(cr.get_case(case).outputs['f']) for case in cases] self.assertEqual(len(objs), 16) # Testing uniqueness. If all elements are unique, it should be the same length as the # number of cases self.assertEqual(len(set(objs)), 16) def test_full_factorial_array(self): prob = om.Problem() model = prob.model model.set_input_defaults('xy', np.array([0., 0.])) model.add_subsystem('comp', ParaboloidArray(), promotes=['*']) model.add_design_var('xy', lower=np.array([-10., -50.]), upper=np.array([10., 50.])) model.add_objective('f_xy') prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() expected = [ {'xy': np.array([-10., -50.])}, {'xy': np.array([0., -50.])}, {'xy': np.array([10., -50.])}, {'xy': np.array([-10., 0.])}, {'xy': np.array([0., 0.])}, {'xy': np.array([10., 0.])}, {'xy': np.array([-10., 50.])}, {'xy': np.array([0., 50.])}, {'xy': np.array([10., 50.])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 9) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs self.assertEqual(outputs['xy'][0], expected_case['xy'][0]) self.assertEqual(outputs['xy'][1], expected_case['xy'][1]) def test_full_fact_dict_levels(self): # Specifying levels only for one DV, the other is defaulted prob = om.Problem() model = prob.model expected = [ {'x': np.array([0.]), 'y': np.array([0.]), 'f_xy': np.array([22.00])}, {'x': np.array([1.]), 'y': np.array([0.]), 'f_xy': np.array([17.00])}, {'x': np.array([0.]), 'y': np.array([.5]), 'f_xy': np.array([26.25])}, {'x': np.array([1.]), 'y': np.array([.5]), 'f_xy': np.array([21.75])}, {'x': np.array([0.]), 'y': np.array([1.]), 'f_xy': np.array([31.00])}, {'x': np.array([1.]), 'y': np.array([1.]), 'f_xy': np.array([27.00])}, ] # size = prob.comm.size # rank = prob.comm.rank model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.set_input_defaults('x', 0.0) model.set_input_defaults('y', 0.0) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.driver = om.DOEDriver(generator=om.FullFactorialGenerator(levels={"y": 3})) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 6) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs self.assertEqual(outputs['x'], expected_case['x']) self.assertEqual(outputs['y'], expected_case['y']) self.assertEqual(outputs['f_xy'], expected_case['f_xy']) def test_generalized_subset(self): # All DVs have the same number of levels prob = om.Problem() model = prob.model model.set_input_defaults('x', 0.0) model.set_input_defaults('y', 0.0) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.driver = om.DOEDriver(generator=om.GeneralizedSubsetGenerator(levels=2, reduction=2)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() expected = [ {'x': np.array([0.0]), 'y': np.array([0.0]), 'f_xy': np.array([22.0])}, {'x': np.array([1.0]), 'y': np.array([1.0]), 'f_xy': np.array([27.0])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver') self.assertEqual(len(cases), 2) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) def test_generalized_subset_dict_levels(self): # Number of variables specified individually for all DVs (scalars). prob = om.Problem() model = prob.model model.set_input_defaults('x', 0.0) model.set_input_defaults('y', 0.0) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.driver = om.DOEDriver(generator=om.GeneralizedSubsetGenerator(levels={'x': 3, 'y': 6}, reduction=2)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() expected = [ {'x': np.array([0.]), 'y': np.array([0.]), 'f_xy': np.array([22.])}, {'x': np.array([0.]), 'y': np.array([0.4]), 'f_xy': np.array([25.36])}, {'x': np.array([0.]), 'y': np.array([0.8]), 'f_xy': np.array([29.04])}, {'x': np.array([1.]), 'y': np.array([0.]), 'f_xy': np.array([17.])}, {'x': np.array([1.]), 'y': np.array([0.4]), 'f_xy': np.array([20.76])}, {'x': np.array([1.]), 'y': np.array([0.8]), 'f_xy': np.array([24.84])}, {'x': np.array([0.5]), 'y': np.array([0.2]), 'f_xy': np.array([20.99])}, {'x': np.array([0.5]), 'y': np.array([0.6]), 'f_xy': np.array([24.71])}, {'x': np.array([0.5]), 'y': np.array([1.]), 'f_xy': np.array([28.75])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver') self.assertEqual(len(cases), 9) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertAlmostEqual(outputs[name][0], expected_case[name][0]) def test_generalized_subset_array(self): # Number of levels specified individually for all DVs (arrays). class Digits2Num(om.ExplicitComponent): """ Makes from two vectors with 2 elements a 4 digit number. For singe digit integers always gives a unique output number. """ def setup(self): self.add_input('x', val=np.array([0., 0.])) self.add_input('y', val=np.array([0., 0.])) self.add_output('f', val=0.0) def compute(self, inputs, outputs): x = inputs['x'] y = inputs['y'] outputs['f'] = x[0] * 1000 + x[1] * 100 + y[0] * 10 + y[1] prob = om.Problem() model = prob.model model.set_input_defaults('x', np.array([0.0, 0.0])) model.set_input_defaults('y', np.array([0.0, 0.0])) model.add_subsystem('comp', Digits2Num(), promotes=['*']) model.add_design_var('x', lower=0.0, upper=np.array([1.0, 2.0])) model.add_design_var('y', lower=0.0, upper=np.array([3.0, 4.0])) model.add_objective('f') prob.driver = om.DOEDriver(generator=om.GeneralizedSubsetGenerator(levels={'x': 5, 'y': 8}, reduction=14)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) objs = [int(cr.get_case(case).outputs['f']) for case in cases] self.assertEqual(len(objs), 104) # The number can be verified with standalone pyDOE2 # Testing uniqueness. If all elements are unique, it should be the same length as the number of cases self.assertEqual(len(set(objs)), 104) def test_plackett_burman(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.driver = om.DOEDriver(om.PlackettBurmanGenerator()) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() expected = [ {'x': np.array([0.]), 'y': np.array([0.]), 'f_xy': np.array([22.00])}, {'x': np.array([1.]), 'y': np.array([0.]), 'f_xy': np.array([17.00])}, {'x': np.array([0.]), 'y': np.array([1.]), 'f_xy': np.array([31.00])}, {'x': np.array([1.]), 'y': np.array([1.]), 'f_xy': np.array([27.00])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 4) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) def test_box_behnken(self): upper = 10. center = 1 prob = om.Problem() model = prob.model indep = model.add_subsystem('indep', om.IndepVarComp(), promotes=['*']) indep.add_output('x', 0.0) indep.add_output('y', 0.0) indep.add_output('z', 0.0) model.add_subsystem('comp', om.ExecComp('a = x**2 + y - z'), promotes=['*']) model.add_design_var('x', lower=0., upper=upper) model.add_design_var('y', lower=0., upper=upper) model.add_design_var('z', lower=0., upper=upper) model.add_objective('a') prob.driver = om.DOEDriver(om.BoxBehnkenGenerator(center=center)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) # The Box-Behnken design for 3 factors involves three blocks, in each of # which 2 factors are varied thru the 4 possible combinations of high & low. # It also includes centre points (all factors at their central values). # ref: https://en.wikipedia.org/wiki/Box-Behnken_design self.assertEqual(len(cases), (3*4)+center) expected = [ {'x': np.array([0.]), 'y': np.array([0.]), 'z': np.array([5.])}, {'x': np.array([10.]), 'y': np.array([0.]), 'z': np.array([5.])}, {'x': np.array([0.]), 'y': np.array([10.]), 'z': np.array([5.])}, {'x': np.array([10.]), 'y': np.array([10.]), 'z': np.array([5.])}, {'x': np.array([0.]), 'y': np.array([5.]), 'z': np.array([0.])}, {'x': np.array([10.]), 'y': np.array([5.]), 'z': np.array([0.])}, {'x': np.array([0.]), 'y': np.array([5.]), 'z': np.array([10.])}, {'x': np.array([10.]), 'y': np.array([5.]), 'z': np.array([10.])}, {'x': np.array([5.]), 'y': np.array([0.]), 'z': np.array([0.])}, {'x': np.array([5.]), 'y': np.array([10.]), 'z': np.array([0.])}, {'x': np.array([5.]), 'y': np.array([0.]), 'z': np.array([10.])}, {'x': np.array([5.]), 'y': np.array([10.]), 'z': np.array([10.])}, {'x': np.array([5.]), 'y': np.array([5.]), 'z': np.array([5.])}, ] for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'z'): self.assertEqual(outputs[name], expected_case[name]) def test_latin_hypercube(self): samples = 4 bounds = np.array([ [-1, -10], # lower bounds for x and y [1, 10] # upper bounds for x and y ]) xlb, xub = bounds[0][0], bounds[1][0] ylb, yub = bounds[0][1], bounds[1][1] prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=xlb, upper=xub) model.add_design_var('y', lower=ylb, upper=yub) model.add_objective('f_xy') prob.driver = om.DOEDriver() prob.driver.options['generator'] = om.LatinHypercubeGenerator(samples=4, seed=0) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() # the sample space for each variable should be divided into equal # size buckets and each variable should have a value in each bucket all_buckets = set(range(samples)) x_offset = - xlb x_bucket_size = xub - xlb x_buckets_filled = set() y_offset = - ylb y_bucket_size = yub - ylb y_buckets_filled = set() # expected values for seed = 0 expected = [ {'x': np.array([-0.19861831]), 'y': np.array([-6.42405317])}, {'x': np.array([0.2118274]), 'y': np.array([9.458865])}, {'x': np.array([0.71879361]), 'y': np.array([3.22947057])}, {'x': np.array([-0.72559325]), 'y': np.array([-2.27558409])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 4) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs x = outputs['x'] y = outputs['y'] bucket = int((x + x_offset) / (x_bucket_size / samples)) x_buckets_filled.add(bucket) bucket = int((y + y_offset) / (y_bucket_size / samples)) y_buckets_filled.add(bucket) assert_near_equal(x, expected_case['x'], 1e-4) assert_near_equal(y, expected_case['y'], 1e-4) self.assertEqual(x_buckets_filled, all_buckets) self.assertEqual(y_buckets_filled, all_buckets) def test_latin_hypercube_array(self): samples = 4 bounds = np.array([ [-10, -50], # lower bounds for x and y [10, 50] # upper bounds for x and y ]) prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('xy', np.array([50., 50.])), promotes=['*']) model.add_subsystem('comp', ParaboloidArray(), promotes=['*']) model.add_design_var('xy', lower=bounds[0], upper=bounds[1]) model.add_objective('f_xy') prob.driver = om.DOEDriver(om.LatinHypercubeGenerator(samples=4, seed=0)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() # the sample space for each variable should be divided into equal # size buckets and each variable should have a value in each bucket all_buckets = set(range(samples)) xlb, xub = bounds[0][0], bounds[1][0] x_offset = - xlb x_bucket_size = xub - xlb x_buckets_filled = set() ylb, yub = bounds[0][1], bounds[1][1] y_offset = - ylb y_bucket_size = yub - ylb y_buckets_filled = set() # expected values for seed = 0 expected = [ {'xy': np.array([-1.98618312, -32.12026584])}, {'xy': np.array([2.118274, 47.29432502])}, {'xy': np.array([7.18793606, 16.14735283])}, {'xy': np.array([-7.25593248, -11.37792043])}, ] cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 4) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs x = outputs['xy'][0] y = outputs['xy'][1] bucket = int((x + x_offset) / (x_bucket_size / samples)) x_buckets_filled.add(bucket) bucket = int((y + y_offset) / (y_bucket_size / samples)) y_buckets_filled.add(bucket) assert_near_equal(x, expected_case['xy'][0], 1e-4) assert_near_equal(y, expected_case['xy'][1], 1e-4) self.assertEqual(x_buckets_filled, all_buckets) self.assertEqual(y_buckets_filled, all_buckets) def test_latin_hypercube_center(self): samples = 4 upper = 10. prob = om.Problem() model = prob.model indep = model.add_subsystem('indep', om.IndepVarComp()) indep.add_output('x', 0.0) indep.add_output('y', 0.0) model.add_subsystem('comp', Paraboloid()) model.connect('indep.x', 'comp.x') model.connect('indep.y', 'comp.y') model.add_design_var('indep.x', lower=0., upper=upper) model.add_design_var('indep.y', lower=0., upper=upper) model.add_objective('comp.f_xy') prob.driver = om.DOEDriver(om.LatinHypercubeGenerator(samples=samples, criterion='c')) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), samples) # the sample space for each variable (0 to upper) should be divided into # equal size buckets and each variable should have a value in each bucket bucket_size = upper / samples all_buckets = set(range(samples)) x_buckets_filled = set() y_buckets_filled = set() # with criterion of 'center', each value should be in the center of it's bucket valid_values = [round(bucket_size * (bucket + 1 / 2), 3) for bucket in all_buckets] for case in cases: outputs = cr.get_case(case).outputs x = float(outputs['indep.x']) y = float(outputs['indep.y']) x_buckets_filled.add(int(x/bucket_size)) y_buckets_filled.add(int(y/bucket_size)) self.assertTrue(round(x, 3) in valid_values, '%f not in %s' % (x, valid_values)) self.assertTrue(round(y, 3) in valid_values, '%f not in %s' % (y, valid_values)) self.assertEqual(x_buckets_filled, all_buckets) self.assertEqual(y_buckets_filled, all_buckets) def test_record_bug(self): # There was a bug that caused values to be recorded in driver_scaled form. prob = om.Problem() model = prob.model ivc = model.add_subsystem('indeps', om.IndepVarComp(), promotes=['*']) ivc.add_output('x', val=1.) model.add_subsystem('obj_comp', om.ExecComp('y=2*x'), promotes=['*']) model.add_subsystem('con_comp', om.ExecComp('z=3*x'), promotes=['*']) prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.driver.recording_options['includes'] = ['*'] model.add_design_var('x', lower=0., upper=10., ref=3.0) model.add_constraint('z', lower=2.0, scaler=13.0) model.add_objective('y', scaler=-1) prob.setup(check=True) prob.run_driver() cr = om.CaseReader("cases.sql") final_case = cr.list_cases('driver', out_stream=None)[-1] outputs = cr.get_case(final_case).outputs assert_near_equal(outputs['x'], 10.0, 1e-7) assert_near_equal(outputs['y'], 20.0, 1e-7) assert_near_equal(outputs['z'], 30.0, 1e-7) def test_discrete_desvar_list(self): prob = om.Problem() model = prob.model # Add independent variables indeps = model.add_subsystem('indeps', om.IndepVarComp(), promotes=['*']) indeps.add_discrete_output('x', 4) indeps.add_discrete_output('y', 3) # Add components model.add_subsystem('parab', ParaboloidDiscrete(), promotes=['*']) # Specify design variable range and objective model.add_design_var('x') model.add_design_var('y') model.add_objective('f_xy') samples = [[('x', 5), ('y', 1)], [('x', 3), ('y', 6)], [('x', -1), ('y', 3)], ] # Setup driver for 3 cases at a time prob.driver = om.DOEDriver(om.ListGenerator(samples)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) expected = [{'x': 5, 'y': 1, 'f_xy': 31}, {'x': 3, 'y': 6, 'f_xy': 115}, {'x': -1, 'y': 3, 'f_xy': 59}, ] self.assertEqual(len(cases), len(expected)) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) self.assertTrue(isinstance(outputs[name], int)) def test_discrete_desvar_alltypes(self): # Make sure we can handle any allowed type for discrete variables. class PassThrough(om.ExplicitComponent): def setup(self): self.add_discrete_input('x', val='abc') self.add_discrete_output('y', val='xyz') def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): discrete_outputs['y'] = discrete_inputs['x'] prob = om.Problem() model = prob.model indeps = model.add_subsystem('indeps', om.IndepVarComp(), promotes=['*']) indeps.add_discrete_output('x', 'abc') model.add_subsystem('parab', PassThrough(), promotes=['*']) model.add_design_var('x') model.add_constraint('y') my_obj = Paraboloid() samples = [[('x', 'abc'), ], [('x', None), ], [('x', my_obj, ), ] ] prob.driver = om.DOEDriver(om.ListGenerator(samples)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) expected = ['abc', None] for case, expected_value in zip(cases, expected): outputs = cr.get_case(case).outputs self.assertEqual(outputs['x'], expected_value) # Can't read/write objects through SQL case. self.assertEqual(prob['y'], my_obj) def test_discrete_array_output(self): prob = om.Problem() model = prob.model # Add independent variables indeps = model.add_subsystem('indeps', om.IndepVarComp(), promotes=['*']) indeps.add_discrete_output('x', np.ones((2, ), dtype=np.int)) indeps.add_discrete_output('y', np.ones((2, ), dtype=np.int)) # Add components model.add_subsystem('parab', ParaboloidDiscreteArray(), promotes=['*']) # Specify design variable range and objective model.add_design_var('x', np.array([5, 1])) model.add_design_var('y', np.array([1, 4])) model.add_objective('f_xy') recorder = om.SqliteRecorder("cases.sql") prob.driver.add_recorder(recorder) prob.add_recorder(recorder) prob.recording_options['record_inputs'] = True prob.setup() prob.run_driver() prob.record("end") prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('problem', out_stream=None) case = cr.get_case('end') inputs = case.inputs outputs = case.outputs for name in ('x', 'y'): self.assertTrue(isinstance(inputs[name], np.ndarray)) self.assertTrue(inputs[name].shape, (2,)) self.assertTrue(isinstance(outputs[name], np.ndarray)) self.assertTrue(outputs[name].shape, (2,)) def test_discrete_arraydesvar_list(self): prob = om.Problem() model = prob.model # Add components model.add_subsystem('parab', ParaboloidDiscreteArray(), promotes=['*']) # Specify design variable range and objective model.add_design_var('x') model.add_design_var('y') model.add_objective('f_xy') samples = [[('x', np.array([5, 1])), ('y', np.array([1, 4]))], [('x', np.array([3, 2])), ('y', np.array([6, -3]))], [('x', np.array([-1, 0])), ('y', np.array([3, 5]))], ] # Setup driver for 3 cases at a time prob.driver = om.DOEDriver(om.ListGenerator(samples)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.set_val('x', np.ones((2, ), dtype=np.int)) prob.set_val('y', np.ones((2, ), dtype=np.int)) prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) expected = [{'x': np.array([5, 1]), 'y': np.array([1, 4]), 'f_xy': np.array([31, 69])}, {'x': np.array([3, 2]), 'y': np.array([6, -3]), 'f_xy': np.array([115, -7])}, {'x': np.array([-1, 0]), 'y': np.array([3, 5]), 'f_xy': np.array([59, 87])}, ] self.assertEqual(len(cases), len(expected)) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name][0], expected_case[name][0]) self.assertEqual(outputs[name][1], expected_case[name][1]) def test_discrete_desvar_csv(self): prob = om.Problem() model = prob.model # Add independent variables indeps = model.add_subsystem('indeps', om.IndepVarComp(), promotes=['*']) indeps.add_discrete_output('x', 4) indeps.add_discrete_output('y', 3) # Add components model.add_subsystem('parab', ParaboloidDiscrete(), promotes=['*']) # Specify design variable range and objective model.add_design_var('x') model.add_design_var('y') model.add_objective('f_xy') samples = '\n'.join([" x , y", "5, 1", "3, 6", "-1, 3", ]) # this file contains design variable inputs in CSV format with open('cases.csv', 'w') as f: f.write(samples) # Setup driver for 3 cases at a time prob.driver = om.DOEDriver(om.CSVGenerator('cases.csv')) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) expected = [{'x': 5, 'y': 1, 'f_xy': 31}, {'x': 3, 'y': 6, 'f_xy': 115}, {'x': -1, 'y': 3, 'f_xy': 59}, ] self.assertEqual(len(cases), len(expected)) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) self.assertTrue(isinstance(outputs[name], int)) def test_desvar_indices(self): prob = om.Problem() prob.model.add_subsystem('comp', om.ExecComp('y=x**2', x=np.array([1., 2., 3.]), y=np.zeros(3)), promotes=['*']) prob.model.add_design_var('x', lower=7.0, upper=11.0, indices=[0]) prob.model.add_objective('y', index=0) prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.setup() prob.run_driver() # Last value in fullfactorial DOE is 11, which gives 121. assert_near_equal(prob.get_val('y'), np.array([121., 4., 9.])) def test_multidimensional_inputs(self): # Create a subsystem with multidimensional array inputs matmul_comp = om.ExecComp('z = matmul(x,y)', x=np.ones((3, 3)), y=np.ones((3, 3)), z=np.ones((3, 3))) # Single execution test prob = om.Problem() prob.model.add_subsystem('matmul', matmul_comp, promotes=['*']) prob.setup() prob['x'] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) prob['y'] = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]]) prob.run_model() # DOE test prob2 = om.Problem() prob2.model.add_subsystem('matmul', matmul_comp, promotes=['*']) prob2.model.add_design_var('x') prob2.model.add_design_var('y') prob2.model.add_objective('z') prob2.setup() case_list = [ [('x', prob['x']), ('y', prob['y'])] ] prob2.driver = om.DOEDriver(case_list) prob2.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob2.run_driver() prob2.cleanup() cr = om.CaseReader("cases.sql") outputs = cr.get_case(0).outputs for name in ('x', 'y', 'z'): assert_near_equal(outputs[name], prob[name]) def test_multi_constraint_doe(self): prob = om.Problem() prob.model.add_subsystem('comp', om.ExecComp('y=x**2 + b', x=np.array([1., 2., 3.]), b=np.array([1., 2., 3.]), y=np.zeros(3)), promotes=['*']) prob.model.add_design_var('x', lower=7.0, upper=11.0, indices=[0]) prob.model.add_constraint('b', lower=7., indices=[0]) prob.model.add_constraint('b', upper=11., indices=[-1], alias='TEST') prob.model.add_objective('y', index=0) prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver') for case in cases: outputs = cr.get_case(case).outputs assert_near_equal(outputs['b'], np.array([1., 2, 3])) @use_tempdirs class TestDOEDriverListVars(unittest.TestCase): def test_list_problem_vars(self): # this passes if no exception is raised prob = om.Problem() model = prob.model # Add independent variables indeps = model.add_subsystem('indeps', om.IndepVarComp(), promotes=['*']) indeps.add_discrete_output('x', 4) indeps.add_discrete_output('y', 3) # Add components model.add_subsystem('parab', ParaboloidDiscrete(), promotes=['*']) # Specify design variable range and objective model.add_design_var('x') model.add_design_var('y') model.add_objective('f_xy') samples = [[('x', 5), ('y', 1)], [('x', 3), ('y', 6)], [('x', -1), ('y', 3)], ] # Setup driver for 3 cases at a time prob.driver = om.DOEDriver(om.ListGenerator(samples)) prob.setup(derivatives=False) prob.run_driver() prob.cleanup() prob.list_problem_vars() @use_tempdirs class TestDOEDriverListVars(unittest.TestCase): def test_list_problem_vars(self): # this passes if no exception is raised prob = om.Problem() model = prob.model # Add independent variables indeps = model.add_subsystem('indeps', om.IndepVarComp(), promotes=['*']) indeps.add_discrete_output('x', 4) indeps.add_discrete_output('y', 3) # Add components model.add_subsystem('parab', ParaboloidDiscrete(), promotes=['*']) # Specify design variable range and objective model.add_design_var('x') model.add_design_var('y') model.add_objective('f_xy') samples = [[('x', 5), ('y', 1)], [('x', 3), ('y', 6)], [('x', -1), ('y', 3)], ] # Setup driver for 3 cases at a time prob.driver = om.DOEDriver(om.ListGenerator(samples)) prob.setup(derivatives=False) prob.run_driver() prob.cleanup() prob.list_problem_vars() @unittest.skipUnless(MPI and PETScVector, "MPI and PETSc are required.") @use_tempdirs class TestParallelDOE4Proc(unittest.TestCase): N_PROCS = 4 def setUp(self): self.expected_fullfact3 = [ {'x': np.array([0.]), 'y': np.array([0.]), 'f_xy': np.array([22.00])}, {'x': np.array([.5]), 'y': np.array([0.]), 'f_xy': np.array([19.25])}, {'x': np.array([1.]), 'y': np.array([0.]), 'f_xy': np.array([17.00])}, {'x': np.array([0.]), 'y': np.array([.5]), 'f_xy': np.array([26.25])}, {'x': np.array([.5]), 'y': np.array([.5]), 'f_xy': np.array([23.75])}, {'x': np.array([1.]), 'y': np.array([.5]), 'f_xy': np.array([21.75])}, {'x': np.array([0.]), 'y': np.array([1.]), 'f_xy': np.array([31.00])}, {'x': np.array([.5]), 'y': np.array([1.]), 'f_xy': np.array([28.75])}, {'x': np.array([1.]), 'y': np.array([1.]), 'f_xy': np.array([27.00])}, ] def test_indivisible_error(self): prob = om.Problem() prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.options['run_parallel'] = True prob.driver.options['procs_per_model'] = 3 with self.assertRaises(RuntimeError) as context: prob.setup() self.assertEqual(str(context.exception), "The total number of processors is not evenly divisible by the " "specified number of processors per model.\n Provide a number of " "processors that is a multiple of 3, or specify a number " "of processors per model that divides into 4.") def test_minprocs_error(self): prob = om.Problem(FanInGrouped()) # require 2 procs for the ParallelGroup prob.model._proc_info['sub'] = (2, None, 1.0) # run cases on all procs prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.options['run_parallel'] = True prob.driver.options['procs_per_model'] = 1 with self.assertRaises(RuntimeError) as context: prob.setup() self.assertEqual(str(context.exception), "<model> <class FanInGrouped>: MPI process allocation failed: can't meet " "min_procs required for the following subsystems: ['sub']") def test_full_factorial(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3), procs_per_model=1, run_parallel=True) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() failed, output = run_driver(prob) self.assertFalse(failed) prob.cleanup() expected = self.expected_fullfact3 size = prob.comm.size rank = prob.comm.rank # cases will be split across files for each proc filename = "cases.sql_%d" % rank expect_msg = "Cases from rank %d are being written to %s." % (rank, filename) self.assertTrue(expect_msg in output) cr = om.CaseReader(filename) cases = cr.list_cases('driver', out_stream=None) # cases recorded on this proc num_cases = len(cases) self.assertEqual(num_cases, len(expected) // size + (rank < len(expected) % size)) for n in range(num_cases): outputs = cr.get_case(cases[n]).outputs idx = n * size + rank # index of expected case self.assertEqual(outputs['x'], expected[idx]['x']) self.assertEqual(outputs['y'], expected[idx]['y']) self.assertEqual(outputs['f_xy'], expected[idx]['f_xy']) # total number of cases recorded across all procs num_cases = prob.comm.allgather(num_cases) self.assertEqual(sum(num_cases), len(expected)) def test_fan_in_grouped_parallel_2x2(self): # run cases in parallel with 2 procs per model # (cases will be split between the 2 parallel model instances) run_parallel = True procs_per_model = 2 prob = om.Problem(FanInGrouped()) model = prob.model model.add_design_var('x1', lower=0.0, upper=1.0) model.add_design_var('x2', lower=0.0, upper=1.0) model.add_objective('c3.y') prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.driver.options['run_parallel'] = run_parallel prob.driver.options['procs_per_model'] = procs_per_model prob.setup() failed, output = run_driver(prob) from openmdao.utils.mpi import multi_proc_exception_check with multi_proc_exception_check(prob.comm): self.assertFalse(failed) prob.cleanup() expected = [ {'x1': np.array([0.]), 'x2': np.array([0.]), 'c3.y': np.array([0.0])}, {'x1': np.array([.5]), 'x2': np.array([0.]), 'c3.y': np.array([-3.0])}, {'x1': np.array([1.]), 'x2': np.array([0.]), 'c3.y': np.array([-6.0])}, {'x1': np.array([0.]), 'x2': np.array([.5]), 'c3.y': np.array([17.5])}, {'x1': np.array([.5]), 'x2': np.array([.5]), 'c3.y': np.array([14.5])}, {'x1': np.array([1.]), 'x2': np.array([.5]), 'c3.y': np.array([11.5])}, {'x1': np.array([0.]), 'x2': np.array([1.]), 'c3.y': np.array([35.0])}, {'x1': np.array([.5]), 'x2': np.array([1.]), 'c3.y': np.array([32.0])}, {'x1': np.array([1.]), 'x2': np.array([1.]), 'c3.y': np.array([29.0])}, ] num_cases = 0 # we can run two models in parallel on our 4 procs num_models = prob.comm.size // procs_per_model # a separate case file will be written by rank 0 of each parallel model # (the top two global ranks) rank = prob.comm.rank filename = "cases.sql_%d" % rank if rank < num_models: expect_msg = "Cases from rank %d are being written to %s." % (rank, filename) self.assertTrue(expect_msg in output) cr = om.CaseReader(filename) cases = cr.list_cases('driver') # cases recorded on this proc num_cases = len(cases) self.assertEqual(num_cases, len(expected) // num_models+(rank < len(expected) % num_models)) for n, case in enumerate(cases): idx = n * num_models + rank # index of expected case outputs = cr.get_case(case).outputs for name in ('x1', 'x2', 'c3.y'): self.assertEqual(outputs[name], expected[idx][name]) else: self.assertFalse("Cases from rank %d are being written" % rank in output) self.assertFalse(os.path.exists(filename)) # total number of cases recorded across all requested procs num_cases = prob.comm.allgather(num_cases) self.assertEqual(sum(num_cases), len(expected)) def test_fan_in_grouped_parallel_4x1(self): # run cases in parallel with 1 proc per model # (cases will be split between the 4 serial model instances) run_parallel = True procs_per_model = 1 prob = om.Problem(FanInGrouped()) model = prob.model model.add_design_var('x1', lower=0.0, upper=1.0) model.add_design_var('x2', lower=0.0, upper=1.0) model.add_objective('c3.y') prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.driver.options['run_parallel'] = run_parallel prob.driver.options['procs_per_model'] = procs_per_model prob.setup() failed, output = run_driver(prob) self.assertFalse(failed) prob.cleanup() expected = [ {'x1': np.array([0.]), 'x2': np.array([0.]), 'c3.y': np.array([0.0])}, {'x1': np.array([.5]), 'x2': np.array([0.]), 'c3.y': np.array([-3.0])}, {'x1': np.array([1.]), 'x2': np.array([0.]), 'c3.y': np.array([-6.0])}, {'x1': np.array([0.]), 'x2': np.array([.5]), 'c3.y': np.array([17.5])}, {'x1': np.array([.5]), 'x2': np.array([.5]), 'c3.y': np.array([14.5])}, {'x1': np.array([1.]), 'x2': np.array([.5]), 'c3.y': np.array([11.5])}, {'x1': np.array([0.]), 'x2': np.array([1.]), 'c3.y': np.array([35.0])}, {'x1': np.array([.5]), 'x2': np.array([1.]), 'c3.y': np.array([32.0])}, {'x1': np.array([1.]), 'x2': np.array([1.]), 'c3.y': np.array([29.0])}, ] rank = prob.comm.rank # there will be a separate case file for each proc, containing the cases # run by the instance of the model that runs in serial mode on that proc filename = "cases.sql_%d" % rank expect_msg = "Cases from rank %d are being written to %s." % (rank, filename) self.assertTrue(expect_msg in output) # we are running 4 models in parallel, each using 1 proc num_models = prob.comm.size // procs_per_model cr = om.CaseReader(filename) cases = cr.list_cases('driver', out_stream=None) # cases recorded on this proc num_cases = len(cases) self.assertEqual(num_cases, len(expected) // num_models + (rank < len(expected) % num_models)) for n, case in enumerate(cases): idx = n * num_models + rank # index of expected case outputs = cr.get_case(case).outputs self.assertEqual(outputs['x1'], expected[idx]['x1']) self.assertEqual(outputs['x2'], expected[idx]['x2']) self.assertEqual(outputs['c3.y'], expected[idx]['c3.y']) # total number of cases recorded across all requested procs num_cases = prob.comm.allgather(num_cases) self.assertEqual(sum(num_cases), len(expected)) def test_fan_in_grouped_serial_2x2(self): # do not run cases in parallel, but with 2 procs per model # (all cases will run on each of the 2 model instances) run_parallel = False procs_per_model = 2 prob = om.Problem(FanInGrouped()) model = prob.model model.add_design_var('x1', lower=0.0, upper=1.0) model.add_design_var('x2', lower=0.0, upper=1.0) model.add_objective('c3.y') prob.driver = om.DOEDriver(om.FullFactorialGenerator(levels=3)) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.driver.options['run_parallel'] = run_parallel prob.driver.options['procs_per_model'] = procs_per_model prob.setup() failed, output = run_driver(prob) self.assertFalse(failed) prob.cleanup() expected = [ {'x1':
np.array([0.])
numpy.array
# Lint as: python3 # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lingvo Jax linear layers.""" from absl import logging from absl.testing import absltest from absl.testing import parameterized import jax from jax import numpy as jnp from jax import test_util from lingvo.core import layers as lingvo_layers from lingvo.jax import py_utils from lingvo.jax import test_utils from lingvo.jax.layers import linears import numpy as np import tensorflow.compat.v2 as tf ToNp = test_utils.ToNp ToTfNmap = test_utils.ToTfNmap class LinearsTest(test_util.JaxTestCase): def setUp(self): super().setUp()
np.random.seed(123456)
numpy.random.seed
""" File with trajectory written to file: /users/srio/Oasys/tmp.traj wiggler_cdf: Electron beam energy (from velocities) = 3.000355 GeV wiggler_cdf: gamma (from velocities) = 5870.853556 GeV wiggler_cdf: Curvature (min)) = 0.000000 m^-1 wiggler_cdf: (max) 0.199920 m^-1 wiggler_cdf: Radius of curvature (max) = 81689012171814624.000000 m wiggler_cdf: (min) = 5.002009 m wiggler_cdf: Critical Energy (max.) = 11973.937061 eV wiggler_cdf: (min.) = 0.000000 eV wiggler_cdf: Total no.of photons = 1.690471e+17 (in DE=99900.000 eV) wiggler_cdf: File with wiggler cdf written to file: b'/users/srio/Oasys/xshwig.sha' Electron beam energy (from velocities) = 3.000355 GeV gamma (from velocities) = 5870.851896 curvature (max) = 0.199920 m (min) = 0.000000 m Radius of curvature (max) = 81689012171830928.000000 m (min) = 5.002009 m Critical Energy (max.) = 11973.926903 eV (min.) = 0.000000 eV File with wiggler spectrum written to file: spectrum.dat Total power (from integral of spectrum): 10106.973910 W Total number of photons (from integral of spectrum): 1.62115e+19 """ # # script to run the wiggler preprocessor (created by ShadowOui:Wiggler) # from srxraylib.sources import srfunc from srxraylib.plot.gol import plot, plot_image, plot_scatter, plot_show import numpy from srxraylib.util.h5_simple_writer import H5SimpleWriter from srxraylib.plot.gol import set_qt from scipy.interpolate import interp1d set_qt() def P(u): return 2 * numpy.pi /
numpy.sqrt(3)
numpy.sqrt
# -*- coding: utf-8 -*- """Storage selection (SAS) functions: example with three solutes Runs the rSAS model for a synthetic dataset with two fluxes out and three solutes Theory is presented in: <NAME>. (2014), Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed, Water Resour. Res., 51, doi:10.1002/2014WR015707. """ from __future__ import division import rsas import numpy as np import matplotlib.pyplot as plt import pandas as pd # Initializes the random number generator so we always get the same result np.random.seed(0) # ===================================== # Generate the input timeseries # ===================================== # length of the dataset N = 100 S_0 = 10. # <-- volume of the uniformly sampled store Q_0 = 1. # <-- steady-state flow rate T_0 = S_0 / (2 * Q_0) # Note that the analytical solution for the cumulative TTD is T = np.arange(N+1) PQ_exact = 1 - np.exp(-T/T_0) # Steady-state flow in and out for N timesteps J = np.ones(N) * Q_0 * 2 Q = np.ones((N, 2)) * Q_0 # Three random timeseries of concentrations C_J = np.tile(-np.log(np.random.rand(N,1)), (1,3)) # ========================= # Parameters needed by rsas # ========================= # The concentration of water older than the start of observations C_old = [0., 0., 0.] alpha = np.ones((N,2,3)) alpha[:,0,1] = 0.5 alpha[:,1,1] = 0.5 alpha[:,0,2] = 0.5 alpha[:,1,2] = 1.0 # ========================= # Create the rsas functions # ========================= # Parameters for the rSAS function # The uniform distribution extends between S_T=a and S_T=b. Q_rSAS_fun_type = 'uniform' ST_min = np.ones(N) * 0. ST_max = np.ones(N) * S_0 Q_rSAS_fun_parameters = np.c_[ST_min, ST_max] rSAS_fun_Q1 = rsas.create_function(Q_rSAS_fun_type, Q_rSAS_fun_parameters) Q_rSAS_fun_type = 'uniform' ST_min = np.ones(N) * 0. ST_max = np.ones(N) * S_0 Q_rSAS_fun_parameters = np.c_[ST_min, ST_max] rSAS_fun_Q2 = rsas.create_function(Q_rSAS_fun_type, Q_rSAS_fun_parameters) # ================= # Initial condition # ================= # Unknown initial age distribution, so just set this to zeros ST_init = np.zeros(N + 1) MS_init = np.zeros((N + 1, 1)) # ============= # Run the model # ============= # Run it #TODO check PQ with n_substeps>1 outputs = rsas.solve(J, Q, [rSAS_fun_Q1, rSAS_fun_Q2], ST_init=ST_init, MS_init=MS_init, mode='RK4', dt = 1., n_substeps=10, C_J=C_J, C_old=C_old, alpha=alpha, verbose=False, debug=False) # Let's pull these out to make the outputs from rsas crystal clear # State variables: age-ranked storage of water and solutes # ROWS of ST, MS are T - ages # COLUMNS of ST, MS are t - times # LAYERS of MS are s - solutes ST = outputs['ST'] MS1 = outputs['MS'][:,:,0] #MS2 = outputs['MS'][:,:,1] #MS3 = outputs['MS'][:,:,2] # Timestep-averaged backwards TTD # ROWS of PQ are T - ages # COLUMNS of PQ are t - times # LAYERS of PQ are q - fluxes PQ1m = outputs['PQ'][:,:,0] PQ2m = outputs['PQ'][:,:,1] # Timestep-averaged outflow concentration # ROWS of C_Q are t - times # COLUMNS of C_Q are q - fluxes # LAYERS of C_Q are s - solutes C1_Q1m1 = outputs['C_Q'][:,0,0] C1_Q2m1 = outputs['C_Q'][:,1,0] C2_Q1m1 = outputs['C_Q'][:,0,1] C2_Q2m1 = outputs['C_Q'][:,1,1] C3_Q1m1 = outputs['C_Q'][:,0,2] C3_Q2m1 = outputs['C_Q'][:,1,2] # Timestep averaged solute load out # ROWS of MQ are T - ages # COLUMNS of MQ are t - times # LAYERS of MQ are q - fluxes # Last dimension of MS are s - solutes #M11m = outputs['MQ'][:,:,0,0] #M12m = outputs['MQ'][:,:,1,0] #M21m = outputs['MQ'][:,:,0,1] #M22m = outputs['MQ'][:,:,1,1] #M31m = outputs['MQ'][:,:,0,2] #M32m = outputs['MQ'][:,:,1,2] # ================================== # Plot the age-ranked storage # ================================== # The analytical solution for the age-ranked storage is T = np.arange(N+1) ST_exact = S_0 * (1 - np.exp(-T/T_0)) # plot this with the rsas estimate fig = plt.figure(1) plt.clf() plt.plot(ST[:,-1], 'b-', label='rsas model', lw=2) plt.plot(ST_exact, 'r-.', label='analytical solution', lw=2) plt.ylim((0,S_0)) plt.legend(loc=0) plt.ylabel('$S_T(T)$') plt.xlabel('age $T$') plt.title('Age-ranked storage') #%% # ===================================================================== # Outflow concentration estimated using several different TTD # ===================================================================== # Lets get the instantaneous value of the TTD at the end of each timestep PQ1i = np.zeros((N+1, N+1)) PQ1i[:,0] = rSAS_fun_Q1.cdf_i(ST[:,0],0) PQ1i[:,1:] = np.r_[[rSAS_fun_Q1.cdf_i(ST[:,i+1],i) for i in range(N)]].T # Lets also get the exact TTD for the combined flux out n=100 T=np.arange(N*n+1.)/n PQ1e = np.tile(1-np.exp(-T/T_0), (N*n+1., 1)).T # Use the transit time distribution and input timeseries to estimate # the output timeseries for the exact, instantaneous and timestep-averaged cases C1_Q1m2, C_mod_raw, observed_fraction = rsas.transport(PQ1m, C_J[:,0], C_old[0]) C1_Q1i, C_mod_raw, observed_fraction = rsas.transport(PQ1i, C_J[:,0], C_old[0]) C1_Q1ei, C_mod_raw, observed_fraction = rsas.transport(PQ1e, C_J[:,0].repeat(n), C_old[0]) # This calculates an exact timestep-averaged value C1_Q1em = np.reshape(C1_Q1ei,(N,n)).mean(axis=1) # Plot the results fig = plt.figure(2) plt.clf() plt.step(np.arange(N), C1_Q1em, 'r', ls='-', label='mean exact, C1', lw=2, where='post') plt.step(np.arange(N), C1_Q1m2, 'b', ls=':', label='mean rsas.transport, C1', lw=2, where='post') plt.plot((np.arange(N*n) + 1.)/n, C1_Q1ei, 'r-', label='inst. exact, C1', lw=1) plt.plot(np.arange(N)+1, C1_Q1i, 'b:o', label='inst. rsas.transport, C1', lw=1) plt.step(np.arange(N), C1_Q1m1, 'g', ls='-', label='mean rsas internal, C1', lw=2, where='post') plt.step(np.arange(N), C2_Q1m1, 'g', ls='--', label='mean rsas internal, C2', lw=2, where='post') plt.step(
np.arange(N)
numpy.arange
''' Created on Nov 12, 2018 @author: <NAME> (<EMAIL>) ''' import os import glob import argparse import time import pandas as pd import numpy as np import scipy.io as io from keras.models import Model from keras.layers import GRU, Dense, Dropout, Input from keras import optimizers from keras.utils import multi_gpu_model import keras import ipyparallel as ipp # Constant. MODEL_FILE_NAME = 'yaw_misalignment_calibrator.h5' RESULT_FILE_NAME = 'ymc_result.csv' dt = pd.Timedelta(10.0, 'm') testTimeRanges = [(pd.Timestamp('2018-05-19'), pd.Timestamp('2018-05-26') - dt) , (pd.Timestamp('2018-05-26'), pd.Timestamp('2018-06-02') - dt) , (pd.Timestamp('2018-06-02'), pd.Timestamp('2018-06-09') - dt) , (pd.Timestamp('2018-06-09'), pd.Timestamp('2018-06-16') - dt) , (pd.Timestamp('2018-08-24'), pd.Timestamp('2018-08-31') - dt) , (pd.Timestamp('2018-08-28'), pd.Timestamp('2018-09-04') - dt)] testTimeRangeStrings = ['19/05/2018 to 25/05/2018' , '26/05/2018 to 01/06/2018' , '02/06/2018 to 08/06/2018' , '09/06/2018 to 15/06/2018' , '24/08/2018 to 30/08/2018' , '28/08/2018 to 03/09/2018'] WIND_BIN_SIZE = 1 WIND_BIN_MAX = 20 ACTIVE_POWER_MAX = 1800. WIND_SPEED_MAX = 16. WIND_DIRECTION_NORMAL_FACTOR = 2 * np.pi DELTA_TIME = 1 IS_MULTI_GPU = False NUM_GPUS = 4 IS_DEBUG = False def applyKalmanFilter(data, q=1e-5): ''' Apply Kalman filter. @param data: Data. ''' # Apply Kalman filter. # Check exception. if data.shape[0] == 1: r = 1.0 else: r = data.std()**2 vals = [] x_pre = data.mean() p_pre = r for i in range(data.shape[0]): xhat = x_pre phat = p_pre + q k = phat/(phat + r) x = xhat + k * (data[i] - xhat) p = (1 - k) * phat vals.append(x) x_pre = x p_pre = p vals = np.asarray(vals) return vals class YawMisalignmentCalibrator(object): ''' Yaw misalignment calibrator. ''' def __init__(self, rawDataPath): ''' Constructor. ''' # Initialize. self.rawDataPath = rawDataPath def train(self, hps, trainDataLoading = True, modelLoading = False): ''' Train. @param hps: Hyper-parameters. @param trainDataLoading: Train data loading flag. @param modelLoading: Model loading flag. ''' self.hps = hps if modelLoading == True: print('Load the pre-trained model...') if IS_MULTI_GPU == True: self.model = multi_gpu_model(keras.models.load_model(MODEL_FILE_NAME), gpus = NUM_GPUS) else: self.model = keras.models.load_model(MODEL_FILE_NAME) else: # Design the model. print('Design the model.') # Input1: n (n sequence) x 2 (calibrated c_avg_ws1, avg_a_power) input1 = Input(shape=(self.hps['num_seq1'], 2)) _, c = GRU(self.hps['gru1_dim'], return_state = True, name='gru1')(input1) # Input2: ywe value sequence. input2 = Input(shape=(self.hps['num_seq2'], 1)) x, _ = GRU(self.hps['gru2_dim'] , return_sequences = True , return_state = True , name='gru2')(input2, initial_state = c) for i in range(1, hps['num_layers'] + 1): x = Dense(self.hps['dense1_dim'], activation='relu', name='dense1_' + str(i))(x) x = Dropout(hps['dropout1_rate'])(x) output = Dense(1, activation='linear', name='dense1_last')(x) # Create the model. if IS_MULTI_GPU == True: self.model = multi_gpu_model(Model(inputs=[input1, input2] , outputs=[output]), gpus = NUM_GPUS) else: self.model = Model(inputs=[input1, input2], outputs=[output]) # Compile the model. optimizer = optimizers.Adam(lr=self.hps['lr'] , beta_1=self.hps['beta_1'] , beta_2=self.hps['beta_2'] , decay=self.hps['decay']) self.model.compile(optimizer=optimizer, loss='mse') self.model.summary() # Create training and validation data. tr, val = self.__createTrValData__(hps, trainDataLoading = True, dataLoading = False) trInput1M, trInput2M, trOutputM = tr #valInput1M, valInput2M, valOutputM = val # Train the model. hists = [] hist = self.model.fit([trInput1M, trInput2M], [trOutputM] , epochs=self.hps['epochs'] , batch_size=self.hps['batch_size'] #, validation_data = ([valInput1M, valInput2M], [valOutputM]) , verbose=1) hists.append(hist) # Print loss. print(hist.history['loss'][-1]) print('Save the model.') self.model.save(MODEL_FILE_NAME) # Make the prediction model. self.__makePredictionModel__(); # Calculate loss. lossList = list() for h in hists: lossList.append(h.history['loss'][-1]) lossArray = np.asarray(lossList) lossMean = lossArray.mean() print('Each mean loss: {0:f} \n'.format(lossMean)) with open('losses.csv', 'a') as f: f.write('{0:f} \n'.format(lossMean)) with open('loss.csv', 'w') as f: f.write(str(lossMean) + '\n') #? return lossMean def __makePredictionModel__(self): ''' Make the prediction model. ''' # Affecting factor sequence model. input1 = Input(shape=(self.hps['num_seq1'], 2)) _, c = self.model.get_layer('gru1')(input1) self.afModel = Model([input1], [c]) # Target factor prediction model. input2 = Input(shape=(1,1)) recurState = Input(shape=(self.hps['gru1_dim'],)) #? x, c2 = self.model.get_layer('gru2')(input2, initial_state = recurState) #? for i in range(1, self.hps['num_layers'] + 1): x = self.model.get_layer('dense1_' + str(i))(x) output = self.model.get_layer('dense1_last')(x) self.predModel = Model([input2, recurState], [output, c2]) def __createTrValData__(self, hps, trainDataLoading = True, dataLoading = False): ''' Create training and validation data. @param hps: Hyper-parameters. @param trainDataLoading: Train data loading flag. @param dataLoading: Data loading flag. ''' if dataLoading: trValMs_mat = io.loadmat('trValMs.mat') trInput1M = trValMs_mat['trInput1M'] trInput2M = trValMs_mat['trInput2M'] trOutputM = trValMs_mat['trOutputM'] valInput1M = trValMs_mat['valInput1M'] valInput2M = trValMs_mat['valInput2M'] valOutputM = trValMs_mat['valOutputM'] tr = (trInput1M, trInput2M, trOutputM) val = (valInput1M, valInput2M, valOutputM) return tr, val pClient = ipp.Client() pView = pClient[:] # Load raw data. if trainDataLoading: rawDatasDF = pd.read_csv('train.csv') else: rawDatasDF = self.trValDataDF num_seq1 = hps['num_seq1'] num_seq2 = hps['num_seq2'] # Training data. trRawDatasDF = rawDatasDF.iloc[:int(rawDatasDF.shape[0]*(1.0 - hps['val_ratio'])), :] #trRawDatasDF = trRawDatasDF.iloc[:3000,:] numSample = trRawDatasDF.shape[0] t = 1 # One based time index. # Input 1. trInput1 = [] trOutput = [] trInput2 = [] pView.push({'num_seq1': num_seq1, 'num_seq2': num_seq2, 'trRawDatasDF': trRawDatasDF}) ts = [] while ((t + num_seq1 + num_seq2 - 1) <= numSample): ts.append(t - 1) t += 1 + DELTA_TIME # One based time index. res = pView.map(getInputOutput, ts, block=True) for i in range(len(res)): trInput1.append(res[i][0]) trOutput.append(res[i][1]) trInput2.append(res[i][2]) trInput1M = np.asarray(trInput1) trOutputM = np.expand_dims(np.asarray(trOutput), 2) trInput2M = np.expand_dims(np.asarray(trInput2), 2) tr = (trInput1M, trInput2M, trOutputM) # Validation data. valRawDatasDF = rawDatasDF.iloc[:int(rawDatasDF.shape[0]*(1.0 - hps['val_ratio'])), :] #valRawDatasDF = valRawDatasDF.iloc[:3000,:] numSample = valRawDatasDF.shape[0] t = 1 # One based time index. # Input 1. valInput1 = [] valOutput = [] valInput2 = [] pView.push({'num_seq1': num_seq1, 'num_seq2': num_seq2, 'trRawDatasDF': valRawDatasDF}) ts = [] while ((t + num_seq1 + num_seq2 - 1) <= numSample): ts.append(t - 1) t += 1 + DELTA_TIME # One based time index. res = pView.map(getInputOutput, ts, block=True) for i in range(len(res)): valInput1.append(res[i][0]) valOutput.append(res[i][1]) valInput2.append(res[i][2]) valInput1M = np.asarray(valInput1) valOutputM = np.expand_dims(np.asarray(valOutput), 2) valInput2M = np.expand_dims(np.asarray(valInput2), 2) val = (valInput1M, valInput2M, valOutputM) # Save data. io.savemat('trValMs.mat', mdict={'trInput1M': trInput1M , 'trInput2M': trInput2M , 'trOutputM': trOutputM , 'valInput1M': valInput1M , 'valInput2M': valInput2M , 'valOutputM': valOutputM} , oned_as='row') #? return tr, val def evaluate(self, hps, modelLoading = True, evalDataLoading = False): ''' Evaluate. @param hps: Hyper-parameters. @param modelLoading: Model loading flag. ''' self.hps = hps if modelLoading == True: print('Load the pre-trained model...') if IS_MULTI_GPU == True: self.model = multi_gpu_model(keras.models.load_model(MODEL_FILE_NAME), gpus = NUM_GPUS) else: self.model = keras.models.load_model(MODEL_FILE_NAME) # Make the prediction model. self.__makePredictionModel__(); # Load evaluation data. valid_columns = ['avg_a_power' , 'avg_rwd1' , 'avg_ws1' , 'corr_factor_anem1' , 'corr_offset_anem1' , 'offset_anem1' , 'slope_anem1' , 'g_status' , 'Turbine_no'] if evalDataLoading: evalDF = pd.read_csv('evalDF.csv') else: # B08 data. b8DF = pd.read_excel(os.path.join(self.rawDataPath, 'SCADA_B8_19May_1June.xlsx')) b8DF = b8DF.append(pd.read_excel(os.path.join(self.rawDataPath,'SCADA_B8_2june_15june.xlsx')) , ignore_index=True) b8DF.index = pd.to_datetime(b8DF.Timestamp) b8DF = b8DF[valid_columns] # Relevant lidar data. lidarDF = pd.read_excel(os.path.join(self.rawDataPath, 'Lidar_data 19May2018_to_15june2018_TurbineB8.xlsx')) lidarDF.index = pd.to_datetime(lidarDF.Date_time) lidarDF = lidarDF[lidarDF.columns[1:]] # Evaluation data. evalDF = pd.concat([lidarDF, b8DF], axis=1) evalDF = evalDF.dropna(how='any') evalDF.index.name = 'Timestamp' evalDF.sort_values(by='Timestamp') # Save evaluation data. evalDF.to_csv('evalDF.csv') teDataDF = pd.DataFrame(columns=['Turbine_no', 'avg_a_power', 'YMA(deg)', 'c_avg_ws1', 'avg_rwd1']) # Apply Kalman filtering to avg_rwd1 for each wind turbine and reduce yaw misalignment # and calibrate avg_ws1 with coefficients. avg_rwd1s = np.asarray(evalDF.avg_rwd1) #- applyKalmanFilter(np.asarray(evalDF.avg_rwd1)) # Calibrate avg_ws1 with coefficients. c_avg_ws1s = np.asarray(evalDF.corr_offset_anem1 + evalDF.corr_factor_anem1 * evalDF.avg_ws1 \ + evalDF.slope_anem1 * evalDF.avg_rwd1 + evalDF.offset_anem1) #? teData = {'Timestamp': list(pd.to_datetime(evalDF.Timestamp)) , 'Turbine_no': list(evalDF.Turbine_no) , 'avg_a_power':
np.asarray(evalDF.avg_a_power)
numpy.asarray
# coding: utf-8 # ## Importing, Exporting, Basic Slicing and Indexing. # In terms of the importing and exporting files I would not go depth on it. You can refer the docstring for complete information on the various ways it can be used. A few examples will be given here in regard to this. I would spent sometime on the slicing and indexing arrays. # ### Here are the main steps we will go through # * How to use loadtxt, genfromtxt, and savetxt? # * How to slice and index array? # # This is just little illustration. # <img src="http://www.bogotobogo.com/python/images/python_strings/string_diagram.png"> # #### How to use loadtxt, genfromtxt, and savetxt?? # * <b>numpy.loadtxt()</b> : Load data from a text file. This function aims to be a fast reader for simply formatted files. # * <b>numpy.genfromtxt()</b>: Load data from a text file, with missing values handled as specified. When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. When the variables are named (either by a flexible dtype or with names, there must not be any header in the file (else a ValueError exception is raised). Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. # * <b>numpy.savetxt()</b>: Save an array to a text file. Further explanation of the fmt parameter (%[flag]width[.precision]specifier): # # ##### Example # Here is the general idea, I'll come back to it. # In[2]: import numpy as np # using numpy you can load text file
np.loadtxt('file_name.txt')
numpy.loadtxt
''' From https://github.com/tsc2017/inception-score Code derived from https://github.com/openai/improved-gan/blob/master/inception_score/model.py Args: images: A numpy array with values ranging from -1 to 1 and shape in the form [N, 3, HEIGHT, WIDTH] where N, HEIGHT and WIDTH can be arbitrary. splits: The number of splits of the images, default is 10. Returns: mean and standard deviation of the inception across the splits. ''' import tensorflow as tf import os, sys import functools import numpy as np import math import time from tensorflow.python.ops import array_ops from tensorflow.python.ops import functional_ops tfgan = tf.contrib.gan BATCH_SIZE=256 session = tf.InteractiveSession() # Run images through Inception. inception_images=tf.placeholder(tf.float32,[BATCH_SIZE,3,None,None]) def inception_logits(images=inception_images, num_splits=1): images=tf.transpose(images,[0,2,3,1]) size = 299 images = tf.image.resize_bilinear(images, [size, size]) generated_images_list = array_ops.split( images, num_or_size_splits=num_splits) logits = functional_ops.map_fn( fn=functools.partial(tfgan.eval.run_inception, output_tensor='logits:0'), elems=array_ops.stack(generated_images_list), parallel_iterations=1, back_prop=False, swap_memory=True, name='RunClassifier') logits = array_ops.concat(array_ops.unstack(logits), 0) return logits logits=inception_logits() def get_inception_probs(inps): preds = [] n_batches = len(inps)//BATCH_SIZE for i in range(n_batches): inp = inps[i * BATCH_SIZE:(i + 1) * BATCH_SIZE] pred = logits.eval({inception_images:inp})[:,:1000] preds.append(pred) preds = np.concatenate(preds, 0) preds=np.exp(preds)/np.sum(np.exp(preds),1,keepdims=True) return preds def preds2score(preds,splits): scores = [] for i in range(splits): part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :] kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) kl = np.mean(
np.sum(kl, 1)
numpy.sum
import json import cv2 import numpy as np import os from joblib import Parallel, delayed import argparse import sys sys.path.append('../') import Rect #input original image and page bbox, output ROI (text region) bbox def ExpandCol(rect,n): rect = [list(rect[0]), list(rect[1]), rect[2]] if n>1: if rect[1][0] > rect[1][1]: rect[1][1] = rect[1][1] * (n+1) / (n-1) else: rect[1][0] = rect[1][0] * (n+1) / (n-1) else: if rect[1][0] > rect[1][1]: rect[1][1] = rect[1][1] + rect[1][0] * 0.1325 * 2 else: rect[1][0] = rect[1][0] + rect[1][1] * 0.1325 * 2 return tuple(rect) def GetImgFilename(jsonfile): book, p , _ = jsonfile.split('.')[0].split('_') p = p[0] + str(int(p[1:])) return book + '_' + p + '.png' def main(pagefilename,args): ''' :return: rect(s) of detected ROI estimate the ROI by finding the vertical lines ''' print("processing "+pagefilename) imgfilename=GetImgFilename(pagefilename) img = cv2.imread(os.path.join(args.imgdir,imgfilename), 0) with open(os.path.join(args.pagedir,pagefilename)) as file: rect = json.load(file) warped, M = Rect.CropRect(img, rect) warped = cv2.pyrDown(warped) scale = 2 ** 1 #remove salt-and-pepper noise, reduce the number of CCL areas warped = cv2.medianBlur(warped, 3) warped = cv2.medianBlur(warped, 3) #local binarization warped = cv2.adaptiveThreshold(warped, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 15, 4) #filling small holes on vertical lines kernel = np.ones([7,1], np.uint8) warped = cv2.morphologyEx(warped, cv2.MORPH_CLOSE, kernel) # CCL ret, labels = cv2.connectedComponents(warped) # CCL features = {} #find candidate of the four vertical lines for i in range(1, ret + 1): # O(n^3), that's why we need downsampling if labels[labels == i].shape[0] > warped.shape[0]: # remove words (small CCL regions) HRange, WRange = np.where(labels == i) if (max(HRange) - min(HRange)) > 0.4 * warped.shape[0] and (max(HRange) - min(HRange)) / ( max(WRange) - min(WRange)) > 15 and min(WRange)>0.1*warped.shape[1] and max(WRange)<0.9*warped.shape[1]: w = (max(WRange) + min(WRange)) / 2 features[i] = min(w, warped.shape[1] - w) # import pdb;pdb.set_trace() # find the four lines that are most far away from the two sides (some simple classifier) if len(features) > 4: features = sorted(features.items(), key=lambda kv: kv[1]) features = features[-4:] else: if len(features)>0: features = sorted(features.items(), key=lambda kv: kv[1]) if len(features)<4: print("warning: less than four vertical lines detected for page "+pagefilename) else: print("warning: no vertical line detected for page " + pagefilename) return 0 index = [item[0] for item in features] lines = np.zeros(labels.shape) # mask for lines for i in index: lines = lines + (labels == i).astype(int) #import pdb;pdb.set_trace() _ , cnts , _ = cv2.findContours(lines.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) lines =
np.concatenate(cnts, axis=0)
numpy.concatenate
''' Created on Mar 23, 2012 @author: <NAME> (<EMAIL>) ''' from run_rmhd2d import rmhd2d import numpy as np from numpy import abs import time from petsc4py import PETSc from rmhd.solvers.common.PETScDerivatives import PETScDerivatives from rmhd.solvers.linear.PETScPoissonCFD2 import PETScPoisson from rmhd.solvers.nonlinear.PETScNonlinearSolverArakawaJ1CFD2 import PETScSolver from rmhd.solvers.nonlinear.PETScNonlinearSolverArakawaJ1CFD2DOF2 import PETScSolverDOF2 from rmhd.solvers.preconditioner.PETScPreconditionerArakawaJ1CFD2DOF2Vec import PETScPreconditioner class rmhd2d_split(rmhd2d): ''' PETSc/Python Reduced MHD Solver in 2D using split solver. ''' def __init__(self, cfgfile): ''' Constructor ''' super().__init__(cfgfile, mode = "split") OptDB = PETSc.Options() # OptDB.setValue('ksp_monitor', '') # OptDB.setValue('snes_monitor', '') # # OptDB.setValue('log_info', '') # OptDB.setValue('log_summary', '') OptDB.setValue('ksp_rtol', self.cfg['solver']['petsc_ksp_rtol']) OptDB.setValue('ksp_atol', self.cfg['solver']['petsc_ksp_atol']) OptDB.setValue('ksp_max_it', self.cfg['solver']['petsc_ksp_max_iter']) # OptDB.setValue('ksp_initial_guess_nonzero', 1) OptDB.setValue('pc_type', 'hypre') OptDB.setValue('pc_hypre_type', 'boomeramg') OptDB.setValue('pc_hypre_boomeramg_max_iter', 2) # OptDB.setValue('pc_hypre_boomeramg_max_levels', 6) # OptDB.setValue('pc_hypre_boomeramg_tol', 1e-7) # create DA (dof = 2 for A, P) self.da2 = PETSc.DA().create(dim=2, dof=2, sizes=[self.nx, self.ny], proc_sizes=[PETSc.DECIDE, PETSc.DECIDE], boundary_type=('periodic', 'periodic'), stencil_width=1, stencil_type='box') # create solution and RHS vector self.dx2 = self.da2.createGlobalVec() self.dy2 = self.da2.createGlobalVec() self.b = self.da2.createGlobalVec() self.Ad = self.da1.createGlobalVec() self.Jd = self.da1.createGlobalVec() self.Pd = self.da1.createGlobalVec() self.Od = self.da1.createGlobalVec() # create Jacobian, Function, and linear Matrix objects self.petsc_precon = PETScPreconditioner(self.da1, self.da2, self.nx, self.ny, self.ht, self.hx, self.hy) # self.petsc_solver2 = PETScSolverDOF2(self.da1, self.da2, self.nx, self.ny, self.ht, self.hx, self.hy) self.petsc_solver2 = PETScSolverDOF2(self.da1, self.da2, self.nx, self.ny, self.ht, self.hx, self.hy, self.petsc_precon) self.petsc_solver = PETScSolver(self.da1, self.da4, self.nx, self.ny, self.ht, self.hx, self.hy) self.petsc_precon.set_tolerances(poisson_rtol=self.cfg['solver']['pc_poisson_rtol'], poisson_atol=self.cfg['solver']['pc_poisson_atol'], poisson_max_it=self.cfg['solver']['pc_poisson_max_iter'], parabol_rtol=self.cfg['solver']['pc_parabol_rtol'], parabol_atol=self.cfg['solver']['pc_parabol_atol'], parabol_max_it=self.cfg['solver']['pc_parabol_max_iter'], jacobi_max_it=self.cfg['solver']['pc_jacobi_max_iter']) # initialise matrixfree Jacobian self.Jmf = PETSc.Mat().createPython([self.b.getSizes(), self.b.getSizes()], context=self.petsc_solver2, comm=PETSc.COMM_WORLD) self.Jmf.setUp() # create linear solver self.ksp = PETSc.KSP().create() self.ksp.setFromOptions() self.ksp.setOperators(self.Jmf) self.ksp.setInitialGuessNonzero(True) self.ksp.setType('fgmres') self.ksp.getPC().setType('none') # update solution history self.petsc_solver.update_previous(self.x) self.petsc_solver2.update_previous(self.A, self.J, self.P, self.O) def __del__(self): self.ksp.destroy() self.Jmf.destroy() def run(self): run_time = time.time() alpha = 1.5 # 64x64 # alpha = 1.1 # 128x128 # alpha = 1.5 # 256x256 gamma = 0.9 # ksp_max = 1E-1 # 64x64, 128x128 ksp_max = 1E-3 # 256x256 for itime in range(1, self.nt+1): if PETSc.COMM_WORLD.getRank() == 0: localtime = time.asctime( time.localtime(time.time()) ) print("\nit = %4d, t = %10.4f, %s" % (itime, self.ht*itime, localtime) ) print # calculate initial guess self.calculate_initial_guess(initial=itime==1) # self.calculate_initial_guess(initial=True) # update history self.petsc_solver.update_history() self.petsc_solver2.update_history() # copy initial guess to x x_arr = self.da4.getVecArray(self.x) x_arr[:,:,0] = self.da1.getVecArray(self.A)[:,:] x_arr[:,:,1] = self.da1.getVecArray(self.J)[:,:] x_arr[:,:,2] = self.da1.getVecArray(self.P)[:,:] x_arr[:,:,3] = self.da1.getVecArray(self.O)[:,:] # solve i = 0 self.petsc_solver.update_previous(self.x) self.petsc_solver2.update_previous(self.A, self.J, self.P, self.O) self.petsc_solver.function(self.f) pred_norm = self.f.norm() prev_norm = pred_norm tolerance = self.tolerance + self.cfg['solver']['petsc_snes_rtol'] * pred_norm # print("tolerance:", self.tolerance, self.cfg['solver']['petsc_snes_rtol'] * pred_norm, tolerance) if PETSc.COMM_WORLD.getRank() == 0: print(" Nonlinear Solver Iteration %i: residual = %22.16E" % (i, pred_norm)) while True: i+=1 f_arr = self.da4.getVecArray(self.f) b_arr = self.da2.getVecArray(self.b) b_arr[:,:,0] = -f_arr[:,:,0] b_arr[:,:,1] = -f_arr[:,:,3] self.da1.getVecArray(self.FA)[...] = f_arr[:,:,0] self.da1.getVecArray(self.FJ)[...] = f_arr[:,:,1] self.da1.getVecArray(self.FP)[...] = f_arr[:,:,2] self.da1.getVecArray(self.FO)[...] = f_arr[:,:,3] self.petsc_solver2.update_function(self.FA, self.FJ, self.FP, self.FO) self.dy2.set(0.) # self.b.copy(self.dy2) if i == 1: zeta_A = 0. zeta_B = 0. zeta_C = 0. zeta_D = 0. ksp_tol = self.cfg['solver']['petsc_ksp_rtol'] # self.ksp.setTolerances(rtol=ksp_tol, max_it=3) else: zeta_A = gamma * np.power(pred_norm / prev_norm , alpha) zeta_B = np.power(ksp_tol, alpha) zeta_C = min(ksp_max, max(zeta_A, zeta_B)) zeta_D = gamma * tolerance / pred_norm ksp_tol = min(ksp_max, max(zeta_C, zeta_D)) # self.ksp.setTolerances(rtol=ksp_tol, max_it=5) # self.ksp.setTolerances(rtol=ksp_tol) self.ksp.solve(self.b, self.dy2) self.petsc_precon.solve(self.dy2, self.dx2) # self.dy2.copy(self.dx2) dx_arr = self.da2.getVecArray(self.dx2) self.da1.getVecArray(self.Ad)[...] = dx_arr[:,:,0] self.da1.getVecArray(self.Pd)[...] = dx_arr[:,:,1] self.derivatives.laplace_vec(self.Pd, self.Od, -1.) self.derivatives.laplace_vec(self.Ad, self.Jd, -1.) self.Od.axpy(-1., self.FP) self.Jd.axpy(-1., self.FJ) dx_arr = self.da4.getVecArray(self.dx) dx_arr[:,:,0] = self.da1.getVecArray(self.Ad)[...] dx_arr[:,:,1] = self.da1.getVecArray(self.Jd)[...] dx_arr[:,:,2] = self.da1.getVecArray(self.Pd)[...] dx_arr[:,:,3] = self.da1.getVecArray(self.Od)[...] self.x.axpy(1., self.dx) self.A.axpy(1., self.Ad) self.J.axpy(1., self.Jd) self.P.axpy(1., self.Pd) self.O.axpy(1., self.Od) self.petsc_solver.update_previous(self.x) self.petsc_solver2.update_previous(self.A, self.J, self.P, self.O) prev_norm = pred_norm self.petsc_solver.function(self.f) pred_norm = self.f.norm() if PETSc.COMM_WORLD.getRank() == 0: print(" Nonlinear Solver Iteration %i: %5i GMRES iterations, residual = %22.16E, tolerance = %22.16E" % (i, self.ksp.getIterationNumber(), pred_norm, self.ksp.getTolerances()[0]) ) if
abs(prev_norm - pred_norm)
numpy.abs
''' Simple sanity check for all four Hidden Markov Models' implementations. ''' import jax.numpy as jnp from jax.random import PRNGKey import matplotlib.pyplot as plt import numpy as np import distrax from distrax import HMM from jsl.hmm.hmm_numpy_lib import HMMNumpy, hmm_forwards_backwards_numpy, hmm_viterbi_numpy from jsl.hmm.hmm_lib import HMMJax, hmm_viterbi_jax, hmm_forwards_backwards_jax import jsl.hmm.hmm_logspace_lib as hmm_logspace_lib def plot_inference(inference_values, z_hist, ax, state=1, map_estimate=False): """ Plot the estimated smoothing/filtering/map of a sequence of hidden states. "Vertical gray bars denote times when the hidden state corresponded to state 1. Blue lines represent the posterior probability of being in that state given different subsets of observed data." See Markov and Hidden Markov models section for more info Parameters ---------- inference_values: array(n_samples, state_size) Result of runnig smoothing method z_hist: array(n_samples) Latent simulation ax: matplotlib.axes state: int Decide which state to highlight map_estimate: bool Whether to plot steps (simple plot if False) """ n_samples = len(inference_values) xspan = np.arange(1, n_samples + 1) spans = find_dishonest_intervals(z_hist) if map_estimate: ax.step(xspan, inference_values, where="post") else: ax.plot(xspan, inference_values[:, state]) for span in spans: ax.axvspan(*span, alpha=0.5, facecolor="tab:gray", edgecolor="none") ax.set_xlim(1, n_samples) # ax.set_ylim(0, 1) ax.set_ylim(-0.1, 1.1) ax.set_xlabel("Observation number") def find_dishonest_intervals(z_hist): """ Find the span of timesteps that the simulated systems turns to be in state 1 Parameters ---------- z_hist: array(n_samples) Result of running the system with two latent states Returns ------- list of tuples with span of values """ spans = [] x_init = 0 for t, _ in enumerate(z_hist[:-1]): if z_hist[t + 1] == 0 and z_hist[t] == 1: x_end = t spans.append((x_init, x_end)) elif z_hist[t + 1] == 1 and z_hist[t] == 0: x_init = t + 1 return spans # state transition matrix A = jnp.array([ [0.95, 0.05], [0.10, 0.90] ]) # observation matrix B = jnp.array([ [1 / 6, 1 / 6, 1 / 6, 1 / 6, 1 / 6, 1 / 6], # fair die [1 / 10, 1 / 10, 1 / 10, 1 / 10, 1 / 10, 5 / 10] # loaded die ]) n_samples = 300 init_state_dist = jnp.array([1, 1]) / 2 hmm_numpy = HMMNumpy(np.array(A), np.array(B), np.array(init_state_dist)) hmm_jax = HMMJax(A, B, init_state_dist) hmm = HMM(trans_dist=distrax.Categorical(probs=A), init_dist=distrax.Categorical(probs=init_state_dist), obs_dist=distrax.Categorical(probs=B)) hmm_log = hmm_logspace_lib.HMM(trans_dist=distrax.Categorical(probs=A), init_dist=distrax.Categorical(probs=init_state_dist), obs_dist=distrax.Categorical(probs=B)) seed = 314 z_hist, x_hist = hmm.sample(seed=PRNGKey(seed), seq_len=n_samples) z_hist_str = "".join((np.array(z_hist) + 1).astype(str))[:60] x_hist_str = "".join((np.array(x_hist) + 1).astype(str))[:60] print("Printing sample observed/latent...") print(f"x: {x_hist_str}") print(f"z: {z_hist_str}") # Do inference alpha_numpy, _, gamma_numpy, loglik_numpy = hmm_forwards_backwards_numpy(hmm_numpy, np.array(x_hist), len(x_hist)) alpha_jax, _, gamma_jax, loglik_jax = hmm_forwards_backwards_jax(hmm_jax, x_hist, len(x_hist)) alpha_log, _, gamma_log, loglik_log = hmm_logspace_lib.hmm_forwards_backwards_log(hmm_log, x_hist, len(x_hist)) alpha, beta, gamma, loglik = hmm.forward_backward(x_hist) assert np.allclose(alpha_numpy, alpha) assert np.allclose(alpha_jax, alpha) assert np.allclose(jnp.exp(alpha_log), alpha) assert np.allclose(gamma_numpy, gamma) assert
np.allclose(gamma_jax, gamma)
numpy.allclose
import pickle import numpy as np import pandas as pd import pytask from scipy.stats import pearsonr as pear from src.config import BLD def get_column(res, spec): """ Creates Columns for table 2 for each specification. For each estimated parameter the authors compute the mean, median and standard error across individuals and list them in a table. Args: res(list): list of arrays containing individual-specific paramater estimates spec(int): specification parameter Returns: column(Pd.Dataframe): column spec of table 2 """ if spec != 4: param = pd.DataFrame( res, columns=["beta", "betahat", "delta", "gamma", "phi", "sigma"] ) column = np.round( [ np.mean(param["beta"]), np.median(param["beta"]), np.std(param["beta"]), np.mean(param["betahat"]), np.median(param["betahat"]), np.std(param["betahat"]), np.mean(param["delta"]), np.median(param["delta"]), np.std(param["delta"]),
np.mean(param["gamma"])
numpy.mean
# !/usr/bin/env python # Copyright (c) 2016-2017, wradlib developers. # Distributed under the MIT License. See LICENSE.txt for more info. import sys import unittest import wradlib.georef as georef import wradlib.util as util from wradlib.io import read_generic_hdf5, open_raster, gdal_create_dataset import numpy as np from osgeo import gdal, osr, ogr from deprecation import fail_if_not_removed np.set_printoptions(edgeitems=3, infstr='inf', linewidth=75, nanstr='nan', precision=8, suppress=False, threshold=1000, formatter=None) class CoordinateTransformTest(unittest.TestCase): def setUp(self): self.r = np.array([0., 0., 111., 111., 111., 111.]) * 1000 self.az = np.array([0., 180., 0., 90., 180., 270.]) self.th = np.array([0., 0., 0., 0., 0., 0.5]) self.csite = (9.0, 48.0) self.result_xyz = tuple( (np.array([0., 0., 0., 110993.6738, 0., -110976.7856]), np.array([0., -0., 110993.6738, 0., -110976.7856, -0.]), np.array([0., 0., 725.7159843, 725.7159843, 725.7159843, 1694.22337134]))) self.result = tuple( (np.array([9., 9., 9., 10.49189531, 9., 7.50810469]), np.array([48., 48., 48.99839742, 47.99034027, 47.00160258, 47.99034027]), np.array([0., 0., 967.03198482, 967.03198482, 967.03198482, 1935.45679527]))) self.result_n = tuple( (np.array([9., 9., 9., 10.48716091, 9., 7.51306531]), np.array([48., 48., 48.99814438, 47.99037251, 47.00168131, 47.99037544]), np.array([0., 0., 725.7159843, 725.7159843, 725.7159843, 1694.22337134]))) @fail_if_not_removed def test_hor2aeq(self): self.assertTrue(np.allclose(georef.misc.hor2aeq(0.25, 0.5, 0.75), (-0.29983281824238966, 0.22925926995789672))) @fail_if_not_removed def test_aeq2hor(self): self.assertTrue(np.allclose(georef.misc.aeq2hor(0.22925926995789672, -0.29983281824238966, 0.75), (0.25, 0.5))) @fail_if_not_removed def test_polar2lonlat(self): self.assertTrue( np.allclose(georef.polar2lonlat(self.r, self.az, self.csite), self.result[:2])) @fail_if_not_removed def test_polar2lonlatalt(self): self.assertTrue(np.allclose( georef.polar2lonlatalt(self.r, self.az, self.th, self.csite), self.result, rtol=1e-03)) def test_spherical_to_xyz(self): coords, rad = georef.spherical_to_xyz(self.r, self.az, self.th, self.csite) self.assertTrue(np.allclose(coords[..., 0], self.result_xyz[0], rtol=1e-03)) self.assertTrue(np.allclose(coords[..., 1], self.result_xyz[1], rtol=1e-03)) self.assertTrue(np.allclose(coords[..., 2], self.result_xyz[2], rtol=1e-03)) def test_bin_altitude(self): altitude = georef.bin_altitude(np.arange(10., 101., 10.) * 1000., 2., 0, 6370040.) altref = np.array([354.87448647, 721.50702113, 1099.8960815, 1490.04009656, 1891.93744678, 2305.58646416, 2730.98543223, 3168.13258613, 3617.02611263, 4077.66415017]) np.testing.assert_allclose(altref, altitude) def test_bin_distance(self): distance = georef.bin_distance(np.arange(10., 101., 10.) * 1000., 2., 0, 6370040.) distref = np.array([9993.49302358, 19986.13717891, 29977.90491409, 39968.76869178, 49958.70098959, 59947.6743006, 69935.66113377, 79922.63401441, 89908.5654846, 99893.4281037]) np.testing.assert_allclose(distref, distance) def test_site_distance(self): altitude = georef.bin_altitude(np.arange(10., 101., 10.) * 1000., 2., 0, 6370040.) distance = georef.site_distance(np.arange(10., 101., 10.) * 1000., 2., altitude, 6370040.) distref = np.array([9993.49302358, 19986.13717891, 29977.90491409, 39968.76869178, 49958.70098959, 59947.6743006, 69935.66113377, 79922.63401441, 89908.5654846, 99893.4281037]) np.testing.assert_allclose(distref, distance) def test_spherical_to_proj(self): coords = georef.spherical_to_proj(self.r, self.az, self.th, self.csite) self.assertTrue(np.allclose(coords[..., 0], self.result_n[0])) self.assertTrue(np.allclose(coords[..., 1], self.result_n[1])) self.assertTrue(np.allclose(coords[..., 2], self.result_n[2])) @fail_if_not_removed def test_polar2lonlatalt_n(self): lon, lat, alt = georef.polar2lonlatalt_n(self.r, self.az, self.th, self.csite) self.assertTrue(np.allclose(lon, self.result_n[0])) self.assertTrue(np.allclose(lat, self.result_n[1])) self.assertTrue(np.allclose(alt, self.result_n[2])) @fail_if_not_removed def test__latscale(self): self.assertEqual(georef.polar._latscale(), 111178.17148373958) @fail_if_not_removed def test__lonscale(self): self.assertTrue( np.allclose(georef.polar._lonscale(np.arange(-90., 90., 10.)), np.array( [6.80769959e-12, 1.93058869e+04, 3.80251741e+04, 5.55890857e+04, 7.14639511e+04, 8.51674205e+04, 9.62831209e+04, 1.04473307e+05, 1.09489125e+05, 1.11178171e+05, 1.09489125e+05, 1.04473307e+05, 9.62831209e+04, 8.51674205e+04, 7.14639511e+04, 5.55890857e+04, 3.80251741e+04, 1.93058869e+04]))) @fail_if_not_removed def test_beam_height_n(self): self.assertTrue(np.allclose( georef.beam_height_n(np.arange(10., 101., 10.) * 1000., 2.), np.array([354.87448647, 721.50702113, 1099.8960815, 1490.04009656, 1891.93744678, 2305.58646416, 2730.98543223, 3168.13258613, 3617.02611263, 4077.66415017]))) @fail_if_not_removed def test_arc_distance_n(self): self.assertTrue(np.allclose( georef.arc_distance_n(np.arange(10., 101., 10.) * 1000., 2.), np.array( [9993.49302358, 19986.13717891, 29977.90491409, 39968.76869178, 49958.70098959, 59947.6743006, 69935.66113377, 79922.63401441, 89908.5654846, 99893.4281037]))) class CoordinateHelperTest(unittest.TestCase): def test_centroid2polyvert(self): self.assertTrue( np.allclose(georef.centroid2polyvert([0., 1.], [0.5, 1.5]), np.array([[-0.5, -0.5], [-0.5, 2.5], [0.5, 2.5], [0.5, -0.5], [-0.5, -0.5]]))) self.assertTrue(np.allclose( georef.centroid2polyvert(np.arange(4).reshape((2, 2)), 0.5), np.array([[[-0.5, 0.5], [-0.5, 1.5], [0.5, 1.5], [0.5, 0.5], [-0.5, 0.5]], [[1.5, 2.5], [1.5, 3.5], [2.5, 3.5], [2.5, 2.5], [1.5, 2.5]]]))) @fail_if_not_removed def test_polar2polyvert(self): self.assertTrue(np.allclose( georef.polar2polyvert(np.array([10000., 10100.]), np.array([45., 90.]), (9., 48.)), np.array([[[9.05100794, 48.08225674], [9.051524, 48.0830875], [9.12427234, 48.03435375], [9.12302879, 48.03401088], [9.05100794, 48.08225674]], [[9.051524, 48.0830875], [9.05204008, 48.08391826], [9.12551589, 48.03469661], [9.12427234, 48.03435375], [9.051524, 48.0830875]], [[9.12302879, 48.03401088], [9.12427234, 48.03435375], [9.051524, 48.0830875], [9.05100794, 48.08225674], [9.12302879, 48.03401088]], [[9.12427234, 48.03435375], [9.12551589, 48.03469661], [9.05204008, 48.08391826], [9.051524, 48.0830875], [9.12427234, 48.03435375]]]))) def test_spherical_to_polyvert(self): sph = georef.get_default_projection() polyvert = georef.spherical_to_polyvert(np.array([10000., 10100.]), np.array([45., 90.]), 0, (9., 48.), proj=sph) arr = np.asarray([[[9.05084865, 48.08224715, 6.], [9.05136309, 48.0830778, 6.], [9.1238846, 48.03435008, 6.], [9.12264494, 48.03400725, 6.], [9.05084865, 48.08224715, 6.]], [[9.05136309, 48.0830778, 6.], [9.05187756, 48.08390846, 6.], [9.12512428, 48.03469291, 6.], [9.1238846, 48.03435008, 6.], [9.05136309, 48.0830778, 6.]], [[9.12264494, 48.03400725, 6.], [9.1238846, 48.03435008, 6.], [9.05136309, 48.0830778, 6.], [9.05084865, 48.08224715, 6.], [9.12264494, 48.03400725, 6.]], [[9.1238846, 48.03435008, 6.], [9.12512428, 48.03469291, 6.], [9.05187756, 48.08390846, 6.], [9.05136309, 48.0830778, 6.], [9.1238846, 48.03435008, 6.]]]) self.assertTrue(np.allclose(polyvert, arr, rtol=1e-12)) @fail_if_not_removed def test_polar2centroids(self): r = np.array([10000., 10100.]) az = np.array([45., 90.]) sitecoords = (9., 48.) self.assertTrue(np.allclose(georef.polar2centroids(r, az, sitecoords), tuple((np.array([[9.09469143, 9.09564428], [9.13374952, 9.13509373]]), np.array( [[48.06324434, 48.06387957], [47.99992237, 47.9999208]]))))) def test_spherical_to_centroids(self): r = np.array([10000., 10100.]) az = np.array([45., 90.]) sitecoords = (9., 48., 0.) sph = georef.get_default_projection() centroids = georef.spherical_to_centroids(r, az, 0, sitecoords, proj=sph) arr = np.asarray([[[9.09439583, 48.06323717, 6.], [9.09534571, 48.06387232, 6.]], [[9.1333325, 47.99992262, 6.], [9.13467253, 47.99992106, 6.]]]) self.assertTrue(np.allclose(centroids, arr)) def test_sweep_centroids(self): self.assertTrue(np.allclose(georef.sweep_centroids(1, 100., 1, 2.0), np.array([[[50., 3.14159265, 2.]]]))) def test__check_polar_coords(self): r = np.array([50., 100., 150., 200.]) az = np.array([0., 45., 90., 135., 180., 225., 270., 315., 360.]) self.assertRaises(ValueError, lambda: georef.polar._check_polar_coords(r, az)) r = np.array([0, 50., 100., 150., 200.]) az = np.array([0., 45., 90., 135., 180., 225., 270., 315.]) self.assertRaises(ValueError, lambda: georef.polar._check_polar_coords(r, az)) r = np.array([100., 50., 150., 200.]) az = np.array([0., 45., 90., 135., 180., 225., 270., 315.]) self.assertRaises(ValueError, lambda: georef.polar._check_polar_coords(r, az)) r = np.array([50., 100., 125., 200.]) az = np.array([0., 45., 90., 135., 180., 225., 270., 315.]) self.assertRaises(ValueError, lambda: georef.polar._check_polar_coords(r, az)) r = np.array([50., 100., 150., 200.]) az = np.array([0., 45., 90., 135., 180., 225., 270., 315., 361.]) self.assertRaises(ValueError, lambda: georef.polar._check_polar_coords(r, az)) r = np.array([50., 100., 150., 200.]) az = np.array([225., 270., 315., 0., 45., 90., 135., 180.])[::-1] self.assertRaises(ValueError, lambda: georef.polar._check_polar_coords(r, az)) @unittest.skipIf(sys.version_info < (3, 5), "not supported in this python version") def test__check_polar_coords_py3k(self): r = np.array([50., 100., 150., 200.]) az = np.array([10., 45., 90., 135., 180., 225., 270., 315.]) self.assertWarns(UserWarning, lambda: georef.polar._check_polar_coords(r, az)) class ProjectionsTest(unittest.TestCase): def test_create_osr(self): self.maxDiff = None radolan_wkt = ('PROJCS["Radolan projection",' 'GEOGCS["Radolan Coordinate System",' 'DATUM["Radolan Kugel",' 'SPHEROID["Erdkugel",6370040.0,0.0]],' 'PRIMEM["Greenwich",0.0,AUTHORITY["EPSG","8901"]],' 'UNIT["degree",0.017453292519943295],' 'AXIS["Longitude",EAST],' 'AXIS["Latitude",NORTH]],' 'PROJECTION["polar_stereographic"],' 'PARAMETER["central_meridian",10.0],' 'PARAMETER["latitude_of_origin",60.0],' 'PARAMETER["scale_factor",{0:8.10f}],' 'PARAMETER["false_easting",0.0],' 'PARAMETER["false_northing",0.0],' 'UNIT["m*1000.0",1000.0],' 'AXIS["X",EAST],' 'AXIS["Y",NORTH]]'. format((1. + np.sin(np.radians(60.))) / (1. + np.sin(np.radians(90.))))) self.assertEqual(georef.create_osr('dwd-radolan').ExportToWkt(), radolan_wkt) def test_proj4_to_osr(self): srs = georef.proj4_to_osr('+proj=lcc +lat_1=46.8 +lat_0=46.8 +lon_0=0 ' '+k_0=0.99987742 +x_0=600000 +y_0=2200000 ' '+a=6378249.2 +b=6356515 ' '+towgs84=-168,-60,320,0,0,0,0 ' '+pm=paris +units=m +no_defs') p4 = srs.ExportToProj4() srs2 = osr.SpatialReference() srs2.ImportFromProj4(p4) self.assertTrue(srs.IsSame(srs2)) def test_get_earth_radius(self): self.assertEqual(georef.get_earth_radius(50.), 6365631.51753728) def test_reproject(self): proj_gk = osr.SpatialReference() proj_gk.ImportFromEPSG(31466) proj_wgs84 = osr.SpatialReference() proj_wgs84.ImportFromEPSG(4326) x, y = georef.reproject(7., 53., projection_source=proj_wgs84, projection_target=proj_gk) lon, lat = georef.reproject(x, y, projection_source=proj_gk, projection_target=proj_wgs84) self.assertAlmostEqual(lon, 7.0) self.assertAlmostEqual(lat, 53.0) def test_get_default_projection(self): self.assertEqual(georef.get_default_projection().ExportToWkt(), ('GEOGCS["WGS 84",DATUM["WGS_1984",' 'SPHEROID["WGS 84",6378137,298.257223563,' 'AUTHORITY["EPSG","7030"]],' 'AUTHORITY["EPSG","6326"]],' 'PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],' 'UNIT["degree",0.0174532925199433,' 'AUTHORITY["EPSG","9122"]],' 'AUTHORITY["EPSG","4326"]]')) def test_epsg_to_osr(self): self.assertEqual(georef.epsg_to_osr(4326).ExportToWkt(), ('GEOGCS["WGS 84",DATUM["WGS_1984",' 'SPHEROID["WGS 84",6378137,298.257223563,' 'AUTHORITY["EPSG","7030"]],' 'AUTHORITY["EPSG","6326"]],' 'PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],' 'UNIT["degree",0.0174532925199433,' 'AUTHORITY["EPSG","9122"]],' 'AUTHORITY["EPSG","4326"]]')) self.assertEqual(georef.epsg_to_osr().ExportToWkt(), ('GEOGCS["WGS 84",DATUM["WGS_1984",' 'SPHEROID["WGS 84",6378137,298.257223563,' 'AUTHORITY["EPSG","7030"]],' 'AUTHORITY["EPSG","6326"]],' 'PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],' 'UNIT["degree",0.0174532925199433,' 'AUTHORITY["EPSG","9122"]],' 'AUTHORITY["EPSG","4326"]]')) def test_wkt_to_osr(self): self.assertTrue(georef.wkt_to_osr('GEOGCS["WGS 84",DATUM["WGS_1984",' 'SPHEROID["WGS 84",6378137,' '298.257223563,' 'AUTHORITY["EPSG","7030"]],' 'AUTHORITY["EPSG","6326"]],' 'PRIMEM["Greenwich",0,' 'AUTHORITY["EPSG","8901"]],' 'UNIT["degree",0.0174532925199433,' 'AUTHORITY["EPSG","9122"]],' 'AUTHORITY["EPSG","4326"]]').IsSame( georef.get_default_projection())) self.assertTrue( georef.wkt_to_osr().IsSame(georef.get_default_projection())) class PixMapTest(unittest.TestCase): def test_pixel_coordinates(self): pass def test_pixel_to_map(self): pass def test_pixel_to_map3d(self): pass class GdalTests(unittest.TestCase): def setUp(self): filename = 'geo/bonn_new.tif' geofile = util.get_wradlib_data_file(filename) self.ds = open_raster(geofile) (self.data, self.coords, self.proj) = georef.extract_raster_dataset(self.ds) def test_read_gdal_coordinates(self): georef.read_gdal_coordinates(self.ds) def test_read_gdal_projection(self): georef.read_gdal_projection(self.ds) def test_read_gdal_values(self): georef.read_gdal_values(self.ds) def test_reproject_raster_dataset(self): georef.reproject_raster_dataset(self.ds, spacing=0.005, resample=gdal.GRA_Bilinear, align=True) def test_create_raster_dataset(self): data, coords = georef.set_raster_origin(self.data.copy(), self.coords.copy(), 'upper') ds = georef.create_raster_dataset(data, coords, projection=self.proj, nodata=-32768) data, coords, proj = georef.extract_raster_dataset(ds) np.testing.assert_array_equal(data, self.data) np.testing.assert_array_almost_equal(coords, self.coords) self.assertEqual(proj.ExportToWkt(), self.proj.ExportToWkt()) def test_set_raster_origin(self): data, coords = georef.set_raster_origin(self.data.copy(), self.coords.copy(), 'upper') np.testing.assert_array_equal(data, self.data) np.testing.assert_array_equal(coords, self.coords) data, coords = georef.set_raster_origin(self.data.copy(), self.coords.copy(), 'lower') np.testing.assert_array_equal(data, np.flip(self.data, axis=-2)) np.testing.assert_array_equal(coords, np.flip(self.coords, axis=-3)) def test_extract_raster_dataset(self): data, coords, proj = georef.extract_raster_dataset(self.ds) class GetGridsTest(unittest.TestCase): def setUp(self): # calculate xy and lonlat grids with georef function self.radolan_grid_xy = georef.get_radolan_grid(900, 900, trig=True) self.radolan_grid_ll = georef.get_radolan_grid(900, 900, trig=True, wgs84=True) def test_get_radolan_grid_equality(self): # create radolan projection osr object scale = (1. + np.sin(np.radians(60.))) / (1. + np.sin(np.radians(90.))) dwd_string = ('+proj=stere +lat_0=90 +lat_ts=90 +lon_0=10 ' '+k={0:10.8f} +x_0=0 +y_0=0 +a=6370040 +b=6370040 ' '+to_meter=1000 +no_defs'.format(scale)) proj_stereo = georef.proj4_to_osr(dwd_string) # create wgs84 projection osr object proj_wgs = osr.SpatialReference() proj_wgs.ImportFromEPSG(4326) # transform radolan polar stereographic projection to wgs84 and wgs84 # to polar stereographic # using osr transformation routines radolan_grid_ll = georef.reproject(self.radolan_grid_xy, projection_source=proj_stereo, projection_target=proj_wgs) radolan_grid_xy = georef.reproject(self.radolan_grid_ll, projection_source=proj_wgs, projection_target=proj_stereo) # check source and target arrays for equality self.assertTrue(np.allclose(radolan_grid_ll, self.radolan_grid_ll)) self.assertTrue(np.allclose(radolan_grid_xy, self.radolan_grid_xy)) def test_get_radolan_grid_raises(self): self.assertRaises(TypeError, lambda: georef.get_radolan_grid('900', '900')) self.assertRaises(ValueError, lambda: georef.get_radolan_grid(2000, 2000)) def test_get_radolan_grid_shape(self): radolan_grid_xy = georef.get_radolan_grid() self.assertEqual((900, 900, 2), radolan_grid_xy.shape) def test_radolan_coords(self): x, y = georef.get_radolan_coords(7.0, 53.0) self.assertAlmostEqual(x, -208.15159184860158) self.assertAlmostEqual(y, -3971.7689758313813) # Also test with trigonometric approach x, y = georef.get_radolan_coords(7.0, 53.0, trig=True) self.assertEqual(x, -208.15159184860175) self.assertEqual(y, -3971.7689758313832) def test_xyz_to_spherical(self): xyz = np.array([[1000, 1000, 1000]]) r, phi, theta = georef.xyz_to_spherical(xyz) self.assertAlmostEqual(r[0], 1732.11878135) self.assertAlmostEqual(phi[0], 45.) self.assertAlmostEqual(theta[0], 35.25802956) class SatelliteTest(unittest.TestCase): def setUp(self): f = 'gpm/2A-CS-151E24S154E30S.GPM.Ku.V7-20170308.20141206-S095002-E095137.004383.V05A.HDF5' # noqa gpm_file = util.get_wradlib_data_file(f) pr_data = read_generic_hdf5(gpm_file) pr_lon = pr_data['NS/Longitude']['data'] pr_lat = pr_data['NS/Latitude']['data'] zenith = pr_data['NS/PRE/localZenithAngle']['data'] wgs84 = georef.get_default_projection() a = wgs84.GetSemiMajor() b = wgs84.GetSemiMinor() rad = georef.proj4_to_osr(('+proj=aeqd +lon_0={lon:f} ' + '+lat_0={lat:f} +a={a:f} +b={b:f}' + '').format(lon=pr_lon[68, 0], lat=pr_lat[68, 0], a=a, b=b)) pr_x, pr_y = georef.reproject(pr_lon, pr_lat, projection_source=wgs84, projection_target=rad) self.re = georef.get_earth_radius(pr_lat[68, 0], wgs84) * 4. / 3. self.pr_xy = np.dstack((pr_x, pr_y)) self.alpha = zenith self.zt = 407000. self.dr = 125. self.bw_pr = 0.71 self.nbin = 176 self.nray = pr_lon.shape[1] self.pr_out = np.array([[[[-58533.78453556, 124660.60390174], [-58501.33048429, 124677.58873852]], [[-53702.13393133, 127251.83656509], [-53670.98686161, 127268.11882882]]], [[[-56444.00788528, 120205.5374491], [-56411.55421163, 120222.52300741]], [[-51612.2360682, 122796.78620764], [-51581.08938314, 122813.06920719]]]]) self.r_out = np.array([0., 125., 250., 375., 500., 625., 750., 875., 1000., 1125.]) self.z_out = np.array([0., 119.51255112, 239.02510224, 358.53765337, 478.05020449, 597.56275561, 717.07530673, 836.58785786, 956.10040898, 1075.6129601]) def test_correct_parallax(self): xy, r, z = georef.correct_parallax(self.pr_xy, self.nbin, self.dr, self.alpha) self.xyz =
np.concatenate((xy, z[..., np.newaxis]), axis=-1)
numpy.concatenate
# USAGE # python opencv-optical-flow.py # python opencv-optical-flow.py --video PATH/example_01.mp4 import numpy import cv2 import argparse import time import random import math import imutils from collections import Counter TRACKER_POINTS = 500 # How many points will be used to track the optical flow CRAZY_LINE_DISTANCE = 50 # Distance value to detect crazy lines CRAZY_LINE_LIMIT = 100 * TRACKER_POINTS / 1000 # Amount of crazy lines are indication of different shots ABSDIFF_ANGLE = 20 # To determine the inconsistency between tangent values in degrees LINE_THICKNESS = 3 # Lines thickness that we will use for mask delta CONTOUR_LIMIT = 10 # Contour limit for detecting ZOOM, ZOOM + PAN, ZOOM + TILT, ZOOM + ROLL (Not just PAN, TILT, ROLL) TARGET_HEIGHT = 360 # Number of horizontal lines for target video and processing. Like 720p, 360p etc. DELTA_LIMIT_DIVISOR = 3 # Divisor for detecting too much motion. Like: ( height * width / X ) # Construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the video file") ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size") args = vars(ap.parse_args()) if args.get("video", None) is None: # If the video argument is None, then we are reading from webcam cap = cv2.VideoCapture(0) time.sleep(0.25) else: # Otherwise, we are reading from a video file cap = cv2.VideoCapture(args["video"]) # Parameters for Lucas Kanade Optical Flow lk_params = dict( winSize = (15,15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) while True: # On this level it gets only one frame color = numpy.random.randint(0,255,(TRACKER_POINTS,3)) # Create some random colors ret, old_frame = cap.read() # Take first frame old_frame = imutils.resize(old_frame, height=TARGET_HEIGHT) # Resize frame to 360p. Alternative resizing method: old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY) # Convert previous frame to grayscale height, width = old_frame.shape[:2] # Get video height and width (size) # Create random points on frame p1 = numpy.random.randint(width, size=(TRACKER_POINTS, 1, 2)) for y in p1: # Get y values one by one if y[0][1] > height: # If there is a y value that greater than max height y[0][1] = numpy.random.random_integers(height) # Random again this time with max height value p1 = p1.astype(numpy.float32) # Change numpy array's data type to float32 mask = numpy.zeros_like(old_frame) # Create a mask image for drawing purposes (original frame) mask_delta = numpy.zeros_like(old_frame) # Create a mask image for drawing purposes (delta frame) mask_white = numpy.ones_like(old_frame) # Create a white mask image for cloning original frame white_color =
numpy.array([255,255,255])
numpy.array
"""Code for setting up, and running, and collecting data from PV-DER simulations.""" from __future__ import division import numpy as np import math import cmath import time import pdb import six from pvder.utility_classes import Utilities from pvder.grid_components import Grid from pvder.simulation_utilities import SimulationUtilities #from pvder.simulation_utilities_experimental import SimulationUtilitiesExperimental from pvder import utility_functions from pvder import defaults,templates from pvder.logutil import LogUtil class DynamicSimulation(Grid,SimulationUtilities,Utilities): """ Utility class for running simulations.""" count = 0 tStart = 0.0 tInc = defaults.DEFAULT_DELTA_T DEBUG_SOLVER = False DEBUG_SIMULATION = False DEBUG_CONTROLLERS = False DEBUG_VOLTAGES = False DEBUG_CURRENTS = False DEBUG_POWER = False DEBUG_PLL = False jac_list = ['SolarPVDERThreePhase','SolarPVDERSinglePhase','SolarPVDERThreePhaseBalanced'] def __init__(self,PV_model,events,gridModel = None,tStop = 0.5, LOOP_MODE = False,COLLECT_SOLUTION = True,jacFlag = False, verbosity ='INFO',solverType ='odeint',identifier = None): """Creates an instance of `GridSimulation`. Args: PV_model: An instance of `SolarPV_DER`. events: An instance of `SimulationEvents`. grid_model: An instance of `GridModel` (only need to be suppled in stand alone simulation). tStop: A scalar specifying the end time for simulation. tInc: A scalar specifying the time step for simulation. LOOP_MODE: A boolean specifying whether simulation is run in loop. """ try: DynamicSimulation.count = DynamicSimulation.count + 1 #Increment count to keep track of number of simulation instances self.name_instance(identifier) #Generate a name for the instance self.tStop = tStop self.t = self.t_calc() self.PV_model = PV_model self.DER_model_type = type(self.PV_model).__name__ self.simulation_events = events self.simulation_events.del_t_event = self.tInc self.initialize_solver(solver_type=solverType) self.SOLVER_CONVERGENCE = False self.convergence_failure_list =[] self.LOOP_MODE = LOOP_MODE self.COLLECT_SOLUTION = COLLECT_SOLUTION self.jacFlag = jacFlag self.check_jac_availability() if self.PV_model.standAlone and gridModel is not None: self.grid_model = gridModel elif self.PV_model.standAlone and gridModel is None: raise ValueError('`Grid` instance need to provided in stand alone mode for creating `GridSimulation` instance!') #Remove existing simulation events #self.simulation_events.remove_solar_event(3.0) #self.simulation_events.remove_load_event(4.0) #self.simulation_events.remove_grid_event(5.0) self.solution_time = None #Always reset solution time to None if self.LOOP_MODE: self.reset_stored_trajectories() self.initialize_y0_t() except: LogUtil.exception_handler() @property def y0(self): """ Combine all initial conditions from solution.""" try: if type(self.PV_model).__name__ == 'SolarPVDERThreePhase': y0 = [self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.ibR_t[-1], self.ibI_t[-1], self.xbR_t[-1], self.xbI_t[-1], self.ubR_t[-1],self.ubI_t[-1],\ self.icR_t[-1], self.icI_t[-1], self.xcR_t[-1], self.xcI_t[-1], self.ucR_t[-1],self.ucI_t[-1],\ self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif type(self.PV_model).__name__ == 'SolarPVDERSinglePhase': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif type(self.PV_model).__name__ == 'SolarPVDERSinglePhaseConstantVdc': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.xP_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif type(self.PV_model).__name__ == 'SolarPVDERThreePhaseConstantVdc': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1], self.ibR_t[-1], self.ibI_t[-1], self.xbR_t[-1], self.xbI_t[-1], self.ubR_t[-1],self.ubI_t[-1], self.icR_t[-1], self.icI_t[-1], self.xcR_t[-1], self.xcI_t[-1], self.ucR_t[-1],self.ucI_t[-1], self.xP_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif self.DER_model_type == 'SolarPVDERThreePhaseBalanced': y0 =[self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1], self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] elif self.DER_model_type == 'SolarPVDERThreePhaseNumba': y0 = [self.iaR_t[-1], self.iaI_t[-1], self.xaR_t[-1], self.xaI_t[-1], self.uaR_t[-1],self.uaI_t[-1],\ self.ibR_t[-1], self.ibI_t[-1], self.xbR_t[-1], self.xbI_t[-1], self.ubR_t[-1],self.ubI_t[-1],\ self.icR_t[-1], self.icI_t[-1], self.xcR_t[-1], self.xcI_t[-1], self.ucR_t[-1],self.ucI_t[-1],\ self.Vdc_t[-1], self.xDC_t[-1],self.xQ_t[-1], self.xPLL_t[-1],self.wte_t[-1]] return y0 except: LogUtil.exception_handler() #@property def t_calc(self): """Vector of time steps for simulation""" try: #if (self.tStop - self.tStart) <= self.tInc: # self.tStop = self.tStart + 1e-6 #+ self.tInc return np.arange(self.tStart, self.tStop + self.tInc, self.tInc) except: LogUtil.exception_handler() def check_jac_availability(self): """Check if Jacobian matrix is available.""" try: if self.jacFlag: if not self.DER_model_type in self.jac_list: raise ValueError('{}:Jacobian matrix is not available for DER model:{}'.format(self.name,self.DER_model_type)) except: LogUtil.exception_handler() def initialize_y0_t(self): """Initialize y0_t.""" try: self.iaR_t = np.array([self.PV_model.y0[0]]) self.iaI_t = np.array([self.PV_model.y0[1]]) self.xaR_t = np.array([self.PV_model.y0[2]]) self.xaI_t = np.array([self.PV_model.y0[3]]) self.uaR_t = np.array([self.PV_model.y0[4]]) self.uaI_t = np.array([self.PV_model.y0[5]]) if type(self.PV_model).__name__ == 'SolarPVDERSinglePhase': self.Vdc_t = np.array([self.PV_model.y0[6]]) #DC link voltage variable self.xDC_t = np.array([self.PV_model.y0[7]]) #DC link voltage control variable self.xQ_t = np.array([self.PV_model.y0[8]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[9]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[10]]) #Frequency integration to get angle elif (self.DER_model_type == 'SolarPVDERThreePhase') or (self.DER_model_type == 'SolarPVDERThreePhaseNumba'): self.ibR_t = np.array([self.PV_model.y0[6]]) self.ibI_t = np.array([self.PV_model.y0[7]]) self.xbR_t = np.array([self.PV_model.y0[8]]) self.xbI_t = np.array([self.PV_model.y0[9]]) self.ubR_t = np.array([self.PV_model.y0[10]]) self.ubI_t = np.array([self.PV_model.y0[11]]) self.icR_t = np.array([self.PV_model.y0[12]]) self.icI_t = np.array([self.PV_model.y0[13]]) self.xcR_t = np.array([self.PV_model.y0[14]]) self.xcI_t = np.array([self.PV_model.y0[15]]) self.ucR_t = np.array([self.PV_model.y0[16]]) self.ucI_t = np.array([self.PV_model.y0[17]]) self.Vdc_t = np.array([self.PV_model.y0[18]]) self.xDC_t = np.array([self.PV_model.y0[19]]) self.xQ_t = np.array([self.PV_model.y0[20]]) self.xPLL_t = np.array([self.PV_model.y0[21]]) self.wte_t = np.array([self.PV_model.y0[22]]) elif type(self.PV_model).__name__ == 'SolarPVDERThreePhaseConstantVdc': self.ibR_t = np.array([self.PV_model.y0[6]]) self.ibI_t = np.array([self.PV_model.y0[7]]) self.xbR_t = np.array([self.PV_model.y0[8]]) self.xbI_t = np.array([self.PV_model.y0[9]]) self.ubR_t = np.array([self.PV_model.y0[10]]) self.ubI_t = np.array([self.PV_model.y0[11]]) self.icR_t = np.array([self.PV_model.y0[12]]) self.icI_t = np.array([self.PV_model.y0[13]]) self.xcR_t = np.array([self.PV_model.y0[14]]) self.xcI_t = np.array([self.PV_model.y0[15]]) self.ucR_t = np.array([self.PV_model.y0[16]]) self.ucI_t = np.array([self.PV_model.y0[17]]) self.Vdc_t = np.array([self.PV_model.Vdc]) #Voltage is constant self.xP_t = np.array([self.PV_model.y0[18]]) #Active power control variable self.xQ_t = np.array([self.PV_model.y0[19]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[20]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[21]]) #Frequency integration to get angle elif type(self.PV_model).__name__ == 'SolarPVDERThreePhaseBalanced': ia_t = self.iaR_t+self.iaI_t*1j xa_t = self.xaR_t+self.xaI_t*1j ua_t = self.uaR_t+self.uaI_t*1j ib_t = utility_functions.Ub_calc(ia_t) xb_t = utility_functions.Ub_calc(xa_t) ub_t = utility_functions.Ub_calc(ua_t) ic_t = utility_functions.Uc_calc(ia_t) xc_t = utility_functions.Uc_calc(xa_t) uc_t = utility_functions.Uc_calc(ua_t) self.ibR_t = ib_t.real self.ibI_t = ib_t.imag self.xbR_t = xb_t.real self.xbI_t = xb_t.imag self.ubR_t = ub_t.real self.ubI_t = ub_t.imag self.icR_t = ic_t.real self.icI_t = ic_t.imag self.xcR_t = xc_t.real self.xcI_t = xc_t.imag self.ucR_t = uc_t.real self.ucI_t = uc_t.imag self.Vdc_t = np.array([self.PV_model.y0[6]]) #DC link voltage variable self.xDC_t = np.array([self.PV_model.y0[7]]) #DC link voltage control variable self.xQ_t = np.array([self.PV_model.y0[8]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[9]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[10]]) #Frequency integration to get angle elif type(self.PV_model).__name__ == 'SolarPVDERSinglePhaseConstantVdc': self.Vdc_t = np.array([self.PV_model.Vdc]) #Voltage is constant self.xP_t = np.array([self.PV_model.y0[6]]) #Active power control variable self.xQ_t = np.array([self.PV_model.y0[7]]) #Reactive power control variable self.xPLL_t = np.array([self.PV_model.y0[8]]) #PLL variables self.wte_t = np.array([self.PV_model.y0[9]]) #Frequency integration to get angle except: LogUtil.exception_handler() def reset_stored_trajectories(self): """Reset for plotting.""" try: self._t_t = np.array(0.0) self.Vdc_t = self._Vdc_t = np.array(self.PV_model.Vdc) self.ia_t = self._ia_t = np.array(self.PV_model.ia) self.ma_t = self._ma_t = np.array(self.PV_model.ma) self.vta_t = self._vta_t = np.array(self.PV_model.vta) self.va_t = self._va_t = np.array(self.PV_model.va) self.ma_absolute_t = self._ma_absolute_t = np.array(abs(self.PV_model.ma)) self.Varms_t = self._Varms_t = np.array(abs(self.PV_model.va)/math.sqrt(2)) if type(self.PV_model).__name__ in templates.three_phase_models: self.mb_absolute_t = self._mb_absolute_t = np.array(abs(self.PV_model.mb)) self.mc_absolute_t = self._mc_absolute_t = np.array(abs(self.PV_model.mc)) self.Vbrms_t = self._Vbrms_t = np.array(abs(self.PV_model.vb)/math.sqrt(2)) self.Vcrms_t = self._Vcrms_t = np.array(abs(self.PV_model.vc)/math.sqrt(2)) self.ib_t = self._ib_t = np.array(self.PV_model.ib) self.mb_t = self._mb_t = np.array(self.PV_model.mb) self.vtb_t = self._vtb_t = np.array(self.PV_model.vtb) self.vb_t = self._vb_t = np.array(self.PV_model.vb) self.ic_t = self._ic_t = np.array(self.PV_model.ic) self.mc_t = self._mc_t = np.array(self.PV_model.mc) self.vtc_t = self._vtc_t = np.array(self.PV_model.vtc) self.vc_t = self._vc_t = np.array(self.PV_model.vc) self.Irms_t = self._Irms_t = np.array(self.PV_model.Irms) self.Ppv_t = self._Ppv_t = np.array(self.PV_model.Ppv) self.S_PCC_t = self._S_PCC_t = np.array(self.PV_model.S_PCC) self.S_t = self._S_t = np.array(self.PV_model.S) self.Vtrms_t = self._Vtrms_t = np.array(self.PV_model.Vtrms) self.Vrms_t = self._Vrms_t = np.array(self.PV_model.Vrms) except: LogUtil.exception_handler() def ODE_model(self,y,t): """ Combine all derivatives.""" try: y1 = y[0:self.PV_model.n_ODE] if self.PV_model.standAlone: self.grid_model.steady_state_model(t) y = self.PV_model.ODE_model(y1,t) if self.DEBUG_SIMULATION: self.debug_simulation(t) return y except: LogUtil.exception_handler() def jac_ODE_model(self,y,t): """ Combine all derivatives.""" try: y1 = y[0:self.PV_model.n_ODE] if self.PV_model.standAlone: self.grid_model.steady_state_model(t) y = self.PV_model.jac_ODE_model(y1,t) return y except: LogUtil.exception_handler() def debug_simulation(self,t): """ Print to terminal for debugging.""" try: utility_functions.print_to_terminal('t:{:.4f}'.format(t)) if self.DEBUG_VOLTAGES: utility_functions.print_to_terminal('Vdc_ref:{:.3f},Vdc:{:.3f},Vat:{:.3f},Va:{:.3f},Vag:{:.3f},Vagrid:{:.3f},Vagrid_setpoint:{:.3f}'. format(self.PV_model.Vdc_ref,self.PV_model.Vdc,self.PV_model.Vtrms,self.PV_model.Vrms,self.grid_model.Vgrms,abs(self.grid_model.Vagrid_no_conversion)/math.sqrt(2),abs(self.grid_model.Vagrid)/math.sqrt(2))) if self.DEBUG_CURRENTS: utility_functions.print_to_terminal('ia_ref:{:.3f},ia:{:.3f},iload1:{:.3f}'. format(self.PV_model.ia_ref,self.PV_model.ia,self.PV_model.iaload1)) if self.DEBUG_POWER: utility_functions.print_to_terminal('Sinsol:{:.3f},Q_ref:{:.3f},Ppv:{:.3f},S:{:.3f},S_PCC:{:.3f},S_load1:{:.3f},S_G:{:.3f}'.format(self.PV_model.Sinsol,self.PV_model.Q_ref,self.PV_model.Ppv,self.PV_model.S,self.PV_model.S_PCC,self.PV_model.S_load1,self.PV_model.S_G)) if self.DEBUG_CONTROLLERS: utility_functions.print_to_terminal('xDC:{:.3f},xQ:{:.3f},ua:{:.3f},xa:{:.3f},ma:{:.3f}'. format(self.PV_model.xdc,self.PV_model.xQ,self.PV_model.ua,self.PV_model.xa,self.PV_model.ma)) if self.DEBUG_PLL: utility_functions.print_to_terminal("we:{:.3f}, wte:{:.3f} rad, vd: {:.3f} V, vq {:.3f} V".format(self.PV_model.we,self.PV_model.wte,self.PV_model.vd,self.PV_model.vq)) except: LogUtil.exception_handler() def time_series_PCC_HV_side_voltage(self): """Calculate time series PCC voltage.""" try: assert len(self.ia_t) == len(self.vag_t) != None, "States must be available from simulation." self.vaHV_t = self.vag_t + (self.ia_t/self.PV_model.a)*self.grid_model.Z2 - (self.va_t/self.PV_model.a)*(self.grid_model.Z2/self.Zload1_t) if type(self.PV_model).__name__ in templates.single_phase_models: self.vbHV_t = self.vbg_t self.vcHV_t = self.vcg_t elif type(self.PV_model).__name__ in templates.three_phase_models: self.vbHV_t = self.vbg_t + (self.ib_t/self.PV_model.a)*self.grid_model.Z2 - (self.vb_t/self.PV_model.a)*(self.grid_model.Z2/self.Zload1_t) self.vcHV_t = self.vcg_t + (self.ic_t/self.PV_model.a)*self.grid_model.Z2 - (self.vc_t/self.PV_model.a)*(self.grid_model.Z2/self.Zload1_t) except: LogUtil.exception_handler() def time_series_duty_cycle(self): """Calculate time series PCC voltage.""" try: self.ma_t = utility_functions.m_time_series(self.ua_t,self.xa_t,self.PV_model.Kp_GCC) self.maR_t = self.ma_t.real self.maI_t = self.ma_t.imag self.ma_absolute_t = utility_functions.Uabsolute_time_series(self.ma_t) if type(self.PV_model).__name__ in templates.three_phase_models: self.mb_t = utility_functions.m_time_series(self.ub_t,self.xb_t,self.PV_model.Kp_GCC) self.mc_t = utility_functions.m_time_series(self.uc_t,self.xc_t,self.PV_model.Kp_GCC) self.mbR_t = self.mb_t.real self.mbI_t = self.mb_t.imag self.mcR_t = self.mc_t.real self.mcI_t = self.mc_t.imag self.mb_absolute_t = utility_functions.Uabsolute_time_series(self.mb_t) self.mc_absolute_t = utility_functions.Uabsolute_time_series(self.mc_t) except: LogUtil.exception_handler() def time_series_PCC_LV_side_voltage(self): """Calculate time series PCC voltage.""" try: if self.PV_model.standAlone: self.va_t = ((self.vag_t+(self.ia_t/self.PV_model.a)*self.grid_model.Z2)/(self.PV_model.a) +self.ia_t*self.PV_model.Z1)*((self.Zload1_t*self.PV_model.a*self.PV_model.a)/((self.PV_model.a*self.PV_model.a*(self.PV_model.Z1+self.Zload1_t))+self.grid_model.Z2)) else: self.va_t = np.repeat(self.PV_model.gridVoltagePhaseA,len(self.t)) self.vaR_t = self.va_t.real self.vaI_t = self.va_t.imag if type(self.PV_model).__name__ in templates.three_phase_models: if self.PV_model.standAlone: self.vb_t = ((self.vbg_t+(self.ib_t/self.PV_model.a)*self.grid_model.Z2)/(self.PV_model.a) +self.ib_t*self.PV_model.Z1)*((self.Zload1_t*self.PV_model.a*self.PV_model.a)/((self.PV_model.a*self.PV_model.a*(self.PV_model.Z1+self.Zload1_t))+self.grid_model.Z2)) self.vc_t = ((self.vcg_t+(self.ic_t/self.PV_model.a)*self.grid_model.Z2)/(self.PV_model.a) +self.ic_t*self.PV_model.Z1)*((self.Zload1_t*self.PV_model.a*self.PV_model.a)/((self.PV_model.a*self.PV_model.a*(self.PV_model.Z1+self.Zload1_t))+self.grid_model.Z2)) else: self.vb_t = np.repeat(self.PV_model.gridVoltagePhaseB,len(self.t)) self.vc_t = np.repeat(self.PV_model.gridVoltagePhaseC,len(self.t)) self.vbR_t = self.vb_t.real self.vbI_t = self.vb_t.imag self.vcR_t = self.vc_t.real self.vcI_t = self.vc_t.imag except: LogUtil.exception_handler() def time_series_inv_terminal_voltage(self): """Calculate time series inverter terminal voltage.""" try: self.vta_t = utility_functions.Vinv_terminal_time_series(self.ma_t,self.Vdc_t) if type(self.PV_model).__name__ in templates.three_phase_models: self.vtb_t = utility_functions.Vinv_terminal_time_series(self.mb_t,self.Vdc_t) self.vtc_t = utility_functions.Vinv_terminal_time_series(self.mc_t,self.Vdc_t) except: LogUtil.exception_handler() def time_series_RMS(self): """Calculate time series RMS quantities.""" try: if type(self.PV_model).__name__ in templates.single_phase_models: self.Vtrms_t = utility_functions.Urms_time_series(self.vta_t,self.vta_t,self.vta_t) self.Vrms_t = utility_functions.Urms_time_series(self.va_t,self.va_t,self.va_t) self.Irms_t = utility_functions.Urms_time_series(self.ia_t,self.ia_t,self.ia_t) self.Varms_t = self.Vrms_t elif type(self.PV_model).__name__ in templates.three_phase_models: self.Vtrms_t = utility_functions.Urms_time_series(self.vta_t,self.vtb_t,self.vtc_t) self.Vrms_t = utility_functions.Urms_time_series(self.va_t,self.vb_t,self.vc_t) self.Irms_t = utility_functions.Urms_time_series(self.ia_t,self.ib_t,self.ic_t) self.Varms_t = utility_functions.Uphrms_time_series(self.va_t) self.Vbrms_t = utility_functions.Uphrms_time_series(self.vb_t) self.Vcrms_t = utility_functions.Uphrms_time_series(self.vc_t) if self.PV_model.standAlone: self.Vgrms_t = utility_functions.Urms_time_series(self.vag_t,self.vbg_t,self.vcg_t) self.Vhvrms_t= utility_functions.Urms_time_series(self.vaHV_t,self.vbHV_t,self.vcHV_t) except: LogUtil.exception_handler() def time_series_standalone_grid(self): """Time series grid voltage and frequency for standalone model.""" try: self.vag_t = [] self.vbg_t = [] self.vcg_t = [] self.wgrid_t = [] for i,t in enumerate(self.t): #Loop through grid events and calculate wgrid at each time step Vagrid_new,self.grid_model.wgrid = self.simulation_events.grid_events(t) #Conversion of grid voltage setpoint self.grid_model.vag = Vagrid_new*(self.grid_model.Vgridrated/self.Vbase) self.grid_model.vbg = utility_functions.Ub_calc(self.grid_model.vag*self.grid_model.unbalance_ratio_b) self.grid_model.vcg = utility_functions.Uc_calc(self.grid_model.vag*self.grid_model.unbalance_ratio_c) self.vag_t.append(self.grid_model.vag) self.vbg_t.append(self.grid_model.vbg) self.vcg_t.append(self.grid_model.vcg) self.wgrid_t.append(self.grid_model.wgrid) self.vag_t = np.asarray(self.vag_t) self.vbg_t =
np.asarray(self.vbg_t)
numpy.asarray
from sklearn.metrics.pairwise import rbf_kernel from scipy.stats import ks_2samp from scipy.stats import wilcoxon import numpy as np import random from scipy import stats import time from collections import defaultdict import numpy as np import warnings from scipy.stats import rankdata def same(x): return x def cube(x): return np.power(x, 3) def negexp(x): return np.exp(-np.abs(x)) def generate_samples_random(size=1000, sType='CI', dx=1, dy=1, dz=20, nstd=1, fixed_function='linear', debug=False, normalize = True, seed = None, dist_z = 'gaussian'): '''Generate CI,I or NI post-nonlinear samples 1. Z is independent Gaussian or Laplace 2. X = f1(<a,Z> + b + noise) and Y = f2(<c,Z> + d + noise) in case of CI Arguments: size : number of samples sType: CI, I, or NI dx: Dimension of X dy: Dimension of Y dz: Dimension of Z nstd: noise standard deviation f1, f2 to be within {x,x^2,x^3,tanh x, e^{-|x|}, cos x} Output: Samples X, Y, Z ''' if seed == None: np.random.seed() else: np.random.seed(seed) if fixed_function == 'linear': f1 = same f2 = same else: I1 = random.randint(2, 6) I2 = random.randint(2, 6) if I1 == 2: f1 = np.square elif I1 == 3: f1 = cube elif I1 == 4: f1 = np.tanh elif I1 == 5: f1 = negexp else: f1 = np.cos if I2 == 2: f2 = np.square elif I2 == 3: f2 = cube elif I2 == 4: f2 = np.tanh elif I2 == 5: f2 = negexp else: f2 = np.cos if debug: print(f1, f2) num = size if dist_z =='gaussian': cov = np.eye(dz) mu = np.ones(dz) Z = np.random.multivariate_normal(mu, cov, num) Z = np.matrix(Z) elif dist_z == 'laplace': Z = np.random.laplace(loc=0.0, scale=1.0, size=num*dz) Z = np.reshape(Z,(num,dz)) Z = np.matrix(Z) Ax = np.random.rand(dz, dx) for i in range(dx): Ax[:, i] = Ax[:, i] / np.linalg.norm(Ax[:, i], ord=1) Ax = np.matrix(Ax) Ay = np.random.rand(dz, dy) for i in range(dy): Ay[:, i] = Ay[:, i] / np.linalg.norm(Ay[:, i], ord=1) Ay = np.matrix(Ay) Axy = np.random.rand(dx, dy) for i in range(dy): Axy[:, i] = Axy[:, i] / np.linalg.norm(Axy[:, i], ord=1) Axy = np.matrix(Axy) temp = Z * Ax m = np.mean(np.abs(temp)) nstd = nstd * m if sType == 'CI': X = f1(Z * Ax + nstd * np.random.multivariate_normal(np.zeros(dx), np.eye(dx), num)) Y = f2(Z * Ay + nstd * np.random.multivariate_normal(np.zeros(dy), np.eye(dy), num)) elif sType == 'I': X = f1(nstd * np.random.multivariate_normal(np.zeros(dx), np.eye(dx), num)) Y = f2(nstd * np.random.multivariate_normal(np.zeros(dy), np.eye(dy), num)) else: X = np.random.multivariate_normal(np.zeros(dx), np.eye(dx), num) Y = f2(2 * X * Axy + Z * Ay) if normalize == True: Z = (Z - Z.min()) / (Z.max() - Z.min()) X = (X - X.min()) / (X.max() - X.min()) Y = (Y - Y.min()) / (Y.max() - Y.min()) return np.array(X), np.array(Y), np.array(Z) def pc_ks(pvals): """ Compute the area under power curve and the Kolmogorov-Smirnoff test statistic of the hypothesis that pvals come from the uniform distribution with support (0, 1). """ if pvals.size == 0: return [-1, -1] if -1 in pvals or -2 in pvals: return [-1, -1] pvals = np.sort(pvals) cdf = ecdf(pvals) auc = 0 for (pv1, pv2) in zip(pvals[:-1], pvals[1:]): auc += integrate.quad(cdf, pv1, pv2)[0] auc += integrate.quad(cdf, pvals[-1], 1)[0] _, ks = kstest(pvals, 'uniform') return auc, ks def np2r(x): """ Convert a numpy array to an R matrix. Args: x (dim0, dim1): A 2d numpy array. Returns: x_r: An rpy2 object representing an R matrix isometric to x. """ if 'rpy2' not in sys.modules: raise ImportError(("rpy2 is not installed.", " Cannot convert a numpy array to an R vector.")) try: dim0, dim1 = x.shape except IndexError: raise IndexError("Only 2d arrays are supported") return R.r.matrix(R.FloatVector(x.flatten()), nrow=dim0, ncol=dim1) def fdr(truth, pred, axis=None): """ Computes False discovery rate """ return ((pred==1) & (truth==0)).sum(axis=axis) / pred.sum(axis=axis).astype(float).clip(1,np.inf) def tpr(truth, pred, axis=None): """ Computes true positive rate """ return ((pred==1) & (truth==1)).sum(axis=axis) / truth.sum(axis=axis).astype(float).clip(1,np.inf) def true_positives(truth, pred, axis=None): """ Computes number of true positive """ return ((pred==1) & (truth==1)).sum(axis=axis) def false_positives(truth, pred, axis=None): """ Computes number of false positive """ return ((pred==1) & (truth==0)).sum(axis=axis) def bh(p, fdr): """ From vector of p-values and desired false positive rate, returns significant p-values with Benjamini-Hochberg correction """ p_orders = np.argsort(p) discoveries = [] m = float(len(p_orders)) for k, s in enumerate(p_orders): if p[s] <= (k+1) / m * fdr: discoveries.append(s) else: break return np.array(discoveries, dtype=int) def mmd_squared(X, Y, gamma = 1): X = X.reshape((len(X)), 1) Y = Y.reshape((len(Y)), 1) K_XX = rbf_kernel(X, gamma=gamma) K_YY = rbf_kernel(Y, gamma=gamma) K_XY = rbf_kernel(X, Y, gamma=gamma) n = K_XX.shape[0] m = K_YY.shape[0] mmd_squared = (np.sum(K_XX)-np.trace(K_XX))/(n*(n-1)) + (np.sum(K_YY)-np.trace(K_YY))/(m*(m-1)) - 2 *
np.sum(K_XY)
numpy.sum
import os import numpy as np import tensorflow as tf import cv2 import time import sys import pickle import ROLO_utils as util class YOLO_TF: fromfile = None tofile_img = 'test/output.jpg' tofile_txt = 'test/output.txt' imshow = True filewrite_img = False filewrite_txt = False disp_console = True weights_file = '/home/marc/ROLO/3rd\ party_upgrade/weights/YOLO_small.ckpt' alpha = 0.1 threshold = 0.08 iou_threshold = 0.5 num_class = 20 num_box = 2 grid_size = 7 classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] w_img, h_img = [352, 240] num_feat = 4096 num_predict = 6 # final output of LSTM 6 loc parameters num_heatmap = 1024 def __init__(self, argvs=[]): self.argv_parser(argvs) self.build_networks() if self.fromfile is not None: self.detect_from_file(self.fromfile) def argv_parser(self, argvs): for i in range(1, len(argvs), 2): if argvs[i] == '-fromfile': self.fromfile = argvs[i + 1] if argvs[i] == '-tofile_img': self.tofile_img = argvs[i + 1]; self.filewrite_img = True if argvs[i] == '-tofile_txt': self.tofile_txt = argvs[i + 1]; self.filewrite_txt = True if argvs[i] == '-imshow': if argvs[i + 1] == '1': self.imshow = True else: self.imshow = False if argvs[i] == '-disp_console': if argvs[i + 1] == '1': self.disp_console = True else: self.disp_console = False def build_networks(self): if self.disp_console: print("Building YOLO_small graph...") self.x = tf.placeholder('float32', [None, 448, 448, 3]) self.conv_1 = self.conv_layer(1, self.x, 64, 7, 2) self.pool_2 = self.pooling_layer(2, self.conv_1, 2, 2) self.conv_3 = self.conv_layer(3, self.pool_2, 192, 3, 1) self.pool_4 = self.pooling_layer(4, self.conv_3, 2, 2) self.conv_5 = self.conv_layer(5, self.pool_4, 128, 1, 1) self.conv_6 = self.conv_layer(6, self.conv_5, 256, 3, 1) self.conv_7 = self.conv_layer(7, self.conv_6, 256, 1, 1) self.conv_8 = self.conv_layer(8, self.conv_7, 512, 3, 1) self.pool_9 = self.pooling_layer(9, self.conv_8, 2, 2) self.conv_10 = self.conv_layer(10, self.pool_9, 256, 1, 1) self.conv_11 = self.conv_layer(11, self.conv_10, 512, 3, 1) self.conv_12 = self.conv_layer(12, self.conv_11, 256, 1, 1) self.conv_13 = self.conv_layer(13, self.conv_12, 512, 3, 1) self.conv_14 = self.conv_layer(14, self.conv_13, 256, 1, 1) self.conv_15 = self.conv_layer(15, self.conv_14, 512, 3, 1) self.conv_16 = self.conv_layer(16, self.conv_15, 256, 1, 1) self.conv_17 = self.conv_layer(17, self.conv_16, 512, 3, 1) self.conv_18 = self.conv_layer(18, self.conv_17, 512, 1, 1) self.conv_19 = self.conv_layer(19, self.conv_18, 1024, 3, 1) self.pool_20 = self.pooling_layer(20, self.conv_19, 2, 2) self.conv_21 = self.conv_layer(21, self.pool_20, 512, 1, 1) self.conv_22 = self.conv_layer(22, self.conv_21, 1024, 3, 1) self.conv_23 = self.conv_layer(23, self.conv_22, 512, 1, 1) self.conv_24 = self.conv_layer(24, self.conv_23, 1024, 3, 1) self.conv_25 = self.conv_layer(25, self.conv_24, 1024, 3, 1) self.conv_26 = self.conv_layer(26, self.conv_25, 1024, 3, 2) self.conv_27 = self.conv_layer(27, self.conv_26, 1024, 3, 1) self.conv_28 = self.conv_layer(28, self.conv_27, 1024, 3, 1) self.fc_29 = self.fc_layer(29, self.conv_28, 512, flat=True, linear=False) self.fc_30 = self.fc_layer(30, self.fc_29, 4096, flat=False, linear=False) # skip dropout_31 self.fc_32 = self.fc_layer(32, self.fc_30, 1470, flat=False, linear=True) self.sess = tf.Session() self.sess.run(tf.initialize_all_variables()) self.saver = tf.train.Saver() self.saver.restore(self.sess, self.weights_file) if self.disp_console: print("Loading complete!" + '\n') def conv_layer(self, idx, inputs, filters, size, stride): channels = inputs.get_shape()[3] weight = tf.Variable(tf.truncated_normal([size, size, int(channels), filters], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[filters])) pad_size = size // 2 pad_mat = np.array([[0, 0], [pad_size, pad_size], [pad_size, pad_size], [0, 0]]) inputs_pad = tf.pad(inputs, pad_mat) conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID', name=str(idx) + '_conv') conv_biased = tf.add(conv, biases, name=str(idx) + '_conv_biased') if self.disp_console: print( ' Layer %d : Type = Conv, Size = %d * %d, Stride = %d, Filters = %d, Input channels = %d' % ( idx, size, size, stride, filters, int(channels))) return tf.maximum(self.alpha * conv_biased, conv_biased, name=str(idx) + '_leaky_relu') def pooling_layer(self, idx, inputs, size, stride): if self.disp_console: print( ' Layer %d : Type = Pool, Size = %d * %d, Stride = %d' % (idx, size, size, stride)) return tf.nn.max_pool(inputs, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding='SAME', name=str(idx) + '_pool') def fc_layer(self, idx, inputs, hiddens, flat=False, linear=False): input_shape = inputs.get_shape().as_list() if flat: dim = input_shape[1] * input_shape[2] * input_shape[3] inputs_transposed = tf.transpose(inputs, (0, 3, 1, 2)) inputs_processed = tf.reshape(inputs_transposed, [-1, dim]) else: dim = input_shape[1] inputs_processed = inputs weight = tf.Variable(tf.truncated_normal([dim, hiddens], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[hiddens])) if self.disp_console: print( ' Layer %d : Type = Full, Hidden = %d, Input dimension = %d, Flat = %d, Activation = %d' % ( idx, hiddens, int(dim), int(flat), 1 - int(linear))) if linear: return tf.add(tf.matmul(inputs_processed, weight), biases, name=str(idx) + '_fc') ip = tf.add(tf.matmul(inputs_processed, weight), biases) return tf.maximum(self.alpha * ip, ip, name=str(idx) + '_fc') def detect_from_cvmat(self, img): s = time.time() self.h_img, self.w_img, _ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB) img_resized_np = np.asarray(img_RGB) inputs = np.zeros((1, 448, 448, 3), dtype='float32') inputs[0] = (img_resized_np / 255.0) * 2.0 - 1.0 in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32, feed_dict=in_dict) self.result = self.interpret_output(net_output[0]) self.show_results(img, self.result) strtime = str(time.time() - s) if self.disp_console: print('Elapsed time : ' + strtime + ' secs' + '\n') def detect_from_file(self, filename): if self.disp_console: print('Detect from ' + filename) img = cv2.imread(filename) # img = misc.imread(filename) self.detect_from_cvmat(img) def detect_from_crop_sample(self): self.w_img = 640 self.h_img = 420 f = np.array(open('person_crop.txt', 'r').readlines(), dtype='float32') inputs = np.zeros((1, 448, 448, 3), dtype='float32') for c in range(3): for y in range(448): for x in range(448): inputs[0, y, x, c] = f[c * 448 * 448 + y * 448 + x] in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32, feed_dict=in_dict) self.boxes, self.probs = self.interpret_output(net_output[0]) img = cv2.imread('person.jpg') self.show_results(self.boxes, img) def interpret_output(self, output): probs = np.zeros((7, 7, 2, 20)) class_probs = np.reshape(output[0:980], (7, 7, 20)) scales = np.reshape(output[980:1078], (7, 7, 2)) boxes =
np.reshape(output[1078:], (7, 7, 2, 4))
numpy.reshape
import math import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + math.exp(-x)) # Function to know if we have a CCW turn def CCW(p1, p2, p3): if (p3[1]-p1[1])*(p2[0]-p1[0]) >= (p2[1]-p1[1])*(p3[0]-p1[0]): return True return False # Main function: def create_convex_hull(S): """takes in an [np array] of points! and return a convex hull """ n = len(S) P = [None] * n l = np.where(S[:,0] == np.min(S[:,0])) pointOnHull = S[l[0][0]] i = 0 while True: P[i] = pointOnHull endpoint = S[0] for j in range(1,n): if (endpoint[0] == pointOnHull[0] and endpoint[1] == pointOnHull[1]) or not CCW(S[j],P[i],endpoint): endpoint = S[j] i = i + 1 pointOnHull = endpoint if endpoint[0] == P[0][0] and endpoint[1] == P[0][1]: break for i in range(n): if P[-1] is None: del P[-1] return np.array(P) def euclidean_dist(pos1, pos2): return math.sqrt((pos1[0] - pos2[0]) ** 2 + (pos1[1] - pos2[1]) ** 2) def compute_centroid(vertices): """ helper function: input: vertices: a list of vertices of a polygon under the assumption that all vertices are ordered either clockwise/counterclockwise output: centroid: position of (x, y) tuple of the polygon relative to the local origin of polygon. """ c_x = 0 c_y = 0 area = 0 n = len(vertices) for i in range(n): curr = vertices[(i - n) % n] next = vertices[(i + 1 - n) % n] diff = (curr[0] * next[1] - curr[1] * next[0]) c_x += (curr[0] + next[0]) * diff c_y += (curr[1] + next[1]) * diff area += diff area = area / 2 c_x = c_x / (6 * area) c_y = c_y / (6 * area) return c_x, c_y def compute_area(vertices): """ helper function: input: vertices: a list of vertices of a polygon under the assumption that all vertices are ordered either clockwise/counterclockwise output: centroid: position of (x, y) tuple of the polygon relative to the local origin of polygon. """ c_x = 0 c_y = 0 area = 0 n = len(vertices) for i in range(n): curr = vertices[(i - n) % n] next = vertices[(i + 1 - n) % n] diff = (curr[0] * next[1] - curr[1] * next[0]) c_x += (curr[0] + next[0]) * diff c_y += (curr[1] + next[1]) * diff area += diff area = area / 2 return abs(area) def normalize(vector): """ helper function: input: vector: (x, y) force vector output: vector: (x, y) force vector with normalized magnitude 1 """ mag = math.sqrt(vector[0] ** 2 + vector[1] ** 2)+1e-6 return vector[0] / mag, vector[1] / mag def normalize_vector(x, eps=1e-9): mean = np.mean(x) std = np.std(x) x = (x - mean)/(std+eps) return x def side_of_point_on_line(start_pt, end_pt, query_pt): det = (end_pt[0] - start_pt[0]) * (query_pt[1] - start_pt[1]) - (end_pt[1] - start_pt[1]) * (query_pt[0] - start_pt[0]) if det > 0: return 1 elif det < 0: return -1 else: return 0 def pointToLineDistance(e1, e2, p1): numerator = np.abs((e2[1] - e1[1])*p1[0] - (e2[0] - e1[0])*p1[1] + e2[0]*e1[1] - e1[0]*e2[1]) normalization = np.sqrt((e2[1] - e1[1])**2 + (e2[0] - e1[0])**2) return numerator/normalization def scalarProject(start_pt, end_pt, point): a = np.array(point) - np.array(start_pt) unit_b = normalize(np.array(end_pt) - np.array(start_pt)) return a[0]*unit_b[0]+a[1]*unit_b[1] def projectedPtToStartDistance(e1, e2, p1): d1 = pointToLineDistance(e1, e2, p1) d2 = euclidean_dist(e1, p1) if abs(d1) > abs(d2): return None return math.sqrt(d2 ** 2 - d1 ** 2) def two_line_intersect(e1, e2, e3, e4): denom = (e1[0]-e2[0])*(e3[1]-e4[1]) - (e1[1]-e2[1])*(e3[0]-e4[0]) f1 = (e1[0]*e2[1] - e1[1]*e2[0]) f2 = (e3[0]*e4[1] - e3[1]*e4[0]) if denom == 0: return None pt = ((f1*(e3[0] - e4[0]) - f2 * (e1[0] - e2[0])) / (denom+1e-6), (f1*(e3[1] - e4[1]) - f2 * (e1[1] - e2[1]))/(denom+1e-6)) kap = np.dot(np.array(pt) - np.array(e3), np.array(e4) - np.array(e3)) kab = np.dot(np.array(e4) - np.array(e3), np.array(e4) - np.array(e3)) if kap > kab or kap < 0: return None else: return pt # return pt def find_max_contact_range(vertices, e1, e2): p = np.array(e1) - np.array(e2) vector = (1, -(p[0] / (p[1] + 1e-6))) # print(vector) max_contact_range = 0 start_pt = None max_dist = 0 for i in range(len(vertices)): dist = pointToLineDistance(e1, e2, vertices[i]) if dist > max_dist: max_dist = dist start_pt = vertices[i] # print(start_pt) if not start_pt is None: end_pt = np.array(start_pt) + np.array(vector) start_pt = np.array(start_pt) - np.array(vector) intersect_list = set() for j in range(len(vertices)): intersect = two_line_intersect(start_pt, end_pt, vertices[j], vertices[(j + 1) % len(vertices)]) # print(vertices[j], vertices[(j + 1) % len(vertices)]) # print(intersect) if not intersect is None: add = True for pt in intersect_list: if euclidean_dist(pt, intersect) < 0.01: add = False if add: intersect_list.add(intersect) # print(intersect_list) if len(intersect_list) == 2: # print(intersect_list) intersect_list = list(intersect_list) contact_range = euclidean_dist(intersect_list[0], intersect_list[1]) if contact_range > max_contact_range: max_contact_range = contact_range # for i in range(len(vertices)): # perp_end_pt = np.array(vertices[i]) + np.array(vector) # intersect_list = [] # for j in range(len(vertices)): # intersect = two_line_intersect(vertices[i], perp_end_pt, vertices[j], vertices[(j + 1) % len(vertices)]) # if not intersect is None: # intersect_list.append(intersect) # print(intersect_list) # if len(intersect_list) == 2: # # print(intersect_list) # contact_range = euclidean_dist(intersect_list[0], intersect_list[1]) # if contact_range > max_contact_range: # max_contact_range = contact_range return max_contact_range, list(intersect_list) def find_collision_dist_convex_hull(start_pt, vector, centroid, vertices): abs_vertices = np.array(vertices) + np.array(centroid) end_pt = np.array(start_pt) + np.array(vector) dist = 1e2 for i in range(len(vertices)): intersect = two_line_intersect(start_pt, end_pt, abs_vertices[i], abs_vertices[(i + 1) % len(abs_vertices)]) if not intersect is None: if (
np.array(intersect)
numpy.array
import sys import csv from datetime import datetime import random import numpy as np import scipy.spatial import math from itertools import combinations # CONSTS MAX_ITERATIONS = 15 TYPE_FIXED_NUMBER_OF_ITERATIONS = 99 TYPE_RANDOM_CHOICE = 100 METHOD_C_INDEX = 500 METHOD_DUNN_INDEX = 501 # CONFIGURATION OF PROGRAM TERMINATION_CRITERIA = TYPE_FIXED_NUMBER_OF_ITERATIONS ALGORITHM_INITIAL_CLUSTERS = TYPE_RANDOM_CHOICE def load_data(filename): with open(filename, 'r') as f: reader = csv.reader(f) data = list(reader) matrix = np.array(data, dtype = int) # separate labels from samples samples = matrix[:,1:] labels = matrix[:,0] return labels, samples def print_indent(text, indent, indent_char='\t'): print('{indent}{text}'.format(indent=indent*indent_char, text=text)) sys.stdout.flush() def k_means(train_set, k): """ :return: clustering [C_1,...,C_k] """ assert(k > 0) k_cluster_centers = choose_cluster_centers(train_set, k, ALGORITHM_INITIAL_CLUSTERS) k_clusters = {} termination_dict = {} while True: dist = scipy.spatial.distance.cdist(train_set, k_cluster_centers) # uses euclidean # for each xi, assign it to nearest center cluster_ids = np.argmin(dist, axis=1) for i in range(0, k): # for each cluster xi_indices =
np.where(cluster_ids == i)
numpy.where
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Sweep plotting functions.""" import matplotlib.lines as lines import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pycls.models.regnet as regnet from pycls.sweep.analysis import get_info, get_vals, sort_sweep # Global color scheme and fill color _COLORS, _COLOR_FILL = [], [] def set_plot_style(): """Sets default plotting styles for all plots.""" plt.rcParams["figure.figsize"] = [3.0, 2] plt.rcParams["axes.linewidth"] = 1 plt.rcParams["axes.grid"] = True plt.rcParams["grid.alpha"] = 0.4 plt.rcParams["xtick.bottom"] = False plt.rcParams["ytick.left"] = False plt.rcParams["legend.edgecolor"] = "0.3" plt.rcParams["axes.xmargin"] = 0.025 plt.rcParams["lines.linewidth"] = 1.25 plt.rcParams["lines.markersize"] = 5.0 plt.rcParams["font.size"] = 10 plt.rcParams["axes.titlesize"] = 10 plt.rcParams["legend.fontsize"] = 8 plt.rcParams["legend.title_fontsize"] = 8 plt.rcParams["xtick.labelsize"] = 7 plt.rcParams["ytick.labelsize"] = 7 def set_colors(colors=None): """Sets the global color scheme (colors should be a list of rgb float values).""" global _COLORS default_colors = [ [0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933], [0.635, 0.078, 0.184], [0.300, 0.300, 0.300], [0.600, 0.600, 0.600], [1.000, 0.000, 0.000], ] colors = default_colors if colors is None else colors colors, n = np.array(colors), len(colors) err_str = "Invalid colors list: {}".format(colors) assert ((colors >= 0) & (colors <= 1)).all() and colors.shape[1] == 3, err_str _COLORS = np.tile(colors, (int(np.ceil((10000 / n))), 1)).reshape((-1, 3)) def set_color_fill(color_fill=None): """Sets the global color fill (color should be a set of rgb float values).""" global _COLOR_FILL _COLOR_FILL = [0.000, 0.447, 0.741] if color_fill is None else color_fill def get_color(ind=(), scale=1, dtype=float): """Gets color (or colors) referenced by index (or indices).""" return
np.ndarray.astype(_COLORS[ind] * scale, dtype)
numpy.ndarray.astype
# BSD 3-Clause License; see https://github.com/jpivarski/awkward-1.0/blob/master/LICENSE from __future__ import absolute_import import numpy import awkward1._util import awkward1._connect._numpy import awkward1.layout import awkward1.operations.convert def count(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] + reduce(xs[1:]) return reduce([numpy.size(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.count(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.count_nonzero) def count_nonzero(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] + reduce(xs[1:]) return reduce([numpy.count_nonzero(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.count_nonzero(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.sum) def sum(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] + reduce(xs[1:]) return reduce([numpy.sum(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.sum(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.prod) def prod(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] * reduce(xs[1:]) return reduce([numpy.prod(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.prod(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.any) def any(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] or reduce(xs[1:]) return reduce([numpy.any(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.any(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.all) def all(array, axis=None, keepdims=False, maskidentity=False): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 1: return xs[0] else: return xs[0] and reduce(xs[1:]) return reduce([numpy.all(x) for x in awkward1._util.completely_flatten(layout)]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.all(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.min) def min(array, axis=None, keepdims=False, maskidentity=True): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 0: return None elif len(xs) == 1: return xs[0] else: x, y = xs[0], reduce(xs[1:]) return x if x < y else y tmp = awkward1._util.completely_flatten(layout) return reduce([numpy.min(x) for x in tmp if len(x) > 0]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.min(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) @awkward1._connect._numpy.implements(numpy.max) def max(array, axis=None, keepdims=False, maskidentity=True): layout = awkward1.operations.convert.tolayout(array, allowrecord=False, allowother=False) if axis is None: def reduce(xs): if len(xs) == 0: return None elif len(xs) == 1: return xs[0] else: x, y = xs[0], reduce(xs[1:]) return x if x > y else y tmp = awkward1._util.completely_flatten(layout) return reduce([numpy.max(x) for x in tmp if len(x) > 0]) else: behavior = awkward1._util.behaviorof(array) return awkward1._util.wrap(layout.max(axis=axis, mask=maskidentity, keepdims=keepdims), behavior) ### The following are not strictly reducers, but are defined in terms of reducers and ufuncs. def moment(x, n, weight=None, axis=None, keepdims=False): with numpy.errstate(invalid="ignore"): if weight is None: sumw = count(x, axis=axis, keepdims=keepdims) sumwxn = sum(x**n, axis=axis, keepdims=keepdims) else: sumw = sum(x*0 + weight, axis=axis, keepdims=keepdims) sumwxn = sum((x*weight)**n, axis=axis, keepdims=keepdims) return numpy.true_divide(sumwxn, sumw) @awkward1._connect._numpy.implements(numpy.mean) def mean(x, weight=None, axis=None, keepdims=False): with numpy.errstate(invalid="ignore"): if weight is None: sumw = count(x, axis=axis, keepdims=keepdims) sumwx = sum(x, axis=axis, keepdims=keepdims) else: sumw = sum(x*0 + weight, axis=axis, keepdims=keepdims) sumwx = sum(x*weight, axis=axis, keepdims=keepdims) return numpy.true_divide(sumwx, sumw) @awkward1._connect._numpy.implements(numpy.var) def var(x, weight=None, ddof=0, axis=None, keepdims=False): with numpy.errstate(invalid="ignore"): xmean = mean(x, weight=weight, axis=axis, keepdims=keepdims) if weight is None: sumw = count(x, axis=axis, keepdims=keepdims) sumwxx = sum((x - xmean)**2, axis=axis, keepdims=keepdims) else: sumw = sum(x*0 + weight, axis=axis, keepdims=keepdims) sumwxx = sum((x - xmean)**2 * weight, axis=axis, keepdims=keepdims) if ddof != 0: return numpy.true_divide(sumwxx, sumw) * numpy.true_divide(sumw, sumw - ddof) else: return numpy.true_divide(sumwxx, sumw) @awkward1._connect._numpy.implements(numpy.std) def std(x, weight=None, ddof=0, axis=None, keepdims=False): with numpy.errstate(invalid="ignore"): return numpy.sqrt(var(x, weight=weight, ddof=ddof, axis=axis, keepdims=keepdims)) def covar(x, y, weight=None, axis=None, keepdims=False): with numpy.errstate(invalid="ignore"): xmean = mean(x, weight=weight, axis=axis, keepdims=keepdims) ymean = mean(y, weight=weight, axis=axis, keepdims=keepdims) if weight is None: sumw = count(x, axis=axis, keepdims=keepdims) sumwxy = sum((x - xmean)*(y - ymean), axis=axis, keepdims=keepdims) else: sumw = sum(x*0 + weight, axis=axis, keepdims=keepdims) sumwxy = sum((x - xmean)*(y - ymean)*weight, axis=axis, keepdims=keepdims) return numpy.true_divide(sumwxy, sumw) def corr(x, y, weight=None, axis=None, keepdims=False): with numpy.errstate(invalid="ignore"): xmean = mean(x, weight=weight, axis=axis, keepdims=keepdims) ymean = mean(y, weight=weight, axis=axis, keepdims=keepdims) xdiff = x - xmean ydiff = y - ymean if weight is None: sumwxx = sum(xdiff**2, axis=axis, keepdims=keepdims) sumwyy = sum(ydiff**2, axis=axis, keepdims=keepdims) sumwxy = sum(xdiff*ydiff, axis=axis, keepdims=keepdims) else: sumwxx = sum((xdiff**2)*weight, axis=axis, keepdims=keepdims) sumwyy = sum((ydiff**2)*weight, axis=axis, keepdims=keepdims) sumwxy = sum((xdiff*ydiff)*weight, axis=axis, keepdims=keepdims) return numpy.true_divide(sumwxy,
numpy.sqrt(sumwxx * sumwyy)
numpy.sqrt
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292':
np.array([-0.8252668830593567, -0.11450866713130638])
numpy.array
import os import errno import h5py import numpy as np import scipy import logging from shutil import rmtree from typing import * from loompy import LoomConnection class LoomTiles(object): ############# # DEEP ZOOM # ############# __slots__ = [ 'ds', '_maxes', '_mins' ] def __init__(self, ds: LoomConnection) -> None: self.ds = ds self._maxes = None # type: np.ndarray self._mins = None def maxes(self) -> Any: if self._maxes is None: # colormax = np.percentile(data, 99, axis=1) + 0.1 # minFloat = np.finfo(float).eps; # def percentileMap(data): # return np.percentile(data, 99, axis=1) + minFloat; # Prefer using numpy's built-in method for finding the # max values faster # self._maxes = self.ds.map([max], 0)[0] logging.info('calculating & caching max values') rows = self.ds.shape[0] _maxes = np.zeros(rows) ix = 0 while ix < rows: rows_per_chunk = min(rows - ix, 64) chunk = self.ds[ix:ix + rows_per_chunk, :] _maxes[ix:ix + rows_per_chunk] = np.nanmax(chunk, axis=1) ix += rows_per_chunk print('.', end='', flush=True) self._maxes = _maxes print(' done\n\n') return self._maxes def mins(self) -> Any: if self._mins is None: # self._mins = self.ds.map([min], 0)[0] logging.info('calculating & caching min values') rows = self.ds.shape[0] _mins = np.zeros(rows) ix = 0 while ix < rows: rows_per_chunk = min(rows - ix, 64) chunk = self.ds[ix:ix + rows_per_chunk, :] _mins[ix:ix + rows_per_chunk] = np.nanmin(chunk, axis=1) ix += rows_per_chunk print('.', end='', flush=True) self._mins = _mins print(' done\n\n') return self._mins def prepare_heatmap(self, truncate: bool = False) -> None: tile_dir = "%s.tiles/" % (self.ds.filename) if os.path.isdir(tile_dir): logging.info(" Previous tile folder found at %s)", tile_dir) if truncate: logging.info(" Truncate set, removing old tile folder") rmtree(tile_dir) else: logging.info(" Call prepare_heatmap(truncate=True) to overwrite") return self.maxes() self.mins() logging.info(' Generating and saving tiles') self.dz_get_zoom_tile(0, 0, 8, truncate) print(" done\n\n") def dz_zoom_range(self) -> Tuple[int, int, int]: """ Determine the zoom limits for this file. Returns: Tuple (middle, min_zoom, max_zoom) of integer zoom levels. """ return (8, int(max(np.ceil(np.log2(self.ds.shape)))), int(max(np.ceil(np.log2(self.ds.shape))) + 8)) def dz_dimensions(self) -> Tuple[int, int]: """ Determine the total size of the deep zoom image. Returns: Tuple (x,y) of integers """ (y, x) =
np.divide(self.ds.shape, 256)
numpy.divide
import matplotlib.pyplot as plt #import seaborn as sns import math import itertools import numpy as np import pandas as pd def preplot(x_df_se,y_se,xlab="Index",ylab="Value"): if type(x_df_se) is pd.core.series.Series: x_df = pd.DataFrame() x_df[x_df_se.name] = x_df_se else: x_df = x_df_se labs_list = x_df.columns.tolist() nlabs = len(labs_list) nind = len(x_df.index) plt.figure(figsize=(8,3)) #sns.set_style("whitegrid") plt.rcParams["font.size"]=15 for lab in labs_list: plt.plot(range(nind),x_df[lab],alpha=0.8,marker="o",label=lab) if y_se is not None: plt.plot(range(nind),y_se,alpha=0.8,marker="o",label=y_se.name) plt.xlabel(xlab) plt.ylabel(ylab) plt.grid() #plt.xlim(-0.5,27) #plt.ylim(-.8,) plt.legend(loc="best",prop={"size":15}) #plt.colorbar() #plt.savefig("./preplot.png") plt.show() def list_plot(x_list,y_list,label=None): plt.figure(figsize=(6,5)) plt.rcParams["font.size"]=15 plt.plot(x_list,y_list,"+-",alpha=0.8,label=label) #plt.title(title) plt.legend(loc="best",prop={"size":12}) #plt.xlabel("Index") #plt.ylabel("Feature values") #plt.xlim(-0.5,27) #plt.ylim(-.8,) plt.grid() #plt.colorbar() #plt.savefig("./preplot.png") plt.show() def vs_plot(list1,list2,pmin=None,pmax=None,xlab="y",ylab="hy"): if not pmin: pmin = min(list1) - (max(list1) - min(list1)) / 10. if not pmax: pmax = max(list1) + (max(list1) - min(list1)) / 10. plt.figure(figsize=(6,5)) plt.rcParams["font.size"]=15 plt.scatter(list1,list2,s=50,alpha=0.7) plt.plot([pmin,pmax],[pmin,pmax],ls="--",c="k",lw=1.) plt.xlabel(xlab) plt.ylabel(ylab) plt.grid() plt.xlim(pmin,pmax) plt.ylim(pmin,pmax) #plt.legend(loc="upper left",prop={"size":12}) #plt.legend(loc="upper left",prop={"size":14}) #plt.savefig("vs.eps") plt.show() def lev_plot(lev,m,n): outlier = 2*n/m plt.figure(figsize=(8,3)) plt.rcParams["font.size"]=15 plt.plot(range(m),lev,alpha=0.8,marker="o",label="Leverage") plt.axhline(outlier,linestyle="--",color="k",label="Outlier line (for Leverage)") plt.xlabel("Index") plt.ylabel("Leverages") plt.grid() plt.legend(loc="best",prop={"size":15}) plt.show() def res_plot(e,eq): m = len(e) plt.figure(figsize=(8,3)) plt.rcParams["font.size"]=15 plt.plot(range(m),e,alpha=0.8,marker="o",label="Residuals") plt.plot(range(m),eq,alpha=0.8,marker="o",label="Pred_residuals") plt.xlabel("Index") plt.ylabel("Residuals") plt.grid() plt.legend(loc="best",prop={"size":15}) plt.show() def res_plot2(e_in,e_ex,dff,m,n): outlier = 2*
np.sqrt(n/m)
numpy.sqrt
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the NumPy ops.""" import itertools from typing import Callable from absl.testing import parameterized import numpy as np from scipy import special import tensorflow as tf from dedal import alignment from dedal import smith_waterman_np as npy_ops # For test purposes. def _sw_general(sim_mat, gap_func): """Computes soft Smith-Waterman with general gap function. Args: sim_mat: a np.ndarray<float>[len1, len2] containing the substitution values for pairs of sequences. gap_func: a function of the form gap_func(k), where k is an integer. Returns: Smith-Waterman value (float). """ len_1, len_2 = sim_mat.shape match = np.zeros((len_1 + 1, len_2 + 1)) for i in range(1, len_1 + 1): for j in range(1, len_2 + 1): tmp = match[i - 1, j - 1] + sim_mat[i-1, j-1] delete = max([match[i - k, j] - gap_func(k) for k in range(1, i + 1)]) insert = max([match[i, j - k] - gap_func(k) for k in range(1, j + 1)]) match[i, j] = max(tmp, delete, insert, 0) return max(match[1:, 1:].ravel()) def scores_brute_force(weights): len_1, len_2, _ = weights.shape ret = [] for alignment_mat in npy_ops.alignment_matrices(len_1, len_2): ret.append(np.vdot(alignment_mat, weights)) return
np.array(ret)
numpy.array
import numpy as np import csv import matplotlib.pyplot as plt n = 16 # number of input features. m = 60 # number of training examples. grad = np.zeros(shape = (n, 1)) theta = np.ones(shape=(n, 1), dtype = float) hx = np.ones(shape=(m, 1), dtype = float) file_handle = open("datasets/air-pollution/data.csv", "r") reader = csv.reader(file_handle, delimiter = ',') learning_rate = 1e-6 def h(X): global theta res = np.matmul(np.transpose(theta), X) return res cost_list = [] itr_list = [] def gradient_descent_algorithm(): global theta, grad num_itrs = 10000 for itr in range(num_itrs): file_handle.seek(0) total_cost = 0.0 idx = 0 for row in reader: X = [float(x) for x in row[0: -1]] # list of floats X = np.asarray(X) np.reshape(X, [n, 1]) hx[idx][0] = h(X) y_correct = float(row[0]) diff = (hx[idx][0] - y_correct) total_cost += (diff * diff) idx += 1 for j in range(n): grad[j][0] = 0.0 i = 0 file_handle.seek(0) for row in reader: y_correct = float(row[-1]) xij = float(row[j + 1]) diff = hx[i][0] - y_correct grad[j][0] += ((learning_rate * diff * xij) / m) i += 1 theta = theta - grad total_cost = total_cost /(2 * m) cost_list.append(total_cost) itr_list.append(itr + 1) gradient_descent_algorithm() plt.plot(itr_list, cost_list, label = "cost") plt.xlabel("iterations") # naming the y axis plt.ylabel('Cost') # giving a title to my graph plt.title('Cost vs iterations') # show a legend on the plot plt.legend() # function to show the plot plt.show() ypaxis = [] ycaxis = [] xaxis = [] index = 0 file_handle.seek(0) for row in reader: X = [float(x) for x in row[1:]] # list of floats X =
np.asarray(X)
numpy.asarray
from collections import defaultdict import numpy from OpenGL.GL import * from btypes.big_endian import * import gx from j3d.opengl import * import logging logger = logging.getLogger(__name__) class Header(Struct): magic = ByteString(4) section_size = uint32 attribute_format_offset = uint32 position_offset = uint32 normal_offset = uint32 unknown0_offset = uint32 # NBT? color_offsets = Array(uint32,2) texcoord_offsets = Array(uint32,8) def __init__(self): self.magic = b'VTX1' self.unknown0_offset = 0 @classmethod def unpack(cls,stream): header = super().unpack(stream) if header.magic != b'VTX1': raise FormatError('invalid magic') if header.unknown0_offset != 0: logger.warning('unknown0_offset different from default') return header class AttributeFormat(Struct): """ Arguments to GXSetVtxAttrFmt.""" attribute = EnumConverter(uint32,gx.Attribute) component_count = uint32 component_type = uint32 scale_exponent = uint8 __padding__ = Padding(3) def __init__(self,attribute,component_count,component_type,scale_exponent): self.attribute = attribute self.component_count = component_count self.component_type = component_type self.scale_exponent = scale_exponent class AttributeFormatList(TerminatedList): element_type = AttributeFormat terminator_value = AttributeFormat(gx.VA_NULL,1,0,0) @staticmethod def terminator_predicate(element): return element.attribute == gx.VA_NULL class Array(numpy.ndarray): @staticmethod def create_element_type(component_type,component_count): return numpy.dtype((component_type.numpy_type,component_count.actual_value)).newbyteorder('>') def __array_finalize__(self,obj): if not isinstance(obj,Array): return self.attribute = obj.attribute self.component_type = obj.component_type self.component_count = obj.component_count self.scale_exponent = obj.scale_exponent def gl_convert(self): array =
numpy.asfarray(self,numpy.float32)
numpy.asfarray